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Formal Models in Bioinformatics

What is systems biology?

• Systems biology is the study of all the elements in a
biological system (all genes, mRNAs, proteins, etc) and
their relationships one to another in response to
perturbations.

• Systems approaches attempt to study the behaviour of all
the elements in a system and relate these behaviours to
the systems or emergent properties.
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Formal Models in Bioinformatics

Bioinformatics Basics
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Formal Models in Bioinformatics

Systems Biology: Interaction in Networks
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Formal Models in Bioinformatics

What is systems biology?

• ...systematic study of complex interactions in biological
systems, thus using a new perspective (integration instead
of reduction) to study them... one of the goals of systems
biology is to discover new emergent properties (Wikipedia)

• Systems biology is the study of an organism, viewed as an
integrated and interacting network of genes, proteins and
biochemical reactions... systems biologists focus on all the
components and the interactions among them, all as part
of one system (Institute for Systems Biology, Washington)

• To understand complex biological systems requires the
integration of experimental and computational research –
in other words a systems biology approach (Kitano, 2002)
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Formal Models in Bioinformatics

Networks
Gene regulation
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Metabolic Pathway
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Signalling
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Protein-protein interaction
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Formal Models in Bioinformatics
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Formal Models in Bioinformatics

Metabolic Pathway
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Systems Biology is a multidisciplinar field

Which is the volume of a cow?

An informatics perspective: for cow=0; cow+1 end

Where is the cow???

A physicist perspective: Consider a spherical cow with negligible
mass…

Even E. coli is not that

spherical !!

• A chemist perspective: Dissolve the cow in H2SO4, weight
the result and measure the volume.

• Sometimes it is important not to destroy the cow.

• An engineering perspective: Immerse the cow in a tank of
water and measure the volume.

• Some cows cannot swim. Water pressure might change
volume.
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Systems Biology is a multidisciplinar field

Which is the volume of a cow?

An informatics perspective: for cow=0; cow+1 end

Where is the cow???

A physicist perspective: Consider a spherical cow with negligible
mass…

Even E. coli is not that

spherical !!

• A mathematician perspective: Cut the cow into pieces and
sum up the pieces.

• The total might not be equal to the sum of its parts→
emergent properties.

• A physicist perspective: Consider a spherical cow with
negligible mass...

• Even E. coli is not that spherical
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Formal Models in Bioinformatics

Mathematics to model the time evolution of a population

Theoretical immunology

Modelling a population

Deterministic birth process

Mathematics to model the time evolution of a population

Figure: A lot of penguins!
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Formal Models in Bioinformatics

Mathematics to model the time evolution of a population

From penguins to rabbits..

Theoretical immunology

Modelling a population

First attemt at combining mathematics and biology

From penguins to rabbits

Figure: A lot of rabbits!
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Modelling the time evolution of a population

Early attempts to make use of mathematics in biology
Leonardo de Pisa or Fibonacci (1202)
• At month 0 there is a pair of rabbits (one female and one

male).
• Every pair of rabbits (one female and one male) can mate

at the age of one month.
• The female rabbit always produces a new pair of rabbits

(one female and one male) every month from the second
month on.

• As there is no death, all rabbits survive.
What is the number of pairs of rabbits in month n?
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Modelling the time evolution of a population

Rabbits population

Theoretical immunology

Modelling a population

First attemt at combining mathematics and biology

From penguins to rabbits
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Modelling the time evolution of a population

Leonardo de Pisa or Fibonacci (1202)

• At month 0 there is a pair of rabbits (one female and one male).

• Every pair of rabbits (one female and one male) can mate at the age of
one month.

• The female rabbit always produces a new pair of rabbits (one female
and one male) every month from the second month on.

• As there is no death, all rabbits survive.

The number of pairs in month n, Rn, satisfies:

Rn+1 = Rn + Rn−1

R0 = 1
R1 = 1
R2 = 1 + 1 = 2
R3 = 2 + 1 = 3
R4 = 3 + 2 = 5
R5 = 5 + 3 = 8 18 / 51
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Modelling the time evolution of a population

Deterministic modelling

• Let N(t) be the population of those penguins at time t .
• N(t) is the number of individuals in the population at time t .
• The change in the number of penguins in a small time

interval, from t to t + ∆t , is given by:

N(t + ∆) = N(t) + births − deaths + migration

• This equation is a conservation equation for the number of
individuals of the population.

• The form of the various terms on the right-hand-side
requires essential feedback from biologists.
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Modelling the time evolution of a population

Deterministic birth process
Let us assume that:
• There are no death events in the population.
• There are only birth events in the population.
• The birth rate (number of births per unit of time), b, is the

same for all individuals of the population.
• We have:

N(t + ∆t) = N(t) + births
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Modelling the time evolution of a population

Deterministic birth process
• Change in the population is due to birth events.
• The births in the time interval [t , t + ∆t ] due to a single

individual is b∆t .

• The births in the time interval [t , t + ∆t ] due to all
individuals is N(t)b∆t .

• N(t+∆t) = N(t)+N(t)b∆t =⇒ N(t + ∆t)− N(t)
∆t

= bN(t)

• For a very small time interval, ∆t → 0,

lim
∆t→0

N(t + ∆t)− N(t)
∆t

=
dN(t)

dt
= bN(t)

• This equation can be easily solved by integration.
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Modelling the time evolution of a population

Deterministic birth process
N(t): Number of individuals at time t
dN(t)

dt
= bN(t)

• If the population at time t = t0 is given by N0, we have:

N(t) = N0eb(t−t0)

• In a deterministic birth process the population size is
predicted at time t with absolute certainty, once the initial
size N0 and birth rate b are given.

• The population size N(t) and time t are both continuous
variables (both take real values) and not discrete (take
integer values).

• Is this a good mathematical population growth model?
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Modelling the time evolution of a population

Stochastic birth process
• Let Xt be the dicrete random variable that describes the

number of individuals of the population at time t .
• The stochastic process that describes the population

satisfies:
Xt ∈ {1, 2, . . .} and t ∈ [0, +∞)

• Denote by pn(t) the probability that at time t the size of the
population is n, i.e., the probability that at time t there are n
individuals in the population:

pn(t) = Prob(Xt = n)
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Modelling the time evolution of a population

Stochastic birth process

• Consider a small time interval [t , t + ∆t ]
• How is Xt+∆t related to X
• We have the following rules:

• There are no death events in the population.
• There are birth events in the population: the probability that

a birth takes place in ∆t is b∆t .
• The probability of more than one birth in a time interval ∆t

is negligible (no twin births allowed).
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Modelling the time evolution of a population

Stochastic birth process

Theoretical immunology

Modelling a population

Stochastic birth process

Stochastic birth process II

1 2 3

· · · · · ·
n − 1 n n + 1

! The probability that a population of size n − 1 increases to n in the time
interval (t, t + ∆t) is b ×∆t × (n − 1).

! The probability that a population of size n increases to n + 1 in the time
interval (t, t + ∆t) is b ×∆t × n.

! If at time t the population has n individuals, the probability that no birth
event takes place in the time interval (t, t + ∆t) is 1− b ×∆t × n.

! Evolution equation for pn(t):

pn(t + ∆t) = (n − 1) b ∆t pn−1(t) + (1− n b ∆t) pn(t) .

• The probability that a population of size n − 1 increases to
n in the time interval (t , t + ∆t) is (n − 1)b∆t .

• The probability that a population of size n increases to
n + 1 in the time interval (t , t + ∆t) is b∆tn.

• If at time t the population has n individuals, the probability
that no birth event takes place in the time interval
(t , t + ∆t) is 1− b∆tn.

• Evolution equation for pn(t):

pn(t + ∆t) = (n − 1)b∆tpn−1(t) + (1− nb∆t)pn(t)
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Modelling the time evolution of a population

T cell

Theoretical immunology

Immunology

T cell
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Modelling the time evolution of a population

Cell division

Theoretical immunology

Immunology

Cell division

Birth event

! At time t there are n cells.

! During the time interval ∆t there is a single birth event.

! At time t + ∆t there are n + 1 cells.

Birth event:
• At time t there are n cells.
• During the time interval ∆t there is a single birth event.
• At time t + ∆t there are n + 1 cells.
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Modelling the time evolution of a population

Cell death

Theoretical immunology

Immunology

Cell death

Death event

! At time t there are n cells.

! During the time interval ∆t there is a single death event.

! At time t + ∆t there are n − 1 cells.

Death event:

• At time t there are n cells.
• During the time interval ∆t there is a single death event.
• At time t + ∆t there are n − 1 cells.
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Modelling the time evolution of a population

Cell-cell interactions lead to events

Theoretical immunology

Immunology

Cell-cell interactions lead to events

Figure: T cell-dendritic cell interaction.
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Modelling the time evolution of a population

T cell and Tumour cell

Theoretical immunology

Immunology

T cell and tumour cell

Figure: T cell and tumour cell.
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Modelling in systems biology

Modelling: Design and construction of models of existing
biological systems, which explain observed properties and
predict the response to experimental interventions.

systems biology: modelling as formal knowledge representation

synthetic biology: modelling for system construction

biosystem
natural

biosystem
synthetic

observed
behaviour

predicted
behaviour

model
(blueprint)

desired
behaviour

design construction

verification verification

observed
behaviour

predicted
behaviour

wetlab

model-based
experiment design

experiments

formalizing
understanding

wetlab 
experiments

model
(knowledge)
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Modelling in systems biology

Model:
• Formal representation of the real

world.
• Simplified abstract view of the

complex reality
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Modelling in systems biology

Why model?

• A model can generate new insights
• A model can make testable predictions

• E.g., predict the effect of drugs on an organism
• E.g., predict the effect on an inhibitor on a pathway

• A model can test conditions that may be difficult to study in
the laboratory

• A model can rule out particular explanations for an
experimental observation

• A model can help you identify what’s right and wrong with
your hypotheses
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Modelling in systems biology

Textbook view of the cell and reality
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Three D EM image of a pancreatic 

Beta cell

Campbell, Reece & Mitchell (1998) Biology, 5th

Edition
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Modelling in systems biology

In silico humans - spatial & temporal scales
In silico humans-spatial & temporal scales

• 1 m person

• 1 mm electrical length scale of cardiac tissue

• 1 mm cardiac sarcomere spacing

• 1 nm pore diameter in a membrane protein

Range = 109

• 109 s (70 yrs) human lifetime

• 106 s (10 days) protein turnover

Requires a hierarchy of inter-related models

pathway 

models
ODEs

stochastic

models
PDEs (continuum models)gene reg.

networks

• 106 s (10 days) protein turnover

• 103 s (1 hour) digest food

• 1 s heart beat

• 1 ms ion channel HH gating

• 1 ms Brownian motion

Range = 1015
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Modelling in systems biology

Levels of abstraction!"#"$%&'(&)*%+,-./'0&
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Modelling in systems biology

Models must be validated by experimental data: Simulations
must be accurate representations of the real world.
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Formal Models in Bioinformatics

A Framework for Modelling
• Define all the components of the system
• Systematically perturb and monitor components of the

system
• Reconcile the experimentally observed responses with

those predicted by the model
• Design and perform new perturbation experiments to

distinguish between multiple or competing model
hypotheses.

(Ideker, Galitski & Hood, 2001)
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Modelling in systems biology

Models should be:
• Readable.
• Unambiguous.
• Analysable.
• Executable.
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Suggestions:
• Occam’s razor: Don’t overcomplicate things.
• Einstein: Everything should be made as simple as

possible, but not simpler.
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#$-6*3,0".B&)"*&/1$&,*"#;6/&

CD&#+73#:>3%5$*/E5*;.$%:+6:;F& G!H&I./*"&

Suggestions:
• Occam’s razor: Don’t overcomplicate things.
• Einstein: Everything should be made as simple as

possible, but not simpler.
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Modelling in systems biology

Modelling Regimes
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Modelling in systems biology

Modelling Regimes
• Discrete and stochastic: Small numbers of molecules.

Exact description via Stochastic Simulation Algorithm
(SSA) - Gillespie. Large computational time.

• Continuous and stochastic: A bridge connecting discrete
and continuous models. Described by SDEs Chemical
Langevin Equation.

• Continuous and deterministic: Law of Mass Action. The
Reaction Rate equations. Described by ordinary
differential equations. Not valid if molecular populations of
some critical reactant species are small.
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Modelling in systems biology

Biological evidence of noise
• “Stochasticity is evident in all biological processes the

proliferation of both noise and noise reduction systems is a
hallmark of organismal evolution” Federoff et al.(2002).

• “Transcription in higher eukaryotes occurs with a relatively low
frequency in biologic time and is regulated in a probabilistic
manner” Hume (2000).

• “Gene regulation is a noisy business” Mcadams et al. (1999).

• “Initiation of gene transcription is a discrete process in which
individual protein-coding genes in an off state can be
stochastically switched on, resulting in sporadic pulses of mRNA
production” Sano 2001.

• “It is essential to study individual cells and to measure the cell to
cell variations in biological response, rather than averaging over
cell populations” Zatorsky, Rosenfeld et al. 2006.
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Modelling in systems biology

Origin of Stochasticity
• Intrinsic noise due to small numbers of molecules (e.g.

mRNA, DNA loci, TFs).
• Uncertainty of knowing when a reaction occurs and which

reaction it is.
• Relative statistical uncertainty is inversely proportional to

the square root of the number of molecules.
• Applies equally well to studying channel behaviour via the

concept of channel molecules.
• Extrinsic noise due to (external) environmental effects

(extrinsic factors are: stage in cell cycle, number of RNAP
or ribosomes, cellular environment).
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Modelling formalisms

Markov chains
• Based on the concept of state of the system
• Solution techniques:

• Enumerative
• Transient and steady-state analysis
• Exact and approximate analysis

• Drawbacks:
• Low abstraction level
• Model size equals number of states of the system
• Only in very particular cases aggregation techniques exist
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Modelling formalisms

Queueing networks
• High abstraction level

• The number of states characterizing the system grows
exponentially on the model size.

• Solution techniques:
• Enumerative (based on Markov chains)
• Reduction/transformation-based
• Structurally based (product-form solution, exact)
• Transient and steady-state analysis
• Exact, approximate and bounds

• Drawbacks:
• Lack of synchronization primitive
• Extensions exist but destroying analysis possibilities
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Modelling formalisms

Stochastic Petri nets
• Abstraction level similar to queueing networks
• With synchronization primitive

• SPN =Petri nets+ timing interpretation=queueing networks+
synchronizations

• Wide range of qualitative (logical properties) analysis
techniques:

• Enumerative (based on Markov chains)
• Reduction/transformation-based
• Structurally based

• Petri nets as a formal modelling paradigm
• a conceptual framework to obtain specific formalisms based

on common concepts and principles at different life-cycle
phases
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Modelling formalisms

Stochastic Petri nets (cont.)
• Analysis techniques:

• Exact: mainly enumerative (based on Markov chains)
• Bounding techniques (structurally based)
• Approximation techniques (reduction/transformation)

• Drawbacks:
• Lack of a product-form solution for efficient exact analysis in

most cases
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Contents of the Course

1 Discrete and Continuous Markov chains
2 Birth and Death Processes
3 Stochastic Simulation
4 Hidden Markov Chains
5 Stochastic Petri nets

Course info:
http://webdiis.unizar.es/asignaturas/SPN/
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