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Course details

L

20 lectures of 50 minutes
J Topic:
O performance evaluation based on formal models

O "performance” in Spanish: prestaciones, rendimiento o
desempefio

1 Slides available at:
Q http://webdiis.unizar.es/~jcampos/mendoza06.pdf

] Books:

Qd Jain, R.: The Art of Computer Systems Performance Analysis.
Wiley, 1991

A Kant, K.: Introduction to Computer Systems Performance
Evaluation. McGraw-Hill, 1992.

[ Balbo, G.; Conte, G.; Ajmone Marsan, M.; Donatelli, S.;
Franceschinis, G.: Modelling with Generalized Stochastic Petri
Nets. John Wiley, 1995.

J Orientation:
0 Both graduate and doctoral students (master/PhD)
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Motivating examples

L

N

1 A simple telecommunication protocol (TP) example

O A TP system accepts and processes a stream of
transactions, mediated through a (large) buffer

—> | ..O—>

[ Transactions arrive “randomly” at some specified rate
(e.g., 15 1ps)

[ The TP server is capable of servicing transactions at a
given service rate (e.g., 58.37 ms)

d Q1l: If both the arrival rate and service rate are doubled,
what happens to the mean response time?

0 Q2: What happens to the mean response time if the
arrival rate increases by 10%?
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Motivating examples
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1 A simple multiprocessor TP system

[ Consider our TP system but this time with multiple
transaction processors

Poisson arrival
process, rate A
—_—

Single queue

m parallel TP servers

A The arrival rate is 15 tps
[ The mean service time per transaction is 58.37 ms

L Q: By how much is the system response time reduced by
adding one processor?
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Motivating examples
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J A Simple Computer Mode

[ Consider an open Departures

uniprocessor CPU e
system with just disks 1
Arnivals S IJ.I |
Q Each submitted job makes l ]9 § ;
121 visits to the CPU, . < )
70 to disk 1 and ] st

50 to disk 2 on average

~)—

12

-

d The mean service times are 5 ms for the CPU, 30 ms for
disk 1 and 37 ms for disk 2

0 Q: What is the effect of replacing the CPU with one
twice the speed?
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Motivating examples

L
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A very simple shared memory multiprocessor

ML L @"'—"‘ ML2 N
a ¢ #

[ Both processors behave in a similar way:
A cyclic sequence of: local activity, then
an access request to the shared memory, and then
daccessing the shared memory (in mutual exclusion)

Q Q: What is the "processing power"? (average number of
processors effectively -locally- working)
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Why performance?

L

N

d Functional requirements of a system
O "Does a system work?”

d Qualitative analysis
A Correctness ("it works")

[ Verification of logical properties:

ddeadlock-freeness, liveness, boundedness, home state
existence, synchronic lead, mutual exclusions

) But correctness is not a sufficient condition to
make a system acceptable...
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Why performance?

L

N

d Non-functional requirements:
0 "How well does a system work?"

O Quality requirements like accuracy, performance,
security, modifiability, easiness of use...

v

 Quantitative analysis:

O Performance evaluation
“How quickly can the system accomplish a given task?”
d*“How much is the system being used?”

[ Responsiveness: ability to meet its objectives for response
time or throughput

[ Scalability. ability to continue to meet responsiveness as
the demand for the software functions increases

O Reliability evaluation

d“Would the system remain continuously operational for the
duration of a mission?”

J“How dependable is the system over the long run?”
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Why performance?

L

N

J System users, designers and administrators aim to obtain
or provide the highest performance at the lowest cost

d Typical problems faced by system designers and
administrators that can be addressed through performance
evaluation include:

O Specifying performance requirements

 Evaluating design alternatives

0 Comparing two or more systems

O Determining the optimal value of a parameter (system tuning)
O Finding the performance bottleneck (bottleneck identification)

Q Characterizing the load on the system (workload
characterization)

[ Determining the number and size of the components (capacity
planning)

O Predicting the performance at future loads (forecasting)
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When, where and how performance?

N

L

System Lifecycle Performance Objectives
- compare design alternatives

JdWhen,
i - sensitivity analysis
Wher‘e? Basign - design optimization

l ; - Use measurement/models
Manufacturing to verify if system meets

l performance requirements

chlf:gutr_atmn - verify vendor's claims
(SE|E;F?EFEhlse) - compare different systems

|

System - system tuning
Operational - bottleneck identification
(Usage) - load balancing

l - evaluate upgrade alternatives
Upgrade - forecasting
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When, where and how performance?

L

JdHow?

L Select appropriate evaluation techniques,
performance metrics and workloads for a
system

dConduct performance measurements correctly

Use proper statistical techniques to compare
several alternatives

Design measurement and simulation
experiments to provide the most information
with the least effort

dPerform simulations correctly

dUse simple queueing models to analyze the
performance of systems

N
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When, where and how performance?

L

N

[ Steps in performance evaluation study

1. State the goals of the study and define the system
boundaries

List system services and possible outcomes
Select performance metrics

List system and workload parameters

Select factors and their values

Select evaluation techniques

Select the workload

Design the experiments

. Analyze and interpret the data

10. Present the results. Start over, if necessary.

NV N o Ok w N
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When, where and how performance?

N

L

- Performance as an Engineering Activity

implementation
Results !

| Problem » | FOrmulation Ly Plan <
identification of objectives preparation
A A | MR I 2
Plan

interpretation

I. The need for the study arises.

IT.] Careful estimation of the costs and

ITI. possible benefits of the study

IV. }i’rer‘a‘rive procedure
V.
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Performance metrics

L

d Quantifiable descriptor used to represent the
performance of a system or some of its aspects

Time
Request for
. sgrvtce i {He;pcﬂse
Time)
Rate
(Throughput)
Done
correctly Resource
{Utilization)
Done
System A4 /,{ Probability
~ Done || Error
incorrectly i I \Time between
4 errors
«
=7 Duration of
Cannot |-~ »| Event the event
do s k
\\ Time between
events
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Performance metrics

N

¥
Index class

Examples of indices

General definition

Productivity

Throughput rate

Production rate

Capacity (maximum
throughput rate)

Instruction execution rate
Data-processing rate

The volume of information processed
by the system in the unit time

Responsiveness

Response time
Turnaround time
Reaction time

The time between the presentation of
an input to the system and the
appearance of a corresponding
output

Utilization

Javier Campos. Performance modelling and evaluation: 1. Introduction

Hardware module (CPU,
memory, 1/0 channel,
1/0 device) utilization

Operating system
module utilization

Public software module
(e.g., compiler) utilization

Data base utilization

The ratio between the time a
specified part of the system is used
during a given interval of time and
the duration of that interval

18



Performance metrics

L
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] Response time:
[ the interval between a user’'s request and the system

response USer’s system’s
request l response

<—— response time —>| time

user

user  USer  gsystem  Systém systtm  starts

starts  finishes starts starts  completes next

request request execution response response request

| 1 ||

reaction think ‘ time

time ] time
< response time—

(definition 1)
< response time—— >
(definition 2)
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Performance metrics

L

N

d Throughput:
O productivity measure
O rate at which requests can be seviced by the system
[ amount of work performed per unit of time
- Efficiency:
d ratio of the maximum achievable throughput to nominal
capacity
O nominal capacity (or bandwidth in the case of computer

networks): max achievable throughput under ideal workload
conditions

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Performance metrics

L
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 Utilization of a resource:

O is measured as the fraction of time the resource is busy
servicing requests

O bottleneck: the resource with a maximum utilization in a
system; it is the resource slowing down the system
 Reliability metrics:
[ measure the period of operation without a single error
[ for example, the probability of an error not occuring by
time t, or the mean time between errors
- Availability measures:

[ are interested in computing the fraction of the time the
system is available to service users' requests

[ these include the system uptime, downtime, and mean
time between failures

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Performance metrics

L
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dUtility classification of performance
metrics

dHigher is better (HB) metrics: higher values of
such metrics preferred, e.g., throughput.

QdLower is better (LB) metrics: lower values of
such metrics preferred, e.g., response time.

dNominal is best (NB) metrics: both high and low
values are undesirable, e.g., utilization

Utility Utility LItility

- Better Better —m=
Eies.t
Metric Metric I'U'Ietrlc:

Higher is better (HEB) Lower is better (LB) Mominal is best (NE)
Javier Campos. Performance modelling and evaluation: 1. Introduction
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Performance metrics

L
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 Specification problems (of performance metrics)
O Nonspecific: no clear numbers are specified

O Nonmeasurable: no way to verify if the system meets the
requirements

O Nonactionable: metrics are not easy-to-understand, it is not
clear which direction is "good" and which is "bad", so you don't
know when to take action

A Nonrelevant: metrics measure things that are not important

[ Nontimely: metrics for which you cannot get the data when you
heed it
0 Metrics should be
 Specific
[ Measurable
O Actionable
 Relevant
d Timely

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Performance metrics

L

N

JAn example of specification of
performance metrics: performance
requirements of a high speed local area
network (LAN)

A LAN basically transport packets to a specific
destination station

L Three possible outcomes
dThe data arrive correctly to the destination station

dThe data does not arrive correctly
1 The data does not arrive

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Performance metrics

L

 Performance requirements:
[ Speed: if the data arrive correctly to the destination
station,

[ Arrival time to any destination<1s
[ Throughput > 80 Mbps

[ Reliability:
dProbability of error of a bit < 10-7
Probability bad packet detected < 1%
[ Probability bad packet not detected <10-1°
dProbability packet directed to a bad destination <10-18
dProbability packet duplicated <10-°
Probability lost packet < 1%

Q Availability:
O Mean time for reinitialization < 15 ms
J Mean time between consecutive reinitializations > 1 min
J Mean time for network repair <1 h

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Evaluation techniques
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JMeasurement techniques
dTracing a real system
A Measuring a prototype

1 System simulation

JTrace-driven
1Discrete-event

J Analytical modelling
JMarkov chains
JQueueing networks
JPetri nets
Process algebras

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Evaluation techniques

L

N

[ Measurement techniques: Tracing a real system

[ Observation of system operation during a period of time
and registering values of relevant variables for the
evaluation

O Need:

[ To get approval of operators

O To instrument the system for measurement
O End-to-end metrics and component-wise metrics
0 Non-interference with servicing of user requests

dInstrumentation should be able to keep up with system load
Qo
O Most accurate estimation of metrics
4 o:
dLack of control over parameters/workloads
dNon-repetitive measurements
[ No insights into "future" operation/design

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Evaluation techniques

L

N

[ Measurement techniques: Measuring a prototype

O Observation of a prototype of the system and
registering values of relevant variables for the evaluation
1 Need:
J A prototype

0 To instrument the prototype for measurement
d End-to-end metrics and component-wise metrics
O Non-interference with servicing of user requests

[ To design and generate workload

d To select/tune system parameters
N O

J Accurate estimation of metrics

[ More control over parameters and workload
®:

[ No insights into "future” system designs

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Evaluation techniques

L
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[ System simulation

[ Developing a computer program to simulate the system
behaviour and measurement of the program execution

1 Need:

A simulator

[ Programming skills, right level of detail

1 To design and generate workload

1 To select/tune system parameters
O:

[ High control over parameters and workload

(dPossible to incorporate future system designs as well
O Takes effort though

®:
(JLess accuracy
dLarge effort

Javier Campos. Performance modelling and evaluation: 1. Introduction 31



Evaluation techniques

L

N

 Analytical modelling
A Building a mathematical model of the system and
analysing the model
1 Need:

A model
Q Probabilistic and statistical modeling skills

1 To design and generate workload

1 To select/tune system parameters
O:

dLeast effort

[ High control over parameters and workload

JRelatively easy to incorporate future system designs as well
0®:

JLeast accurate
O Unrealistic assumptions
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Evaluation techniques

N

L

dComparison of techniques / selection

Technique Modeling | Simulation Measure prototype Tracing real syst.
Criterion
When? (stage) Anytime | Anytime Post-prototype Post-deployment
Time required Small Medium Usually less than | Less than
simulation measurement
Tools Analysts | Programming | Instrumentation | Instrumentation
languages
Accuracy Low Moderate fn(env. params) High
Tradeoff-evaluation/ | Easy Moderate Difficult Very difficult
Forecasting Ability
Environment Control | High High control | Low control over | Little control
control inputs to sub-
components
Cost Small Medium High High
Saleability Low Medium High Highest

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Evaluation techniques

L

N

 Common mistakes in selecting techniques:

d Use of wrong technique
[ Analysts prefer technique they are comfortable with

dUse it to solve every performance evaluation problem

0 A model that they can best solve, not one that can best solve
the problem

[ Should have basic knowledge of all four techniques
Q Always use two or more techniques
0 Do not believe models till validated by simulation
Do not believe simulation till validated by measurement

Do not believe measurement till predicted by model or
simulation

Be aware of limitations of each techniquel

Javier Campos. Performance modelling and evaluation: 1. Introduction 34
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Analysis techniques of models

L

N

A Classification according to formalism:

d Markov chains

1 Queueing systems and queueing networks
Q Stochastic Petri nets

[ Stochastic process algebras

d Classification according to the object of study:

d Transient state analysis
[ Steady-state analysis

Javier Campos. Performance modelling and evaluation: 1. Introduction 36



Analysis techniques of models

L

N

dClassification according to solution
technique:
LdEnumerative (state-space based)
dReduction/transformation-based
L Structurally based (high level model-based)

dClassification according to quality of
results:
L Exact values
JApproximations
L Bounding techniques

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Modelling formalisms

L

N

d Markov chains
(dBased on the concept of state of the system

L Solution techniques:
JEnumerative
Transient and steady-state analysis
JExact and approximate analysis
d®:
Low abstraction lever
Model size equals number of states of the system

Only in very particular cases aggregation techniques
exist

Javier Campos. Performance modelling and evaluation: 1. Introduction 39



Modelling formalisms

N

L

1 Queueing networks

dHigh abstraction level
The number of states characterizing the system
grows exponentially on the model size
dSolution techniques:
JEnumerative (based on Markov chains)
JReduction/transformation-based
dStructurally based (“product-form solution”, exact)
dTransient and steady-state analysis
JExact, approximate and bounds
d®:
dLack of synchronization primitive
JExtensions exist but destroying analysis possibilities

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Modelling formalisms

J Stochastic Petri nets

O Abstraction level similar to queueing networks
O With synchronization primitive
"SPN = Peftri nets + timing interpretation =
= queueing networks + synchronizations”
0 Wide range of qualitative (logical properties) analysis
techniques
[ Enumerative
dReduction/transformation-based
[ Structurally based
[ Petri nets as a formal modelling paradigm

Ha conceptual framework to obtain specific formalisms based
on common concepts and principles at different life-cycle
phases

N

Javier Campos. Performance modelling and evaluation: 1. Introduction
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Modelling formalisms

N

L

 Stochastic Petri nets (cont.)

[ Analysis techniques:
dExact: mainly enumerative (based on Markov chains)
Bounding techniques (structurally based)
dApproximation techniques (reduction/transformation)
d®:
dLack of a "product-form" solution for efficient exact
analysis in most cases

Javier Campos. Performance modelling and evaluation: 1. Introduction
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dWhy stochastic processes?

1 The Poisson process
dExponential distribution

dProperties of exponential r.v. and Poisson
process
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Why stochastic processes?

L

N

 Computer systems are

[ Dynamic: they can pass through a succession of states as
time progresses.

[ Influenced by events which we consider here as random
phenomena.

 Definition. A stochastic process is a family of
random variables

XHeQ| te T}
each defined on some (the same for each) sample
space Q for a parameter space 7.
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Why stochastic processes?

L

N

7, Q may be either discrete or continuous.

Discrete state and continuous state processes:

A process is called discrete or continuous state
depending upon the values its states can take, i.e.,
whether the values (Q2) are finite and countable, or
any value on the real line.

L Discrete and continuous (time) parameter
processes:

A process is called discrete or continuous (time)
parameter process depending on whether the index
set Tis discrete or continuous.

Javier Campos. Performance modelling and evaluation: 2. Stochastic processes, the Poisson process




Why stochastic processes?

L

N

[ T'is normally regarded as time
Hreal time: continuous
devery month or after job completion: discrete

d Qis the set of values each X(7) may take
O bank balance: discrete
Onumber of active tasks: discrete

dtime delay in communication network:
continuous

Javier Campos. Performance modelling and evaluation: 2. Stochastic processes, the Poisson process




Why stochastic processes?

L

N

JExample:

1 Suppose we observe /1), the number of jobs at
the CPU as a function of time, then the process

{n(7), 1 €[0,x)}
is a stochastic process, where /() is a random
variable, and (#) € {0,1,2,...}
L The values assumed by the random variable are

called states, and the set of all possible values
forms the state space of the process.

dTIn this example time is continuous and state
space is discrete.

Javier Campos. Performance modelling and evaluation: 2. Stochastic processes, the Poisson process




Why stochastic processes?

L

N

] Description of a stochastic process:

[ Probabilistic description of a random variable X'is given
by its probability density function (pdf)

fx (x)=%P{X <X}, —00<X<0

Probability Distribution Function (PDF)
also called cumulative distribution function (cdf)

[ Probabilistic description of a stochastic process is given
by the joint pdf of any set of random variables selected
from the process.

[ Thus, in the general case, the detailed description of a
stochastic process is unfeasable.

Javier Campos. Performance modelling and evaluation: 2. Stochastic processes, the Poisson process 7
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1 The Poisson process
dExponential distribution

dProperties of exponential r.v. and Poisson
process
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The Poisson process

L

N

A large class of stochastic processes are renewal processes.
This class of processes are used to model independent
identically distributed occurrences.

A Definition: Let X1,X,.X;,... be independent identically
distributed and positive random variables, and set J, =
Xi+..+ X,

Then process M 1), >0, where M#) =max{ n| J,< t}is
called a renewal process.

A

i D EITITITTTIITPTrPr > N(t)
AV
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The Poisson process

L

N

d Definition: The (fime-homogeneous, one-dimensional) Poisson
process is a special case of a renewal process where the
time between occurrences is exponentially distributed.

d The pdf and PDF of an exponentially distributed random
variable X are:

o 00=Ae"2—(x2-0) F,.(X)=P(X <x)=1-e* (x>0)

1 T ——

1.5
1.4
13 F
1.2 f
L1}
1k
09
08 F
0.7 f
0.6 |
0.5
04
03 F
02 F
0.1 [
0

09 F
08
0.7 |
0.6 |
05 F
0.4
03

02 F

0.1 f

'l 0 Il 1 'l
0 1 2 3 4 5 0 1 2 3 4 5
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The Poisson process

L

N

 Properties of exponential distribution
O The mean value and variance

1 1
E[X]== =
O The minimum of exponentials is exponential (sum of

rates)
fy (X) =2 (x>0)

fy (y)=pe ™™ (y=0)

Z =min{X,Y}

f7(2)= (L +pe” MW (2> 0)

Javier Campos. Performance modelling and evaluation: 2. Stochastic processes, the Poisson process
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The Poisson process

L

N

[ Memoryless property
P{X>2x+a| X >2a}=P{X > x}

ke—kx

v

(Right) P(T > 40 | T > 30) = P(T = 10).
It does not mean

(Wrong) P(T >40|T > 30) = P(T > 40).

Javier Campos. Performance modelling and evaluation: 2. Stochastic processes, the Poisson process

12



The Poisson process

L

N

JProperties of Poisson process

dResidual life

AIf you pick a random time point during a Poisson
process, what is the time remaining R to the next
instant (arrival)?

JE.g. when you get to a bus stop, how long will you have
to wait for the next bus?

JIf process is Poisson, R has the same distribution as X
(the time between ocurrences) by the memoryless
property of exponential

it doesn't matter when the last bus went!

contrast constant interarrival times in a perfectly
regular bus service

Javier Campos. Performance modelling and evaluation: 2. Stochastic processes, the Poisson process 13



The Poisson process

L

N

dInfinitesimal definition of Poisson process
A Aarrival in (1,1+ AD)= AR A = P(X< AT forall #
= 1 - e-kA?‘
= AT+ o(AT)
dTherefore

O Probability of an arrival in (#, 1+ A7) is AAt+ o(AT)
regardless of process history before t

dProbability of more than one arrival in (#, 7+ A7) is o(A7)
regardless of process history before #

[ The Poisson distribution
dDistribution of number of arrivals in time #

(41"
n!

e—ﬂt

P(N(t)=n)=

Javier Campos. Performance modelling and evaluation: 2. Stochastic processes, the Poisson process
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The Poisson process

L

N

L Superposition property (merging)

L Decomposition property (splitting)

/p, P1 A
P2 %
» » P2
l w

PKM

rpj=1

Javier Campos. Performance modelling and evaluation: 2. Stochastic processes, the Poisson process
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The Poisson process

L

N

 Central limit theorem for counting processes:

dLet A7), .., A7) be independent counting processes
(with arbitrary distributions), then

> A®)

X(t) == —

is a Poisson process when k = « (under certain "technical
conditions")

O Interpretation: independently of the behaviour of
individual countings, the average counting behaviour is
Poisson if population is big

Javier Campos. Performance modelling and evaluation: 2. Stochastic processes, the Poisson process
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JRepresentations

J Multi-step transition probabilities
dClassification of states

1 Steady-state behaviour
JExample

N
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Basic definitions

L

N

dMarkov processes: special class of
stochastic processes that satisfy the
Markov Property (MP):

Given the state of the process at time #, its
state at time 7+ s has probability distribution
which is a function of sonly.

Qi.e. the future behaviour after tis independent
of the behaviour before #

dOften intuitively reasonable, yet sufficiently
“special” to facilitate effective mathematical
analysis.

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains




Basic definitions

L

N

1 We consider Markov processes with
discrete state (sample) space.

They are called Markov chains.

AIf time parameter is discrete {#,, #;, %>...} they
are called Discrete Time Markov Chains
(DTMO).

ATIf time is continuous (7> 0, 7 € /R), they are
called Continuous Time Markov Chains (CTMC).

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains




Basic definitions

L

N

dlet X={X,| n=01,..; X.e IN,/>0} bea
non-negative integer valued Markov chain
with discrete time parameter 2.

Markov Property states that:
AX,.1=J| Xo=x0,.... X7X%,) =
=AX,. =J| X,=x,), for j,n=01...

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains




Basic definitions

L

N

dEvolution of a DTMC is completely
described by its 1-step transition
probabilities

pAn) = AXp=J 1 X,=)forijn=0

If the conditional probability is invariant
with respect to the time origin, the DTMC
is said to be time-homogeneous

pLn) = py
Z p; =L VieQ

je

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Representations

L

N

1 State transition diagram

L Directed graph
dnumber of nodes = number of states (if Q finite)
dAn arc from /to jif and only if p,;> 0

Telephone line example:
line is either idle (state O) or busy (state 1)

" e ~ - e
/ = _w » \
J f h.,l_-a- o S -_,f’ "\ e
{ /! | 07
D! | | 1 ' Y
\ i f L ) (
o 2 _J.-' .-____.d' - — -I
o - b
\"H l.-_f i |
% 5 0.3 - g
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Representations

L

N

 Transition probability matrix

Do Po |
plO pll
P=| : in which all rows sum to 1
Pio Pii

ddimension = number of states in Q if finite,

otherwise countably infinite
Uconversely, any real matrix Ps.t. p,;>20, 2, p,; =
1 (called a stochastic matrix) defines a MC

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains




Representations

L

N

Telephone line example

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains

II;” '-H\ = B 0.1 - —'E%
/ ;'}f- i i - B
II 4 lll
0.9| o | [ 1
| i 3 1
\ _J‘,-'J:'"-- o 7
; = K
Y 4
e & 0.3
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Representations

L

N

 Example: I/O buffer, capacity M records

New record added in any unit of time with prob. a (if not
full).

Buffer emptied in any unit of time with prob. 5.

If both occur in same interval, insertion done first.

Let X, be the number of records in buffer at (discrete) time
n. Then, assuming that insertions and emptying are
independent of each other and of their own past histories,
{X,| ~=0,1,..} is a MC with state space {0,1,... M} and state

dlagr'am: “;;‘l}-”‘b} (1-a)(1-b)
“/ﬂ:@“ alb) \ fated | f}l =R
Sy e (e
N A T ey )
A S NAL
.\ pser zemo s 2 —_— f N
y
K - -

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains 11
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Representations

L

d The transition rate matrix follows immediately, e.g.:
po=dl-b6)=p, .. 0sn<M-1

Pum=1-0

etc.

1-a)(1-b
(1-a)(1-b) (1-a)(1-b)

| /»“ a(1-b) \.}’ Ak e @b
- - e s f M_
j b

N e =

\_ - -

b

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Representations

%

d Example:
1dle busy wait broken repair
A system that can be 02 075 0.0 005 0.0
g];dle 03 03 03 0.1 0.0
DV\‘/‘S?;, I P=/00 055 04 005 0.0
ai mg or a resource 00 00 00 05 05

d Broken
- 06 00 00 00 04

1 Repairing

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains




Representations

L

J Time spent in a state:

o o | (1) Y P =

N

d 7, = random variable " time spent in state 0"

A T5=0) = (1-po)
A To5=1) = poo (1-poo)
A T5=2) = poo® (1-poo)

A To=1) = Poo” (1-poo)

> Geometrically distributed random variable
Is the discrete analogue of exponential distribution > memoryless

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Multi-step transition probabilities

L

N

Let the 2-step transition probability be

p;” =P(X,,, =1 X, =0)

n+2

keQ)

T ZP(XMZ = J | Xn - ia Xn+1 - k)P(X

keQ)

=N P(X,., = j| Xp =KP(X,,, =k| X, =i) by MP

keQ

= Z Pik Py

keQ)

=(P?),

k| X, =0)

n+1

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains

=Y P(X,,, =k, X,,, = j| X, =i) by law of tot. prob.
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Multi-step transition probabilities

L

N

d Similarly, the n-step transition probability

pi” =P(X, = J| X, =1)
:ZP(XHZ”Xn—l:kaxo:i)P(Xn—1:k|X0:i)

keQ)

=D PPy

keQ)

In matrix form:

PM — pibyp
If n=2:

P? - phxp=p?

And in general: ie.
(n) _ pn (n) _
P* =P p ( )Ij

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Multi-step transition probabilities

L

N

1A more general version of previous
equations
L Chapman-Kolmogorov equations

(n+m) _ (n) { (M)
Py = Z Pi Py

keQ
Because
pi(jn+m) - ZP(Xmm :j | Xn = k? XO = I)P(Xn T k | XO T I)
keQ
Thus

ptm — pM  p(M — pMy pmM

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Multi-step transition probabilities

N

L

 Computation of transient distribution

[ Probabilistic behaviour of the Markov chain over any
finite period time, given the initial state

P(X, = jIX,=0)=p{" =(P")

O E.g., in the example of the I/0 buffer with capacity of M
records, the average number of records in the buffer at
time 50 is

min(M ,50)

E(xso | Xo =0)= Z J q(()st)
j=1

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains

19



Multi-step transition probabilities

L

N

 Computation of transient distribution
d nth-step distribution:

7; (M) =P(X, = )=2 P(X,=DP(X, = j[ X, =)

=2, m(0)p;” = > m(0)(P");

O in matrix form:

z(n)" =z(0) P

[ Problem: computationally expensive!

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Classification of states

L

N

 State jis accessible from state /
(writen written 7/ — j) if

pi" >0, for some n

J A state /is said fo communicate with state j
(writen written /<> j) if /is accessible from jand jis
accesible from /

A set of states Csuch that each pair of states in €
communicates is a communicating class

A communicating class is closed if the probability of leaving
the class is zero (no state out of Cis accesible from states
in )

A Markov chain is irreducible if the state space is a
communicating class

J State /is an absorbing state if there is no state reachable
from /

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains 22
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Classification of states

L

dPeriodicity:
A state /has period 4 if any return to state /
must occur in some multiple of & time steps.

k=ged{n:P(X,=1|X,=1)>0}

AIf k=1, then the state is aperiodic; otherwise
(k1), the state is periodic with period 4.

Tt can be shown that every state ina
communicating class must have the same period.

dAn irreducible Markov chain is aperiodic if its
states are aperiodic.

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Classification of states

L

N

1 Recurrence

[ A state /is transient if, given that we start in state /, there is
a non-zero probability that we will never return back to /.

d Formally, next return time to state /("hitting time"):
T.=min{n: X =1| X, =1}
O State /is transient if P(T,<x)<1

Q If astate 7is not transient (it has finite hitting time with
probability 1), then it is said to be recurrent.

O Let M, be the expected (average) return time, M=£ T]]

d Then, state /is positive recurrent if M, is finite; otherwise, state /
is null recurrent.

Q It can be shown that a state is recurrent iff > pi” =
n=0

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains 24



Classification of states

L

N

A Inafinite DTMC:

Q All states belonging to a closed class are positive
recurrent.

Q All states not belonging to a closed class are transient.
[ There are not null recurrent states.

d Inanirreducible DTMC:

O Either all states are transient or recurrent

d Ergodicity:
O A state /is said to be ergodic if it is aperiodic and
positive recurrent.

O If all states ina DTMC are ergodic, the chain is said to
be ergodic.

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains 25
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Steady-state behaviour

L

N

d Transient behaviour: computationally expensive

 Easier and maybe more interesting to determine
the limit or steady-state distribution

T, = %ggﬂj(n)

In vector form :
7 =limz(n)

N—oc0

O Does it exist?
4 Is it unique?
[ Is it independent of the initial state?

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Steady-state behaviour

N

L

nN—o0

limz(n+1)=1

solution of:
o P=rxT
me=1

d If limit distribution exists... we know how to compute it!
r(n+1)=z(0)P"" = z(n)P
imz(n)P

i.e., it must be equal to the stationary distribution, the

—~> balance equations
> normalizing equat.

where e= (1,1,..,1)7, and the initial distribution does not
affect the limit distribution

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Steady-state behaviour

L

N

 Other interpretation:

0 The solution of balance equations can be seen as the
proportion of time that the process enters in each state
in the long run

dlet N, (n) be the number of visits of the process to the
state’ J until instant #

[ The occupation distribution can be defined as

_ i EIN; ()]
= 11m
n>eo N4 1]

7T

J Of course, its inverse is the mean interval between visits,
or mean return time (1/7))
O If the occupation distribution exists, it verifies

o P=xl: rle=1

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Steady-state behaviour

L

N

] But,

[ Does limit distribution exist?
Q Is it unique?
O Is it independent of the initial state?

We know some cases where the answer is ho

We know some cases where the answer is yes

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Steady-state behaviour

L

N

O If aunique limit distribution exists, all rows of 7" must be equal in

the limit, in this way the distribution of X, does not depend on the
initial distribution

d Example
0 1 0 1o 0.1 0 0.9 0 1 0
p-lo1 0 09 @::@g@ Pr=l0 1 0 P =0.1 0 0.9
0O 1 0 0.9 1 0.1 0 0.9 0O 1 O

If ais the initial distribution, then the distribution of X, n> 1 is:

(0.1(ay+a;), a, 09(a+as)),if nisodd
( O.la,, a*a;, 09a, ), if niseven

Thus, the DTMC has not limit distribution.

If balance and normalization equations are solved, we get a unique solution
z=(0.05, 0.5, 0.45).

This means: if 7 is assumed as initial distribution, then ris also
the distribution for X, for all ».

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains 31
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Steady-state behaviour

L

J Example: limit and stationary distributions may be non unique

0.2
P={0.1
0
Then,
lim P" =

N—o0

08 0 0.8
1
0.9

0 1 0.1

(0.1111 0.8889 0
0.1111 0.8889 0

0 0 1

Limit distribution exists, but it is not unique since it depends on
the initial distribution: if ais the initial distribution

T =

(0.111(ay*+a,), 0.8889(a*a,), a;)

is a limit distribution for X, and it is also a stationary

distribution.

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Steady-state behaviour

L

N

[ Finite & irreducible DTMC = there exists a unique stationary distribution

4 Finite & irreducible DTMC = there exists a unique occupation distribution,
and it is equal to the stationary distribution

 Finite, irreducible & aperiodic DTMC = it has a unique limit distribution,
and it is equal to the stationary distribution

 Positive recurrent & aperiodic DTMC = there exists limit distribution

Q If inaddition DTMC is irreducible, the limit distribution is independent of the
initial probability

0 TIrreducible, positive recurrent & periodic DTMC with period = lim p{""

n—o0 1) - dﬂ.l

d Anirreducible & ager'iodic DTMC is positive recurrent < there exists a
unique solution of balance equation

d Irreducible, aperiodic & null recurrent DTMC = lim pi(j”) =0

n—o0

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains 33
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Example

L

N

A processor has certain tasks to perform

L State transition diagram. Possible states:
Jidle (no task to do)
dbusy (working on a task)
dwaiting (stopped for some resource)
dbroken (no longer operational)
drepair (fixing the failure)

0.05

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Example

L

N

dTransition probability matrix representation

1dle busy wait broken repair

02 0.75 0.0 0.05 0.0
03 03 03 0.1 0.0
P=100 055 04 0.05 0.0
0.0 0.0 0.0 05 0.5

06 00 00 0.0 04.

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains 36



Example

L

N

[ Properties: finite state space, irreducible, aperiodic

= it has a unique limit distribution,
and it is equal to the stationary distribution

O Solution:

" P=xT

me=1

7 =limz(n)

nN—o0

7=(0.2155, 0.3804, 0.1902, 0.1167, 0.0972)7

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Example

L

N

7=(0.2155, 0.3804, 0.1902, 0.1167, 0.0972)7

d Other performance indices:
d Availability. Aidle + busy + wait) = 0.7861
(in other words, 78.61% of the time)

d So, not available: 21.39% of the time

d  Working time. Abusy + wait) = 0.57

Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains
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Definitions

L

N

JRemember DTMC

Qp,; is the transition probability from /to jover
one time slot
dThe time spent in a state is geometrically
distributed
JResult of the Markov (memoryless) property

dWhen there is a jump from state /, it goes to
state jwith probability

Pij
2 ki Pik

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains




Definitions

L

N

JContinuous time version

Qg is the transition rate from state /to state j

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains




Definitions

L

N

- Formally:
O A CTMC is a stochastic process {X(#) | #20, 1< IR} s.t.
forall #,,..., 71,7, 7€ IR, O<fyx. <t <t<t forall nelN

POX(0) = X X(t,) =X, X(G0) = X, 0. X() = %) =
=P(X(t) =x| X(t,) =X,

O Alternative (equivalent) definition:
{X(H ]| 20, IR} s.t. forall ts=0

P(X(t+s)=x|X(t)=x,X(u),0<u<t)=
=P(X(t+5s)=x|X(t) =x,)

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains




Definitions

L

N

J Homogeneity

O We are considering discrete state (sample) space, then
we denote

p1.5) = AX(t+5)=j | X(H=1), for s> 0.
O A CTMC is called (time-)homogeneous if

p{1.5) = pfs) forall 20

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains




Definitions

L

N

J Time spent in a state:

O Markov property and time homogeneity imply that if at
time 7 the process is in state j, the time remaining in
state jis independent of the time already spent in state
J : memoryless property.

P(S>t+slS>t) = PXily=50<u<s|X,=50<u<t
where S = time spent in state j
state j entered at time 0
= P(Xiy =7,0<u < 5| Xy = j) by MP
= P(Xyu=]0<y<sXs=7] by T.H
= P8 > 35)
= time spent in state jis exponentially distributed.

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains




Definitions

L

N

- Transition rates:

O In time-homogeneous CTMC, p,(s) is the probability of
jumping from /to j during an interval time of duration s.

Q Therefore, we define the instantaneous transition rate
from state /to state jas:

O And the exit rate from
state /s as - ¢g;

T i Pi(AD -1
Oi = _jZ;Qij —ETO At

O @=[g;] is called infinitesimal generator matrix
(Q matrix)

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains 8
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Steady-state distribution

L

N

 Kolmogorov differential equation:
Denote the distribution at instant = z(7#) = AX(H)=/)
And denote in matrix form: A7) = [p,(7)]

Then (A= (wP(t-v), for u<t
(we omit vector transposition to simplify notation)

Substituting v= At and substracting (A7)
(1) - 2(#-A1) = 2(+-A1) [AAT) - I], with I the identity matrix

Dividing by A7 and taking the limit L
9 2ty = () lim 2LAD =
dt At—0 At

Then, by definition of @=[g¢;], we obtain the

Kolmogorov differential equdtion

%z(t) - 2(1)Q

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains 10



Steady-state distribution

L

N

A Sincealso {(He=1, withe=(1,1,..1)
If the following limit exists

lim 7z (t)

t—o0
then taking the limit of Kolmogorov differential
equation we get the equations for the steady-
state probabilities:

7Z'Q =0 (balance equations)

e =1 (normalizing equation)

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains 11
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Examples

N

L

d Example 1: A 2-state CTMC

O Consider a simple
two-state CTMC

d The correspondin%
@ matrix is given by

[ The Kolmogorov differential
equation yields:

A Given that ;(0) = 1,
we get the transient solution:

RV
-7 ]
d

o 7o) = —am () + Az (1)

9 0) = umy® — Am ()

dt
7y (1) + () =1
z(t)=—t—+ A gt
A+u A+u

A4
A+u A+u

e_(/1+ﬂ)t

7, (t) =

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains
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Examples

N
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d And the steady-state Az, —uz,=0 "
solution comes from r, — Az, =0 (D :@)
7QR=0; re=1: -

7y +m =1 H

balance eq.é-J
A H

= , 72'1:
A+ u A+ 1

d We get:

Ty

[ Which can also be obtained by taking the limits as t > « of
the equations for z;(1) and 7, ().

7, = limz,(t) = lim—H A gt __H
t—o0 t—)wﬁ+ﬂ ﬂ‘—"ﬂ Z‘FILI
= limz, (t) = lim—2 — % g G A
i e Aty A+ pu A+u

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains 14
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Examples

L

J Example 2:
A simple open system with loss

A
(Poisso ‘

[ Works enter to the system with exponentially distributed

w

—=
n)

may be lost

(parameter 1) interarrival tfime (Poisson process)

[ The service time in both processing stations is exponentially

distributed with rate n

O If awork ends in station 1 when station 2 is busy, station 1 is

blocked

Q If station 1 is busy or blocked when a work arrives, arriving

work is lost

O Questions:
[ proportion of lost works?

[ mean number of working stations?
[ mean number of works in the system?

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains
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0 The set of states of the system:
5={(0,0), (1,0), (0.1), (1,1), (b,1)}

O - empty station e > -
1 > working station (Poisson) L @ @

b = blocked station may be lost
State transition diagram: Infinitesimal generator
matrix:

00—k A 0 0 0
10 | 0 —u u 0 0

Q=01 |{p 0 —(A+pn) A 0
11 10 0 —2u U
bl [0 0 u 0 -

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains 16
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 Steady-state solution:

7Z'Q=O}

ATty = U7ty

ATy + U170y = 17Ty,

Uty + Mty = (A + ()7,
Ay = 2umy,

HTty, = Uty

Moo + Tyo + 7oy + 70y + 70y =1

2
,ij Where P = and A:3p2_|_4p+2

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains 17



Examples
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O Proportion of lost works?

[ Is the probability of the event "when a new work arrives, the first
station is non-empty”, i.e.:

3p°+2p
3p° +4p+2

g Ty T 7Ty =

[ Mean number of working stations?

0 In state (0,0) there is no working station and in state (1,1) there
are two; in the rest of states there is only one, thus

4,02 +4p
3p° +4p+2

B=ry +my+7m,+27, =

[ Mean number of works in the system?
O In state (0,0) there is no one; in states (1,1) and (b,1) there are two
and in the rest there is only one, thus
50" +4p
3p° +4p+2

L=rmy +7my+27m, +27,, =

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains 18
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- Example 3: I/0 buffer with limited capacity

[ Records arrive according to a Poisson process (rate 1)
O Buffer capacity: M records

[ Buffer cleared at times spaced by intervals which are
exponentially distributed (parameter n) and independent
of arrivals

— o

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains 19
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[ Steady-state solution:
Aty = iy + -+ )
(A+w)m =Ar,_, 1<1 <M 1

A A

HIT\, :ﬂ’ﬂ-M—l O\< \?/\( \7/\( v L //—\7/M
CQ j>

i . B

— 7 i — A a C0<iI<M -1 B e S
A+u) A+u

M

. A
M A+ w1

Thus, for example, the mean number of records in the buffer in
sTeady -state:
M-1
B=Ma" + > id! . where o=
o Atu A+ u

Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains
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Definition

d A CTMC with state space S5={01,..}

is called a birth-death process if ’rhe only non-
zero transition rates are ¢;.; and ¢, ;, /20,
r'epr'esen‘rmg births and deaths, r'espec’rlvely

N

f\\/\\/' \\f\\/\\/

@ Q0O -0 Q0
4/\\/\\/\\

Hl uz Mn Mn+1
A,= birthrate instate n (ie., 1,= ¢, ,.1)
= death rate in state n (i.e., u,= ¢, ,1)

Population model

(Poisson process is a particular case of pure birth process)

Javier Campos. Performance modelling and evaluation: 5. Birth-death processes
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Definition
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dInfinitesimal generator matrix:

— A, Ay 0 0 O
AT et AP
0 A, —(L+w) 4, O

Ao

A1 An- An
O e Wad \\/\1\/\\/

M1 M2 Mn Mn+1
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Steady-state distribution
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N

Ao A1 A

An- n
O Was \\/\1\/\\

e

M1 M2 Mn+1

1 Balance equations: 7@Q=0

ATy = 17T
(A + ) my, = gy + 1,7,
(A + 1), = 4y + pyre,

(ﬂ'n—l - :un—l)ﬂ'n—l = n—27Tn—2 F :unﬂ'n
(/In + lun)ﬂ'n i ﬂn—lﬂn—l + :un+17z-n+1’ nz= 1
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Steady-state distribution

.
d Then,
A oA
>n.,=—+r, 20 = ﬂn:ﬂo L7,
lLln+1 /LL_I_'”;Lln
JAnd normalizing equation, ze = 1, then,
1
72'0 = o n-1 Zf I SR
L+ T ergodicity condition:
n=1i=0 My 7,>0, foralln>0,i.e.
ik 1
¢ o0 N- ﬂ/i
r =—"0 r’ffifl - n>1 ZH_<OO
n=1 i=0 1ui+1
L+ 1]
n=1 i=0 :ui+1
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Example

L

N

dLet X(7) be the number of bacteria ina
colony at instant 7.

JEvolution of the population is described by:

dthe time that each of the individuals takes for
division in two (binary fission), independently of
the other bacteria, and

Qthe life time of each bacterium (also
independent)

L Assume:
dTime for division is exponentially dist. (rate 1)
Life time is also exponentially dist. (rate u)

Javier Campos. Performance modelling and evaluation: 5. Birth-death processes 10



Example

N

L

dThen, X(7) is a birth-death process with

A0 M An-1 M
G N Ve Wan Was

X
@u@u@\ » \_/@\_/@\. |

M H2 Mn Mn+1

A,=nl, n=0,12. and u,= nu, n=1.2...
A =0 = state O is an absorbent state!

AgTly = I 7T,
(4 + )7y = A7ty + 171,
(A + 11,7, = 47ty + pyrts = 7,= 0, M0

¢?

(/ln—l + /un—l)ﬂ-n—l - ﬂ’n—zﬂn—z + :unﬂ'n
(ﬂ“n + :un)ﬂ.n = /In—lﬂ-n—l + /un+17z-n+1’ n 2 1

Javier Campos. Performance modelling and evaluation: 5. Birth-death processes
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Example

L

N

Define P (1) as the average population at time 7,
then
P(1)=(1-wP(1)
(the derivative is defined as the /nstantaneous rate
of change of a function)

= P(#) = P(0)e -t
Then,

dif A< g the population tends to O
Jif 4> & the population tends to infinity

Javier Campos. Performance modelling and evaluation: 5. Birth-death processes
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1Basic definitions

I Notation

dGeneral results

dM/M/1 queue

dM/M/c queue

AdM/M/x queue

dM/M/c/B queue

dM/M/1/B/P queue

 An Erlangian model: M/E,/1
dModels with general distributions
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Basic definitions

L

N

d Lipsky: "... a queue is a line of customers waiting to
be served"

1 Gross and Harris: "A Queueing System can be
described as customers arriving for service,
waiting for service if it is not immediate, and if
having waited for service, leaving the system after
being served"

 Cooper: "The term Queueing Theory is often used
to describe the more specialized mathematical
theory of waiting lines”

Javier Campos. Performance modelling and evaluation: 6. Queueing models




Basic definitions
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N

1TIn computer systems, many jobs share the
system resources such as CPU, disks, and
other devices.

dWhen the resource is in use by one job, all
other jobs wanting to use the resource
have to wait in queues

1 Queueing theory helps determine the
amount of time spent by jobs in various
queues, and in turn helps predict the
response time, device utilizations, and
throughput

Javier Campos. Performance modelling and evaluation: 6. Queueing models




Basic definitions

N

L

 Basic queueing model

x x Service j—
Arrival discipline x ;
x x \ process —

; Queue
Customer population

N
S
~
Se

Servers

O State of the model: the number of customers in the
queue (including those being served)

O The state space may be unbounded, i.e. infinite (if an
infinite population is assumed)
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Basic definitions
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N

O The following should be specified (to enable analysis):
 Customer population
d Arrival process
[ Number of servers
[ Service discipline
 Service time distribution
1 System capacity
Service
XX ' Arrival discipline x
Pr‘ocess @ x -
’k" ’
Queue
x ;

Cus'rorner popula‘non

Servers
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Basic definitions
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N

 Population size
O Potential customers who can enter the queue
O Real systems have finite population
0 However, if population is large, assume infinite for ease
of analysis
 Arrival process
U Customers arrive af t,,1;,...1;
O Interarrival time t;:= f;-t
0 Assume interarrival times t;are IID random variables
[ E.qg., Poisson process, Erlang, hyperexponential, general

] Service time distribution

 Assume IID random variables
4 E.g., exponential, Erlang, hyperexponential, and general

Javier Campos. Performance modelling and evaluation: 6. Queueing models




Basic definitions

L

N

[ Service disciplines
Q FIFO (or FCFS), first in first out most common
Q LIFO (or LCFS), last in first out

[ RR, Round Robin, a small fraction of time corresponds to each
customer, cyclically

O PS, Processor Sharing, limit situation of RR when the fraction
of time tends 1o O

[ Random

O Priority disciplines...
[ Non preemptive: an ongoing service is not interrupted
[ Preemptive-resume: it is interrupted and resumes later on
[ Preemptive-restart: it is interrupted and restarts later on

[ Number of servers
 One/many (identical) servers
J System capacity
[ Waiting space + number in service
O Infinite assume if capacity is large

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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Notation

L

N

1 Kendall notation
QA/S/m/B/K/SD
A is interarrival time distribution
S is service time distribution
dm is number of servers
B is number of buffers (system capacity)
K is population size
SD is service discipline

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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Notation

L

N

1 Some common abbreviations

M (Markov): denotes exponential (and thus
“memoryless” distribution)

AD (Deterministic): values are constant
HE, (Erlang): Erlang distribution with k phases

dH, (Hyperexponential): Hyperexponential
distribution with k branches

PH, phase type distribution

G (General): denotes distribution not specified;
results are valid for all distributions

dBulk arrivals denoted using superscripts. E.g.
MIX]

Javier Campos. Performance modelling and evaluation: 6. Queueing models 11



Notation
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N

A Coefficient of variation, CV?=c2/u?, gives a
measure of the degree of irregularity of a positive
random variable compared with an expon. dist. r.v.

[ CV2=1: exponential model; the most frequently used
pattern; good mathematical properties

d CV2=0: deterministic model

D Cvzzl/k: El"lﬂng-k mOdel; 1st phase k-th phase

intermediate between M+ O— - OO
exponential and deterministic

d CV2>1: Hyperexponential model; "
associated with parallel servers =] -

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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Notation

L

N

JExamples

dM/M/3/20/1500/FCFS is a single queue system
such that:

dInterarrivals are exponentially distributed
Service times are exponentially distributed

dThere are three servers

1System capacity is 20; max. queue size is 20 - 3 =17
Population size is 1500

Service discipline is FCFS

dM/M/3: Typically, assume infinite system
capacity, infinite population, and FIFO service.
In such cases, last three parameters dropped.

Javier Campos. Performance modelling and evaluation: 6. Queueing models 13



Notation

L

Previous
ar'r'[val

N

T

Arrivals

Arrival

Servers

Queue xﬁm
2 L omeee Rl 2
e, dh

Serv{ce begins Service ends

l L.

S

] t = interarrival time

) A = mean arrival rate = 1/E[1]

O May depend upon # of jobs in
system

[ s = service time per job
O S = E[s] = mean service time

J p = mean service rate per
server = 1/E[s]; total service
rate = mu

d X = throughput (mean number of

completions per time unit)

They are r.v.'s (except mean values)

Javier Campos. Performance modelling and evaluation: 6.

5 r .
O n, = # of jobs waiting in queue
a L= E[n,]

[ n, = # of jobs recv. service
[ n=# of jobs in system

0 n=n,+ngis the queue length
2 N = E[n]
J r = response time

0 Waiting for service plus time
receiving service

2 R = E[r]
. w = waiting time in queue
d W = E[w]

Queueing models

14
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General results

L

N

1 Stability Condition

L For stability, mean arrival rate should be less
than mean service rate:
A< mp
Does not apply to finite population systems and
finite capacity systems
dQueues for finite population systems cannot grow
indefinitely

By definition, queues for finite buffer systems cannot
grow indefinitely

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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General results
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JNumber in System versus Number in Queue

dNumber of jobs in system equals those waiting
plus those being served
dn=n,+n,
HE[n] = E[n,]+E[n,]

dThat is, mean humber of jobs in system equals mean
humber in queue plus mean number being served

1If service rate of servers independent of
number of jobs in the queue, then

dVar[n] = Var[n ]+Var[n,]

QCov(n,n) =0

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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General results
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dTime in System versus Time in Queue

dTime spent by a job in system is sum of waiting
time and service time. That is,r=w +s

Mean response time equals sum of the mean waiting
time and the mean service time. R= W+ S

JIf service rate independent of # of jobs in
queue

dCov(w,s) =0
dVar[r] = Var[w] + Var[s]

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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General results
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JUtilization Law

QUtilization of a system () = fraction of time
the system is busy

_ busy timeduring period T

T
_ (number of completions) - (busy time during period T)

U

T - (number of completions)
- X-S

Assuming number of arrivals equal number of

completions (1= X): U= 1-S
In case of queues with mservers: U= 1 /(mu)

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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General results

L

A disk is serving 50 requests/sec; each
request requires 0.005 seconds of service.
1) What is the Utilization?
U= 50 x 0,005 = 0.25 (25%)

N

2) Maximum possible service rate?
U=1=(0.005)X
X = 200 requests/sec

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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General results
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L

A router forwards 100 packets/second
onto a link. The transmission time (i.e., time
to put packets onto the link), on average, is
1 ms.

1) What is the link utilization?
Link throughput: X'= 100 packets/sec
Service time: S=0.001 sec
U= XS=01 (10%)

2) Link capacity?
(/=1=0.0001X= X= 1000 packets/sec

Javier Campos. Performance modelling and evaluation: 6. Queueing models 21



General results
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2 Number versus Time: Little s Law

0 Assume Job Flow Balance: number of arrivals equal
number of completions (1 = X)
(New jobs not generated in the system
d Jobs not lost (forever) in the system

(If jobs lost in the system (e.g., due to finite capacity), law
applies with adjusted arrival rate

0 Mean # in system = arrival rate x mean response time
N=41R

O Mean # in queue = arrival rate x mean waiting time
L=AW

O We will intuitively derive this law ...

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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General results

N

L/
"y s A
Intuitively...
number
of a()
customers
A= a(r) = mean arrival rate A d(t)
T
1 3@ . :
R = Ztk = mean response time fime
a(r) o

1 s ;
N = —_[0 n(t)dt = mean number of customers in system
T

a(r)

A= jofn(t)dt =Yt

=7tN=a(r)R=74AR
=N=A4AR

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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General results
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A spy working for Burguer King tries to know
how many clients are inside of a McDonald’s.
He cannot enter but he observes:

dEach hour, 32 clients arrive in average
Each one stays inside 12 minutes in average

By Little's Law, the average number of
customers inside McDonald’s is

Nz= AR =053 customers/min * 12 min = 6.4 customers

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/1 queue

L

N

1 One server, one queue, FIFO service

exponentially distributed interarrival and
service tfimes

infinite population, infinite capacity
(1Can be model as a birth-death process

dConstant birth and death rates
9y A A A

State 77 represents n customers in the system.
Remember notation: =, = steady-state probability of being in state 7.

Javier Campos. Performance modelling and evaluation: 6. Queueing models 26



M/M/1 queue

p
<V
 Steady-state solution:
O From balance equations O Bad cases
1 d A > transient MC
o= PRy QA = null recurrent MC
1+ Z(] Q Then, if p< 1
n=1 :u
Zal = =1-p
ﬂn:(_J oy N1 : 1+ £
H -p
Q Traffic intensity Thus
A mT,=1-
== 0 n P
H Ty =P (1_/0)

d Ergodicity condition

o (7Y (geometric distribution)
Z(—j <o A<usp<l

n=1 /u

Javier Campos. Performance modelling and evaluation: 6. Queueing models




M/M/1 queue

L

N

JPerformance indices:

dUtilization: prob. of one or more jobs in system
(= mean # jobs in service)

U - 1 = 7o - P
dMean # jobs in system

N=>»nr =) n(l- L 0
éﬂn Z;,( p)p s

dMean # jobs in queue

L=N-U=-"t__5p="F
1-p 1-p

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/1 queue

L

N

L Mean response time (by Little's Law)

e e e L
A 1-p A 1-p

N=AR=R-=

L Mean waiting time in queue (Little's Law)

2
Werp_t_Yu 1 _Alu

u l-p pu 1l-p
dProb. of finding /7or more JObS in sysTem

Ms
‘\i
I
]
b:i

P(# in system >n) =
J: Jj=n

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/1 queue

L

N

QdWaiting time and response time distributions

dWaiting times in queue exponentially distributed

Pwe H)=1-pe+lp
JResponse times exponentially distributed

P(r<f=1-eutln

Javier Campos. Performance modelling and evaluation: 6. Queueing models 30



M/M/1 queue

L
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1 Burke theorem:

AIf A< uthen the departure process of a M/M/1
queue is a Poisson process with parameter A
(like the arrival process).

dProof:

1The reversed process of a stochastic process is a
dual process

Ldwith the same state space
Qin which the direction of time is reversed
(like vieweing a video film backwards)

If the reversed process is stochastically identical to
the original process, that process is called reversible.
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M/M/1 queue

L

[ A necessary and sufficient condition for reversibility are
the detailed balance equations:

m;q; = 7;q; forallstates i+ j

0 An ergodic (4 < 1) M/M/1 queue satisfies the detailed
balance equations:

Q If /jare not adjacent then ¢g;and ¢, are null
O If /jare adjacent then, /= n, j= ml, g;= 4, ¢;= 1 and

ﬁn:pn(l—p) and 7Zn+l:pn+1(1_p)
then 7.4 =7, 1

[ Thus, an ergodic M/M/1 queue is reversible.

[ The departure process of an M/M/1 queue is equal to the
arrival process of the reversed queue.

[ Since the reversed queue is again an M/M/1 queue then its
arrival process is Poisson.

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/1 queue

N

L

JExample

dPackets arrive at 100 packets/second at a
router. The router takes 1 ms to transmit the
incoming packets to an outgoing link. Using an
M/M/1 model, answer the following:

dWhat is utilization?
JProbability of npackets in router?
dMean time spent in the router?

dProbability of buffer overflow if router could buffer
only 5 packets?

dBuffer requirement to limit packet loss to 10-6?

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/1 queue

O Arrival rate

A =100 pps
 Service rate

u = 1/0.001 = 1000pps
O Traffic intensity

p=01

[ Mean packet residence time
at router

r= (1/n)(1/(1-p))
=101 ms
2 Prob. of buffer overflow
P(#2>6)=pt=1012

3 To limit loss to less than 10-6
pn < 106
n > log(10-)/log(0.1) > 3

N

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/c queue

L

N

 cservers, one queue, FIFO service,
exponentially distributed interarrival and
service times

infinite population, infinite capacity
1 Can be model as a birth-death process

A\ WA P G W

U 21 3u (c-)p  cu CH CH

State transition diagram for M/M/c queue

Javier Campos. Performance modelling and evaluation: 6. Queueing models 36



M/M/c queue

L

N

JdMean arrival rate: 1
dMean service rate: cu

dTraffic Intensity (avg. utilization):

p = A/(cu)
p < 1 for stability
Flow balance equations yield:
7, = ((cp)'/ M)y, n=1,...,c-1
7, = ((ep)/(dcr)my, n2 ¢
JAnd the probability of zero jobs in system

T o) Eep)]
7[0{1+c!(1—p)+n21: ! }

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/c queue

L

1 Other performance measures

LdNewly arrivals wait if all servers are busyi, i.e.,
if cor more jobs are in the system

P(# 2 CjObS) = T Tt Taot..

Clp.c) = [(ep)V[A(1-p)]
C(p,c) is known as Erlang’'s C formula

dMean # of jobs in system
N=E[n]=2nr,, n=0,1, .., o
= [m(cp))/[d(1-p)?] + cp
= ¢cp+ pCp.c)/(1-p)

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/c queue

L

N

dMean # of jobs in queue

L=E[n)=2(r)r, n=c, ..
= [mp(co))/ [A(1-p)?]
= pC(p.c)/(1-p)
L Mean response time (Little's law)
N=1R
R=1/u+ Clp,c)/[cu(l-p)]
L Mean waiting time in queue (Little's law)
W= L/2=[p Clp.c)/(1-p))/ A = C(p,c)/ [ c1-p)]

Javier Campos. Performance modelling and evaluation: 6. Queueing models 39



M/M/c queue

L

N

JExercise

dCompare the following three systems

a) Two independent M/M/1 queues with arrival rate 1/2
and service rate .

b) One M/M/1 queue with arrival rate A and service rate
211

c) One M/M/2 queue with arrival rate 4 and service
rate 1 each server.

H

I O 21

O
_»é? QT’{@

A2

(@) (b) (©)
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M/M/x queue

L

N

1 As many servers as customers arrive to the
system

Jone queue, FIFO service, exponentially
distributed interarrival and service times

infinite population, infinite capacity
can be model as a birth-death process

A
N N
ofcRoERcRoR:E
u 2u 3u (n Du nu (n+1) H

A=A vn eN
M, =Ny vn eN
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M/M/x queue

N

L

1 Steady-state solution:

g n
T, = % L (Poisson distribution)

dPerformance indices:
dMean # of jobs in system

2 A
N=)>nr, =—
Zﬁ T

dMean response time (Little's law)
R = E — i Obviously equal o mean
A U service time

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/c/B queue

L

N

 cservers, one queue, FIFO service,

exponentially
distributed s

interarrival and T )
service tfimes ()
Jdinfinite population

capacity of system equal to B

Jcan be model as a finite birth-death
process

A A A
>
ONOMOMSINCMOMOKNOG
2 *3 -
" 3 ST cu
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M/M/c/B queue

L

N

J Steady-state distribution:
l( jﬂ'o, n=12,....c-1
n!

1

clc™ (
<

jﬂ'o, n=c,c+1...,B

NS

o1 n c o4 B-c+l )
14 +(/“ﬂ) 1-(Afcu) Cif Alcu=1
~nl u c! 1-Alcu
Ty =4 1
c-1 c
YAY ) g ooy it arcumt
n:OnI H c!

Exercise: taking the limit as B>« and restricting (1/(cu)<1 we
get the result for M/M/c/.
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M/M/c/B queue

8>
d Performance
measures.

Q Effective arrival rate B-1
(rate of jobs actually A=) Ax, = A1~ 1)
entering the system) "

[ Expected # of jobs in N = ZB:nﬂn
system =

0 Mean # jobs waiting in B
queue L= D> (n-c)z,

1 Mean response time and
mean witing time

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/c/B queue

L

N

dThe particular case of M/M/1/B
A2 A e
1_(/1/;1)B+1 !

" 1 .
= (AW, if Alu=1
\k+1( 1) U

JExpected # of jobs in system

_ Alu (B +D(A )"
1-Alp 1-(A1p)®

dMean # jobs waiting in queue

NG l-al )
1_(/1/IU)B+1

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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M/M/1/B/P queue

N

Single server model with system capacity B
and population size P (potential customers)

AIf there are A~nindividuals available:
arrival rate is (P-n)A
Thus, it can be modeled as a finite birth-death
process with birth/deadth rates:
; _{(P—n)/l, if n<B
" 0, if n>B

My = U
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M/M/1/B/P queue

L

1 Steady state:

7[-[ (P‘M]O it (ijnzo, if n<B
(P—m! u

1

Ty = . j
|
1+ P'_ (ij
j=1 (P— )"\ u

dMean # customers in system

o (A1)
N — 1L (P—n)!
ZB:(/I//J)’

o (P—])!
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M/M/1/B/P queue

L

N

1 Special case:
A= P: "machine-repairman” model

Pindependent machines each of which fails as
Poisson process.

Then they can be viewed as queueing up for a
single repairman who repairs machines in an
exponentially distributed time.

Availability of the system is defined as the

probability of finding the system capable of

doing some work (at least one machine running)
availability = 1-7,

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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An Erlangian model: M/E,/1

L

N

J Exponentially distributed interarrivals
d Erlang phase A service time

ety (DD~ - =~

K Ku Ku Ku
E[X] =1/u; CV2=1/k

Qd Erlang is nor memoryless (for &> 1)
= the normal description of the state of the queue
results in a non-Markovian process

[ We change definition of state

 State = number of stages of service to be completed which
are currently in the system

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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An Erlangian model: M/E,/1

L

dWe get a CTMC that is not a birth-death
process
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An Erlangian model: M/E,/1

L

N

1 Steady-state solution: Return to balance
equations.. 7QQ = 0

Solving equations and defining p=A/p

(k+1)p

2(1-p)

L:(k+1)p2
2k(1-p)

etc.

E [ Nstages] =

Javier Campos. Performance modelling and evaluation: 6. Queueing models
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4
JModels with general distributions
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Models with general distributions

N

L

dM/G/1 queue

A2 /2

where X2 is the second order moment of service time
and p=A/u (with u theinverse of the mean)

1G/M/1 queue

~ u(l-o)
where o isthe uniquerootintherange 0<o <1

of the functional equation o = A" (u — uo)
where A" is the Laplace transform of the pdf of the interarrival time
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N

JBasic concepts

1 Open queueing networks
1 Closed queueing networks
1BCMP networks
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Basic concepts

L

N

2 A QN is a collection of o
servers/queues interconnected
according to some topology R R F_
where jobs departing from one — N L—
server arrive at another i
queue for service.

] Servers may be

O processing elements in a computer, e.g. CPU or I/0
devices,

[ stations/nodes in a communication network (may be
widely separated geographically),

[ machines in a flexible manufacturing system,
O semaphores in a traffic map of a city, efc., etc.

 Topology represents the possible routes taken by
tasks through the system.

Out+

Disk
A

Disk

¢
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Basic concepts

L

N

JMay be several different classes of tasks
(multiclass network):
ddifferent service requirements at each node,
ddifferent routing

behaviours, P — T Gyt

. e CcPUHL :

Hdmore complex notation, N moH
but straightforward | — N2
generalisation of the multiclass network

single-class network in principle,
dwe will consider only the single class case.
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Basic concepts

N

L

 Types of networks:

3 An open QN has
external arrivals and
departures.

a A closed QN has no
external arrivals or
departures. The number
of customers circulating
remains constant
(population) .

0 A mixed QN is open for
some workloads (classes)
and closed for others
(multiclass QN case).

Out+

In —» CPU

Disk
A

Disk
B

Open Queueing Network

— CPU

Disk
A

Disk
B

Closed Queueing Network
A, F=F
mogl
B /=1

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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Basic concepts

L

N

d QN input parameters:
O The number of stations within the network.

d The service-time distribution (we assume exponential but
could be different), may be specified as the average
service time s, or the service rate 1= 1/s.

[ The scheduling or queueing discipline at each station:
FCFS, LCFS-PR, PS (processor sharing), IS (infinite
number of servers, i.e. a delay node: no queueing)

[ The routing probabilities of the customers among all the
stations, specified as g, which gives the fraction of the
customers completing service af station / that join queue

J-

[ The population size N for closed queueing networks, or
the interarrival-time distribution for the open networks
(given as the external arrival rate 1).
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Basic concepts

L

N

J QN output parameters (performance measures)
include:

[ Resource utilization U, representing the fraction of the
time that the resource at station /is busy.

Q Throughput 4;denoting the average number of job
completions per unit tfime at station /.

0 Average queue length @, denoting the number of
customers in the queue /including the customer in
service.

O Average response time R;denoting the amount of time
that a customer spends at a station .

O Average waiting line length £, deno‘rin% the number of
customers waiting in line /excluding the customer in
service.

O Average waiting time W, denoting the amount of time a
customer spends waiting for service at station /.
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1 Open queueing networks
:I
:I
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Open queueing networks

L

N

 Assume single class of customers.

d M servers, 1,2...M, with FCFS discipline and
exponential service times, mean .

0 External Poisson arrivals into node j, rate y,; (1< M) (= O if no
arrivals). Total external arrivals: Poisson with rate
Ao=yi+..*+yy. For instance 4,=10.

O State space of network S={(n,,...n,) | n,.20}

[ queue length vector random variable is (M,....N,)

a p(n) = p(my,....n) = ANz, Nyiny,)

O SO
1/2 P
— 2
03 12 -
—>\0> OZ?LO

.—>
g— 1/2 —C
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Open queueing networks

L

N

d The outside of the network can be represented as a hew queue
labelled O.

O Routing probability matrix Q@={g; | 0 < /j< M}
d qOJ = ]/J-, J:].M, 900 = 0.
d g, = probability that on leaving node /a task goes to node j
independently of past history (1< /< M).

dgo=1-(g1+..* gy r=1.M

1 2 3 4 5

1/2 0 0 3/10 1/5]
0 1/2 1/2 O 0
o 0 O 0 0
0 1/2 O 0 1/2
0o 0 1/2 1/2 O
o 0 O 0 0

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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Open queueing networks

L

N

dTraffic equations: e
dFor each queue / Rk

Vit le,q,., for 1<i<M . [—— W2 .4

dExample: /14 =034+ 344 = A4 = O 6/10
dIn matrix form and adding virtual "queue” O:

A=AQ

dindependent of Poisson assumption since we are only
considering mean numbers of arrivals in unit time

assumes only the existence of a steady state

Javier Campos. Performance modelling and evaluation: 7. Queueing networks 11



Open queueing networks

L

N

[ Arrivals to a node are not in general
Poisson.

 If there is no feedback then all arrival
processes are Poisson because
1. departure process of M/M/1 queue is Poisson

2. superposition of independent Poisson
processes is Poisson

N O, = O~
1/2 P
12
0.34, 12 L

— 0.2 C)
|_>— 112 S S
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Open queueing networks

N

L

 Example: consider the simple open QN

[ Each queue behaves as an independent M/M/1 with
arrival rate 1 and service rate u.

di.e., the probability of 5, jobs in the queue /in steady state
is (1-p)pfi with p,=A/ u; (utilization of queue /).

A Then, the joint probability is just the product:
Znn,.n, — L-p)p A= p)p, .= p)p"

Any QN exhibiting such a property is called a product
form QN (PF-QN or QN with a product form solution).

Javier Campos. Performance modelling and evaluation: 7. Queueing networks 13



Open queueing networks

N

A Visit ratios: they are the
relative throughputs, v =vQ
normalized for a given queue Vv, =
(for instance queue 1).

[ In the example

0.5 @ 1/2 - @)_>
1/2 P
12
03y — 12 o -
faVa =V > 112 — O

AR ATNEATA

A TR A LR AT
BV, +Ve =V,
7V, + 75V, =V,

v, =1

= v=(1,35,4,3)
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Open queueing networks

N

L

J Steady-state queue length probabilities

d Jackson's theorem (1963)
0 The number of tasks at any server is independent of the
number of tasks at every other server in the steady state.
([ Node /behaves as 7fit were subjected to Poisson arrivals,
rate 7/ (1<&aM).
Thus, even though arrivals at each node are not, in general,

Poisson, we can treat the system as if it were a collection of
M independent M/M/1 queues (PF-QN).

remember: M/M/1 queue T — pflpgzp&m
 m=p-p) ) L
(1-p)L-py)-- (1= py)

CIs a normalization constant

Javier Campos. Performance modelling and evaluation: 7. Queueing networks 15



Open queueing networks

L

N

JExample

dRegistry of motor vehicles in a city

Reception: a person directs the customer to the right
employee - 20 seconds in average

JEmployees: execute the tasks - two different
employees depending of the type of vehicle -
10 minutes / 5 minutes

Collector: collects the money - 1 minute

employee 1

0.3

A
—

—

collector

reception
0.7

employee 2

Javier Campos. Performance modelling and evaluation: 7. Queueing networks 16



Open queueing networks

L

N

Q Throughput (fraffic equations):
A =
A, =0.31+0.14,
Ay =0.74+024,

A, =081, +0.94,]

O Utilizations:
P =S4, =

(=

A=A
A, =0.384
A, =0.784
A=A

204

p, = 8,2, =600*0.382 = 228
Py = S;45 =300%0.781 = 2341

Py =S4y =

604

0 Steady-state condition: all utilizations < 1

A< 0.00427 customers/sec. (15.38 cust/hour)

bottleneck station: employee 2

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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Open queueing networks

L

N

n.,n,,ns3,N,

(using 1< 0.00427)

E[n,] = Pi _ 20 4 < 0.093 reception is busy at
1-p, 1-204

Efn,]= 22— = 2824 <358
1-p, 1-228 4

E[n3]:1L: 234 A <
- py, 1-234 4

Efn,]= 2 - 22 <93

1-p, 1-6024

Javier Campos. Performance modelling and evaluation: 7. Queueing networks

Steady-state queue length probabilities :
s = (1-204)(204)™ - (1 —228 1)(228 )" .
(1-234 2)(234 A)™ - (1— 601)(604)™

L Bounds for the mean queue lengths

most 8,5% of the time

bottleneck

collector is busy at
most 25,6% of the

18
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Open queueing networks

L

dResponse time (waiting time of a customer in
the system), by Little's law:

E[n,] +E[n, ]+ E[n,]+ E[n,] _
A
20 228 234 60
1-204 1-2284 1-23414 1-604

T:N:
A

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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Closed queueing networks
:I
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Closed queueing networks

N

L

] Closed network:

O Assume single class of customers. _@
A Closed: no external arrivals or TN .

departures (no y;terms). Ncustomers. | — —@
O The M queues/servers must be of -

ohe of these kinds: Closed Queueing Network
JFCFS with exponentially distributed service times
JLCFS preemptive-resume with Cox service times
PS with Cox service times

IS with Cox service times

b b b by.
O O - — O 1

1-b, 1 1-b, 1-by 4

- -

Cox distribution

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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Closed queueing networks

L

N

Q Routing probabilities satisfy Y. q;=1 for 1<i<M

O State space S={(n,....ny) | n;20; ZLnj =N}
for population N.
3| 5] = number of ways of putting NV balls into M bags

N+M-1
M-1

dfiniteness of S = steady state always exists

Disk
A

—> CPU

Disk
B

Closed Queueing Network

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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Closed queueing networks

L

N

d Traffic equations:
. M
d For each queue A=Y 14, for 1<i<M

j=1
[ homogeneous linear equations with an infinity of solutions
which differ by a multiplicative factor (because |I— Q| =0
since rows all sum to zero)
[ Visit ratios: they are the relative v=vQ
throughputs, normalized for a given
queue (for instance queue 1).

O Relative utilization of a server or service demand:

Is the visit ratio (or relative throughput) weighted by
the mean service time

v, =1

U =SV, =V, /

Javier Campos. Performance modelling and evaluation: 7. Queueing networks 23



Closed queueing networks

L

N

dGordon-Newell's theorem (1967)

1 M uni

ity — ~r N
ve G(N) iy Bi(ng)

R i . < C.
n,: S Ny =C; ¢, = number of

clc'™ si n >c SErvers in
= rF= station |

pi(n;) :{
A&(N) is a normalization constant

o™= % Tl

M i=1
Vn,Zni:N
i—1

Javier Campos. Performance modelling and evaluation: 7. Queueing networks

1 Steady-state queue length probabilities:
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Closed queueing networks

L/

N

dOther performance indices:

G(N—-n)
G(N)

P{n. >n}=u’

G(N -1)

p=Pn 2L=y G(N)

dMean queue length
E[n]= i_o:nP{n}z ii P{k}= i P{k > n}

n=1 k=n

then B » G(N —n)
E[n;]= Z;ui G(N)

N
n=

Javier Campos. Performance modelling and evaluation: 7. Queueing networks

dTIn particular, the actual utilization:
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Closed queueing networks

L

N

JExample: A small computer system with
dFloppy disk: mean access time 280 msec FCFS
dHard disk: mean access time 40 msec FCFS
L CPU: mean computing time 28 msec RR (1msec)

FD

{g :
0.7
e

HD
0.1

> @7

CPU

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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Closed queueing networks

L

O Relative utilizations:

1 1
v, :O.7v1:>Eu2 :0.753u1:>u2 =U,

1 1
v, =0.2v, :%ug = 0.2§3u1 = Uy = 2U,

FD

CPU

[ Normalization constant for different populations
(computed using the formula = computat. expensive)

A0) &A1) &2) &A3) A4) &5) &6)

1 = 11 26 57

[ Steady-state solution for 6 works

1

=" .1% .2

7z.n1,n2,6—n1—n2 247

120 247
ooy _ 26—n1—n2
247

Javier Campos. Performance modelling and evaluation: 7. Queueing networks

0.7

0.2

@_
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Closed queueing networks

L

N

dActual utilizations:

G(N -1) 120
. — . =0, =P =1.— =0.4858
AZRTGNY T

120
_2.22% _ 099717
P3= e 507

d Throughput:
=Py :%ﬁg =17.35
Ay = Py 1y :%3 =12.145
/13:'03.'[13:%.9778%7:3'47
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Closed queueing networks

L

N

L Average queue lengths:

1+4+11+26+57+120
EIn.|=E|n,|=
[n]=E[n,] 47
20.1+2°.442%.11+2%3.26+2%.57+2-120
Eln,]= 247

= (0.8866

=4.2267

dAverage response time of each station (Little) :
E[n,]
R, =

=0.0511 seconds

R, = Eln, 1 _ 0.073 seconds

R

R3 — E[n3]
4

=1.218 seconds

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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Closed queueing networks

N

L

J Main problem:

= computation of the normalization constant &AN)

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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A BCMP networks
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BCMP networks

L

N

3 Multiclass QN

_—- _—-
processor
query 0.180
S update 0.480
query 0.105
update 0.375 S, _...

Joehte 0240

Server with N transactions in execution
0 Questions:

[ What is the predicted increase in the throughput of query
transactions if the load of update transactions is moved to
of f-peak hours?

d How will the response time change if the total I/0 load of
query transactions is moved to disk 2?

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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BCMP networks

L

N

 Generalization of product form solution for
networks with different classes of customer and
extension to several service disciplines

J Customers are allowed to change class membership
=> different chains of classes

[ Chain: subset of classes in which a customer can change
(i.e., changes from one chain to another are not allowed)

[ Classes can be open or closed (mixed QN).

[ In open networks, the time between successive arrivals
of a class is exponentially distributed.

Javier Campos. Performance modelling and evaluation: 7. Queueing networks 33



BCMP networks

L

N

 Service stations can obey any of the four following
possibilities:
0 Type 1: FCFS, single server, exponentially distributed
with service rate dependent on the total number of

customers at the station but the same mean for all
classes of customer

0 Type 2: Processor sharing, Cox distribution (may be
distinct for each class of customer)

0 Type 3: Infinite-server, Cox distribution (may be
distinct for each class of customer)

d Type 4: LCFS, preemptive-resume, Cox distribution (may
be distinct for each class of customer)

Javier Campos. Performance modelling and evaluation: 7. Queueing networks 34



BCMP networks

L

N

1 Baskett-Chandy-Muntz-Palacios Gomez's
theorem (1975)

dUnder the previous conditions, the steady-state
probability distribution has a product form...

~ 1 M
F (N = 'ﬁ) = Eﬂ(ﬁ-) H Di (T_'i)s

where & is a hormalizing constant (it assures
that the probabilities sum to one), A(7) is a
function of the external arrival processes only,
and the functions, p(#) are the "per-node”
steady-state distributions.

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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BCMP networks

L

N

A The important point of this result is that there
are explicit expressions for the p, functions.
They are as follows:

dWhen node /is of type FCFS, we have in the load-
independent case

(7 ’(ﬁ 1 ") (1)
Pil\n;) = Nl O, .
r=1 In'?:r'-'"[ ! Hi

dand in the load-dependent case

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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BCMP networks

L

N

load-independent case

R Mg, p
piny =i ()

dand in the load-dependent case

Mg 1

) ‘ Eﬂ:TH

piln

Javier Campos. Performance modelling and evaluation: 7. Queueing networks

dWhen node /is of type PS or LCFS-PR, we have in the

j=1 Hi,r [7)
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BCMP networks

L

N

independent case

R T, r
pi(7;) :gn (#)

dand in the load-dependent case

pi(1:) = H , ,Lf-:m H

r] Byt s P (4)

Javier Campos. Performance modelling and evaluation: 7. Queueing networks

dWhen node /is of type IS, we have in the load-
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BCMP networks

N

dFinally, the term A(7) is determined by the
arrival processes in the following manner.
AIf all chains are closed, then A(7) = 1.
JIf the arrivals depend on the total system population,

then it is equal to
Am =TT 20)

where kis the network population.
JIf the arrivals are per chain, then

Am =TT H, Lo

where N, is the number of routing chains and 4. is ’rhe
population in routing chain c.

dNotation is hard, but it can be programed...

Javier Campos. Performance modelling and evaluation: 7. Queueing networks
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Outline
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N

dComputation of normalization constant:
Convolution algorithm

J Mean value analysis algorithm
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Reminder

N

L

Gordon-Newell's theorem for closed QN
with a single server in each station

1 &5 .

7Z-n1,n2,...n,\,I IR i
G(N) i1

where u:are relative utilizations, U, =sVv,=Vv,/ 4,
with v;the relative throughput, i.e. solution of
v=vQ; v, =1
thus, u; are real positive solutions of
M
MU :Z/uiuiqij! 1<j<M
. . . 1=l . M
& N) is a normalization constant: GN)= 3 T]u

ni ZO |=1

M
) ni=N
=1
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Convolution algorithm

L

N

dBuzen, 1973: single class of customers

Bruell and Balbo, 1980: multiclass QN
Define g(n,M)=G(n),n=0.1,.,N

Then (a) g(.m)= ) ﬁui”i+ Y lm[ui“i:

ni 20 |:1 ni ZO |:1
m m

Zizlni=n zi:lni=n
Nm=0 Ny >0

=g(n,m-1)+u,g(n-1,m), if m>1Ln>0

(b) g(nD=u", n=01..,N
(c)—g0.m) =1 m=12.M
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Convolution algorithm

N

L

d Algorithm for g(n,m) = iterative relationship (a) together
with initial conditions (b) and (c)

m
r\ U1 U2 um UM
0|1 1 1 1
1]y
2 u The entire rightmost
3 |u column is of interest
. . since glnM)=& n),
| g(n—1,m) 20,1 N, thus the
bu values &(#) are by-
n B products from the
r.1 u.1 ginm-1)— g(n.m) computation of &N).
N [l g(N,M) = G(N)

Observe: the leftmost column can be computed in the same way if
it is assumed that there is a column of zeros immediately to the left.
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Convolution algorithm

L

N

- Space complexity: AN)
Q Only one column at a time!
a Algorithm:
{Assumed that u,,m=1,..,M are known}
Ci=1;
for n:=1 to N do ¢,:=0;
for m:=1 to M do
for m:=1 to N do
Cp=Cp + Up i Cp-1
- Time complexity: AN M)
O MM additions and multiplications for the computation of
&A1), ... &AN)
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Convolution algorithm

L

N

Numerical considerations

Q&(N) depends on the relative utilizations v,
~1,..,M = choosing u;s much bigger or smaller
than 1 will surely lead to problems

dTable for the example u U, U
presented in previous 0ol1 1 |1
lecture 1(1 2

211 3 |11
th==1; u3=2 311 4 |26
411 5 |57
5|1 6 [120
6|1 7 [247

|1{> & n), n=0,...,6
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d

J Mean value analysis algorithm
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Mean value analysis algorithm

N

L

d Objective: to avoid the computation of G(N)
0 We saw that the mean queue length in station /is

G(N
Eln IN]- Y0 S0
: N G(N - G(IN-1) & ,G(N
TR e NS S Sy 2 é(N)n)
L GN=n=1) LGIN-D¥ G(N-n-1) _
- i)+ St SO 4y SIS ST
- AN+ p () T EE

= E[n; [N] :pi(N)(l+ E[n, N -1])
0 And the average response time at station (Little's law):

_ E[n|N]
R(N) = (V) = R(N)_M(1+E[n|N ~1])

"Mean Value Theorem"
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Mean value analysis algorithm

L

N

JMean value theorem R (N) =i(1+ E[n [N~ 1]
H,
dInterpretation: The queue length distribution
seen by an arriving customer is the steady-
state distribution with himself removed from
the network.

Thus the average number of customers found
by an arriving customer is simply £n#;| A-1] and
the average delay is (1/u)(1+ £n; | N-1])

Javier Campos. Performance modelling and evaluation: 8. Computational algorithms for closed QN

10




Mean value analysis algorithm

p
 Computation of the throughput
Q Apply Little's law to all the neft: ©
0 Average number of customers = N ol 1110
0 Average delay = iv_ R (N) N NTTTIO
= II_,I
normalized for station 1
= 4(N) = 5
2 ViRi(N)
AN)Y=VA(N)=v,—— N -2 .M
2, ViRi(N)
 Computation of actual
utilizations: p(N) = ”’iL’_\' ) iZ1..M

Javier Campos. Performance modelling and evaluation: 8. Computational algorithms for closed QN
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Mean value analysis algorithm

L

N

d And remember that the mean queue length
(Little's law):

E[n IN]=4(N)R(N), i=1...M
and E[n. |0]=0, 1=1..M

Javier Campos. Performance modelling and evaluation: 8. Computational algorithms for closed QN
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Mean value analysis algorithm

 Putting all fogether: MVA algorithm
1. Compute visit ratios v. v=vQ v =1
2. E[n /| 01:=0, ~,.M
3. For m=11t0o Ndo
R.(n) = i(1+ E[n,In-1]), i=1,., M

N

A, (n) = M i

ZViRi(n)
/1(n)—V/’Ll(n) I =2,..., M
(n)_’””) i=1,., M

E[niln]:/li(n)Ri(n)’ |=1 """ M

Javier Campos. Performance modelling and evaluation: 8. Computational algorithms for closed QN
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Mean value analysis algorithm

L

N

d Complexity of MVA algorithm

O Equal to the Convolution algorithm for the computation of
G(N).

[ Requires less storage than Convolution algorithm since no
memory is allocated for &(n), n=1,..,N, constants.

J Advantages of MVA algorithm:

[ It is more robust as compared to Convolution algorithm
since it never computes & (avoids overflow/underflow
problem).

A It computes directly all the interesting average
performance measures for each value of the population in
the network.

Javier Campos. Performance modelling and evaluation: 8. Computational algorithms for closed QN
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Mean value analysis algorithm

L

N

[ Disadvantage of MVA algorithm:

Tt is a method for computing the average
values, so it is impossible o construct the
complete description of the steady-state
probability distribution function

(therefore it is impossible to get other
measures on the system such as "what is the
probability of queue 3 having two or more
customers?")

Javier Campos. Performance modelling and evaluation: 8. Computational algorithms for closed QN 15
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Introduction to the use of bounds

L

N

dPreliminary design phases of a system:

dmany of the system parameters are not known
accurately

Ldthe number of alternative designs that need to
be considered may be very large

= exact solution can be very expensive
and not justifiable
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Introduction to the use of bounds

L

N

JPerformance bounds:

drequire much less computation as compared to
the exact

Hallow to quickly evaluate several alternatives
and reject those that are clearly bad

dthere exist techniques that can provide
increasingly tighter bounds at the expense of
Increasing computation

dmost of the techniques are valid only for
product form queueing networks
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Introduction to the use of bounds

L

N

dHere we see...

dthe less accurate and quickest technique, valid
for any network: asymptotic bound analysis, and

dthe first known technique for product form
networks: balanced job bound analysis
.. for the case of networks with:

single class of customers, and

dsingle-server (fixed rate) nodes and possibly delay
nodes (infinite-server)

1 They allow to obtain bounds for the
throughput of the network.
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Introduction to the use of bounds

L

N

[ Terminology and notation:

dTIf the network contains several delay nodes, we
can merge all of them into one delay node

- it suffices to consider only one delay node

dWe index the delay node as O and denote the
relative utilization of this node by Z

L The single-server stations will be indexed as
1,...,M, with u;being the relative utilization of
hode /.
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Introduction to the use of bounds

N

L

dWithout loss of generality:

t < ... < Uy (node Mis the bottleneck)

Hence QM) < .. < Q,N) for any population N

. G(N —=k)
because Q.(N)=E[n |N]= ;u 6N}
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Introduction to the use of bounds

L

N

A Visit ratio at station 1is 1, then the throughput of
the network will be computed with respect to this
station.

] Additinal notation:

O Total utilization (only for L

. M u i
single server stations): Z‘l |

O Average relative utilization L
(only for single server stations):

Q (Relative) residence time at node / (N)=V.R (N)
(visit ratio x average delay): ' i

Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN
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J Asymptotic bound analysis
U
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Asymptotic bound analysis

N

L

dKleinrock, 1976

It does not require product form property
to hold

1 The bounds are obtained by considering
two extreme situations:
no queueing takes place at any node, and

dall nodes are loaded as heavilly as the
bottleneck node

Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN
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Asymptotic bound analysis

L

N

dUpper bound on throughput (of station 1):

dWithout any queueing, the average delay time is
L + Ztherefore, by Little's formula,

N
L+Z

dHowever, this bound may not satisfy the
restriction that the utilization of any node
cannot exceed 1 i
- Additional constraint (M is the bottleneck): A(N)<—

A Then the upper bound on throughput is: v
A(N) < min{ N }

L+Z u,

A(N) <

Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN 11



Asymptotic bound analysis

L

N

- Lower bound on throughput:

d the throughput will be minimum if every customer had to
wait behind the remaining N- 1 other customers at every
single-server station in the network...

N
NL+Z

A(N) >

J Notice that:

O we did not use the product form assumption in deriving
these (upper and lower) bounds,

O the bounds could however be rather loose,

[ subsequent bounds are tighter but do require the
product form assumption.

Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN

12



Asymptotic bound analysis

N

L

A(N)

L+Z

N

N

NL

— < A(N) <min N ,1
+Z L+Z u,

Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN
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Balanced job bounds

L

N

dZahorjan et al., 1982

dMean Value Theorem is used, thus the
analysis is valid only for product form
queueing networks.

JRemember: Ri(N)zi(1+ E[n, N —1])

1 Then, the relative residence time at node /
IS:
Ti(N) :ViRi(N) — Ui(l"' E[ni | N _1]): ui(l"‘Qi(N _1))

Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN
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Balanced job bounds

L

N

 Summing over all nodes we get the "average
cycle time" of the network, i.e., the
average delay in all stations (assuming that
there are no delay nodes):

CT(N) = L+iui(1+Qi(N -1))

Since vy 2 u;for all 7, we have

CT(N)<L+u, (N-1)

Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN 16



Balanced job bounds

N

L

dLower bound for the throughput: Applying
Little's law to the whole net (L=AW).

N=A(N) CTIN) = A(N)=N/CTIN) =

N
AN) 2 L+(N -1u,,

Notice that this bound essentially assumes that
all nodes are loaded as heavily as the
bottleneck node.

Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN 17



Balanced job bounds

L

N

1 Upper bound for the throughput.

d Lemma: if x,y, 7=1,..,n are such that x;< .. < x,and y;< ..
<y, then

n n

1 n
inyizﬁzxi_ Yi
i=1 j=1

i=1

M M
A Sefting x;= ;and y;= QN D uQ(N)>u, > Qi(N)
i=1 i=1
0 Hence, since u,= L/Mand from CT(N)=L+ > u{1+Q(N -1))
Weget  CT(N)>L+(N-1u,
A Then, the throughput upper bound is (Little's law):

N
AN) < L (N-=1)u;

Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN
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Balanced job bounds

Since R(N)=u,1+Q,(N -1)), the following interpretation can be made:

» The upper bound on throughput is equal to the throughput of a system
composed of M centers each with relative utilization v,

* The lower bound on throughput is equal o the throughput of a system
composed of "L/u,, centers" (which is not integer, in general) each with
relative utilization v,

Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN
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Justification

L

N

In real computer systems cooperation and
competence relationships are usual.

1 Synchronization primitives are necessary
for expressing these relationships.

dProduct form queueing networks do not
allow the explicit representation of a
general synchronization primitive.
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Justification

L

N

1 Example: blocking phenomena in
computer systems, arise because a job
requires more than one resource before it
can be processed

1. Holding a channel and a disk drive before data
transfer can occur.

2. Obtaining a memory partition before job
processing can occur.

3. Obtaining a database lock before the data
item can be read from the disk.
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Justification

L

N

dPossible solutions to the problem of lack of
expressivity of QN:
A Ad hoc extensions of QN

dDefine a new formalism with synchronization
primitive (like Petri nets or process algebra)

Javier Campos. Performance modelling and evaluation: 10. Petri nets




N

Justification

L

2 Ad hoc extensions of QN

dPassive resources
JExample: a memory limited system

memory partitions

terminals

_@ A\' C}[|j

memory queue processor

I/O devices
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Justification

L

N

JAd hoc extensions of QN (cont.)
dForks and joins

JExample: multitasking feature of operating systems

O—~1[[10—11
-1 o—»@%u O ~ T3
@)

.

O—
~TINo~<8—5; g: L [>—TMo—=
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Justification

L

N

dTn general, product form solution does not
hold for the previous ad hoc extensions.

J A formal and unified definition is needed
as well as computation techniques.

—=Define a new formalism with
synchronization primitive
(like Petri nets or process algebra)
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Definitions

L

N

J Autonomous Petri nets
(place/transition nets or P/T nets)

dPetri Nets is a bipartite valued graph
Places: states/data (P)
O Transitions: actions/algorithms ( 7)

d Arcs: connecting places and transitions (F)
0 Weights: labeling the arcs (W)

—<PTFW>

/ i
= o 3

in the arcs
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Definitions

N

L

J Net =» Static part
A Places : State variables (names)

O Transitions: Changes in the state
(conditions)

 Marking = Dynamic part
O Marking : State variables (values)

 Event/Firing
d Enablin(?: the pre-condition is
verifie
Q Firing: change in the marking

d the pre-condition "consumes”
tokens

A the post-condition "produces”
tokens

Javier Campos. Performance modelling and evaluation: 10. Petri nets
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Definitions

N

L
J Net =» Static part
A Places : State variables (names)

O Transitions: Changes in the state
(conditions)

 Marking = Dynamic part
O Marking : State variables (values)

- Event/Firing
d Enablin(?: the pre-condition is
verifie
Q Firing: change in the marking

d the pre-condition "consumes”
tokens

A the post-condition "produces”
tokens
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Definitions

L

N

PN and its algebraic representation based

on state equation
O Linear representation of PNs, the structure:

N =< P,T,Pre, Post >

O Pre-incidence matrix
Pre(p,t): PxT — N°
O Post-incidence matrix

Post(p,t): PxT — N

[ Incidence matrix, C = Post - Pre
(marked) Petri Net is finally defined by: X = <N ,m0>

Javier Campos. Performance modelling and evaluation: 10. Petri nets
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Definitions

L

N
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Incidence matrix C (= Post - Pre) cannot “see” self loops
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Definitions

L

N

] State equation definition
m(k +1) = m(k) + C(£) =

mk)[e>mk+1) < _ )+ Post(r) + Pre(r) > 0

Integrating in one execution (sequence of firing)

my [c>m(k) =>m(k)=m,+C-o

where o (bold) is the firing counting vector of o

Very important: unfortunately...

m(k)=m,+C-6>0, 6 >0 m, [c>m(k)

Javier Campos. Performance modelling and evaluation: 10. Petri nets
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Definitions

L

N

J Desigh methodologies:
1. Parallel composition by...

+ bottom-up methodology

fusion

Javier Campos. Performance modelling and evaluation: 10. Petri nets 19



Definitions

L

N

 Design methodologies (cont):
2. Sequential composition by refinement

+ tfop-down methodology

Javier Campos. Performance modelling and evaluation: 10. Petri nets
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Definitions

N

L

] Design methodologies (cont):
typical synchronization schemes

11 g

RV

5. Fork-Joint

6. Sub programa
1. Rendezvous, RV 2. Seméforo, S (pi ,pj estan en mutex)

. S 8. Guarda (condicion
3. RV/Seméforo simétrico 4. RV/Semaforo asimetrico de lectura)
(master/slave)

7. Recurso compartido (RR)
Javier Campos. Performance modelling and evaluation: 10. Petri nets 21



Definitions

N

L

PN syntactic subclasses

(1 State machines
[ Subclass of ordinary PN
(arc weights = 1)

[ Neither synchronizations
nor structural parallelism
allowed

[ Model systems with a
finite number of states

[ Their analysis and
synthesis theory is well-
known

Javier Campos. Performance modelling and evaluation: 10. Petri nets 22



Definitions

N

L

PN syntactic subclasses (cont.)

O Marked Graphs

[ Subclass of ordinary PN (arc weights
=1)

[ Allow synchronizations and
parallelism but not allow decisions

[ No conflicts present

O Allow the modeling of infinite
number of states

[ Their analysis and synthesis theory
is well-known

Javier Campos. Performance modelling and evaluation: 10. Petri nets
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Definitions

L

N

PN syntactic subclasses (cont.)

O Free-Choice nets
[ Subclass of ordinary PN (arc
weights = 1)
 Allow synchronizations, parallelism
and choices

[ Choices and synchronizations
cannot be present in the same
transition

[ Their analysis and synthesis
theory is well-known

0 There are other syntactic
subclasses...

Javier Campos. Performance modelling and evaluation: 10. Petri nets 24



Functional properties and analysis

L

N

 Functional basic properties

O Boundedness: finiteness of the state space, i.e. the marking of
all places is bounded

Vpe P dke N suchthat m(p)<k

0 Safeness = 1-boundedness (binary marking)

[ Mutual Exclusion: fwo or more places cannot be marked
simultaneously (problem of shared resources)

O Deadlock: situation where there is no transition enabled
O Liveness: infinite potential activity of all fransitions

VteT ,vmreachable, 3m',m /o >m' such that m'/¢ >

O Home state: a marking that can be recovered from every
reachable marking

O Reversibility: recovering of the initial marking
vm reachable, 3¢ suchthat m /o >m,

Javier Campos. Performance modelling and evaluation: 10. Petri nets 25



Functional properties and analysis

L

N

d Structural basic properties:

AN is structurally bounded if for all mj,
<N, my> is bounded

AN is structurally live if there exists a m, for
which <N, my> is live

Javier Campos. Performance modelling and evaluation: 10. Petri nets 26



Functional properties and analysis

L

N

J Analysis techniques (for the computation
of functional properties)
LdEnumerative: based on reachability graph

L Structural: based on the structure of the
model, considering m, as a parameter

dReduction/transformation: rules that preserve
a given property and simplify the model

Javier Campos. Performance modelling and evaluation: 10. Petri nets

27



Functional properties and analysis

L

N

Enumerative analysis: exhaustive sequential
enumeration of reachable states

dProblem 1: state explosion problem

dProblem 2: lost of information about concurrent
behaviour

reachability graph but 6 and ¢
cannot fire simultaneously.

reachability graph

Javier Campos. Performance modelling and evaluation: 10. Petri nets 28
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Functional properties and analysis

L

JEnumerative analysis (cont.):
dBounded system < finite reachability graph

unbounded system

Javier Campos. Performance modelling and evaluation: 10. Petri nets

29



Functional properties and analysis

N

L

JEnumerative analysis (cont.):

O Deadlock exists <& There exists a terminal
node in the RG

M; is a deadlock

Javier Campos. Performance modelling and evaluation: 10. Petri nets
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Functional properties and analysis

L

N

- Enumerative analysis (cont.):

O Live net < inall the strongly connected components of
the RG all transitions can be fired

[ Reversible net < there is only one strongly connected
component in the RG

live and
non-reversible
system

Javier Campos. Performance modelling and evaluation: 10. Petri nets 31



Functional properties and analysis

L

d Structural analysis:

Based either on convex geometry (linear
algebra and linear programming), or

Based on graph theory
~>We concentrate on first approach.

N

2 Definitions:
P-semiflow: y>0, y'.C=0
T-semiflow: x>0, Cx=0

Javier Campos. Performance modelling and evaluation: 10. Petri nets
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Functional properties and analysis

N

L

d Properties:

1. If yis a P-semiflow, then the next token conservation
law holds (or P-invariant):

for all me RS(N, my) and for all my =
= y.m=y" m.

Proof: if meRS(N, my) then m= my + C.o, and pre-
multiplying by y™:

yT. m= yT. Mo + yT.CCT: yT.mo

P-semiflows = Conservation of tokens

Javier Campos. Performance modelling and evaluation: 10. Petri nets
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Functional properties and analysis

L

N

 Properties (cont.):

2. If mis areachable marking in N, oa fireable sequence
with o=x, and x a T-semiflow, the next property
follows (or T-invariant):

mlo>m

Proof: if is a T-semiflow, m=my+C.x=my

T-semiflows =» Repetitivity of the marking

d  Pand T-semiflows can be computed using
algorithms based in Convex Geometry (linear
algebra and linear programming)

Javier Campos. Performance modelling and evaluation: 10. Petri nets
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Functional properties and analysis

L

N

- Definitions:
AN is conservative < Jy>0, y'.C=0
AN is structurally bounded < JF y>1, y7.C <0
(computable in polynomial time)

 Properties: pre-multiplying by y the state equation
QN conservative = yT. m= y". my
(token conservation)
QN structurally bounded = y'. m< yT. my
(tokens limitation)

Javier Campos. Performance modelling and evaluation: 10. Petri nets
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Functional properties and analysis

L

N

- Definitions:
AN is consistent <3 x>0, Cx=0
AN is structurally repetitive < 3 x>1, Cx>0
d Properties:
<N, my> repetitive = N structurally repetitive
QAN structurally live = N structurally repetitive

QN structurally live and structurally bounded =
structurally repetitive and structurally bounded
< consistent and conservative
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Outline

L

N

dPetri nets with temporal interpretation
1 Basic exact analysis of SPN
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Petri nets with femporal interpretation

L

N

J Addition of temporal interpretation to
autonomous Petri nets:
dTimed Petri nets (TPN):
dRamchandani, 1974

Qd(Interval) Time Petri nets (ITPN):
JdMerlin and Faber, 1976

QdStochastic Petri nets (SPN):
dSymons, 1978; Natkin, 1980; Molloy, 1981

QdGeneralized stochastic Petri nets (GSPN)
JAjmone Marsan, Balbo, Conte, 1984
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Petri nets with femporal interpretation

L

N

] Basic idea:
0 Queueing network (QN) =
= structure

queue rooms, stations,
and deterministic routing

+ distribution of customers (or population)
(distributed) state of the model
+ stochastic interpretation

random routing, service times,
number of servers

= dynamic behaviour: movement of customers
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Petri nets with femporal interpretation

L

N

Q Stochastic Petri net (SPN) =
= structure

places, transitions,
and arcs

+ distribution of tokens (or marking)
(distributed) state of the model
+ stochastic interpretation

random routing, service times,
number of servers

— dynamic behaviour: movement of tokens (firing rule)
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Petri nets with femporal interpretation

L

N

J Autonomous Petri nets

1 Non-determinism with respect to

Py
duration of activities and t; i
P

drouting /O\

. . t —

O Not valid for performance evaluation | * ’
(quantitative analysis: throughput, Ps P,

— '[5

response time, average marking) |
4 —
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Petri nets with femporal interpretation

N

L

] Reduction of the non-determinism
O Define duration of activities

(elapsed time from enabling to

firing of a transitions)
dConstant > TimedPetri nets
dInterval > Time Petri nets

- Stochastic Petri nets

dRandom or immediate =
- Generalized Stochastic PNs

d Define server semantics
(single/multiple/infinite)
O Define routing at conflicts
JRace between timed transitions
dRandom choice

[ Random (exponentially distrib.) >
k servers

Javier Campos. Performance modelling and evaluation: 11. SPN: exact analysis
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Outline

L

N

:I
JBasic exact analysis of SPN
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Basic exact analysis of SPN

L

N

Stochastic Petri nets

ODuration of activities: exponentially distributed
random variables

dSingle server semantics at each transition
dConflicts resolution: race policy

The reachability graph of the SPN is
isomorphic to a Continuous Time Markov Chain
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Basic exact analysis of SPN

N

L

The reachability graph of the SPN is isomorphic to a
Continuous Time Markov Chain
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Basic exact analysis of SPN

L

N

J Shared memory multiprocessor

e (D
a— L

MC

Both processors behave in a similar way:
Qd A cyclic sequence of: local activity, then
O an access request to the shared memory, and then
[ accessing the shared memory

Javier Campos. Performance modelling and evaluation: 11. SPN: exact analysis
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Basic exact analysis of SPN

L

N

JAll transitions have exponentially
distributed durations, except for t2 and

T5, !
access request to (o Tom
the shared memory Tl T4
(immediate) " o7
> GSPN T il

e )P

Javier Campos. Performance modelling and evaluation: 11. SPN: exact analysis
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Basic exact analysis of SPN

L

[ Reachability graph

A3

-

Al

(11010100

oo

L(0000

1100)

v

(0000

1010

It is not isomorphic to a Continuous Time Markov Chain

11100100

—

11100010)

oo

\

(00100001)J
Al
00010001)

(infinite rates are not allowed in CTMCs)

Javier Campos. Performance modelling and evaluation: 11. SPN: exact analysis
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Basic exact analysis of SPN

L

N

 Tangible reachability graph

A3

r —~(11100100
1
Al 4
L@ooonoo A A3 +(00100001)
2 JM 3
(00001010 00010001)
4 5

It is isomorphic to a Continuous Time Markov
Chain

Javier Campos. Performance modelling and evaluation: 11. SPN: exact analysis 19



Basic exact analysis of SPN

L

N

dInfinitesimal generator matrix of the
CTMC

—™(11100100

00010001
[ — (A1 + A\y) Ar Ay 0 0 ]
;’i.:.] —(}iﬂ + }14) 0 .:’Lg 0
Ag 0 —(A1+X) 0 N
0 0 Az —A3 0
I 0 A6 0 0 —AX¢

Javier Campos. Performance modelling and evaluation: 11. SPN: exact analysis
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Basic exact analysis of SPN

L

N

1 The stationary distribution can be
computed (steady state probability of each

state)
[ —(A1 + M) Al A4 0 0
/1‘-.3 —()'-3 + )\4) 0 /1’14 0
(TT), Ty, Ty, Ty, ) - g 0 —(A1+2A) 0O A | =0
0 0 Az —Az 0
0 A6 0 0 —X¢ |

ML+ Mo+ M+ My +Ts=1
JAnd from here, compute performance
index:
dProcessing power = average number of

processors effectively (locally) working =
2T+, +T,

Javier Campos. Performance modelling and evaluation: 11. SPN: exact analysis 21
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Outline

N

L

dPreliminary comments

dIntroducing the ideas: Marked Graphs case
dGeneralization: use of visit ratios
JImprovements of the bounds

A general linear programming statement
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Preliminary comments

L

N

dpreliminary phases of design

Jdmany parameters
are not known

Interest of bounding techniques

accurately
quick evaluation and R
: . exact
rejection of those accuracy solution
clearly bad
bounds
com'plexity

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN




Preliminary comments

L

N

1 Net-driven solution technique

Ustressing the intimate relationship between
qualitative and quantitative aspects of PN's

dstructure theory of net models

- efficient computation techniques

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN




Outline

N

L

EI

dIntroducing the ideas: Marked Graphs case
:I
J
J
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Introducing ideas: Marked Graph case

L

N

5 12 p4

r2(O—+—C

p! tl t4  generally distributed service times
/3 (random variables X;with mean 's[tj])

C I:I CP5 we assume infinite-server semantics

p3

exact cycle time (random variable): X = X; + max{X,, X3} + X,

average cycle time: I =3[4]+ E[max{X,, X3}]+3[,]
but (non-negative variables):

(non-negative variables) Xy, Xy <max{X,, X3} < X, + X,
therefore:

S[4]+max{s[4],S[K]} +S[14,] <T <s[f]+S[5]+S[5]+5[44]

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 6



Introducing ideas: Marked Graph case

L

N

Thus, the lower bound for the average cycle
time is computed looking for the slowest

circuit
z/
e
I'2  max L #tokens in(,j

C&fcircuits
of the net }

Interpretation:

an MG may be built synchronising
circuits, so we look for the bottleneck

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN




Introducing ideas: Marked Graph case

L

N

JComputation:

[' > maximumy-Pre-S

subjectto y-C=0 (S is the vector of
average service times)

y-m0=1
§ y=0

(the proof of this comes later for a more general case)

v

solving a linear programming problem
(polynomial complexity on the net size)

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 8



Introducing ideas: Marked Graph case

L

N

dEven if naif, the bounds are tight!
Lower bound for the average cycle time

max{“S[&],'S[t:s]} SE[max{Xz,X3}]

it is exact for deterministic timing

it cannot be improved using only mean values of
r.v. (it is reached in a limit case for a family of
random variables with arbitrary means and
variances)

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN




Introducing ideas: Marked Graph case

N

L

a—>1

in the limit (a—1)

E[Xﬂ,a(a) + X o (a)]: u+ i, Vv 0<a<l

A )

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN

J Lo with probability 1—¢& ,u2 (- a)2
= — E=
Ko (@ /_{OHI—QJ with probability ¢ (l-a)” +
[ ¢
0<La<])
2
E[X,u,O'(a)]:,U : Var[X y,a(a)]: o
-

N
im maX(Xﬂ,G(a)’Xﬂ',a’ (0‘))]: max(,u M ) they behave "as deterministic”
for the 'max’' and '+ operators

10



Introducing ideas: Marked Graph case

L

N

dUpper bound for the average cycle time

{ r< z‘s[z]J
tel’

it cannot be improved for 1-live MG's using
only mean values of r.v. (it is reached in a limit
case for a family of random variables with
arbitrary means)

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Introducing ideas: Marked Graph case

L

N

, 0  with probability 1-&
X (e)= :
AOZVL i probability &
v
2
(0<e<]) [ ' }_ . E{ : 2}_!‘_
El-X (e =p+BX, ("= l.

&

ItX j =X§j [_t 1](5), vt ; eT, then for varying (decreasing) values of &;
J

[ E[max(Xi,Xj)]:'S[tl-]+'s[tj]+0(g) ]

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 12
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Outline

L

J
J
Generalization: use of visit ratios
d
J

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Generalization: use of visit ratios

L

N

dVisit ratios = relative throughput
(number of visits to #;per each visit to #)

vin =24 _ a1

- 1] 1
average interfiring time of #

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Generalization: use of visit ratios

N

L

C.v=0;
nvinl=nviq];
nV[tg]=mVvis];

v[f]=1

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN

dFor some net classes v can be computed as:
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Generalization: use of visit ratios

L

N

dLittle's law (L=AW) applied to a place
p.

U pl=(Pre[p,T]- y) T[p]

Assume that timed transitions are never in conflict
(conflicts are modelled with immediate transitions), then

either all output transitions of p are immediate or p has a
unique output transition, say #, and #; is timed, thus:

ML pl=(Pre[pT]- x) Y pl=Pre[p,n] xln] ¥p]

=2 Prelp.] 21n] Slul= X Prelp.t;] 1t] 3]
j:

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 16



Generalization: use of visit ratios

L

N

Then: Tyl upl= lere[p,tj] Uln] xlt;] sltj]= lere[p,tj] v[z;] S[¢]
Jj= Jj=

Hence:  1[#] uz>Pre-D where D[f]=3[f]v[f] is the average service
demand of ¢

Premultiplying by a ~semiflow y
(y'C:O, yZO, thusy°ﬁ:y°m0)a

[T#4]> maximum y-Pre-D IT#]> maximum y-Pre-D
y-mo q
subjectto Y-C=0 ——o-—yp subjectto y-C=0
1.y>0 1.y>0
y>0 g=Yy-my
y>0

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Generalization: use of visit ratios

L

N

Since y'my >0 (live system), we change y/q toy and we obtain
(1y>0 is removed because y'mgy=1 implies 1-y > 0):

% )
IT4]>= maximum Yy-Pre-D

subjectto y-C=0
y-mg=1
y>0

. /

again, a linear programming problem
(polynomial complexity on the net size)

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Generalization: use of visit ratios

L

N

Interpretation: slowest subsystem generated by A-semiflows, in isolation

minimal P-semiflows

y, =(1,0,1,1,0,0,1,0,1,0,0,0)
y,=(0,1,0,0,1,1,0,1,0.1,0,0)
Y, =(0,0,0,0,0,0,0,0,1,1,1,0)
y, = (0,0,0,0,0,0,0,0,0,0,0,1)

[t6]+S[110])/ 3,
[#7]1+8[41])/ 2,
[

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 19



Generalization: use of visit ratios

L

N

dUpper bound for the average interfiring
Time

{ I[41< YA 3= Zﬁ[t]}
tel’ tel’

remember the marked graphs case (v=1): T'< Y5[¢]
tel’

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN

20



Outline

L

N

J
J
:I
dTImprovements of the bounds
J
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Improvements of the bounds

L

N

[ Structural improvements

bounds still based only on the mean values (not
on higher moments of r.v., insensitive bounds)

dlower bound for the average interfiring time:
use of implicit places to increase the number of
minimal ~semiflows

Cupper bound for the average interfiring time:
use of liveness bound of transitions to improve the
bound for some net subclasses

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Improvements of the bounds

L

N

dUse of implicit places

[t5]= gS[t3]+(1-9)S[14]

P
q1-q
IT4]> maximum y-Pre.-D
Py P3

subjectto y-C=0

£ t4 y-mg=1
gé u y >0

[{ts]> max{gs[131,(1- g)slt4]}

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Improvements of the bounds

N

IT4]1> maximum y-Pre-D
subjectto y-C=0
y-mozl

y>0

[lrs]=gSlt31+(1-g)sl14] [es]=max{ g3[131, (1-@)Slial, g3lt31+(1-q)3l1a] }

in this case, we get the exact value!

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 24



Improvements of the bounds

N

L

in general...

IT4]> maximum Yy-Pre-D
subjectto y-C=0
y-m0=1

y>0

['t7] = max { ¢S[#3]+9S[#]+5[t7],

(1-q)s[14]+8[t5]+5[17] }

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Improvements of the bounds

L

N

in general, the bound is non-reachable

['t7] 2 max { ¢S[t3]+5[4]+5[t7],
(1-q)s[t4]+S[t5]+9[ 7],

qs[3]1+ (1= q)s[t4]+9[17]

I'[t7] = gmax §[#5],5[13] +S[t6 1} +(1— q) max §[ 4] +S[#5],5[461} +S[27]
= max { qS[tz3]+9S[tg]+3[t7],

(I-q)s[14]+3[ts]+3[#7],

(deterministic  g3[13]+(1-q)8lt4]+(1— q)S[ts ]+ 5161 +3[17],
timing)

qS[t5]+(1—-q)8[tg] +5[27] }

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Improvements of the bounds

L

N

dUse of liveness bounds

p2( >_.||_.< )
pL

t4
>[F r< [
tel’

| t3D
p3 P>

reachable for 1-live marked graphs, but...

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN

Qupper bound for the average interfiring time:

27



Improvements of the bounds

L

N

it can be improved for A-live marked graphs

12 p4

pZ(:}__+|F__4 )
pL 4

" 5o
2 >[F I <3[n]+= = +3[3]+5{14]

O—1—0ps X

liveness bound of 7,

p3

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Improvements of the bounds

L

N

O Definitions of enabling degree, enabling bound, structural
enabling bound, and liveness bound

[ instantaneous enabling degree of a transition at a given marking

e[t](m):sup{k eN: Vp €, m[p]>k Pre[p,t]}

e

5 [£](m) =2

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Improvements of the bounds

L

N

 enabling bound of a transition in a given system:
maximum among the instantaneous enabling degree at all
reachable markings

eb[t]zsup{k eN: 3m0L>m, Vpe't, m[p]>k Pre[p,t]}

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Improvements of the bounds

N

L

[ liveness bound of a transition in a given system:
number of servers available in #in steady state

Ib[] :sup{k eN: vm’, moLm’,Hm,m'Lm/\Vpe' t,m[p]=>k Pre[p, t]}

N ! Ib[£,]=1<2=eb[t,]

13

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Improvements of the bounds

L

N

[ structural enabling bound of a transition in a given
system: structural counterpart of the enabling bound
(substitute reachability condition by

m=my+C:-oc moc>0)

seb[f]= maximum k
subject to mq[p]+C[p,T]-c>k Pre[p,t], Vp eP
>0

Property: For any net system seb[#]>eb[#]>Ib[#], V .

Property: For live and bounded free choice systems,
seb[f]=eb[f]=Ib[#], VTt

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Improvements of the bounds

L

N

improvement of the bound for live and bounded free
choice systems:

v[r] 5[] o D[]

Flal< th seb[f]  ,=psebit]

this bound cannot be improved for marked graphs
(using only the mean values of service times)

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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A general linear programming statement
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A general linear programming statement

L

N

1 The idea

a linear function

(- S )

maximize [or minimize] f(u, y)

subject to any linear constraint that we are able to state

/ for 11, y, and other needed additional variables
/

\_

linear operational laws

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 35



A general linear programming statement

N

L

JA set of linear constraints:

i=mgp+C-c (state equation)

Z;{[Z‘] Post p, ] > Z 2] Pre[p,f], VpeP

te’p tep'

> i) Postp.l= > y1f] Prefp], ¥peP bounded
. (flow balance equation)

te’p tep
4] ;] Vt;,t; €T : behavioural free choice
i T (e.g.PreP,t;]=PreP,z,])

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 36



A general linear programming statement

L

N

i §[t]£u—[p], vVt eT, Vpe't (maximum throughput law)

PUEIE ulpl-Pre(p ]+ 1’ Vt T persistent,age memory or

immediate *f = {p} (minimum Thl"OUghpUT law)

H x> 620

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 37



A general linear programming statement

N

L

1T+t can be improved using second order
moments

1Tt can be extended to well-formed
coloured nets

It has been recently extended to Time
Petri Nets (timing based on intervals,
usefull for the modelling and analysis of
real-time systems)

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN

38



A general linear programming statement

L

N

ATt is implemented in GreatSPN
Uselect place (fransition) object [O] ([ =)
Qclick right mouse button and select "show"

Qclick again right mouse button and select
“Average M.B." ("LP Throughput Bounds")

Qclick left mouse button for upper bound
dclick middle mouse button for lower bound

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN




A general linear programming statement

L

N

J Example: a shared-memory multiprocessor

O set of processing modules (with local memory)
interconnected by a common bus called the "external
bus”

[ a processor can access its own memory module directly
from its private bus through one port, or it can access
non-local shared-memory modules by means of the
external bus

O priority is given to external access through the external
bus with respect to the accesses from the local
processor

o @ s @ M3 @ M4
< >

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 40




A general linear programming statement

L

N

3 Timed Well-Formed Coloured Net (TWN) model of
the shared-memory multiprocessor

X

OwnMemAcc
C

1

b own a € OwWn_acc
X
Queue P C1, Gy
1 X X PN X = X 75 <z <Z,Y>
SQ/ACUV@ reﬁext_accﬁ;/ T?e!&tacc Y, * chl)ose_m ExtMemAcc e_e

Average service time of timed fransitions equal o 0.5

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 41



A general linear programming statement

L

N

- The linear constraints for the LPP

Active] = 4+ ole_ea] + ole_o_a] — o[r_e_a] — a[b_o_al;
Memory] =4+ ole_e_a] — o[be_al;

OwnMemAcc] = ab.o_a] — ole_o_al;

Queue| = alr_e_a| — olb_e_al;

Choice] = olb_e_a]l — o[com];

ExtMemAcc] = alc.m] — ole_e_al;

ExtBus) =1+ ole_e_a] — a[be_al;

e-e.a] + x|e-0-a] = x[r_e_a] + x[b-o_al;

[
[
[
[
[
[
I
[
F) _e_a] = x[com] = x[e-e_a] = x[r_e_a];
[
[r-
[
[
[
[

x[r-e-a];
b_o_a] 8[b_o_a] = fi[Active]/2;

[Active]/2;

[ExtMemAcdl;

OwnMemAccl;

Memoryl;

OwnMemAcc] + 2OwnMemAccl i g om ory)

b[M emory]
—b[Memory]:

_  p[Memory]
rtBus| — b|ErtBus e | | R
p|ExtBus| — b[ExtBus] (1 — B[ Memary] <0
13

F[Queue) .
b[Queue] )) =9

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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re.q]

le_e_a]
c_o_a) Sle_o_al
e_o_a| Sle_o_al
sle-o.q]

>~ XHXNNNXN?VQKVQVQ\?VQ
w o ol w vl

| =
]
_a]
eea]
]
]
]s

—

€_0_a €_0_a

i

4 | p|ExtBus) — b[ExtBus] [ 1 —

42



A general linear programming statement

L

N

- The “"automatic” results:

8
—<vle e alL2
v xle_e_a]

The exact solution with exponential distribution would be

vle e a]=1.71999
Improving of lower bound with more "ad hoc" constraints:

u[Choice] = 0; b[Choice] = 0; b[Queue] =3

b[Ert Bus|
b[Queue]

4 (ﬁ[E.rfBuns] - R Queue] — b[EﬂLBus]) <0

The improved bound:
1<xle e a]<2

Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN
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Outline

L

N

Decomposition of models

JFlow equivalent aggregation

Tterative algorithm: marked graphs case
TIterative algorithm: general case
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Decomposition of models

L

N

dInterest of approximation techniques

A

exact
qceurdey solution

approx.

bounds

com]olexity

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models




Decomposition of models

L

N

] Basic idea:

reduce the complexity of the analysis of a complex
system

- when

O the system is too complex/big to be solved by
any exact analytical technique

O a simulation is too long (essentially if many different
configurations must be tested or it must be included in
some optimization procedure)

[ some insights about the internal behaviour of subsystems
are wanted (writing equations might help)

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models




Decomposition of models

L

N

d Principle:
[ decompose the system into some subsystems

) original system
state space size: n

two subsystems

state space size of each: n/10
(for example)

(i.e., one order of magnitud less)

[ reduce the analysis of the whole system by those of the
subsystems in isolation

if the solution technique was, e.g., O(#®) on the state space
size n, the cost of solving the isolated subsystems would be
AmP/1000), i.e. three orders of magnitud less...

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models




Decomposition of models

L

N

1 Advantages:
[ drastical reduction of complexity and computational
requirements

[ enables to extend the class of system that can be solved
by analytical techniques

] Problems and limitations

[ Decomposition is not easy!

d"net-driven” means to use structural information of the net
model to assure that "good"” qualitative properties are
Breser'ved in the isolated subsystems (e.g., liveness,
oundedness...)

O Approximation is not exact!
dproblem of error estimation or at least bounding the error

[ Accurate techniques are usually very especific to
particular problems = need of expertise to select the
adequate technique...

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models




Decomposition of models

L

N

 Steps in an approximation technique based on decomposition:
O Partition of the system into subsystems:
ddefinition of rules for decomposition

[ consideration of functional properties that must/can be
preserved

[ Characterization of subsystems in isolation:
ddefinition of unknowns and variables

ddecisions related with consideration of mean variables or
higher order moments of involved random variables

 consideration or not of the "outside world"

O need of a skeleton (high level view of the model) and
characteristics considered in it

O Estimation of the unknown parameters:
dwriting equations among unknowns

ddirect or iterative technique (in this case, definition of
fixed point equations)

O considerations on existence and uniqueness of solution

[ computational algorithm for solving the fixed point equation
(implementation aspects, convergence aspec‘rsg

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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JFlow equivalent aggregation
:I
:I
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Flow equivalent aggregation

L

N

d The system:  Partition:
(©,p1

t3 t

—>

4 6
1

f6 EE <p>8 t11
Z t13 "@7D :p9
p7 8 pl0 tl12

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models




Flow equivalent aggregation

L

N

dCharacterization of subsystems.
Behaviour is characterized by:

Upath a token takes in the PN
(what percetage leave through t5 and t6)

dtime it takes a token to be discharged
@pll

o

‘way-in places: pl Pl o 0
-sink transitions: 15, 16 O [ C
\ p4 t6

t4
t9 t10

pd
Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 10




Flow equivalent aggregation

L

N

JReduction of the subsystem:
(o) pil

3 \E”
. —O~ Pn t,(n) P/‘!ouﬂm)
P 2 p2 p3

——> O—FQ
O—{I—»@\ o \I

t4

tout2(n)
t9 £10 .
‘routing rates of t_,,(n) and t,,,(n)?
pS
‘service rate of t4(n)?

(marking dependent: n=M(p,,)

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 11



Flow equivalent aggregation

L

N

JAggregated system:

t12

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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Flow equivalent aggregation

N

L

 Estimation of the unknown parameters:

O Analyze the subnet in isolation with
constant number of tokens
[ delay and routing are dependent on

the number of tokens in the
system

[ compute delay and routing for all
possible populations

Parameters of the subsystem in isolation

# tokens
1

Ol = W N

V5

0.500
0.431
0.403
0.389
0.382

Ve

0.500
0.569
0.597
0.611
0.618

thrput

0.400
0.640
0.780
0.863
0.914

[
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Flow equivalent aggregation

L

N

 When the subnet is substituted back, routing and delay are
going to be state dependent (n=M(p,,))

) p6 &7 ps tll\
vp, Ll f ! 16
Q—'ﬂ—’é t13 po
N

tout2 (H) ‘p7 18 pl0 t1l

Comparison of State Spaces & throughput

#tokens # states throughput  %error
aggregat original aggregat original

1 5 9 0232 0.232 0.00

2 12 41{--0.3811--0.384 0.78

3 22 131 0470 0474 0.84

4 35 336 0.521 0.523 0.38

5 51 742 0548 0.547 <0.10

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models

14



Flow equivalent aggregation

N

J
- Limitations:
O Assumption: the service time depends only on the number of
customers which are currently present in the subsystem.

[ The behaviour of the subsystem is assumed independent of the
arrival process

Q It is exact for product-form queueing networks.

d The error is small if in the original model:
M the arrivals to the subsystem are "close” to Poisson arrivals and
[ the processing times are approximately exponential

Q On the other hand, the error can be very large if

d there exist internal loops
in a subnet, or

O there exist trapped
tokens in a fork-join,
or...

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 15
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Outline

L

o
o
dTterative algorithm: marked graphs case
:I
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Iterative algorithm: marked graphs
case

N

dNet-driven solution techniques

[ stressing the intimate relationship between
qualitative and quantitative aspects of PN's

O structure theory of net models

‘ » efficient computation techniques

dMarked graphs: subclass of ordinary nets
R (no choices) (no weights)

() X Ti5 Y g2 =nnT M

Qo Q1

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 17



Iterative algorithm: marked graphs
case

N

T1I0 P T9 ye) V

e O«
w

T16 K T19 Z3\ Ti14

T13

o
partition of the model into
modules (subnets) connected =
through buffers (places)

4O

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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6 T7
N T
SIS
Oq‘ 060 2
»O»7 't g

TIO P T9 y

[« O«
T14 W Ti3
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Iterative algorithm: marked graphs
case

N

the solution of isolated modules
is difficult and useless:
(in this case) they are unbounded!

the modules must be complemented
with an abstract view of the rest; .
components are obtained

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 19



Iterative algorithm: marked graphs
case

N

BS (231 states)

A.fl (8288 STGTZS) tau_3 Z3 rho_3 ASZ (3440 STGTCS)

taul 71 T5 M

three components:

T

rho_1
aggregated systems_, i S
(IOW I@VCI ViQWS) T17T18 e g Tl caT12
o alph_1 P
and basic skeleton beta-f " ue Ov

(hlgh level Vi@W) O fe®l, , LA A W T13
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Iterative algorithm: marked graphs
case

N

iterative solution: pefota algorithm (response time approximation technique)

solution of smaller CTMC's,
improving in each step the
response time of the
abstract part

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 21



Iterative algorithm: marked graphs
case

N

[ Substitute a subnet by a set of places

¥ [0
16 CK)‘ T19 23,‘_.?‘7—3/ W T3

Qinterface transitions (input/ouput of buffers) are
preserved

L add one place from each input to each output ftransition

dthe set of new places can be superposed in the original
model preserving the behaviour: implicit places

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 22



Iterative algorithm: marked graphs
case

N

dCompute the initial marking of new places
dminimum initial marking fo make them implicit

Qdcomputed using Floyd's a/l-pairs shortest paths
algorithm:
dthe MG is considered as a weighted graph

(transitions are vertices and the initial marking of
places are the weigths of the arcs)

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 23



Iterative algorithm: marked graphs
case

N

[ The abstract view has “very good quality":

Othe language of firing sequences of the
aggregated system is equal to that of the
original system projected on the preserved
transitions

dthe reachability graph of the aggregated
system is isomorphous to that of the original
system projected on the preserved places

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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Iterative algorithm: marked graphs
case

N

dDefinition of unknowns:

tau_l 71 rho_1

tau3 Z3 rho_3
service time of
rho_rand tay_j

©
tau3 73 T4 W T13

service time of rho_r service time of fay_j

+ throughput of each system
+ response time of interface transitions at each system

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 25



Iterative algorithm: marked graphs
case

N

response time approximation of the first aggregated system

left hand subnet for a token that

exits through T2: Ry :ﬁ[alph_ﬂ/[t ]
(Little's law) 4t

exits through T3: R3 :Zz[alph_%

(xlto] = #1131 = x) Ot Ie®«,

thus, solve the CTMC and compute: R,, R; and also y

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 26



N

Iterative algorithm: marked graphs
case

select tau 1 and tau 2 as:

tau_1=f.Ry L T /
tau 2= f.R3 e -
where fis computed using the skeleton:
linear search until the throughput of ami

the skeleton is equal to the throughput
computed for the first aggregated system

tau3 73 Ti4 W T13

tau_l 77 rho_1

tau 1=f.Ry

tau_2= f Ry T skeleton

tau3 Z3 rho_3

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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Iterative algorithm: marked graphs
case

N

The algorithm:

select a cut Q;
derive aggregated systems AS;,AS, and skeleton BS;
give initial value p @ for each teT,,;
k:=0; {counter for i1teration steps}
repeat
k:=k+1;
solve aggregated system AS; with
input: p KD for each teT,,,
output: ratios among U of teT,;, and X, (O;
solve basic skeleton BS with
input: p & for each teT,,,
ratios among K O of teT,;, and X; ),
output: scale factor of p O of teT,;;
solve aggregated system AS, with
input: p KD for each teT,,,
output: ratios among P of teT,,, and X,(;
solve basic skeleton BS with
input: p O for each teT,,,
ratios among K. of teT,,, and X,(O,
output: scale factor of p O of teT,,;
until convergence of X, and X,(;

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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Iterative algorithm: marked graphs
case

N

Service rates (arbitrary):
T2=0.2; T4=0.7; T6=0.3; T8=0.8; T9=0.6; T10=0.5;
Ti=1.0, i=1,35,7,11,12,13,14,15,16,17,18,19

Throughput of the original system: 0.138341
State space of the original system: 89358

Results using the approximation technique:
State space AS1: 8288; State space AS2: 3440; State space BS: 231

AS1 AS2

X1

tau 1

tau 2

tau_ 3

X2

rho 1

rho 2

rho 3

0.17352
0.14093
0.13856
0.13844
0.13843

0.05170
0.06265
0.06325
0.06328
0.06328

0.16810
0.19707
0.19821
0.19827
0.19827

0.88873
0.91895
0.92054
0.92062
0.92064

0.12714
0.13795
0.13841
0.13843
0.13843

0.89026
0.88267
0.88239
0.88237
0.88238

0.21861
0.21363
0.21343
0.21342
0.21342

0.14354
0.13509
0.13467
0.13465
0.13465
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Outline
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U
dIterative algorithm: general case
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Iterative algorithm: general case

L

N

dArbitrary A/ T system + structured view

/

partition into modules (functional units)
connected through places (buffers)

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 31



Iterative algorithm: general case

L

N

JAll A/ Tsystems have serveral structured
views, varying between:

da single module (empty set of buffers)

das many modules as transitions (all places are
considered as buffers)

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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Iterative algorithm: general case

N

. module 2

buffers

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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Iterative algorithm: general case

N

1 Substitute a subnet
by a set of b
implicit places )
derived from | At
minimal P-semiflows 4 O
of the subnet a, “2
(sum of the incidence 1 ls X
rows of places) =
Oag
] |2
O |
a, 5
_—
,

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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Iterative algorithm: general case

N

second aggregated system
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Iterative algorithm: general case

L

N

dThe quality of the abstract view is "not as
good as” in the MG's case

Othe language of firing sequences of the
aggregated system includes that of the
original system projected on the preserved
transitions

Qdthe reachability graph of the aggregated
system includes that of the original system
projected on the preserved nodes

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models

36



Iterative algorithm: general case

N

L

dProblems in the composition:

The RG of an aggregated system may include
spurious markings and firing sequences that do
not correspond to actual markings and firing
sequences of the original system

we can obtain even non-ergodic systems
(CTMC cannot be solved)

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 37



Iterative algorithm: general case

L

N

Y

t6
>

% P7

t8

5.

i t10

original system: aggregated system:
limited and reversible, thus ergodic it has a total deadlock

—t10
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Iterative algorithm: general case

L

N

 Solution for the problem:

select only the strongly connected component
of the RG that includes the projection of the
initial marking

t t2
P2,P10
t6
P7,P10
t7 t8 t9
P6,P10 P8,P10 P4,P11
t9 y 10 3
P4,P10 P5,P10 P9,P11
3 t4 t12
P9,P10
t11
RG of the original system RG of The aggregated system

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 39




Iterative algorithm: general case

N

L

JMore problems:

Spurious markings (and/or firing seq.) may still
be present,
but the solution is possiblel

Pl - A3
> )@ > —>( )P ;\\
P6 t6 t1 \
2 \Y
2 \
t5 |:!_| t2 Q h2
;:E 2
O ....... '
P4 =

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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Iterative algorithm: general case

L

N

It is possible to eliminate all the spurious markings
with additional computational effort

Luse a Kronecker expression of the infinitesimal
generator of the original system

dimplement a depth-first search to build the
RS

dreduce the infinitesimal generators of the
aggregated systems, using the information
about reachability in the original system

1 The whole reachability set must be derived but the
CTMC is not solved (throughput is approximated
from the solution of CTMC of subsystems)

Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models
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