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Basic definitions
•

 
Markov

 
processes: special

 
class

 
of

 stochastic
 

processes
 

that
 

satisfy
 

the
 

Markov 
Property (MP):
–

 
Given

 
the

 
state

 
of

 
the

 
process

 
at time t, its

 
state

 at time t + s has probability
 

distribution
 

which
 

is
 

a 
function

 
of

 
s only.

–
 

i.e. the
 

future
 

behaviour
 

after
 

t is
 

independent
 

of
 the

 
behaviour

 
before

 
t.

–
 

Often
 

intuitively
 

reasonable, yet
 

sufficiently
 “special”

 
to facilitate effective mathematical 

analysis.
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Basic definitions
•

 
We

 
consider

 
Markov

 
processes

 
with

 
discrete

 state
 

(sample) space. 

They
 

are called
 

Markov chains.

–
 

If
 

time parameter
 

is
 

discrete
 

{t0
 

, t1
 

, t2
 

...} they
 

are 
called

 
Discrete Time Markov Chains (DTMC).

–
 

If
 

time is
 

continuous
 

(t 
 

0, t 
 

lR), they are called 
Continuous Time Markov Chains (CTMC).
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Basic definitions
•

 
Let

 
X = {Xn }, with

 
n = 0,1,...; Xi 

 
lN, i 

 
0 

be a non-negative integer valued Markov 
chain with discrete time parameter n.

 
Markov Property states that:

P(Xn+1
 

= j | X0
 

=x0
 

,...,Xn =xn ) =                       (*)

= P(Xn+1
 

= j | Xn = xn ), for
 

j,n=0,1...

(*) Remember

 

“conditional

 

probability”, prob

 

of

 

A, given

 

the

 

occurrence

 

of

 

B:
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Basic definitions
•

 
Evolution

 
of

 
a DTMC is

 
completely

 
described

 by its
 

1-step
 

transition
 

probabilities
pij (n) = P(Xn+1

 

= j | Xn = i) for
 

i,j,n 
 

0

•
 

If
 

the
 

conditional
 

probability
 

is
 

invariant
 

with
 respect

 
to

 
the

 
time origin, the

 
DTMC is

 
said

 to
 

be time-homogeneous
pij (n) = pij




ip
j

ij   ,1
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Representations
•

 
State transition

 
diagram

–
 

Directed
 

graph
•

 
number

 
of

 
nodes

 
= number

 
of

 
states

 
(if

 


 
finite)

•
 

An
 

arc from
 

i to
 

j if
 

and
 

only
 

if
 

pij > 0

Telephone
 

line
 

example: 
line

 
is

 
either

 
idle

 
(state

 
0) or

 
busy

 
(state

 
1)
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Representations
•

 
Transition

 
probability

 
matrix

–
 

dimension
 

= number
 

of
 

states
 

in 
 

if finite, 
otherwise countably infinite

–
 

conversely, any
 

real matrix
 

P s.t. pij 
 

0, j pij = 1 
(called a stochastic matrix) defines a MC

1  tosum rows allin which     
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Representations
Telephone

 
line

 
example



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Representations
•

 
Example

 
2: I/O buffer, capacity

 
M records

New
 

record added
 

in any
 

unit
 

of
 

time with
 

prob. a (if
 

not
 

full).
 Buffer emptied

 
in any

 
unit

 
of

 
time with

 
prob. b.

 If
 

both
 

occur
 

in same
 

interval, insertion
 

done first.
 Let

 
Xn be the

 
number

 
of

 
records

 
in buffer at (discrete) time n. 

Then, assuming
 

that
 

insertions
 

and
 

emptying
 

are independent
 of

 
each

 
other

 
and

 
of

 
their

 
own

 
past

 
histories, {Xn | n=0,1,...} is

 
a 

MC with
 

state
 

space
 

{0,1,...,M} and
 

state
 

diagram:
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Representations
•

 
The

 
transition

 
probability

 
matrix

 
follows

 
immediately, e.g.:

p12

 

= a(1 –
 

b ) = pn,n+1

 

, 0  n 
 

M – 1 

pMM = 1 –
 

b

etc.
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Representations
•

 
Example

 
3: 

A system
 

that
 

can be 
–

 
Idle

–
 

Busy
–

 
Waiting

 
for

 
a resource

–
 

Broken
–

 
Repairing

idle busy waiting broken repair
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Representations
•

 
Time spent

 
in a state:

–
 

T0

 

= random
 

variable “time spent in state 0”

P(T0

 

=1) = (1-p00

 

)
P(T0

 

=2) = p00

 

(1-p00

 

)
P(T0

 

=3) = p00
2

 

(1-p00

 

)
…
P(T0

 

=n+1) = p00
n (1-p00

 

)

 Geometrically
 

distributed
 

random
 

variable
Is

 
the

 
discrete

 
analogue

 
of

 
exponential

 
distribution

 
 memoryless











7.03.0
1.09.0
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Multi-step
 

transition
 

probabilities
•

 
Let

 
the

 
2-step

 
transition

 
probability

 
be
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Multi-step
 

transition
 

probabilities
•

 
Similarly, the

 
n-step

 
transition

 
probability

In matrix
 

form:

If
 

n=2: 

And
 

in general:                               i.e.


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Multi-step
 

transition
 

probabilities
•

 
A more general version

 
of

 
previous

 equations
–

 
Chapman-Kolmogorov equations

Because

Thus



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k

m
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Multi-step
 

transition
 

probabilities
•

 
Computation

 
of

 
transient

 
distribution

–
 

Probabilistic
 

behaviour
 

of
 

the
 

Markov
 

chain
 

over
 

any
 

finite
 period

 
time, given

 
the

 
initial

 
state

–
 

E.g., in the
 

example
 

of
 

the
 

I/O buffer with
 

capacity
 

of
 

M 
records, the

 
average number

 
of

 
records

 
in the

 
buffer at time 

50 is

 ijnn
ijn PpiXjXP  )(

0 )|(

)50(
0
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1
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Multi-step
 

transition
 

probabilities
•

 
Computation

 
of

 
transient

 
distribution

–
 

nth-step
 

distribution:

–
 

in matrix
 

form:

–
 

Problem: computationally
 

expensive!


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Classification
 

of
 

states
•

 
State j is

 
accessible from

 
state

 
i 

(writen
 

written
 

i → j)  if 

•
 

A state
 

i is
 

said
 

to
 

communicate with
 

state
 

j 
(writen

 
written

 
i  j) if i is accessible from j and j is accesible 

from i
•

 
A set of

 
states

 
C such

 
that

 
each

 
pair

 
of

 
states

 
in C 

communicates
 

is
 

a communicating class
•

 
A communicating

 
class

 
is

 
closed if

 
the

 
probability

 
of

 
leaving

 the
 

class
 

is
 

zero
 

(no state
 

out of
 

C is
 

accesible from
 

states
 

in 
C)

•
 

A Markov
 

chain
 

is
 

irreducible if
 

the
 

state
 

space
 

is
 

a 
communicating

 
class

•
 

State i is
 

an
 

absorbing state
 

if
 

there
 

is
 

no state
 

reachable
 

from
 i

np n
ij   somefor   ,0)( 
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Classification
 

of
 

states
•

 
Periodicity:
–

 
A state i has period k if any return to state i must 
occur in some multiple of k time steps.

–
 

If k = 1, then the state is aperiodic; otherwise 
(k>1), the state is periodic with period k.

–
 

It can be shown that every state in a 
communicating class must have the same period.

–
 

An irreducible Markov chain is aperiodic if its 
states are aperiodic.

}0)|(:gcd{ 0  iXiXPnk n
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Classification
 

of
 

states
•

 
Recurrence
–

 
A state i is transient if, given that we start in state i, there is 
a non-zero probability that we will never return back to i.

•
 

Formally, next
 

return
 

time to
 

state
 

i ("hitting
 

time"):

•
 

State i is transient if  P (Ti < ) < 1     (i.e.   P (Ti = ) > 0 )

–
 

If a state i is not transient (it has finite hitting time with 
probability 1), then it is said to be recurrent.

–
 

Let Mi be the expected
 

(average) return time, Mi =E[Ti ]
•

 
Then, state i is positive recurrent if Mi is finite; otherwise, 
state i is null recurrent.

–
 

It can be shown that a state is recurrent iff

}|:min{ 0 iXiXnT ni 




0

)(

n

n
iip
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Classification
 

of
 

states
•

 
In a finite

 
DTMC:

–
 

All
 

states
 

belonging
 

to
 

a closed
 

class
 

are positive recurrent.
–

 
All

 
states

 
not

 
belonging

 
to

 
a closed

 
class

 
are transient.

–
 

There
 

are not
 

null
 

recurrent
 

states.

•
 

In an
 

irreducible DTMC:
–

 
Either

 
all

 
states

 
are transient

 
or

 
recurrent

 (in case of
 

finite
 

DTMC, all
 

are positive recurrent).

•
 

Ergodicity:
–

 
A state

 
i is

 
said

 
to

 
be ergodic if

 
it

 
is

 
aperiodic

 
and

 
positive 

recurrent
 

(finite
 

average return time).
–

 
If

 
all

 
states

 
in a DTMC are ergodic, the

 
chain

 
is

 
said

 
to

 
be 

ergodic. 
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Steady-state
 

behaviour
•

 
Transient

 
behaviour: computationally

 
expensive

•
 

Easier
 

and
 

maybe
 

more interesting
 

to
 

determine the
 limit or

 
steady-state distribution

In vector form

–
 

Does
 

it
 

exist?
–

 
Is

 
it

 
unique?

–
 

Is
 

it
 

independent
 

of
 

the
 

initial
 

state?

)(lim njnj 




)(lim n
n





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Steady-state
 

behaviour
•

 
If

 
limit

 
distribution

 
exists…

 
we

 
know how to

 
compute it!

i.e., it
 

must
 

be equal
 

to
 

the
 

stationary distribution, the
 solution

 
of:

T

 

P =  T

 

 balance equations
Te = 1

 
 normalizing equat.

where
 

e = (1,1,…,1)T, and
 

the
 

initial
 

distribution
 

does
 

not
 affect

 
the

 
limit

 
distribution

PnPn n )()0()1( 1   

Pnn
nn

  )(lim      )1(lim 



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Steady-state
 

behaviour
•

 
Other

 
interpretation:

–
 

The
 

solution
 

of
 

balance equations
 

can be seen
 

as the
 proportion

 
of

 
time that

 
the

 
process

 
enters

 
in each

 
state

 
in 

the
 

long run
•

 
Let

 
Nj (n) be the

 
number

 
of

 
visits

 
of

 
the

 
process

 
to

 
the

 
state

 
j 

until
 

instant
 

n
•

 
The

 
occupation distribution can be defined

 
as

•
 

Of
 

course, its
 

inverse
 

is
 

the
 

mean interval
 

between
 

visits, or
 mean return time (1/j )

–
 

If
 

the
 

occupation
 

distribution
 

exists, it
 

verifies
T

 

P = T

 

;   T

 

e= 1

1
)]([

lim



 n

nNE j

nj
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Steady-state
 

behaviour
•

 
But,
–

 
Does

 
limit

 
distribution

 
exist?

–
 

Is
 

it
 

unique?
–

 
Is

 
it

 
independent

 
of

 
the

 
initial

 
state?

We
 

know some
 

cases where
 

the
 

answer
 

is
 

no

We
 

know some
 

cases where
 

the
 

answer
 

is
 

yes
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Steady-state
 

behaviour
•

 
If

 
a unique

 
limit

 
distribution

 
exists, all

 
rows

 
of

 
Pn must

 
be equal

 
in the

 limit, in this
 

way
 

the
 

distribution
 

of
 

Xn does
 

not
 

depend
 

on
 

the
 

initial
 distribution

•
 

Example

If

 

a is

 

the

 

initial

 

distribution, then

 

the

 

distribution

 

of

 

Xn , n ≥

 

1 is:

(0.1(a1

 

+a3

 

),     a2

 

,     0.9(a1

 

+a3

 

)), if

 

n is

 

odd
(   0.1a2

 

,       a1

 

+a3

 

,      0.9a2

 

), if

 

n is

 

even

Thus, the

 

DTMC has not

 

limit

 

distribution.
If

 

balance and

 

normalization

 

equations

 

are solved, we

 

get

 

a unique

 

solution
 = (0.05, 0.5, 0.45).

This

 

means: if

 

 is

 

assumed

 

as initial

 

distribution, then

 

 is

 

also

 
the

 

distribution

 

for

 

Xn , for

 

all

 

n.
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Steady-state
 

behaviour
•

 
Example: limit

 
and

 
stationary

 
distributions

 
may be non unique

Then,

Limit
 

distribution
 

exists, but
 

it
 

is
 

not
 

unique
 

since
 

it
 

depends
 

on
 

the
 initial

 
distribution: if

 
a is

 
the

 
initial

 
distribution

 = (0.111(a1

 

+a2

 

), 0.8889(a1

 

+a2

 

), a3

 

) 

is
 

a limit
 

distribution
 

for
 

Xn , and
 

it
 

is
 

also
 

a stationary
 

distribution.




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
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Steady-state
 

behaviour
•

 

Finite

 

& irreducible DTMC  there

 

exists

 

a unique

 

stationary

 

distribution

•

 

Finite

 

& irreducible DTMC  there

 

exists

 

a unique

 

occupation

 

distribution, and

 
it

 

is

 

equal

 

to

 

the

 

stationary

 

distribution

•

 

Finite, irreducible & aperiodic

 

DTMC  it

 

has a unique

 

limit

 

distribution, and

 

it

 
is

 

equal

 

to

 

the

 

stationary

 

distribution

•

 

Positive recurrent

 

& aperiodic

 

DTMC  there

 

exists

 

limit

 

distribution
–

 

If

 

in addition

 

DTMC is

 

irreducible, the

 

limit

 

distribution

 

is

 

independent

 

of

 

the

 

initial

 
probability

•

 

Irreducible, positive recurrent

 

& periodic

 

DTMC with

 

period

 

d 

•

 

An

 

irreducible & aperiodic

 

DTMC is

 

positive recurrent

 

 there

 

exists

 

a unique

 
solution

 

of

 

balance equation

•

 

Irreducible, aperiodic

 

& null

 

recurrent

 

DTMC  0lim )( 


n
ijn

p

j
nd

ijn
dp 



)(lim
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Examples
•

 
Random

 
walks

–
 

A
 

random walk is
 

a random
 

process
 

consisting
 

of
 

a 
sequence

 
of

 
discrete

 
steps

 
of

 
fixed

 
length. 

–
 

One-dimensional nearest-neighbour random
 

walk

•
 

In this
 

case, the
 

reachable
 

states
 

are integer
 

(or
 

natural) 
numbers

 
and

 
at each

 
step, the

 
process

 
jumps

 
to

 
the

 
nearest-

 neighbour
 

to
 

the
 

right
 

with
 

probability
 

p or
 

to
 

the
 

nearest-
 neighbour

 
to

 
the

 
left

 
with

 
probability

 
1 –

 
p.

•
 

A random
 

walk
 

with
 

state
 

space
 

equal
 

to
 

Z (integer
 

numbers) 
can be transient

 
or

 
null

 
recurrent

 
depending

 
on

 
p. 

–

 

If

 

p=1/2 then

 

it

 

is

 

null

 

recurrent

 

and

 

in other

 

cases it

 

is

 

transient. 
Look

 

at the

 

book

 

by S. Ross

 

(Example

 

4.3d).
•

 
A random

 
walk

 
with

 
reflectant

 
barrier

 
at 0 (i.e., state

 
space

 equal
 

to
 

non negative
 

integers) can be transient, null
 

recurrent
 or

 
positive recurrent. Look

 
here

 
(local

 
copy).

http://webdiis.unizar.es/asignaturas/SPN/material/restringido/Ross_Probability_models_for_computer_science.pdf
http://people.brandeis.edu/~igusa/Math56aS08/Math56a_S08_notes024.pdf
http://webdiis.unizar.es/asignaturas/SPN/material/random walk.pdf
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Examples
•

 
A processor

 
has certain

 
tasks

 
to

 
perform

–
 

State transition
 

diagram. Possible
 

states:
•

 
idle

 
(no task

 
to

 
do)

•
 

busy (working on a task)
•

 
waiting

 
(stopped

 
for

 
some

 
resource)

•
 

broken (no longer
 

operational)
•

 
repair

 
(fixing

 
the

 
failure)

idle busy waiting broken repair
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0.2

0.75

0.3

0.3

0.3
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0.6

0.4

0.5
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Examples
–

 
Transition

 
probability

 
matrix

 
representation

idle busy wait broken repair

P 

0.2 0.75 0.0 0.05 0.0
0.3 0.3 0.3 0.1 0.0
0.0 0.55 0.4 0.05 0.0
0.0 0.0 0.0 0.5 0.5
0.6 0.0 0.0 0.0 0.4
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0.1



38

Examples
–

 
Properties: finite

 
state

 
space, irreducible, aperiodic

 it
 

has a unique
 

limit
 

distribution, 
and

 
it

 
is

 
equal

 
to

 
the

 
stationary

 
distribution

–
 

Solution:

T

 

P =  T

Te = 1

 =(0.2155, 0.3804, 0.1902, 0.1167, 0.0972)T

idle busy waiting broken repair

0.05

0.05

0.2

0.75

0.3
0.3

0.3

0.55

0.6

0.4

0.5

0.5

0.4

0.1

)(lim n
n





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Examples
 =(0.2155, 0.3804, 0.1902, 0.1167, 0.0972)T

–
 

Compute performance indices:
•

 
Availability:   P(idle

 
+ busy

 
+ wait) = 0.7861

(in other
 

words, 78.61% of
 

the
 

time)

•
 

So, not
 

available: 21.39% of
 

the
 

time

•
 

Working time: P(busy
 

+ wait) = 0.57
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Outline
•

 
Basic definitions

•
 

Representations
•

 
Multi-step

 
transition

 
probabilities

•
 

Classification
 

of
 

states
•

 
Steady-state

 
behaviour

•
 

Examples
•

 
Applications

 
in Bioinformatics
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Simple model
 

of
 

virus mutation
•

 
Suppose

 
a virus can exist

 
in N different

 
strains

 
and

 
in each

 generation
 

either
 

stays
 

the
 

same, or
 

with
 

probability
 

 mutates
 to

 
another

 
strain, which

 
is

 
chosen

 
at random.

•
 

What
 

is
 

the
 

probability
 

that
 

the
 

strain
 

in the
 

nth generation
 

is
 the

 
same

 
as that

 
in the

 
Oth?

N-state
 

chain, with
 

N x N transition
 

matrix
 

P given
 

by
Pii = 1 –

 


Pij =  / (N –
 

1),  for
 

i 
 

j.
Answer: computing

 
p11

(n).

Much
 

simpler: exploiting
 

the
 

symmetry
 

present
 

in the
 

mutation
 rules…
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Simple model
 

of
 

virus mutation
•

 
At any

 
time a transition

 
is

 
made from

 
the

 
initial

 
state

 
to

 
another

 with
 

probability
 

, and
 

a transition
 

from
 

another
 

state
 

to
 

the
 initial

 
state

 
with

 
probability

 
 /(N – 1)  two-state

 
chain

Pn+1

 

= PnP  p11
(n+1)

 

= p12
(n) + p11

(n)

 

(1 –
 

),  with
 

 =  /(N – 1).

Since
 

p11
(n)

 

+ p12
(n)

 

= 1 then
 

we
 

get
 

the
 

recurrence
p11

(n+1)

 

= (1 –
 

 –
 

) p11
(n)

 

+ ,   and
 

p11
(0)

 

= 1
That

 
has a unique

 
solution

Then, in our
 

case p11
(n)

 

=
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Life
 

behaviour
 

model
 

exercise
•

 
An octopus, called Paul, is trained to choose object A from a 
pair of objects A, B, by being given repeated trials in which it

 
is 

shown both and is rewarded with food if it chooses A.

•
 

Modelling
 

its mind states…
–

 
state 1: it cannot remember which object is rewarded 

 it is equally likely to choose either
–

 
state 2: it remembers and chooses A but may forget again

–
 

state 3: it remembers and chooses A and never forgets

•
 

Modelling
 

its
 

evolution
 

in time
–

 
After each trial it may change its state of mind according to the 
transition matrix

state
 

1
 

1/2
 

1/2
 

0
state

 
2

 
1/2

 
1/12

 
5/12

state 3 0 0 1
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Life
 

behaviour
 

model
 

exercise
•

 
Questions: It

 
is

 
in state

 
1 before

 
the

 
first

 
trial,

–
 

What
 

is
 

the
 

probablity
 

that
 

it
 

is
 

in state
 

1 just
 

before
 

the
 

(n+1)th 
trial?

•

 

Answer.
–

 
What

 
is

 
the

 
probability

 
Pn+1

 

(A) that
 

it
 

chooses
 

A on
 

the
 

(n+1)th 
trial?

•

 

Answer.
–

 
Someone suggests that the record of successive choices (a 
sequence of As and Bs) might arise from a two-state Markov 
chain with constant transition probabilities.

 
Discuss, with reference to the value of Pn+1

 

(A) that you have 
found, whether this is possible.

•

 

Answer.

http://webdiis.unizar.es/asignaturas/SPN/?p=182
http://webdiis.unizar.es/asignaturas/SPN/?p=182
http://webdiis.unizar.es/asignaturas/SPN/?p=191
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Other
 

examples
•

 
Population

 
genetics, Norris’

 
book:

–
 

Wright-Fisher model
–

 
Moran model

•
 

Epidemic
 

models, Linda Allen’s
 

book:
–

 
SIS Epidemic

 
Model

–
 

Chain
 

Binomial Epidemic
 

Models

(you
 

can read
 

it
 

at 
http://webdiis.unizar.es/asignaturas/SPN/?page_id=104

 
)

http://webdiis.unizar.es/asignaturas/SPN/?page_id=104


46

Many
 

other
 

applications…
•

 
Birth-death

 
processes

 
used

 
to

 
model

 
the

 evolution
 

of
 

populations
•

 
Markov

 
models

 
appear

 
also

 
in chemical

 
and

 biochemical
 

kinetics
•

 
Are the

 
basis for

 
Hidden

 
Markov

 
Models

•
 

Et cetera…
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