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Definitions
• Remember DTMC

– pij is the transition probability from i to j over one 
time slot

– The time spent in a state is geometrically 
distributed

• Result of the Markov (memoryless) property

– When there is a jump from state i, it goes to state 
j with probability
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Definitions
• Continuous time version

– qij is the transition rate from state i to state j
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Definitions
• Formally:

– A CTMC is a stochastic process {X(t) | t ≥0, t  lR}  s.t. 
for all t0,...,tn-1,tn,t lR, 0≤t0<…<tn-1<tn<t ,  for all n  lN

– Alternative (equivalent) definition: 
{X(t) | t ≥0, t  lR}  s.t.   for all t,s ≥ 0 
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Definitions
• Homogeneity

– We are considering discrete state (sample) space, then we
denote

pij(t,s) = P(X(t+s)=j | X(t)=i), for s > 0.

– A CTMC is called (time-)homogeneous if

pij(t,s) = pij(s)   for all t ≥ 0
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Definitions
• Time spent in a state (sojourn time):

– Markov property and time homogeneity imply that if at time 
t the process is in state j, the time remaining in state j is
independent of the time already spent in state j : 
memoryless property.
Let S be the random variable “time spent in state j”.

 time spent in state j is exponentially distributed.

Sojourn times of a CTMC are exponentially distributed.
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Definitions
• Transition rates:

– In time-homogeneous CTMC, pij(s) is the probability of
jumping from i to j during an interval time of duration s.

– Therefore, we define the instantaneous transition rate from
state i to state j as:

– And the exit rate from
state i as   – qii

– Q = [qij]  is called infinitesimal generator matrix
(or transition rate matrix or Q matrix)
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Steady-state distribution
• Kolmogorov differential equation:

Denote the distribution at instant t:   i(t) = P(X(t)=i)
And denote in matrix form:  P(t) = [pij(t)]

Then (t) = (u)P(t-u) ,  for u < t  
(we omit vector transposition to simplify notation)

Substituting u = t–t and substracting (t–t):

(t) – (t–t) = (t–t) [P(t) – I],   with I the identity matrix

Dividing by t and taking the limit

Then, by definition of Q = [qij], we obtain the
Kolmogorov differential equation
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Steady-state distribution
• Since also (t)e = 1,  with e = (1,1,…,1)

If the following limit exists

then taking the limit of Kolmogorov differential
equation we get the equations for the steady-state
probabilities:

Q = 0 (balance equations)

e = 1 (normalizing equation)
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Examples
• Example 1: A 2-state CTMC

– Consider a simple 
two-state CTMC

– The corresponding
Q matrix is given by

– The Kolmogorov differential
equation yields:

– Given that 1(0) = 1, 
we get the transient solution:
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Examples
– And the steady-state

solution comes from
Q = 0; e = 1:

– We get:

• Which can also be obtained by taking the limits as t   of
the equations for 1(t) and 0(t).
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Examples
• Example 2: 

A simple open system with loss

– Works enter to the system with exponentially distributed
(parameter  interarrival time (Poisson process)

– The service time in both processing stations is exponentially
distributed with rate 

– If a work ends in station 1 when station 2 is busy, station 1 is
blocked

– If station 1 is busy or blocked when a work arrives, arriving work is
lost

– Questions: 
• proportion of lost works? 
• mean number of working stations? 
• mean number of works in the system?

1 2

may be lost

 


(Poisson)
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Examples
– The set of states of the system:

S={(0,0), (1,0), (0,1), (1,1), (b,1)}
0  empty station
1  working station
b  blocked station

State transition diagram:           Infinitesimal generator matrix:

1 2

may be lost
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Examples
– Steady-state solution:

243      and           where,,2,2,2 2
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Examples
– Proportion of lost works?

• Is the probability of the event “when a new work arrives, the first
station is non-empty”, i.e.:

– Mean number of working stations?
• In state (0,0) there is no working station and in state (1,1) there are 

two; in the rest of states there is only one, thus

– Mean number of works in the system?
• In state (0,0) there is no one; in states (1,1) and (b,1) there are two

and in the rest there is only one, thus
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Examples
• Example 3: I/O buffer with limited capacity

– Records arrive according to a Poisson process (rate )
– Buffer capacity: M records
– Buffer cleared at times spaced by intervals which are 

exponentially distributed (parameter ) and independent of
arrivals
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Examples
– Steady-state solution:



Thus, for example, the mean number of records in the buffer in 
steady-state:

   






   






1

11  ,)(
)(

0

1

1

10











M

MM

ii

M

Mi











M

M

i

i Mi


































 10  ,




 





1

0

       where,
M

i

iM iMB









21

Outline
• Definitions
• Steady-state distribution
• Examples
• Alternative presentation of CTMC:

embedded DTMC of a CTMC
• Applications in Bioinformatics



22

Semi-Markov processes
• Also called Markov renewal processes

– Generalization of CTMC with arbitrary distributed
sojourn times

– As in the case of CTMC, they can be used for 
obtaining both steady-state distribution and 
transient distribution
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Semi-Markov processes
• (Time homogeneous) Semi-Markov process:

Transition probability from i to j:

Sojourn time distribution in state i when the next state is j:

Transition prob. matrix of the embedded Discrete Time Markov Chain:

Sojourn time distribution in state i regardless of the next state:

i j

k

Qij(t)

Qik(t)

Distribution, from i to j in time t:

i
j
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pij

pik
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Semi-Markov processes
• Steady-state analysis

– Build transition probability matrix, P,
and mean residence (sojourn) time vector, D.

– From them, compute steady-state distribution:

Steady-state of embedded DTMC

Mean residence time vector

Steady-state distribution of 
semi-Markov process
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Embedded DTMC of a CTMC
• CTMC can be seen as a particular case of

semi-Markov process when sojourn time 
distributions are exponential

• In other words, if we consider a DTMC with
null diagonal elements and we add
exponentially distributed soujourn times in 
the states, we get a CTMC.

this is called the
Embedded DTMC

of the CTMC

CTMC = DTMC (where to move) + 
+ exponential holding times (when to move)
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Simple population size model
• We model the size of the population (n = 0,1,2…)

n is the birth rate in a population of size n; n is the death rate 
0 is an absorbing state

A case of relevance to population dynamics is the choice:
n = n and n = nμ, for constants  and μ.

We can ask:
What is the extinction probability starting from state k? 

(i.e., probability of being absorbed into state 0 (ever))
If extinction is certain, what is the mean time to extinction?
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Extinction probability
• Let uk be the probab. of absorption at 0, starting from state k.
• Then, since the first step away from k is either to k+1, with

probability k / (k + μk) or to k−1, with probability μk / (k + μk),

and u0 = 1.
• Let 0 = 1  and  j = (μj / j) j–1  for j ≥ 1.

– If  j j =  then uk = 1 for all k (extinction is certain).

– If  j j is finite then
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Mean time to extinction
• Let wk be the mean time to absorption at 0, starting from state

k. By first-step analysis

and w0 = 0.

–

–
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Many other applications…
• As embedded analytical model for more 

abstract modelling paradigms:
– birth-death processes and population dynamics
– queueing processes and queueing networks
– stochastic Petri nets
– stochastic process algebras…


