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Definitions

« Remember DTMC

— pj is the transition probability from i to | over one
time slot

— The time spent in a state is geometrically
distributed
« Result of the Markov (memoryless) property
— When there is a jump from state |, it goes to state
] with probability
Pij
Zk;&@' Pik



Definitions

 Continuous time version

— @ is the transition rate from state i to state |



Definitions

Formally:
— A CTMC is a stochastic process {X(t) |t 20,t € IR} s.t.
for all tg,...,t, ¢ t,t € IR, O0=ty<...<t <t <t foralln e IN

P(X(®) = X[ X(&) =X, X (b 1) = %104 X(b) = %) =
=P(X(t) =x| X(t,) =x,)

— Alternative (equivalent) definition:
{X(t) |t 20,t € IR} s.t. forall t,s=0

P(X(t+s)=x| X(t)=x, X(u)0<u<t)=
=P(X(t+5) =x| X(®)=x)



Definitions
 Homogeneity
— We are considering discrete state (sample) space, then we
denote
p;(t,s) = P(X(t+s)=] | X(t)=i), for s > 0.

— A CTMC is called (time-)homogeneous if

pj(t;s) = py(s) forallt=0



Definitions

« Time spent in a state (sojourn time):

— Markov property and time homogeneity imply that if at time
t the process is in state |, the time remaining in state j is
independent of the time already spent in state | :
memoryless property.

Let S be the random variable “time spent in state j”.
PS8 = tFs8 3t = Plipy=10EudsXy=70Lnuwt
where S = time spent in state j
state j entered at time 0
= P(Xi1,=5,0<u<s|X; =7) by MP
= P(X,=50<u<sXo=7) by T.H.
= P(§5 > s)

= time spent in state | is exponentially distributed.

Sojourn times of a CTMC are exponentially distributed.




Definitions

 Transition rates:

— In time-homogeneous CTMC, p;(s) is the probability of
jumping from i to j during an interval time of duration s.

— Therefore, we define the instantaneous transition rate from
state i to state j as:

p; (AY)
Bi
G = L'E At

— And the exit rate from
statei as —q

Gi = _%:q” _itlg At

— Q =[qg;] is called infinitesimal generator matrix
(or transition rate matrix or Q matrix)
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Steady-state distribution

Kolmogorov differential equation:

Denote the distribution at instant t:  7z(t) = P(X(t)=i)
And denote in matrix form: P(t) = [p;(t)]

Then 7#(t) = Z(U)P(t-u), for u<t
(we omit vector transposition to simplify notation)

Substituting u = t—At and substracting z(t—At):

a(t) — n(t—At) = #(t—At) [P(At) — 1], with | the identity matrix

d . P(AY) -1
Dividing by At and taking the limit —7z(t) =7(t) lim
viding by At and taking the limit - (t) ()AHO "

Then, by definition of Q = [q;], we obtain the
Kolmogorov differential equation

%rz(t) - 2(1)Q
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Steady-state distribution

« Since also #(t)e =1, withe=(1,1,...,1)
If the following limit exists
limz(t)
t—>0
then taking the limit of Kolmogorov differential

equation we get the equations for the steady-state
probabilities:

7Q =0 (balance equations)
me =1

(normalizing equation)
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Example 1: A 2-state CTMC

Examples

Consider a simple
two-state CTMC

The corresponding
Q matrix is given by

The Kolmogorov differential
equation yields:

Given that 7,(0) = 1,

we get the transient solution:

Oun0

m
|muou
o )
d

50O =1m0)+A ()

S0 = p(0)- 2750

(1) +m(t) =1

7, (t) =———+ A gt
A+u A+u
7o) =2 g

ﬂ+y_i+y
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Examples

— And the steady-state A — =0
solution comes from

eromst SUEN G
7, +m =1 1 0
0T/4 —"

— We get:
’ A L balanceeqx—J
72'02—; 7[1:—
A+ u A+ u

* Which can also be obtained by taking the limits as t 2 o of
the equations for z,(t) and z(t).

7, = limz, (1) = lim 2 A gt _H
t—o0 t—)wl+ﬂ Z_i_,u /1+ILI

7o = lim () = lim -2 - At A
> o A+u A+ u A+ u
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Examples

 Example 2:

A simple open system with loss —_— . - -
n)

A
(Poisso ‘ @_“@
may be lost

— Works enter to the system with exponentially distributed
(parameter 1) interarrival time (Poisson process)

— The service time in both processing stations is exponentially
distributed with rate n

— If a work ends in station 1 when station 2 is busy, station 1 is
blocked

— |f station 1 is busy or blocked when a work arrives, arriving work is
lost

— Questions:
» proportion of lost works?
* mean number of working stations?
* mean number of works in the system?
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Examples

— The set of states of the system:
5={(0,0), (1,0), (0,1), (1,1), (b,1)}

0 - empty station
1 = working station
b = blocked station

State transition diagram:

u u
o (O—O
(Poisson) L

may be lost

Infinitesimal generator matrix:

00 |—A A 0 0 0
10 {0 —u u 0 0
Q=01 |p 0 —(A+pn) A 0
11 |0 0 21 U
bl |0 O i 0 —u
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Examples

— Steady-state solution:

o

ATloy + 170y = Uy,

Pty + 1ty = (A + )7ty
ATty = 2umy

M7ty = HTTy

T+ My + 7Ty + 70y, + 71, =1

2
,ij Where P = and A:3p2_|_4p+2
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Examples

— Proportion of lost works?
* |s the probability of the event “when a new work arrives, the first

station is non-empty”, i.e.:
30°+2p

30" +4p+2

o+ 7Tt 70y =

— Mean number of working stations?

» In state (0,0) there is no working station and in state (1,1) there are
two; in the rest of states there is only one, thus

4,02 +4p
30" +4p+2

B=rmy, +my+m, +27, =

— Mean number of works in the system?

* In state (0,0) there is no one; in states (1,1) and (b,1) there are two
and in the rest there is only one, thus

50" +4p
3p° +4p+2

L=rmy +7m+ 27, + 27, =
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Examples
« Example 3: I/O buffer with limited capacity

— Records arrive according to a Poisson process (rate 1)

— Buffer capacity: M records

— Buffer cleared at times spaced by intervals which are
exponentially distributed (parameter u) and independent of

arrivals
Y \ N | A A
o e Y ¥ N
(0 um (1) (2) B M
N A m L B o
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Examples
— Steady-state solution:
Aty = 7+ 47y
A+ =Ax,, 1<iI<M-1

N % A A

lLl 721.\/| — lﬂ'i\/l—l \" - *\}, \( ‘/2\\/ X L 7\7’“\
T+, =1 s { =
N i = o,
A A4 <isM-1 -
/1 i) A+u

M
- A
M (/1+,uj

Thus, for example, the mean number of records in the buffer in
steady-state:

M-l
B:Ma“"+2ia' £ where g =
: A+ 1 A+ u
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Semi-Markov processes

* Also called Markov renewal processes

— Generalization of CTMC with arbitrary distributed
sojourn times

— As in the case of CTMC, they can be used for
obtaining both steady-state distribution and
transient distribution
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Semi-Markov processes

* (Time homogeneous) Semi-Markov process:
Q;(®)

Distribution, from /7to jin time &

Qij(ﬂ — PT{X?H—I — J Tn—l—l - Tr: < 1If|4Xr1 — ?) Qik(t)
= pijHi;(t) c

Transition probability from /7to j:

Pi; = limy_. Qij(ﬂ — P'}‘{Xr1+1 = j|Xr1 = 1)

Sojourn time distribution in state /when the next state is j:

H;i(t) = Pr(Tog1 — Ty < t|Xpg1 = j. Xn = i)
Transition prob. matrix of the embedded Discrete Time Markov Chain: P = [p;;]
Sojourn time distribution in state /regardless of the next state:
Di(t) = Pr(Tpys — T, < t|X,, = i) = Z Qi;(t)
7=1
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Semi-Markov processes

Steady-state analysis

— Build transition probability matrix, P, o
and mean residence (sojourn) time vector, D.

— From them, compute steady-state distribution:

(71, ooy o] T=aP Y @=1 Steady-state of embedded DTMC
i=1
D = [d;] Mean residence time vector
_ &?ﬁ-i . . .
m = [m] Ti = —=m e Steady-state distribution of
> =1 45T

semi-Markov process
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Embedded DTMC of a CTMC

« CTMC can be seen as a particular case of
semi-Markov process when sojourn time
distributions are exponential

* In other words, if we consider a DTMC with
null diagonal elements and we add
exponentially distributed soujourn times in
the states, we get a CTMC.

this is called the
Embedded DTMC
of the CTMC

/

CTMC = DTMC (where to move) +
+ exponential holding times (when to move)

25
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Simple population size model
We model the size of the population (n = 0,1,2...)

1 2 3 4 5 6 7 8
ONONORORONORORUROROR
pf1 o g2 P3[4 fs fle fi7 g Ho

A, is the birth rate in a population of size n; p, is the death rate
0 is an absorbing state

A case of relevance to population dynamics is the choice:
A, = ni and p, = ny, for constants A and p.

We can ask:
What is the extinction probability starting from state k?
(i.e., probability of being absorbed into state 0 (ever))
If extinction is certain, what is the mean time to extinction?
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Extinction probability

Let u, be the probab. of absorption at 0, starting from state k.

Then, since the first step away from k is either to k+1, with
probability A, / (A, + y,) or to k=1, with probability p, / (A, + ),

Ak e
= Uk+1 + Uk—1, k>1
et e Aot :

and u, = 1.
Letpo=1 and p, = (y;/ %) p;_4 forj=1.

U

— |If Zj p; = thenu, =1 for all k (extinction is certain).

— If X p; is finite then

o0 -1 o0
Up = (1 + Z P@) Z Pi-
i=1

1=n
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Mean time to extinction

Let w, be the mean time to absorption at O, starting from state
k. By first-step analysis

A , 1
K W1 + al Wp_1 + : k>1

e+ e Aet A +

’(Uk,_ —

and w, = 0.

— oo then the mean time to absorption is infinite.

1,)01,

1s finite then

-1y
Zl 1,)0@

n—1 o0 1

— 1
:Z)\ +D ok ) N
i=1 A

il D okl
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Many other applications...

* As embedded analytical model for more
abstract modelling paradigms:
— birth-death processes and population dynamics
— gueueing processes and queueing networks
— stochastic Petri nets
— stochastic process algebras...
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