Discrete Time Markov Chains. Applications in Bioinformatics

Javier Campos

Universidad de Zaragoza
http://webdiis.unizar.es/~jcampos/

- Basic definitions
- Representations
- Multi-step transition probabilities
- Classification of states
- Steady-state behaviour
- Examples
- Applications in Bioinformatics

Basic definitions

- Markov processes: special class of stochastic processes that satisfy the Markov Property (MP):
- Given the state of the process at time t, its state at time $t+s$ has probability distribution which is a function of s only.
- i.e. the future behaviour after t is independent of the behaviour before t.
- Often intuitively reasonable, yet sufficiently "special" to facilitate effective mathematical analysis.

Basic definitions

- We consider Markov processes with discrete state (sample) space.

They are called Markov chains.

- If time parameter is discrete $\left\{t_{0}, t_{1}, t_{2} \ldots\right\}$ they are called Discrete Time Markov Chains (DTMC).
- If time is continuous ($t \geq 0, t \in I R$), they are called Continuous Time Markov Chains (CTMC).

Basic definitions

- Let $X=\left\{X_{n}\right\}$, with $n=0,1, \ldots ; X_{i} \in I N, i \geq 0$ be a non-negative integer valued Markov chain with discrete time parameter n.

Markov Property states that:

$$
\begin{align*}
& P\left(X_{n+1}=j \mid X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right)= \tag{*}\\
& \quad=P\left(X_{n+1}=j \mid X_{n}=x_{n}\right), \text { for } j, n=0,1 \ldots
\end{align*}
$$

${ }^{\left({ }^{*}\right)}$ Remember "conditional probability", prob of A, given the occurrence of B: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.

Basic definitions

- Evolution of a DTMC is completely described by its 1 -step transition probabilities

$$
p_{i j}(n)=P\left(X_{n+1}=j \mid X_{n}=i\right) \text { for } i, j, n \geq 0
$$

- If the conditional probability is invariant with respect to the time origin, the DTMC is said to be time-homogeneous

$$
\begin{aligned}
& p_{i j}(n)=p_{i j} \\
& \sum_{j \in \Omega} p_{i j}=1, \forall i \in \Omega
\end{aligned}
$$

Outline

- Basic definitions
- Representations
- Multi-step transition probabilities
- Classification of states
- Steady-state behaviour
- Examples
- Applications in Bioinformatics

Representations

- State transition diagram
- Directed graph
- number of nodes $=$ number of states (if Ω finite)
- An arc from i to j if and only if $p_{i j}>0$

Telephone line example: line is either idle (state 0) or busy (state 1)

Representations

- Transition probability matrix

$$
P=\left[\begin{array}{cccc}
p_{00} & p_{01} & & \cdots \\
p_{10} & p_{11} & & \cdots \\
\vdots & & & \\
p_{i 0} & & p_{i i} & \cdots \\
\vdots & & \vdots &
\end{array}\right] \text { in which all rows sum to } 1
$$

- dimension $=$ number of states in Ω if finite, otherwise countably infinite
- conversely, any real matrix P s.t. $p_{i j} \geq 0, \sum_{j} p_{i j}=1$ (called a stochastic matrix) defines a MC

Representations

Telephone line example

$$
P=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.3 & 0.7
\end{array}\right]
$$

Representations

- Example 2: I/O buffer, capacity M records

New record added in any unit of time with prob. a (if not full). Buffer emptied in any unit of time with prob. b. If both occur in same interval, insertion done first. Let X_{n} be the number of records in buffer at (discrete) time n. Then, assuming that insertions and emptying are independent of each other and of their own past histories, $\left\{X_{n} \mid n=0,1, \ldots\right\}$ is a MC with state space $\{0,1, \ldots, M\}$ and state diagram:

Representations

- The transition probability matrix follows immediately, e.g.:

$$
\begin{aligned}
& p_{12}=a(1-b)=p_{n, n+1}, 0 \leq n \leq M-1 \\
& p_{M M}=1-b
\end{aligned}
$$

etc.

Representations

- Example 3:

A system that can be

- Idle
- Busy
- Waiting for a resource
- Broken
- Repairing
$P=\left[\begin{array}{ccccc}\text { ddle } & \text { busy } & \text { wait } & \text { broken repair } \\ 0.2 & 0.75 & 0.0 & 0.05 & 0.0 \\ 0.3 & 0.3 & 0.3 & 0.1 & 0.0 \\ 0.0 & 0.55 & 0.4 & 0.05 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 & 0.5 \\ 0.6 & 0.0 & 0.0 & 0.0 & 0.4\end{array}\right]$

Representations

- Time spent in a state:

$$
P=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.3 & 0.7
\end{array}\right]
$$

- $T_{0}=$ random variable "time spent in state 0 "

$$
\begin{aligned}
& P\left(T_{0}=1\right)=\left(1-p_{00}\right) \\
& P\left(T_{0}=2\right)=p_{00}\left(1-p_{00}\right) \\
& P\left(T_{0}=3\right)=p_{00}{ }^{2}\left(1-p_{00}\right) \\
& \cdots \\
& P\left(T_{0}=n+1\right)=p_{00}{ }^{n}\left(1-p_{00}\right)
\end{aligned}
$$

\rightarrow Geometrically distributed random variable
Is the discrete analogue of exponential distribution \rightarrow memoryless

Outline

- Basic definitions
- Representations
- Multi-step transition probabilities
- Classification of states
- Steady-state behaviour
- Examples
- Applications in Bioinformatics

Multi-step transition probabilities

- Let the 2-step transition probability be

$$
\begin{aligned}
p_{i j}^{(2)} & =P\left(X_{n+2}=j \mid X_{n}=i\right) \\
& =\sum_{k \in \Omega} P\left(X_{n+1}=k, X_{n+2}=j \mid X_{n}=i\right) \text { by law of tot. prob. } \\
& =\sum_{k \in \Omega} P\left(X_{n+2}=j \mid X_{n}=i, X_{n+1}=k\right) P\left(X_{n+1}=k \mid X_{n}=i\right) \\
& =\sum_{k \in \Omega} P\left(X_{n+2}=j \mid X_{n+1}=k\right) P\left(X_{n+1}=k \mid X_{n}=i\right) \text { by MP } \\
& =\sum_{k \in \Omega} p_{i k} p_{k j} \\
& =\left(P^{2}\right)_{i j}
\end{aligned}
$$

Multi-step transition probabilities

- Similarly, the n-step transition probability

$$
\begin{aligned}
p_{i j}^{(n)} & =P\left(X_{n}=j \mid X_{0}=i\right) \\
& =\sum_{k \in \Omega} P\left(X_{n}=j \mid X_{n-1}=k, X_{0}=i\right) P\left(X_{n-1}=k \mid X_{0}=i\right) \\
& =\sum_{k \in \Omega} p_{i k}^{(n-1)} p_{k j}
\end{aligned}
$$

In matrix form:

$$
P^{(n)}=P^{(n-1)} \times P
$$

If $\mathrm{n}=2$:

$$
P^{(2)}=P^{(1)} \times P=P^{2}
$$

And in general: $\quad P^{(n)}=P^{n}$

$$
\text { i.e. } \quad p_{i j}^{(n)}=\left(P^{n}\right)_{i j}
$$

Multi-step transition probabilities

- A more general version of previous equations
- Chapman-Kolmogorov equations

$$
p_{i j}^{(n+m)}=\sum_{k \in \Omega} p_{i k}^{(n)} p_{k j}^{(m)}
$$

Because

$$
p_{i j}^{(n+m)}=\sum_{k \in \Omega} P\left(X_{n+m}=j \mid X_{n}=k, X_{0}=i\right) P\left(X_{n}=k \mid X_{0}=i\right)
$$

Thus

$$
P^{(n+m)}=P^{(n)} \times P^{(m)}=P^{n} \times P^{m}
$$

Multi-step transition probabilities

- Computation of transient distribution
- Probabilistic behaviour of the Markov chain over any finite period time, given the initial state

$$
P\left(X_{n}=j \mid X_{0}=i\right)=p_{i j}^{(n)}=\left(P^{n}\right)_{i j}
$$

- E.g., in the example of the I/O buffer with capacity of M records, the average number of records in the buffer at time 50 is

$$
E\left(X_{50} \mid X_{0}=0\right)=\sum_{j=1}^{\min (M, 50)} j q_{0 j}^{(50)}
$$

Multi-step transition probabilities

- Computation of transient distribution
- nth-step distribution:

$$
\begin{aligned}
\pi_{j}(n) & =P\left(X_{n}=j\right)=\sum_{i \in \Omega} P\left(X_{0}=i\right) P\left(X_{n}=j \mid X_{0}=i\right) \\
& =\sum_{i \in \Omega} \pi_{i}(0) p_{i j}^{(n)}=\sum_{i \in \Omega} \pi_{i}(0)\left(P^{n}\right)_{i j}
\end{aligned}
$$

- in matrix form:

$$
\pi(n)^{\top}=\pi(0)^{\top} P^{n}
$$

- Problem: computationally expensive!

Outline

- Basic definitions
- Representations
- Multi-step transition probabilities
- Classification of states
- Steady-state behaviour
- Examples
- Applications in Bioinformatics

Classification of states

- State j is accessible from state i (writen written $i \rightarrow j$) if

$$
p_{i j}^{(n)}>0 \text {, for some } n
$$

- A state i is said to communicate with state j (writen written $i \leftrightarrow j$) if i is accessible from j and j is accesible from i
- A set of states C such that each pair of states in C communicates is a communicating class
- A communicating class is closed if the probability of leaving the class is zero (no state out of C is accesible from states in C)
- A Markov chain is irreducible if the state space is a communicating class
- State i is an absorbing state if there is no state reachable from i

Classification of states

- Periodicity:
- A state i has period k if any return to state i must occur in some multiple of k time steps.

$$
k=\operatorname{gcd}\left\{\eta: P\left(X_{n}=i \mid X_{0}=i\right)>0\right\}
$$

- If $k=1$, then the state is aperiodic; otherwise $(k>1)$, the state is periodic with period k.
- It can be shown that every state in a communicating class must have the same period.
- An irreducible Markov chain is aperiodic if its states are aperiodic.

Classification of states

- Recurrence

- A state i is transient if, given that we start in state i, there is a non-zero probability that we will never return back to i.
- Formally, next return time to state i ("hitting time"):

$$
T_{i}=\min \left\{n: X_{n}=i \mid X_{0}=i\right\}
$$

- State i is transient if $P\left(T_{i}<\infty\right)<1$ (i.e. $\left.P\left(T_{i}=\infty\right)>0\right)$
- If a state i is not transient (it has finite hitting time with probability 1), then it is said to be recurrent.
- Let M_{i} be the expected (average) return time, $M_{i}=E\left[T_{i}\right]$
- Then, state i is positive recurrent if M_{i} is finite; otherwise, state i is null recurrent.
- It can be shown that a state is recurrent iff $\sum_{n=0}^{\infty} p_{i i}^{(n)}=\infty$

Classification of states

- In a finite DTMC:
- All states belonging to a closed class are positive recurrent.
- All states not belonging to a closed class are transient.
- There are not null recurrent states.
- In an irreducible DTMC:
- Either all states are transient or recurrent (in case of finite DTMC, all are positive recurrent).
- Ergodicity:
- A state i is said to be ergodic if it is aperiodic and positive recurrent (finite average return time).
- If all states in a DTMC are ergodic, the chain is said to be ergodic.

Outline

- Basic definitions
- Representations
- Multi-step transition probabilities
- Classification of states
- Steady-state behaviour
- Examples
- Applications in Bioinformatics

Steady-state behaviour

- Transient behaviour: computationally expensive
- Easier and maybe more interesting to determine the limit or steady-state distribution

$$
\pi_{j}=\lim _{n \rightarrow \infty} \pi_{j}(n)
$$

In vector form

$$
\pi=\lim _{n \rightarrow \infty} \pi(n)
$$

- Does it exist?
- Is it unique?
- Is it independent of the initial state?

Steady-state behaviour

- If limit distribution exists... we know how to compute it!

$$
\pi(n+1)=\pi(0) P^{n+1}=\pi(n) P
$$

i.e., it must be equal to the stationary distribution, the solution of:
\rightarrow balance equations
\rightarrow normalizing equat.
where $e=(1,1, \ldots, 1)^{\top}$, and the initial distribution does not affect the limit distribution

Steady-state behaviour

- Other interpretation:
- The solution of balance equations can be seen as the proportion of time that the process enters in each state in the long run
- Let $N_{j}(n)$ be the number of visits of the process to the state j until instant n
- The occupation distribution can be defined as

$$
\pi_{j}=\lim _{n \rightarrow \infty} \frac{E\left[N_{j}(n)\right]}{n+1}
$$

- Of course, its inverse is the mean interval between visits, or mean return time ($1 / \pi_{j}$)
- If the occupation distribution exists, it verifies

$$
\pi^{\top} P=\pi^{\top} ; \quad \pi^{\top} e=1
$$

Steady-state behaviour

- But,
- Does limit distribution exist?
- Is it unique?
- Is it independent of the initial state?

We know some cases where the answer is no

We know some cases where the answer is yes

Steady-state behaviour

- If a unique limit distribution exists, all rows of P^{n} must be equal in the limit, in this way the distribution of X_{n} does not depend on the initial distribution
- Example

$$
P^{2 n}=\left[\begin{array}{ccc}
0.1 & 0 & 0.9 \\
0 & 1 & 0 \\
0.1 & 0 & 0.9
\end{array}\right]
$$

$$
P^{2 n-1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0.1 & 0 & 0.9 \\
0 & 1 & 0
\end{array}\right]
$$

If a is the initial distribution, then the distribution of $X_{n}, n \geq 1$ is:

$$
\left.\begin{array}{l}
\left(0.1\left(a_{1}+a_{3}\right),\right. \\
\left(\begin{array}{c}
a_{2},
\end{array} \quad 0.9\left(a_{1}+a_{3}\right)\right) \text {, if } n \text { is odd } \\
\left(0.1 a_{2},\right.
\end{array} a_{1}+a_{3}, \quad 0.9 a_{2}\right), \text { if } n \text { is even }
$$

Thus, the DTMC has not limit distribution.
If balance and normalization equations are solved, we get a unique solution
$\pi=(0.05,0.5,0.45)$.
This means: if π is assumed as initial distribution, then π is also the distribution for X_{n}, for all n.

Steady-state behaviour

- Example: limit and stationary distributions may be non unique

$$
P=\left[\begin{array}{ccc}
0.2 & 0.8 & 0 \\
0.1 & 0.9 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then,

$$
\lim _{n \rightarrow \infty} P^{n}=\left[\begin{array}{ccc}
0.1111 & 0.8889 & 0 \\
0.1111 & 0.8889 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Limit distribution exists, but it is not unique since it depends on the initial distribution: if a is the initial distribution

$$
\pi=\left(0.111\left(a_{1}+a_{2}\right), 0.8889\left(a_{1}+a_{2}\right), a_{3}\right)
$$

is a limit distribution for X_{n}, and it is also a stationary distribution.

Steady-state behaviour

- Finite \& irreducible DTMC \Rightarrow there exists a unique stationary distribution
- Finite \& irreducible DTMC \Rightarrow there exists a unique occupation distribution, and it is equal to the stationary distribution
- Finite, irreducible \& aperiodic DTMC \Rightarrow it has a unique limit distribution, and it is equal to the stationary distribution
- Positive recurrent \& aperiodic DTMC \Rightarrow there exists limit distribution
- If in addition DTMC is irreducible, the limit distribution is independent of the initial probability
- Irreducible, positive recurrent \& periodic DTMC with period $d \Rightarrow \lim _{n \rightarrow \infty} p_{i j}^{(n d)}=d \pi_{j}$
- An irreducible \& aperiodic DTMC is positive recurrent \Leftrightarrow there exists a unique solution of balance equation
- Irreducible, aperiodic \& null recurrent DTMC $\Rightarrow \lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$

Outline

- Basic definitions
- Representations
- Multi-step transition probabilities
- Classification of states
- Steady-state behaviour
- Examples
- Applications in Bioinformatics

Examples

- Random walks
- A random walk is a random process consisting of a sequence of discrete steps of fixed length.
- One-dimensional nearest-neighbour random walk

- In this case, the reachable states are integer (or natural) numbers and at each step, the process jumps to the nearestneighbour to the right with probability p or to the nearestneighbour to the left with probability $1-p$.
- A random walk with state space equal to Z (integer numbers) can be transient or null recurrent depending on p.
- If $p=1 / 2$ then it is null recurrent and in other cases it is transient. Look at the book by S. Ross (Example 4.3d).
- A random walk with reflectant barrier at 0 (i.e., state space equal to non negative integers) can be transient, null recurrent or positive recurrent. Look here (local copy).

Examples

- A processor has certain tasks to perform
- State transition diagram. Possible states:
- idle (no task to do)
- busy (working on a task)
- waiting (stopped for some resource)
- broken (no longer operational)
- repair (fixing the failure)

Examples

- Transition probability matrix representation

$$
P=\left[\right]
$$

Examples

- Properties: finite state space, irreducible, aperiodic

\Rightarrow it has a unique limit distribution, and it is equal to the stationary distribution
- Solution:

$$
\left.\begin{array}{cc}
\pi=\lim _{n \rightarrow \infty} \pi(n) & \pi^{\top} P=\pi^{\top} \\
\pi^{\top} e=1
\end{array}\right]=(0.2155,0.3804,0.1902,0.1167,0.0972)^{\top} \quad .
$$

Examples

$\pi=(0.2155,0.3804,0.1902,0.1167,0.0972)^{\top}$

- Compute performance indices:
- Availability: $P($ idle + busy + wait $)=0.7861$ (in other words, 78.61% of the time)
- So, not available: 21.39% of the time
- Working time: P (busy + wait) $=0.57$

Outline

- Basic definitions
- Representations
- Multi-step transition probabilities
- Classification of states
- Steady-state behaviour
- Examples
- Applications in Bioinformatics

Simple model of virus mutation

- Suppose a virus can exist in N different strains and in each generation either stays the same, or with probability α mutates to another strain, which is chosen at random.
- What is the probability that the strain in the $n t h$ generation is the same as that in the Oth?
N-state chain, with $N \times N$ transition matrix P given by

$$
\begin{aligned}
& P_{i i}=1-\alpha \\
& P_{i j}=\alpha /(N-1), \text { for } i \neq j .
\end{aligned}
$$

Answer: computing $p_{11}{ }^{(n)}$.

Much simpler: exploiting the symmetry present in the mutation rules...

Simple model of virus mutation

- At any time a transition is made from the initial state to another with probability α, and a transition from another state to the initial state with probability $\alpha /(N-1) \rightarrow$ two-state chain

Since $p_{11}{ }^{(n)}+p_{12}{ }^{(n)}=1$ then we get the recurrence

$$
p_{11}{ }^{(n+1)}=(1-\alpha-\beta) p_{11}^{(n)}+\beta, \quad \text { and } p_{11}{ }^{(0)}=1
$$

That has a unique solution

$$
p_{11}^{(n)}= \begin{cases}\frac{\beta}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta}(1-\alpha-\beta)^{n} & \text { for } \alpha+\beta>0 \\ 1 & \text { for } \alpha+\beta=0\end{cases}
$$

Then, in our case $p_{11}{ }^{(n)}=\frac{1}{N}+\left(1-\frac{1}{N}\right)\left(1-\frac{\alpha N}{N-1}\right)^{n}$.

Life behaviour model exercise

- An octopus, called Paul, is trained to choose object A from a pair of objects A, B, by being given repeated trials in which it is shown both and is rewarded with food if it chooses A.
- Modelling its mind states...
- state 1: it cannot remember which object is rewarded
\rightarrow it is equally likely to choose either
- state 2: it remembers and chooses A but may forget again
- state 3: it remembers and chooses A and never forgets
- Modelling its evolution in time
- After each trial it may change its state of mind according to the transition matrix

state 1	$1 / 2$	$1 / 2$	0
state 2	$1 / 2$	$1 / 12$	$5 / 12$
state 3	0	0	1

Life behaviour model exercise

- Questions: It is in state 1 before the first trial,
- What is the probablity that it is in state 1 just before the $(n+1)$ th trial?
- Answer.
- What is the probability $P_{n+1}(A)$ that it chooses A on the $(n+1)$ th trial?
- Answer.
- Someone suggests that the record of successive choices (a sequence of $A s$ and $B s$) might arise from a two-state Markov chain with constant transition probabilities.

Discuss, with reference to the value of $P_{n+1}(A)$ that you have found, whether this is possible.

- Answer.

Other examples

- Population genetics, Norris' book:
- Wright-Fisher model
- Moran model
- Epidemic models, Linda Allen's book:
- SIS Epidemic Model
- Chain Binomial Epidemic Models
(you can read it at
http://webdiis.unizar.es/asignaturas/SPN/?page id=104)

Many other applications...

- Birth-death processes used to model the evolution of populations
- Markov models appear also in chemical and biochemical kinetics
- Are the basis for Hidden Markov Models
- Et cetera...

