Continuous Time Markov Chains

Define

$$
\begin{aligned}
& h_{j k}\left(t^{\prime}, t^{\prime \prime}\right) \equiv \operatorname{Pr}\left[S\left(t^{\prime \prime}\right)=k \mid S\left(t^{\prime}\right)=j\right], t^{\prime \prime} \geq t^{\prime} \\
& \underline{\underline{H}}\left(t^{\prime}, t^{\prime \prime}\right) \equiv\left[h_{j k}\left(t^{\prime}, t^{\prime \prime}\right)\right]
\end{aligned}
$$

For a homogeneous Markov chain, the transition probabilities are functions only of the difference $t^{\prime \prime}-t^{\prime}$:

$$
\underline{\underline{H}}\left(t^{\prime}, t^{\prime \prime}\right)=\underline{\underline{H}}\left(0, t^{\prime \prime}-t^{\prime}\right) \forall t^{\prime}, t^{\prime \prime} \text { s.t. } t^{\prime \prime} \geq t^{\prime} \geq 0 .
$$

All of the Markov chains we consider will be homogeneous, unless stated otherwise.

Assume that $t^{\prime \prime}-t^{\prime}=\Delta t$ is small.
The probability of n transitions (events or steps) in Δt is proportional to $(\Delta t)^{n}$ for small Δt. To see this, recall that in a continuous time Markov chain, the time between state transitions is exponentially distributed. This implies that the transition times are generated by a Poisson process.

A Poisson process can be defined in several ways. We will use the following set of axioms:

1. $\operatorname{Pr}[1$ event in an interval of length $\Delta t \rightarrow 0]=\lambda \Delta t$.
2. $\operatorname{Pr}[0$ events in an interval of length $\Delta t \rightarrow 0]=1-\lambda \Delta t-o\left((\Delta t)^{2}\right)$.
3. Events are independent.

The first axiom says that the probability of one event occurring in a very short interval is proportional to the length of the interval. The second axiom states that the probability of no Poisson events occurring during a very short interval is one minus the probability of one event minus a term which is $o\left((\Delta t)^{2}\right)$. The "little o" notation means that $\lim _{\Delta t \rightarrow 0} o\left((\Delta t)^{2}\right) / \Delta t=0$.

Define $P_{i}(t) \equiv \operatorname{Pr}[i$ events in an interval of length $t]$. Note that here t may be arbitrarily large. We can determine these probabilities for all values of i by starting at $i=0$ and working up.

$$
\begin{aligned}
P_{0}(t+\Delta t) & =P_{0}(t) \cdot P_{0}(\Delta t) \\
& =P_{0}(t)\left[1-\lambda \Delta t-o\left((\Delta t)^{2}\right)\right]
\end{aligned}
$$

The last substitution relies on Δt being very small. Manipulating this equation and dividing both sides by Δt,

$$
\frac{P_{0}(t+\Delta t)-P_{0}(t)}{\Delta t}=-\lambda P_{0}(t)-\frac{o\left((\Delta t)^{2}\right)}{\Delta t} P_{0}(t)
$$

Taking the limit of both sides of the equation as $\Delta t \rightarrow 0$, we get

$$
\frac{d}{d t}\left\{P_{0}(t)\right\}=-\lambda P_{0}(t)
$$

The solution to this linear, first-order, time-invariant differential equation is

$$
P_{0}(t)=k e^{-\lambda t}
$$

for some constant k. To determine k, note that the probability of 0 events in 0 time is 1 :

$$
P_{0}(0)=1=k e^{-\lambda \cdot 0}=k
$$

Now consider $i=1$.

$$
\begin{aligned}
P_{1}(t+\Delta t) & =P_{1}(t) \cdot P_{0}(\Delta t)+P_{0}(t) \cdot P_{1}(\Delta t) \\
& =P_{1}(t)[1-\lambda \Delta t]+e^{-\lambda t} \cdot \lambda \Delta t
\end{aligned}
$$

Note that we have dropped the $O\left((\Delta t)^{2}\right)$ from the expression for $P_{0}(\Delta t)$. We are going to be playing the same game as before (dividing by Δt and taking the limit as $\Delta t \rightarrow 0)$, and the $o\left((\Delta t)^{2}\right)$ will disappear anyway.

$$
\begin{aligned}
\frac{P_{1}(t+\Delta t)-P_{1}(t)}{\Delta t} & =\lambda e^{-\lambda t}-\lambda P_{1}(t) \\
\lim _{\Delta t \rightarrow 0} \frac{P_{1}(t+\Delta t)-P_{1}(t)}{\Delta t} & =\lambda e^{-\lambda t}-\lambda P_{1}(t) \\
\frac{d}{d t}\left\{P_{1}(t)\right\} & =\lambda e^{-\lambda t}-\lambda P_{1}(t)
\end{aligned}
$$

which has the solution

$$
P_{1}(t)=\lambda t e^{-\lambda t}
$$

In general, for $i \geq 1$,

$$
\begin{aligned}
& \begin{aligned}
P_{i}(t+\Delta t) & =P_{i}(t) \cdot P_{0}(\Delta t)+P_{i-1}(t) \cdot P_{1}(\Delta t) \\
& =P_{i}(t)[1-\lambda \Delta t]+P_{i-1}(t) \cdot \lambda \Delta t
\end{aligned} \\
& \begin{aligned}
\frac{d}{d t}\left\{P_{i}(t)\right\} & =\lambda P_{i-1}(t)-\lambda P_{i}(t)
\end{aligned} \\
& P_{i}(t)=\frac{(\lambda t)^{i} e^{-\lambda t}}{i!}
\end{aligned}
$$

You can verify this solution by substituting in the differential equation.
This shows that the probability of i events in an interval of length t has a Poisson distribution, and λ is the rate or the parameter of the distribution. Accordingly, the probability of n events in Δt is proportional to $(\Delta t)^{n}$ for small Δt (just use a power series expansion for $e^{-\lambda \Delta t}$).

To show the connection between the Poisson process and the exponential distribution, we need to prove that the time between Poisson events is exponentially distributed. Let X be the random variable for the time between two consecutive events of a Poisson process.

$$
\begin{aligned}
\operatorname{Pr}[X>t] & =\operatorname{Pr}[0 \text { events in } t]=P_{0}(t)=e^{-\lambda t} \\
& =1-\operatorname{Pr}[X \leq t] \\
\operatorname{Pr}[X \leq t] & =1-e^{-\lambda t}=F_{X}(t)
\end{aligned}
$$

where $F_{X}(t)$ is the cumulative distribution function for an exponentially distributed random variable X.

Returning to the discussion of homogeneous Markov chains, let $p(t)$ be the state probability vector at time t. Because the probability of n events in Δt is proportional to $(\Delta t)^{n}$ for small Δt, the probability of 1 event dominates as Δt gets close to 0 (not surprising - it is a Poisson process, after all). Hence, as $\Delta t \rightarrow 0$, $\lim _{\Delta t \rightarrow 0} \underline{\underline{H}}(t, t+\Delta t)=\lim _{\Delta t \rightarrow 0} \underline{\underline{H}}(0, \Delta t) \equiv \underline{\underline{P}}(\Delta t)$ can be thought of as the single-step transition matrix for the continuous time Markov chain. Then

$$
\begin{aligned}
& \lim _{\Delta t \rightarrow 0} \underline{p}(t) \cdot \underline{\underline{H}}(t, t+\Delta t)=\lim _{\Delta t \rightarrow 0} \underline{p}(t+\Delta t) \\
& \lim _{\Delta t \rightarrow 0} \frac{\underline{p}(t) \cdot \underline{\underline{H}}(t, t+\Delta t)-\underline{p}(t)}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\underline{p}(t+\Delta t)-\underline{p}(t)}{\Delta t} \\
& \underline{p}(t) \cdot \lim _{\Delta t \rightarrow 0} \frac{\underline{\underline{H}}(t, t+\Delta t)-\underline{\underline{l}}}{\Delta t}=\frac{d}{d t}\{\underline{p}(t)\} \\
& \underline{p}(t) \cdot \underline{\underline{Q}}(t)=\frac{d}{d t}\{\underline{p}(t)\}
\end{aligned}
$$

where $\underline{\underline{Q}}(t)=\lim _{\Delta t \rightarrow 0} \frac{\underline{\underline{H}}(t, t+\Delta t)-\underline{\underline{I}}}{\Delta t}$ is the transition rate matrix or rate generator matrix or simply the generator matrix of the continuous time Markov chain. The off-diagonal elements of $\underline{\underline{Q}}(t)$ are

$$
q_{j k}(t)=\lim _{\Delta t \rightarrow 0} \frac{h_{j k}(t, t+\Delta t)}{\Delta t}, \quad j \neq k
$$

are not probabilities; they are instantaneous rates of change in probability. Because the chain is homogeneous and must be memoryless,

$$
\lim _{\Delta t \rightarrow 0} h_{j k}(t, t+\Delta t)=\lambda_{j k} \Delta t
$$

and hence

$$
q_{j k}(t)=q_{j k}=\lambda_{j k}
$$

$\lambda_{j k}$ is the rate of the Poisson process governing transitions from state j to state k. What are the $q_{j j}(t) s$, the diagonal elements of the generator matrix?

$$
q_{i j}(t)=\lim _{\Delta t \rightarrow 0} \frac{h_{j j}(t, t+\Delta t)-1}{\Delta t}
$$

$h_{j j}(t, t+\Delta t)$ is the probability that the Markov chain is in state j at time $t+\Delta t$, given that it was in state j at time t. Since the chain must be in some state at time $t+\Delta t$, given that it was in state j at time t,

$$
h_{i j}(t, t+\Delta t)=1-\sum_{\substack{j=1 \\ j \neq k}}^{n} h_{j k}(t, t+\Delta t)
$$

and

$$
\begin{aligned}
\lim _{\Delta t \rightarrow 0} h_{j j}(t, t+\Delta t) & =1-\lim _{\Delta t \rightarrow 0} \sum_{\substack{j=1 \\
j \neq k}}^{n} h_{j k}(t, t+\Delta t) \\
& =1-\sum_{\substack{j=1 \\
j \neq k}}^{n} \lambda_{j k} \Delta t=1-\lambda_{j} \Delta t
\end{aligned}
$$

where $\lambda_{j}=\sum_{\substack{j=1 \\ j \neq k}}^{n} \lambda_{j k}$ is the sum of the rates of the Poisson processes governing the transitions out of state j. Substituting this into the expression for $q_{j j}(t)$ and again using the homogeneity of the Markov chain, we get

$$
q_{j j}(t)=q_{j j}=\lim _{\Delta t \rightarrow 0} \frac{1-\lambda_{j} \Delta t-1}{\Delta t}=-\lambda_{j}
$$

Take a moment to consider λ_{j}. Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be a set of independent, exponentially distributed random variables with rates $\lambda_{1}, \ldots, \lambda_{n}$, and let $X \equiv \min \left\{X_{1}, \ldots, X_{n}\right\}$.

$$
\begin{aligned}
\operatorname{Pr}[X>t] & =\operatorname{Pr}\left[X_{1}>t \& X_{2}>t \& \ldots \& X_{n}>t\right] \\
& =\operatorname{Pr}\left[X_{1}>t\right] \cdot \operatorname{Pr}\left[X_{2}>t\right] \cdot \ldots \cdot \operatorname{Pr}\left[X_{n}>t\right] \\
& =e^{-\lambda_{1} t} \cdot e^{-\lambda_{2} t} \cdot \ldots \cdot e^{-\lambda_{n} t}=e^{-\lambda t}
\end{aligned}
$$

where $\lambda=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}$. Hence X is also exponentially distributed, with parameter (rate) λ. This says that λ_{j} is the rate of an exponentially distributed random variable that is the minimum of the random variables representing the times until transitions from state j to all other states. That is, λ_{j} is the rate of an exponentially distributed random variable that represents the time spent in state j. One way to look at it is that λ_{j} is the rate at which probability mass "leaves" state j.

We're almost there. So far, we have

$$
\underline{p}(t) \cdot \underline{\underline{Q}}=\frac{d}{d t}\{\underline{p}(t)\}
$$

We are interested in the steady-state probability vector $\underline{\pi}=\lim _{t \rightarrow \infty} p(t)$.

$$
\underline{\pi} \cdot \underline{\underline{Q}}=\lim _{t \rightarrow \infty} \frac{d}{d t}\{\underline{p}(t)\}=\frac{d}{d t}\left\{\lim _{t \rightarrow \infty} \underline{p}(t)\right\}=\frac{d}{d t}\{\underline{\pi}\}=\underline{0}
$$

since the derivative of the steady-state probability vector is by definition the 0 vector.

The matrix equation $\underline{\pi} \cdot \underline{\underline{Q}}=\underline{0}$ for continuous time Markov chains is the analog of $\underline{\pi} \cdot \underline{\underline{P}}=\underline{\pi}$ for discrete time Markov chains. The two matrices are quite different. The elements of $\underline{\underline{P}}$ are probabilities; the elements of $\underline{\underline{Q}}$ are rates of change in probability. However, both matrices are singular, since each row of $\underline{\underline{P}}$ sums to 1 and each row of $\underline{\underline{Q}}$ sums to 0 .

