
Continuous Time Markov Chains

Define

h t t S t k S t jjk ′ ′′( ) ≡ ′′( ) = ′( ) =[ ], Pr , ′′ ≥ ′t t .

H t t h t tjk′ ′′( ) ≡ ′ ′′( )[ ], ,

For a homogeneous Markov chain, the transition probabilities are functions only
of the difference ′′ − ′t t :

H t t H t t′ ′′( ) = ′′ − ′( ), ,0  ∀ ′ ′′ ′′ ≥ ′ ≥t t s t t t, . . 0.

All of the Markov chains we consider will be homogeneous, unless stated
otherwise.

Assume that ′′ − ′ =t t t∆  is small.

The probability of n  transitions (events or steps) in ∆t  is proportional to ∆t n( )  for
small ∆t .  To see this, recall that in a continuous time Markov chain, the time
between state transitions is exponentially distributed.  This implies that the
transition times are generated by a Poisson process.

A Poisson process can be defined in several ways.  We will use the following set
of axioms:

1. Pr 1 event in an interval of length ∆ ∆t t→[ ] =0 λ .

2. Pr 0 events in an interval of length ∆ ∆ ∆t t o t→[ ] = − − ( )( )0 1 2λ .

3. Events are independent.

The first axiom says that the probability of one event occurring in a very short
interval is proportional to the length of the interval.  The second axiom states that
the probability of no Poisson events occurring during a very short interval is one
minus the probability of one event minus a term which is o t∆( )( )2

.  The "little o"

notation means that lim
∆

∆ ∆
t

o t t
→

( )( ) =
0

2 0 .

Define P t i ti ( ) ≡ [ ]Pr . events in an interval of length   Note that here t  may be
arbitrarily large.  We can determine these probabilities for all values of i  by
starting at i = 0 and working up.

P t t P t P t

P t t o t

0 0 0

0
21

+( ) = ( ) ⋅ ( )
= ( ) − − ( )( )[ ]

∆ ∆

∆ ∆λ
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The last substitution relies on ∆t  being very small.  Manipulating this equation
and dividing both sides by ∆t ,

P t t P t
t

P t
o t

t
P t0 0

0

2

0

+( ) − ( ) = − ( ) −
( )( ) ( )∆

∆

∆

∆
λ

Taking the limit of both sides of the equation as ∆t → 0 , we get

d
dt

P t P t0 0( ){ } = − ( )λ

The solution to this linear, first-order, time-invariant differential equation is

P t ke t
0( ) = −λ

for some constant k .  To determine k , note that the probability of 0 events in 0
time is 1:

P ke k0
00 1( ) = = =− ⋅λ

Now consider i = 1.

P t t P t P t P t P t

P t t e tt

1 1 0 0 1

1 1

+( ) = ( ) ⋅ ( ) + ( ) ⋅ ( )
= ( ) −[ ] + ⋅−

∆ ∆ ∆

∆ ∆λ λλ

Note that we have dropped the o t∆( )( )2
 from the expression for P t0 ∆( ).  We are

going to be playing the same game as before (dividing by ∆t  and taking the limit
as ∆t → 0 ), and the o t∆( )( )2

 will disappear anyway.

P t t P t
t

e P t

P t t P t
t

e P t

d
dt

P t e P t

t

t

t

t

1 1
1

0

1 1
1

1 1

+( ) − ( ) = − ( )

+( ) − ( ) = − ( )

( ){ } = − ( )

−

→

−

−

∆
∆

∆
∆∆

λ λ

λ λ

λ λ

λ

λ

λ

lim

which has the solution

P t te t
1( ) = −λ λ

In general, for i ≥ 1,
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P t t P t P t P t P t

P t t P t t
i i i

i i

+( ) = ( ) ⋅ ( ) + ( ) ⋅ ( )
= ( ) −[ ] + ( ) ⋅

−

−

∆ ∆ ∆

∆ ∆
0 1 1

11 λ λ
d
dt

P t P t P ti i i( ){ } = ( ) − ( )−λ λ1

P t
t e

ii

i t

( ) = ( ) −λ λ

!

You can verify this solution by substituting in the differential equation.

This shows that the probability of i  events in an interval of length t  has a
Poisson distribution, and λ  is the rate or the parameter of the distribution.
Accordingly, the probability of n  events in ∆t  is proportional to ∆t n( )  for small ∆t
(just use a power series expansion for e t−λ∆ ).

To show the connection between the Poisson process and the exponential
distribution, we need to prove that the time between Poisson events is
exponentially distributed.  Let X  be the random variable for the time between two
consecutive events of a Poisson process.

Pr Pr

Pr

Pr

X t t P t e

X t

X t e F t

t

t
X

>[ ] = [ ] = ( ) =

= − ≤[ ]
≤[ ] = − = ( )

−

−

0 events in 0

1

1

λ

λ

where F tX ( ) is the cumulative distribution function for an exponentially distributed
random variable X .

Returning to the discussion of homogeneous Markov chains, let p t( ) be the state

probability vector at time t .  Because the probability of n  events in ∆t  is
proportional to ∆t n( )  for small ∆t , the probability of 1 event dominates as ∆t  gets
close to 0 (not surprising - it is a Poisson process, after all).  Hence, as ∆t → 0 ,
lim , lim ,
∆ ∆

∆ ∆ ∆
t t

H t t t H t P t
→ →

+( ) = ( ) ≡ ( )
0 0

0  can be thought of as the single-step

transition matrix for the continuous time Markov chain.  Then
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lim , lim

lim
,

lim

lim
,

∆ ∆

∆ ∆

∆

∆ ∆

∆
∆

∆
∆

∆
∆

t t

t t

t

p t H t t t p t t

p t H t t t p t

t

p t t p t

t

p t
H t t t I

t
d
dt

p t

p t Q t

→ →

→ →

→

( ) ⋅ +( ) = +( )
( ) ⋅ +( ) − ( )

=
+( ) − ( )

( ) ⋅
+( ) −

= ( ){ }
( ) ⋅

0 0

0 0

0

(( ) = ( ){ }d
dt

p t

where Q t
H t t t I

tt
( ) =

+( ) −
→

lim
,

∆

∆
∆0

 is the transition rate matrix or rate generator

matrix or simply the generator matrix of the continuous time Markov chain.  The
off-diagonal elements of Q t( ) are

q t
h t t t

t
j kjk t

jk( ) =
+( )

≠
→

lim
,

,
∆

∆
∆0

are not probabilities; they are instantaneous rates of change in probability.
Because the chain is homogeneous and must be memoryless,

lim ,
∆

∆ ∆
t jk jkh t t t t
→

+( ) =
0

λ

and hence

q t qjk jk jk( ) = = λ

λ jk  is the rate of the Poisson process governing transitions from state j  to state

k .  What are the q tjj ( )s, the diagonal elements of the generator matrix?

q t
h t t t

tjj t

jj( ) =
+( ) −

→
lim

,
∆

∆
∆0

1

h t t tjj , +( )∆  is the probability that the Markov chain is in state j  at time t t+ ∆ ,

given that it was in state j  at time t .  Since the chain must be in some state at
time t t+ ∆ , given that it was in state j  at time t ,

h t t t h t t tjj jk
j
j k

n

, ,+( ) = − +( )
=
≠

∑∆ ∆1
1

and
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lim , lim ,
∆ ∆

∆ ∆

∆ ∆

t jj t jk
j
j k

n

jk
j
j k

n

j

h t t t h t t t

t t

→ →
=
≠

=
≠

+( ) = − +( )

= − = −

∑

∑

0 0
1

1

1

1 1λ λ

where λ λj jk
j
j k

n

=
=
≠

∑
1

 is the sum of the rates of the Poisson processes governing the

transitions out of state j .  Substituting this into the expression for q tjj ( ) and again

using the homogeneity of the Markov chain, we get

q t q
t

tjj jj t

j
j( ) = =

− −
= −

→
lim
∆

∆
∆0

1 1λ
λ

Take a moment to consider λ j .  Let   X Xn1, ,K{ } be a set of independent,

exponentially distributed random variables with rates   λ λ1, ,K n , and let

  X X Xn≡ { }min , ,1 K .

  

Pr Pr & & &

Pr Pr Pr

X t X t X t X t

X t X t X t

e e e e

n

n

t t t tn

>[ ] = > > >[ ]
= >[ ] ⋅ >[ ] ⋅ ⋅ >[ ]
= ⋅ ⋅ ⋅ =− − − −

1 2

1 2

1 2

K

K

Kλ λ λ λ

where   λ λ λ λ= + + +1 2 K n .  Hence X  is also exponentially distributed, with
parameter (rate) λ .  This says that λ j  is the rate of an exponentially distributed

random variable that is the minimum of the random variables representing the
times until transitions from state j  to all other states.  That is, λ j  is the rate of an

exponentially distributed random variable that represents the time spent in state
j .  One way to look at it is that λ j  is the rate at which probability mass "leaves"

state j .

We're almost there.  So far, we have

p t Q
d
dt

p t( ) ⋅ = ( ){ }

We are interested in the steady-state probability vector π = ( )
→∞
lim
t

p t .

π π⋅ = ( ){ } = ( ){ } = { } =
→∞ →∞

Q
d
dt

p t
d
dt

p t
d
dtt t

lim lim 0
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since the derivative of the steady-state probability vector is by definition the 0
vector.

The matrix equation π ⋅ =Q 0 for continuous time Markov chains is the analog of

π π⋅ =P  for discrete time Markov chains.  The two matrices are quite different.
The elements of P  are probabilities; the elements of Q  are rates of change in

probability.  However, both matrices are singular, since each row of P  sums to 1
and each row of Q  sums to 0.


