Birth-death processes

Jorge Júlvez
University of Zaragoza

Outline

(1) Birth Processes
(2) Birth-Death Processes
(3) Relationship to Markov Chains
(4) Linear Birth-Death Processes
(5) Examples

Outline

(1) Birth Processes

(2) Birth-Death Processes
(3) Relationship to Markov Chains
4. Linear Birth-Death Processes
(5) Examples

Pure Birth Process (Yule-Furry Process)

Example: Consider cells which reproduce according to the following rules:

- A cell present at time t has probability $\lambda h+o(h)$ of splitting in two in the interval $(t, t+h)$
- This probability is independent of age
- Events betweeen different cells are independent

Time

Pure Birth Process (Yule-Furry Process)

Example: Consider cells which reproduce according to the following rules:

- A cell present at time t has probability $\lambda h+o(h)$ of splitting in two in the interval $(t, t+h)$
- This probability is independent of age
- Events betweeen different cells are independent

Time
What is the time evolution of the system?

Pure Birth Process (Yule-Furry Process)

Non-Probabilistic Analysis

- Let $n(t)=$ number of cells at time t
- Let λ be the birth rate per single cell

Thus $\approx \lambda n(t) \Delta(t)$ births occur in $(t, t+\Delta t)$
Then:

$$
\begin{gathered}
n(t+\Delta t)=n(t)+n(t) \lambda \Delta t \\
\frac{n(t+\Delta t)-n(t)}{\Delta t}=n(t) \lambda \rightarrow \frac{d n}{d t}=n^{\prime}(t)=n(t) \lambda
\end{gathered}
$$

- The solution of this differential equation is: $n(t)=K e^{\lambda t}$
- If $n(0)=n_{0}$ then

$$
n(t)=n_{0} e^{\lambda t}
$$

Pure Birth Process (Yule-Furry Process)

Probabilistic Analysis
Notation:

- $N(t)=$ number of cells at time t
- $P\{N(t)=n\}=P_{n}(t)$

Assumptions:

- A cell present at time t has probability $\lambda h+o(h)$ of splitting in two in the interval $(t, t+h)$
- The probability of more than one birth occurring in time interval $(t, t+h)$ is $o(h)$

All states are transient

Pure Birth Process (Yule-Furry Process)

Assumptions:

- Probability of splitting in $(t, t+h): \lambda h+o(h)$
- Probability of more than one split in $(t, t+h): o(h)$

The probability of birth in $(t, t+h)$ if $N(t)=n$ is $n \lambda h+o(h)$.
Then,

$$
P_{n}(t+h)=P_{n}(t)(1-n \lambda h-o(h))+P_{n-1}(t)((n-1) \lambda h+o(h))
$$

Pure Birth Process (Yule-Furry Process)

Assumptions:

- Probability of splitting in $(t, t+h): \lambda h+o(h)$
- Probability of more than one split in $(t, t+h): o(h)$

The probability of birth in $(t, t+h)$ if $N(t)=n$ is $n \lambda h+o(h)$.
Then,

$$
\begin{aligned}
& P_{n}(t+h)=P_{n}(t)(1-n \lambda h-o(h))+P_{n-1}(t)((n-1) \lambda h+o(h)) \\
& P_{n}(t+h)-P_{n}(t)=-n \lambda h P_{n}(t)+P_{n-1}(t)(n-1) \lambda h+f(h), \text { with } f(h) \in o(h) \\
& \frac{P_{n}(t+h)-P_{n}(t)}{h}=-n \lambda P_{n}(t)+P_{n-1}(t)(n-1) \lambda+\frac{f(h)}{h}
\end{aligned}
$$

Let $h \rightarrow 0$,

$$
P_{n}^{\prime}(t)=-n \lambda P_{n}(t)+(n-1) \lambda P_{n-1}(t)
$$

Initial condition $P_{n_{0}}(0)=P\left\{N(0)=n_{0}\right\}=1$

Pure Birth Process (Yule-Furry Process)

Probabilities are given by a set of ordinary differential equations.

$$
\begin{aligned}
& P_{n}^{\prime}(t)=-n \lambda P_{n}(t)+(n-1) \lambda P_{n-1}(t) \\
& P_{n_{0}}(0)=P\left\{N(0)=n_{0}\right\}=1
\end{aligned}
$$

Solution

$$
P_{n}(t)=\binom{n-1}{n-n_{0}} e^{-\lambda n_{0} t}\left(1-e^{-\lambda t}\right)^{n-n_{0}} \quad n=n_{0}, n_{0}+1, \ldots
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.

Pure Birth Process (Yule-Furry Process)

Solution

$$
P_{n}(t)=\binom{n-1}{n-n_{0}} e^{-\lambda n_{0} t}\left(1-e^{-\lambda t}\right)^{n-n_{0}} \quad n=n_{0}, n_{0}+1, \ldots
$$

Observation: The solution can be seen as a negative binomial distribution, i.e., probability of obtaining n_{0} successes in n trials. Suppose $p=$ prob. of success and $q=1-p=$ prob. of failure. Then, the probability that the first $(n-1)$ trials result in $\left(n_{0}-1\right)$ successes and ($n-n_{0}$) failures followed by success on the $n^{\text {th }}$ trial is:
$\binom{n-1}{n-n_{0}} p^{n_{0}-1} q^{n-n_{0}} p=\binom{n-1}{n-n_{0}} p^{n_{0}} q^{n-n_{0}} ; \quad n=n_{0}, n_{0}+1, \ldots$
If $p=e^{-\lambda t}$ and $q=1-e^{-\lambda t}$, both equations are the same.

Pure Birth Process (Yule-Furry Process)

- Yule studied this process in connection with the theory of evolution, i.e., population consists of the species within a genus and creation of a new element is due to mutations.
- This approach neglects the probability of species dying out and size of species.
- Furry used the same model for radioactive transmutations.

Pure Birth Processes. Generalization

- In a Yule-Furry process, for $N(t)=n$ the probability of a change during $(t, t+h)$ depends on n.
- In a Poisson process, the probability of a change during $(t, t+h)$ is independent of $N(t)$.

Generalization

- Assume that for $N(t)=n$ the probability of a new change to $n+1$ in $(t, t+h)$ is $\lambda_{n} h+o(h)$.
- The probability of more than one change is $o(h)$.

Pure Birth Processes. Generalization

Generalization

- Assume that for $N(t)=n$ the probability of a new change to $n+1$ in $(t, t+h)$ is $\lambda_{n} h+o(h)$.
- The probability of more than one change is $O(h)$.

Then,

$$
\begin{aligned}
& P_{n}(t+h)=P_{n}(t)\left(1-\lambda_{n} h\right)+P_{n-1}(t) \lambda_{n-1} h+o(h), \quad n \neq 0 \\
& P_{0}(t+h)=P_{0}(t)\left(1-\lambda_{0} h\right)+o(h) \\
\Rightarrow & P_{n}^{\prime}(t)=-\lambda_{n} P_{n}(t)+\lambda_{n-1} P_{n-1}(t) \\
& P_{0}^{\prime}(t)=-\lambda_{0} P_{n}(t)
\end{aligned}
$$

Equations can be solved recursively with $P_{0}(t)=P_{0}(0) e^{-\lambda_{0} t}$

Pure Birth Process. Generalization

Let the initial condition be $P_{n_{0}}(0)=1$.
The resulting equations are:

$$
\begin{aligned}
P_{n}^{\prime}(t) & =-\lambda_{n} P_{n}(t)+\lambda_{n-1} P_{n-1}(t), \quad n>n_{0} \\
P_{n_{0}}^{\prime}(t) & =-\lambda_{n_{0}} P_{n_{0}}(t)
\end{aligned}
$$

Yule-Furry processes assumed $\lambda_{n}=n \lambda$

Outline

(1) Birth Processes
(2) Birth-Death Processes
(3) Relationship to Markov Chains
4. Linear Birth-Death Processes
(5) Examples

Birth-Death Processes

Notation

- Pure Birth process: If n transitions take place during $(0, t)$, we may refer to the process as being in state E_{n}.
- Changes in the pure birth process:
$E_{n} \rightarrow E_{n+1} \rightarrow E_{n+2} \rightarrow \ldots$
- Birth-Death Processes consider transitions $E_{n} \rightarrow E_{n-1}$ as well as $E_{n} \rightarrow E_{n+1}$ if $n \geq 1$. If $n=0$, only $E_{0} \rightarrow E_{1}$ is allowed.

Birth-Death Processes

Birth-Death Processes

Assumptions

If the process at time t is in E_{n}, then during $(t, t+h)$:

- Transition $E_{n} \rightarrow E_{n+1}$ has probability $\lambda_{n} h+o(h)$
- Transition $E_{n} \rightarrow E_{n-1}$ has probability $\mu_{n} h+o(h)$
- Probability that more than 1 change occurs $=O(h)$.

$$
\begin{aligned}
P_{n}(t+h)=P_{n}(t) & \left(1-\lambda_{n} h-\mu_{n} h\right) \\
& +P_{n-1}(t)\left(\lambda_{n-1} h\right)+P_{n+1}(t)\left(\mu_{n+1} h\right)+o(h)
\end{aligned}
$$

Time evolution of the probabilities

$\Rightarrow P_{n}^{\prime}(t)=-\left(\lambda_{n}+\mu_{n}\right) P_{n}(t)+\lambda_{n-1} P_{n-1}(t)+\mu_{n+1} P_{n+1}(t)$

Birth-Death Processes

For $n=0$

$$
\begin{gathered}
P_{0}(t+h)=P_{0}(t)\left(1-\lambda_{0} h\right)+P_{1}(t) \mu_{1} h+o(h) \\
\Rightarrow P_{0}^{\prime}(t)=-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t)
\end{gathered}
$$

- If $\lambda_{0}=0$, then $E_{0} \rightarrow E_{1}$ is impossible and E_{0} is an absorbing state.
- If $\lambda_{0}=0$, then $P_{0}^{\prime}(t)=\mu_{1} P_{1}(t) \geq 0$ and hence $P_{0}(t)$ increases monotonically.

Note:

$\lim _{t \rightarrow \infty} P_{0}(t)=P_{0}(\infty)=$ Probability of being absorbed.

Steady-state distribution

$$
\begin{aligned}
& P_{0}^{\prime}(t)=-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t) \\
& P_{n}^{\prime}(t)=-\left(\lambda_{n}+\mu_{n}\right) P_{n}(t)+\lambda_{n-1} P_{n-1}(t)+\mu_{n+1} P_{n+1}(t)
\end{aligned}
$$

As $t \rightarrow \infty, P_{n}(t) \rightarrow P_{n}$ (limit).
Hence, $P_{0}^{\prime}(t) \rightarrow 0$ and $P_{n}^{\prime}(t) \rightarrow 0$.
Therefore,

$$
\begin{aligned}
& 0=-\lambda_{0} P_{0}+\mu_{1} P_{1} \\
\Rightarrow & P_{1}=\frac{\lambda_{0}}{\mu_{1}} P_{0} \\
& 0=-\left(\lambda_{1}+\mu_{1}\right) P_{1}+\lambda_{0} P_{0}+\mu_{2} P_{2} \\
\Rightarrow & P_{2}=\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} P_{0} \\
\Rightarrow & P_{3}=\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{2}} P_{0} \quad \text { etc }
\end{aligned}
$$

Steady-state distribution

$$
P_{1}=\frac{\lambda_{0}}{\mu_{1}} P_{0} ; \quad P_{2}=\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} P_{0} ; \quad P_{3}=\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{2}} P_{0} ; \quad P_{4}=\ldots
$$

The dependence on the initial conditions has disappeared.
After normalizing, i.e., $\sum_{n=1}^{\infty} P_{n}=1$:

$$
P_{0}=\frac{1}{1+\sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_{i}}{\mu_{i+1}}} ; \quad P_{n}=\frac{\prod_{i=0}^{n-1} \frac{\lambda_{i}}{\mu_{i+1}}}{1+\sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_{i}}{\mu_{i+1}}}, n \geq 1
$$

Steady-state distribution

$$
P_{0}=\frac{1}{1+\sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_{i}}{\mu_{i+1}}} ; \quad P_{n}=\frac{\prod_{i=0}^{n-1} \frac{\lambda_{i}}{\mu_{i+1}}}{1+\sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_{i}}{\mu_{i+1}}}, n \geq 1
$$

Ergodicity condition

$P_{n}>0$, for all $n \geq 0$, i.e.,:

$$
\sum_{n=1}^{\infty} \prod_{i=0}^{n-1} \frac{\lambda_{i}}{\mu_{i+1}}<\infty
$$

Example. A single server system

- constant arrival rate λ (Poisson arrivals)
- stopping rate of service μ (exponential distribution)
- states of the system: 0 (server free), 1 (server busy)

$$
\begin{aligned}
& P_{0}^{\prime}(t)=-\lambda P_{0}(t)+\mu P_{1}(t) \\
& P_{1}^{\prime}(t)=\lambda P_{0}(t)-\mu P_{1}(t)
\end{aligned}
$$

Example. A single server system

$$
\begin{aligned}
& P_{0}^{\prime}(t)=-\lambda P_{0}(t)+\mu P_{1}(t) \\
& P_{1}^{\prime}(t)=\lambda P_{0}(t)-\mu P_{1}(t)
\end{aligned}
$$

Given that: $P_{0}(t)+P_{1}(t)=1, P_{0}^{\prime}(t)+(\lambda+\mu) P_{0}(t)=\mu$.

$$
\begin{aligned}
& P_{0}(t)=\frac{\mu}{\lambda+\mu}+\left(P_{0}(0)-\frac{\mu}{\lambda+\mu}\right) e^{-(\lambda+\mu) t} \\
& P_{1}(t)=\frac{\lambda}{\lambda+\mu}+\left(P_{1}(0)-\frac{\lambda}{\lambda+\mu}\right) e^{-(\lambda+\mu) t}
\end{aligned}
$$

Solution = Equilibrum distribution + Deviation from the equilibrium with exponential decay.

Poisson Process. Probabilities

Poisson Process

- Birth probability per time unit is constant λ
- The population size is initially 0

All states are transient

Equations

$$
\begin{aligned}
P_{i}^{\prime}(t) & =-\lambda P_{i}(t)+\lambda P_{i-1}(t), \quad i>0 \\
P_{0}^{\prime}(t) & =-\lambda P_{0}(t)
\end{aligned}
$$

Poisson Process. Probabilities

Equations

$$
\begin{aligned}
P_{i}^{\prime}(t) & =-\lambda P_{i}(t)+\lambda P_{i-1}(t), \quad i>0 \\
P_{0}^{\prime}(t) & =-\lambda P_{0}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow P_{0}(t)=e^{-\lambda t} \\
& \frac{d}{d t}\left[e^{\lambda t} P_{i}(t)\right]=\lambda P_{i-1}(t) e^{\lambda t} \Rightarrow P_{i}(t)=e^{-\lambda t} \lambda \int_{0}^{t} P_{i-1}\left(t^{\prime}\right) e^{\lambda t^{\prime}} d t^{\prime} \\
& P_{1}(t)=e^{-\lambda t} \lambda \int_{0}^{t} e^{-\lambda t^{\prime}} e^{\lambda t^{\prime}} d t^{\prime}=e^{-\lambda t}(\lambda t)
\end{aligned}
$$

Recursively: $P_{i}(t)=\frac{(\lambda t)^{i}}{i!} e^{-\lambda t}$
Number of births in interval ($0, t$) \sim Poisson (λt).

Pure Death Process. Probabilities

Pure Death Process

- All the individuals have the same mortality rate μ
- The population size is initially n

State 0 is an absorbing state. The rest are transient.

Equations

$$
\begin{aligned}
P_{n}^{\prime}(t) & =-n \mu P_{n}(t) \\
P_{i}^{\prime}(t) & =(i+1) \mu P_{i+1}(t)-i \mu P_{i}(t), \quad i=0, \ldots, n-1
\end{aligned}
$$

Pure Death Process. Probabilities

Equations

$$
\begin{aligned}
P_{n}^{\prime}(t) & =-n \mu P_{n}(t) \\
P_{i}^{\prime}(t) & =(i+1) \mu P_{i+1}(t)-i \mu P_{i}(t), \quad i=0, \ldots, n-1
\end{aligned}
$$

$\Rightarrow P_{n}(t)=e^{-n \mu t}$
$\frac{d}{d t}\left[e^{i \mu t} P_{i}(t)\right]=(i+1) \mu P_{i+1}(t) e^{i \mu t} \Rightarrow P_{i}(t)=(i+1) e^{-i \mu t} \mu \int_{0}^{t} P_{i+1}\left(t^{\prime}\right) e^{i \mu t^{\prime}} d t^{\prime}$
$P_{n-1}(t)=n e^{-(n-1) \mu t} \mu \int_{0}^{t} e^{-n \mu t^{\prime}} e^{(n-1) \mu t^{\prime}} d t^{\prime}=n e^{-(n-1) \mu t}\left(1-e^{-\mu t}\right)$
Recursively: $P_{i}(t)=\binom{n}{i}\left(e^{-\mu t}\right)^{i}\left(1-e^{-\mu t}\right)^{n-i}$
Binomial distribution: The survival probability at time t is $e^{-\mu t}$ independent of others.

Outline

(1) Birth Processes
(2) Birth-Death Processes
(3) Relationship to Markov Chains
4. Linear Birth-Death Processes
(5) Examples

Relation to CTMC

Infinitesimal generator matrix:

$$
\begin{aligned}
& Q=\left(\begin{array}{ccccccc}
-\lambda_{0} & \lambda_{0} & 0 & \ldots & \cdots & \cdots & \cdots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & \cdots & \cdots & \cdots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 & \cdots & \cdots \\
\vdots & 0 & \mu_{3} & -\left(\lambda_{3}+\mu_{3}\right) & \lambda_{3} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right) \\
& (0)
\end{aligned}
$$

Relation to DTMC

Embedded Markov chain of the process.
For $t \rightarrow \infty$, define:

$$
\begin{aligned}
P\left(E_{n+1} \mid E_{n}\right) & =\text { Prob. of transition } E_{n} \rightarrow E_{n+1} \\
& =\text { Prob. of going to } E_{n+1} \text { conditional on being in } E_{n}
\end{aligned}
$$

Define $P\left(E_{n-1} \mid E_{n}\right)$ similarly. Then

$$
\begin{gathered}
P\left(E_{n+1} \mid E_{n}\right) \backsim \lambda_{n}, P\left(E_{n-1} \mid E_{n}\right) \backsim \mu_{n} \\
P\left(E_{n+1} \mid E_{n}\right)=\frac{\lambda_{n}}{\lambda_{n}+\mu_{n}}, P\left(E_{n-1} \mid E_{n}\right)=\frac{\mu_{n}}{\lambda_{n}+\mu_{n}}
\end{gathered}
$$

The same conditional probabilities hold if it is given that a transition will take place in $(t, t+h)$ conditional on being in E_{n}.

Outline

(1) Birth Processes
(2) Birth-Death Processes
(3) Relationship to Markov Chains
(4) Linear Birth-Death Processes
(5) Examples

Linear Birth-Death Processes

Linear Birth-Death Process

- $\lambda_{n}=n \lambda$
- $\mu_{n}=n \mu$

$$
\begin{aligned}
\Rightarrow P_{0}^{\prime}(t) & =\mu P_{1}(t) \\
P_{n}^{\prime}(t) & =-(\lambda+\mu) n P_{n}(t)+\lambda(n-1) P_{n-1}(t)+\mu(n+1) P_{n+1}(t)
\end{aligned}
$$

Steady state behavior is characterized by:

$$
\lim _{t \rightarrow \infty} P_{0}^{\prime}(t)=0 \Rightarrow P_{1}(\infty)=0
$$

Similarly as $t \rightarrow \infty \quad P_{n}^{\prime}(\infty)=0$

Linear Birth-Death Processes

Steady state behavior is characterized by:

$$
\lim _{t \rightarrow \infty} P_{0}^{\prime}(t)=0 \Rightarrow P_{1}(\infty)=0
$$

Similarly as $t \rightarrow \infty \quad P_{n}^{\prime}(\infty)=0$

Two cases can happen:

- If $P_{0}(\infty)=1 \Rightarrow$ the probability of ultimate extinction is 1 .
- If $P_{0}(\infty)=P_{0}<1$, the relations $P_{1}=P_{2}=P_{3} \ldots=0$ imply with probability $1-P_{0}$ that the population can increase without bounds.

The population must either die out or increase indefinitely.

Mean of a Linear Birth-Death Process

$$
P_{n}^{\prime}(t)=-(\lambda+\mu) n P_{n}(t)+\lambda(n-1) P_{n-1}(t)+\mu(n+1) P_{n+1}(t)
$$

Define Mean by $M(t)=\sum_{n=1}^{\infty} n P_{n}(t)$ and consider $M^{\prime}(t)=\sum_{n=1}^{\infty} n P_{n}^{\prime}(t)$, then:

$$
\begin{aligned}
M^{\prime}(t)=-(\lambda+\mu) \sum_{n=1}^{\infty} n^{2} P_{n}(t)+\lambda \sum_{n=1}^{\infty} & (n-1) n P_{n-1}(t) \\
& +\mu \sum_{n=1}^{\infty}(n+1) n P_{n+1}(t)
\end{aligned}
$$

Write $(n-1) n=(n-1)^{2}+(n-1),(n+1) n=(n+1)^{2}-(n+1)$

Mean of a Linear Birth-Death Process

$$
\begin{aligned}
& M^{\prime}(t)=-(\lambda+\mu) \sum_{n=1}^{\infty} n^{2} P_{n}(t) \\
&+\lambda \sum_{n=1}^{\infty}(n-1)^{2} P_{n-1}(t)+\mu\left(\sum_{n=1}^{\infty}(n+1)^{2} P_{n+1}(t)+P_{1}(t)\right) \\
&+\lambda \sum_{n=1}^{\infty}(n-1) P_{n-1}(t)-\mu\left(\sum_{n=1}^{\infty}(n+1) P_{n+1}(t)+P_{1}(t)\right) \\
& \Rightarrow M^{\prime}(t)=\lambda \sum_{n=1}^{\infty} n P_{n}(t)-\mu \sum_{n=1}^{\infty} n P_{n}(t)=(\lambda-\mu) M(t) \\
& \quad M(t)=n_{0} e^{(\lambda-\mu) t} \text { if } P_{n_{0}}(0)=1
\end{aligned}
$$

Mean of a Linear Birth-Death Process

$M(t)=n_{0} e^{(\lambda-\mu) t}$

- If $\lambda>\mu$ then $M(t) \rightarrow \infty$
- If $\lambda<\mu$ then $M(t) \rightarrow 0$

Similarly if $M_{2}(t)=\sum_{n=1}^{\infty} n^{2} P_{n}(t)$ one can show that:

$$
M_{2}^{\prime}(t)=2(\lambda-\mu) M_{2}(t)+(\lambda+\mu) M(t)
$$

and when $\lambda>\mu$, the variance is:

$$
n_{0} e^{2(\lambda-\mu) t}\left(1-e^{(\mu-\lambda) t}\right) \frac{\lambda+\mu}{\lambda-\mu}
$$

Outline

(1) Birth Processes
(2) Birth-Death Processes
(3) Relationship to Markov Chains
4. Linear Birth-Death Processes
(5) Examples

Linear Birth-Death Process. Example

Let $X(t)$ be the number of bacteria in a colony at instant t.
Evolution of the population is described by:

- the time that each of the individuals takes for division in two (binary fission), independently of the other bacteria
- the life time of each bacterium (also independent)

Assume that:

- Time for division is exponentially dist. (rate λ)
- Life time is also exponentially dist. (rate μ)

$$
M(t)=n_{0} e^{(\lambda-\mu) t}
$$

- If $\lambda>\mu$ then the population tends to infinity
- If $\lambda<\mu$ then the population tends to 0

A queueing system

Is it a birth-death process?

A queueing system

- s servers
- K waiting places
- λ arrival rate (Poisson)
- $\mu \operatorname{Exp}(\mu)$ holding time (expectation 1/ μ)

Let " $N=$ number of customers in the system" be the state variable.

- N determines uniquely the number of customers in service and waiting room.
- After each arrival and departure the remaining service times of the customers in service are $\operatorname{Exp}(\mu)$ distributed (memoryless).

Call blocking in an ATM network

An ATM network offers calls of two different types.
$\left\{\begin{array}{l}R_{1}=1 \mathrm{Mbps} \\ \lambda_{1}=\text { arrival rate } \\ \mu_{1}=\text { mean holding time }\end{array}\right.$

$$
\left\{\begin{array}{l}
R_{2}=2 M b p s \\
\lambda_{2}=\text { arrival rate } \\
\mu_{2}=\text { mean holding time }
\end{array}\right.
$$

Assume that the capacity of the link is infinite:

Is it a birth-death process?

Call blocking in an ATM network

An ATM network offers calls of two different types.
$\left\{\begin{array}{l}R_{1}=1 \mathrm{Mbps} \\ \lambda_{1}=\text { arrival rate } \\ \mu_{1}=\text { mean holding time }\end{array}\right.$

$$
\left\{\begin{array}{l}
R_{2}=2 M b p s \\
\lambda_{2}=\text { arrival rate } \\
\mu_{2}=\text { mean holding time }
\end{array}\right.
$$

Assume that the capacity of the link is infinite:

The state variable is the pair $\left(N_{1}, N_{2}\right)$ where N_{i} defines the number of class- i connections in progress.

Call blocking in an ATM network

An ATM network offers calls of two different types.
$\left\{\begin{array}{l}R_{1}=1 \mathrm{Mbps} \\ \lambda_{1}=\text { arrival rate } \\ \mu_{1}=\text { mean holding time }\end{array}\right.$

$$
\left\{\begin{array}{l}
R_{2}=2 M b p s \\
\lambda_{2}=\text { arrival rate } \\
\mu_{2}=\text { mean holding time }
\end{array}\right.
$$

Assume that the capacity of the link is limited to 4.5 Mbps

Is it a birth-death process?

Call blocking in an ATM network

An ATM network offers calls of two different types.
$\left\{\begin{array}{l}R_{1}=1 \mathrm{Mbps} \\ \lambda_{1}=\text { arrival rate } \\ \mu_{1}=\text { mean holding time }\end{array}\right.$

$$
\left\{\begin{array}{l}
R_{2}=2 M b p s \\
\lambda_{2}=\text { arrival rate } \\
\mu_{2}=\text { mean holding time }
\end{array}\right.
$$

Assume that the capacity of the link is limited to 4.5 Mbps

Exercise 1

Process definition

- There are two transatlantic cables each of which handle one telegraph message at a time.
- The time-to-breakdown for each has the same exponential random distribution with parameter λ.
- The time to repair for each cable has the same exponential random distribution with parameter μ.

Tasks:

- Draw the corresponding birth-death process.
- Write its infinitesimal generator.
- Write differential equations for the probabilities.
- Compute the steady state distribution

Exercise 2

Birth-disaster process

Consider that X_{t} is a continuous-time Markov process defined as follows:

- Each individual gives a birth after an exponential random time of parameter λ, independent of each other.
- A disaster occurs randomly at exponential random time of parameter δ.
- Once a disaster occurs, it wipes out all the entire population.

Tasks:
-What is the infinitesimal generator matrix of the process?

- What is the time evolution of $M(t)=\mathbb{E}\left[X_{t}\right]$?

Acknowledgments

Much of the material in the course is based on the following courses:

- Queueing Theory / Birth-death processes. J. Vitano
- Birth and Death Processes http://www.bibalex.org/supercourse/
- Performance modelling and evaluation. Birth-death processes.
J. Campos
- Discrete State Stochastic Processes J. Baik

