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Motivating examples

� A simple telecommunication protocol (TP) example
� A TP system accepts and processes a stream of

transactions, mediated through a (large) buffer

� Transactions arrive “randomly” at some specified rate
(e.g., 15 tps)

� The TP server is capable of servicing transactions at a 
given service rate (e.g., 58.37 ms)

�Q1: If both the arrival rate and service rate are doubled, 
what happens to the mean response time?

�Q2: What happens to the mean response time if the
arrival rate increases by 10%?
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Motivating examples

� A simple multiprocessor TP system
� Consider our TP system but this time with multiple

transaction processors

� The arrival rate is 15 tps
� The mean service time per transaction is 58.37 ms
�Q: By how much is the system response time reduced by 

adding one processor?

μ

μ

μ

...

Poisson arrival
process, rate λ

Single queue

m parallel TP servers
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Motivating examples

� A Simple Computer Model

� Consider an open
uniprocessor CPU 
system with just disks

� Each submitted job makes
121 visits to the CPU, 
70 to disk 1 and
50 to disk 2 on average

� The mean service times are 5 ms for the CPU, 30 ms for
disk 1 and 37 ms for disk 2

�Q: What is the effect of replacing the CPU with one
twice the speed?
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Motivating examples

� A very simple shared memory multiprocessor

� Both processors behave in a similar way:
�A cyclic sequence of: local activity, then
�an access request to the shared memory, and then
�accessing the shared memory (in mutual exclusion)

�Q: What is the “processing power”? (average number of
processors effectively –locally– working)
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Why performance?

� Functional requirements of a system
� “Does a system work?”

�Qualitative analysis
� Correctness (“it works”)
� Verification of logical properties:

�deadlock-freeness, liveness, boundedness, home state
existence, synchronic lead, mutual exclusions

� But correctness is not a sufficient condition to
make a system acceptable...
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Why performance?

�Non-functional requirements:
� “How well does a system work?”
�Quality requirements like accuracy, performance, 

security, modifiability, easiness of use...

�Quantitative analysis: 
� Performance evaluation

�“How quickly can the system accomplish a given task?”
�“How much is the system being used?”
�Responsiveness: ability to meet its objectives for response 

time or throughput
�Scalability: ability to continue to meet responsiveness as 

the demand for the software functions increases
� Reliability evaluation

�“Would the system remain continuously operational for the
duration of a mission?”

�“How dependable is the system over the long run?”
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Why performance?
� System users, designers and administrators aim to obtain

or provide the highest performance at the lowest cost

� Typical problems faced by system designers and
administrators that can be addressed through performance
evaluation include: 
� Specifying performance requirements
� Evaluating design alternatives
� Comparing two or more systems
� Determining the optimal value of a parameter (system tuning) 
� Finding the performance bottleneck (bottleneck identification) 
� Characterizing the load on the system (workload

characterization) 
� Determining the number and size of the components (capacity

planning) 
� Predicting the performance at future loads (forecasting) 
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When, where and how performance?

�When, 
where?
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When, where and how performance?

�How? 
�Select appropriate evaluation techniques, 

performance metrics and workloads for a 
system

�Conduct performance measurements correctly
�Use proper statistical techniques to compare 

several alternatives
�Design measurement and simulation

experiments to provide the most information
with the least effort

�Perform simulations correctly
�Use simple queueing models to analyze the

performance of systems
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When, where and how performance?

� Steps in performance evaluation study
1. State the goals of the study and define the system

boundaries
2. List system services and possible outcomes
3. Select performance metrics
4. List system and workload parameters
5. Select factors and their values
6. Select evaluation techniques
7. Select the workload
8. Design the experiments
9. Analyze and interpret the data 
10. Present the results. Start over, if necessary.
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When, where and how performance?

� Performance as an Engineering Activity

I.    The need for the study arises.
II.   Careful estimation of the costs and
III.   possible benefits of the study
IV.                                                        iterative procedure
V.

Problem 
identification

Formulation 
of objectives

Results 
interpretation

I II III

IV

V

Plan 
implementation

Plan 
preparation
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Performance metrics

�Quantifiable descriptor used to represent the
performance of a system or some of its aspects
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Performance metrics
Index class Examples of indices General definition

Productivity Throughput rate The volume of information processed
Production rate by the system in the unit time
Capacity (maximum

throughput rate)
Instruction execution rate
Data-processing rate

Responsiveness Response time The time between the presentation of
Turnaround time an input to the system and the
Reaction time appearance of a corresponding

output

Utilization Hardware module (CPU, The ratio between the time a
memory, I/O channel, specified part of the system is used
I/O device) utilization during a given interval of time and

Operating system the duration of that interval
module utilization

Public software module
(e.g., compiler) utilization

Data base utilization
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Performance metrics

� Response time: 
� the interval between a user’s request and the system

response user’s
request

system’s
response

response time time

user
starts
request

user
finishes
request

system
starts
execution

user
starts
next
request

system
starts
response

system
completes
response

reaction
time

response time
(definition 1)

response time
(definition 2)

timethink
time
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Performance metrics

� Throughput: 
� productivity measure
� rate at which requests can be seviced by the system
� amount of work performed per unit of time

� Efficiency: 
� ratio of the maximum achievable throughput to nominal 

capacity
�nominal capacity (or bandwidth in the case of computer

networks): max achievable throughput under ideal workload
conditions
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Performance metrics

� Utilization of a resource: 
� is measured as the fraction of time the resource is busy

servicing requests
� bottleneck: the resource with a maximum utilization in a 

system; it is the resource slowing down the system
� Reliability metrics: 

� measure the period of operation without a single error
� for example, the probability of an error not occuring by 

time t, or the mean time between errors
� Availability measures: 

� are interested in computing the fraction of the time the
system is available to service users’ requests

� these include the system uptime, downtime, and mean 
time between failures
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Performance metrics

�Utility classification of performance
metrics
�Higher is better (HB) metrics: higher values of

such metrics preferred, e.g., throughput. 
�Lower is better (LB) metrics: lower values of

such metrics preferred, e.g., response time. 
�Nominal is best (NB) metrics: both high and low

values are undesirable, e.g., utilization
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Performance metrics
Specification problems (of performance metrics)

Nonspecific: no clear numbers are specified
Nonmeasurable: no way to verify if the system meets the
requirements
Nonactionable: metrics are not easy-to-understand, it is not
clear which direction is "good" and which is "bad", so you don’t
know when to take action
Nonrelevant: metrics measure things that are not important
Nontimely: metrics for which you cannot get the data when you
need it
Metrics should be 

Specific
Measurable
Actionable
Relevant
Timely



Javier Campos. Performance modelling and evaluation: 1. Introduction 24

Performance metrics

�An example of specification of
performance metrics: performance
requirements of a high speed local area
network (LAN)
�A LAN basically transport packets to a specific

destination station
�Three possible outcomes

�The data arrive correctly to the destination station
�The data does not arrive correctly
�The data does not arrive
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Performance metrics

� Performance requirements:
� Speed: if the data arrive correctly to the destination

station,
�Arrival time to any destination < 1 s
�Throughput > 80 Mbps

� Reliability:
�Probability of error of a bit < 10-7

�Probability bad packet detected < 1%
�Probability bad packet not detected <10-15

�Probability packet directed to a bad destination <10-18

�Probability packet duplicated <10-5

�Probability lost packet < 1%
� Availability:

�Mean time for reinitialization < 15 ms
�Mean time between consecutive reinitializations > 1 min
�Mean time for network repair < 1 h
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Evaluation techniques

�Measurement techniques
�Tracing a real system
�Measuring a prototype

�System simulation
�Trace-driven
�Discrete-event

�Analytical modelling
�Markov chains
�Queueing networks
�Petri nets
�Process algebras
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Evaluation techniques

�Measurement techniques: Tracing a real system
�Observation of system operation during a period of time 

and registering values of relevant variables for the
evaluation

�Need:
�To get approval of operators
�To instrument the system for measurement

� End-to-end metrics and component-wise metrics
�Non-interference with servicing of user requests

�Instrumentation should be able to keep up with system load
�☺:

�Most accurate estimation of metrics
�/:

�Lack of control over parameters/workloads
�Non-repetitive measurements
�No insights into “future” operation/design
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Evaluation techniques

�Measurement techniques: Measuring a prototype
�Observation of a prototype of the system and

registering values of relevant variables for the evaluation
�Need:

�A prototype
�To instrument the prototype for measurement

� End-to-end metrics and component-wise metrics
�Non-interference with servicing of user requests

�To design and generate workload
�To select/tune system parameters

�☺ :
�Accurate estimation of metrics
�More control over parameters and workload

�/ :
�No insights into “future” system designs
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Evaluation techniques

� System simulation
� Developing a computer program to simulate the system

behaviour and measurement of the program execution
�Need:

�A simulator
� Programming skills, right level of detail

�To design and generate workload
�To select/tune system parameters

�☺ :
�High control over parameters and workload
�Possible to incorporate future system designs as well

� Takes effort though
�/ :

�Less accuracy
�Large effort
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Evaluation techniques

� Analytical modelling
� Building a mathematical model of the system and

analysing the model
�Need:

�A model
� Probabilistic and statistical modeling skills

�To design and generate workload
�To select/tune system parameters

�☺ :
�Least effort
�High control over parameters and workload
�Relatively easy to incorporate future system designs as well

�/ :
�Least accurate

� Unrealistic assumptions
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Evaluation techniques

�Comparison of techniques / selection
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Evaluation techniques

� Common mistakes in selecting techniques:
� Use of wrong technique

�Analysts prefer technique they are comfortable with
�Use it to solve every performance evaluation problem

� A model that they can best solve, not one that can best solve
the problem

�Should have basic knowledge of all four techniques
� Always use two or more techniques

�Do not believe models till validated by simulation
�Do not believe simulation till validated by measurement
�Do not believe measurement till predicted by model or

simulation

Be aware of limitations of each technique!
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Analysis techniques of models

� Classification according to formalism:

�Markov chains
�Queueing systems and queueing networks
� Stochastic Petri nets
� Stochastic process algebras

� Classification according to the object of study:

� Transient state analysis
� Steady-state analysis
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Analysis techniques of models

�Classification according to solution
technique:
�Enumerative (state-space based)
�Reduction/transformation-based
�Structurally based (high level model-based)

�Classification according to quality of
results:
�Exact values
�Approximations
�Bounding techniques
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Modelling formalisms

�Markov chains
�Based on the concept of state of the system
�Solution techniques:

�Enumerative
�Transient and steady-state analysis
�Exact and approximate analysis

�/ :
�Low abstraction lever
�Model size equals number of states of the system
�Only in very particular cases aggregation techniques

exist
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Modelling formalisms

�Queueing networks
�High abstraction level

�The number of states characterizing the system
grows exponentially on the model size

�Solution techniques:
�Enumerative (based on Markov chains)
�Reduction/transformation-based
�Structurally based (“product-form solution”, exact)
�Transient and steady-state analysis
�Exact, approximate and bounds

�/ :
�Lack of synchronization primitive
�Extensions exist but destroying analysis possibilities
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Modelling formalisms

� Stochastic Petri nets
� Abstraction level similar to queueing networks
�With synchronization primitive

“SPN = Petri nets + timing interpretation = 
= queueing networks + synchronizations”

�Wide range of qualitative (logical properties) analysis
techniques
�Enumerative
�Reduction/transformation-based
�Structurally based

� Petri nets as a formal modelling paradigm
�a conceptual framework to obtain specific formalisms based 

on common concepts and principles at different life-cycle
phases

...
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Modelling formalisms

�Stochastic Petri nets (cont.)

�Analysis techniques:
�Exact: mainly enumerative (based on Markov chains)
�Bounding techniques (structurally based)
�Approximation techniques (reduction/transformation)

�/ :
�Lack of a “product-form” solution for efficient exact

analysis in most cases
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Why stochastic processes?

Computer systems are
Dynamic: they can pass through a succession of states as 
time progresses.
Influenced by events which we consider here as random
phenomena.

Definition: A stochastic process is a family of
random variables 

{X(t) ∈ Ω | t ∈ T}
each defined on some (the same for each) sample
space Ω for a parameter space T.
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Why stochastic processes?

T, Ω may be either discrete or continuous.
Discrete state and continuous state processes: 

A process is called discrete or continuous state
depending upon the values its states can take, i.e., 
whether the values (Ω) are finite and countable, or
any value on the real line.

Discrete and continuous (time) parameter
processes: 

A process is called discrete or continuous (time) 
parameter process depending on whether the index
set T is discrete or continuous.
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Why stochastic processes?

T is normally regarded as time
real time: continuous
every month or after job completion: discrete

Ω is the set of values each X(t) may take
bank balance: discrete
number of active tasks: discrete
time delay in communication network: 
continuous
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Why stochastic processes?

Example:
Suppose we observe n(t), the number of jobs at
the CPU as a function of time, then the process

{n(t), t ∈[0,∞)} 
is a stochastic process, where n(t) is a random
variable, and n(t) ∈ {0,1,2,...}
The values assumed by the random variable are 
called states, and the set of all possible values
forms the state space of the process.
In this example time is continuous and state
space is discrete.
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Why stochastic processes?

Description of a stochastic process:
Probabilistic description of a random variable X is given
by its probability density function (pdf)

Probabilistic description of a stochastic process is given
by the joint pdf of any set of random variables selected
from the process.

Thus, in the general case, the detailed description of a 
stochastic process is unfeasable.

∞<<∞−≤= xxXP
dx
dxf X    },{)(

Probability Distribution Function (PDF)
also called cumulative distribution function (cdf)
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The Poisson process

A large class of stochastic processes are renewal processes. 
This class of processes are used to model independent
identically distributed occurrences.
Definition: Let X1,X2,X3,... be independent identically
distributed and positive random variables, and set Jn = 
X1+...+Xn. 
Then process N(t), t ≥ 0, where N(t) = max{ n | Jn ≤ t } is
called a renewal process.

X1
X2

X3

X4
X5

J1 J2 J3 J4 J5

N(t)5
4
3
2
1
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The Poisson process

Definition: The (time-homogeneous, one-dimensional) Poisson
process is a special case of a renewal process where the
time between occurrences is exponentially distributed. 

The pdf and PDF of an exponentially distributed random
variable X are:

)0(   )( ≥= − xexf x
X

λλ )0(   1)()( ≥−=≤= − xexXPxF x
X

λ
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The Poisson process

Properties of exponential distribution
The mean value and variance

The minimum of exponentials is exponential (sum of
rates)

λ
=

1][XE
2

1][
λ

=XV

)0(   )( ≥λ= λ− xexf x
X

)0(   )( ≥μ= μ− yeyf y
Y

},mín{ YXZ =

)0(    )()( )( ≥μ+λ= μ+λ− zezf z
Z
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The Poisson process

Memoryless property

}{}|{ xXPXxXP ≥=≥+≥ αα

xe λ−λ

α x0

X
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The Poisson process

Properties of Poisson process
Residual life

If you pick a random time point during a Poisson
process, what is the time remaining R to the next
instant (arrival)?
E.g. when you get to a bus stop, how long will you have
to wait for the next bus?
If process is Poisson, R has the same distribution as X
(the time between ocurrences) by the memoryless
property of exponential
it doesn't matter when the last bus went!

contrast constant interarrival times in a perfectly
regular bus service
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The Poisson process

Infinitesimal definition of Poisson process
P(arrival in (t,t + Δt))= P(R ≤ Δt) = P(X ≤ Δt) for all t

= 1 – e– λ Δt

= λΔt + o(Δt)
Therefore

Probability of an arrival in (t, t + Δt) is λΔt + o(Δt) 
regardless of process history before t
Probability of more than one arrival in (t, t + Δt) is o(Δt) 
regardless of process history before t

The Poisson distribution
Distribution of number of arrivals in time t

( ) t
n

e
n
tntNP λλ −==
!
)()(
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The Poisson process

Superposition property (merging)

Decomposition property (splitting)
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The Poisson process

Central limit theorem for counting processes:
Let A1(t), …, Ak(t) be independent counting processes
(with arbitrary distributions), then

is a Poisson process when k ∞ (under certain “technical
conditions”)
Interpretation: independently of the behaviour of
individual countings, the average counting behaviour is
Poisson if population is big

k

tA
tX

k

i
i∑

== 1

)(
)(
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Basic definitions

Markov processes: special class of
stochastic processes that satisfy the
Markov Property (MP):

Given the state of the process at time t, its
state at time t + s has probability distribution
which is a function of s only.
i.e. the future behaviour after t is independent
of the behaviour before t.
Often intuitively reasonable, yet sufficiently
“special” to facilitate effective mathematical 
analysis.
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Basic definitions

We consider Markov processes with
discrete state (sample) space. 

They are called Markov chains.

If time parameter is discrete {t0, t1, t2...} they
are called Discrete Time Markov Chains
(DTMC).

If time is continuous (t ≥ 0, t ∈ lR), they are 
called Continuous Time Markov Chains (CTMC).
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Basic definitions

Let X = {Xn | n = 0,1,...; Xi ∈ lN, i ≥ 0} be a 
non-negative integer valued Markov chain 
with discrete time parameter n.

Markov Property states that:
P(Xn+1 = j | X0=x0,...,Xn=xn) =

= P(Xn+1 = j | Xn = xn), for j,n=0,1...
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Basic definitions

Evolution of a DTMC is completely
described by its 1-step transition
probabilities

pij(n) = P(Xn+1 = j | Xn = i) for i,j,n ≥ 0

If the conditional probability is invariant
with respect to the time origin, the DTMC 
is said to be time-homogeneous

pij(n) = pij

Ω∈∀=∑
Ω∈

ip
j

ij   ,1
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Representations

State transition diagram
Directed graph

number of nodes = number of states (if Ω finite)
An arc from i to j if and only if pij > 0

Telephone line example: 
line is either idle (state 0) or busy (state 1)
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Representations

Transition probability matrix

dimension = number of states in Ω if finite, 
otherwise countably infinite
conversely, any real matrix P s.t. pij ≥ 0, Σj pij = 
1 (called a stochastic matrix) defines a MC

1  tosum rows allin which     

0

1110

0100

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

MM

L

M

L

L

iii pp

pp
pp

P



Javier Campos. Performance modelling and evaluation: 3. Discrete time Markov chains 10

Representations

Telephone line example

⎥
⎦

⎤
⎢
⎣

⎡
=

7.03.0
1.09.0

P
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Representations

Example: I/O buffer, capacity M records
New record added in any unit of time with prob. a (if not
full).
Buffer emptied in any unit of time with prob. b.
If both occur in same interval, insertion done first.
Let Xn be the number of records in buffer at (discrete) time 
n. Then, assuming that insertions and emptying are 
independent of each other and of their own past histories, 
{Xn | n=0,1,...} is a MC with state space {0,1,...,M} and state
diagram:
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Representations

The transition rate matrix follows immediately, e.g.:

p12 = a(1 – b ) = pn,n+1 , 0 ≤ n ≤ M – 1 

pMM = 1 – b

etc.
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Representations

Example: 
A system that can be 

Idle
Busy
Waiting for a resource
Broken
Repairing

idle busy waiting broken repair

0.05

0.05

0.2

0.75

0.3

0.3

0.3

0.55

0.6

0.4

0.5

0.5

0.4

0.1

idle busy wait broken repair

P =

0.2 0.75 0.0 0.05 0.0
0.3 0.3 0.3 0.1 0.0
0.0 0.55 0.4 0.05 0.0
0.0 0.0 0.0 0.5 0.5
0.6 0.0 0.0 0.0 0.4

⎡

⎣

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
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Representations
Time spent in a state:

T0 = random variable “time spent in state 0”

P(T0=0) = (1-p00)
P(T0=1) = p00 (1-p00)
P(T0=2) = p00

2 (1-p00)
…
P(T0=n) = p00

n (1-p00)

Geometrically distributed random variable
Is the discrete analogue of exponential distribution memoryless

⎥
⎦

⎤
⎢
⎣

⎡
=

7.03.0
1.09.0

P
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Multi-step transition probabilities

Let the 2-step transition probability be
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Multi-step transition probabilities

Similarly, the n-step transition probability

In matrix form:

If n=2: 

And in general:                               i.e.
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Multi-step transition probabilities

A more general version of previous
equations

Chapman-Kolmogorov equations

Because

Thus

∑
Ω∈
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Multi-step transition probabilities

Computation of transient distribution
Probabilistic behaviour of the Markov chain over any
finite period time, given the initial state

E.g., in the example of the I/O buffer with capacity of M
records, the average number of records in the buffer at
time 50 is

( )ijnn
ijn PpiXjXP ==== )(

0 )|(

)50(
0

)50,min(

1
050 )0|( j

M

j
qjXXE ∑

=
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Multi-step transition probabilities

Computation of transient distribution
nth-step distribution:

in matrix form:

Problem: computationally expensive!
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Classification of states
State j is accessible from state i
(writen written i → j)  if 

A state i is said to communicate with state j
(writen written i ↔ j) if i is accessible from j and j is 
accesible from i
A set of states C such that each pair of states in C
communicates is a communicating class
A communicating class is closed if the probability of leaving
the class is zero (no state out of C is accesible from states
in C)
A Markov chain is irreducible if the state space is a 
communicating class
State i is an absorbing state if there is no state reachable
from i

np n
ij   somefor   ,0)( >
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Classification of states

Periodicity:
A state i has period k if any return to state i
must occur in some multiple of k time steps.

If k = 1, then the state is aperiodic; otherwise 
(k>1), the state is periodic with period k.
It can be shown that every state in a 
communicating class must have the same period.
An irreducible Markov chain is aperiodic if its 
states are aperiodic.

}0)|(:gcd{ 0 >=== iXiXPnk n
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Classification of states

Recurrence
A state i is transient if, given that we start in state i, there is 
a non-zero probability that we will never return back to i.

Formally, next return time to state i ("hitting time"):

State i is transient if  P (Ti < ∞) < 1

If a state i is not transient (it has finite hitting time with 
probability 1), then it is said to be recurrent.

Let Mi be the expected (average) return time, Mi=E[Ti]
Then, state i is positive recurrent if Mi is finite; otherwise, state i
is null recurrent.

It can be shown that a state is recurrent iff

}|:min{ 0 iXiXnT ni ===

∞=∑
∞

=0

)(

n

n
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Classification of states

In a finite DTMC:
All states belonging to a closed class are positive 
recurrent.
All states not belonging to a closed class are transient.
There are not null recurrent states.

In an irreducible DTMC:
Either all states are transient or recurrent

Ergodicity:
A state i is said to be ergodic if it is aperiodic and
positive recurrent.
If all states in a DTMC are ergodic, the chain is said to
be ergodic. 
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Steady-state behaviour

Transient behaviour: computationally expensive
Easier and maybe more interesting to determine 
the limit or steady-state distribution

In vector form

Does it exist?
Is it unique?
Is it independent of the initial state?

)(lim njnj ππ
∞→

=

)(lim n
n

ππ
∞→

=
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Steady-state behaviour

If limit distribution exists… we know how to compute it!

i.e., it must be equal to the stationary distribution, the
solution of:

πT P = π T balance equations
πTe = 1 normalizing equat.

where e = (1,1,…,1)T, and the initial distribution does not
affect the limit distribution

PnPn n )()0()1( 1 πππ ==+ +

Pnn
nn

)(lim)1(lim ππ
∞→∞→

=+
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Steady-state behaviour

Other interpretation:
The solution of balance equations can be seen as the
proportion of time that the process enters in each state
in the long run

Let Nj (n) be the number of visits of the process to the
state j until instant n
The occupation distribution can be defined as

Of course, its inverse is the mean interval between visits, 
or mean return time (1/πj)

If the occupation distribution exists, it verifies
πT P = πT ;   πT e= 1

1
)]([

lim
+

=
∞→ n

nNE j

njπ
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Steady-state behaviour

But,
Does limit distribution exist?
Is it unique?
Is it independent of the initial state?

We know some cases where the answer is no

We know some cases where the answer is yes
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Steady-state behaviour
If a unique limit distribution exists, all rows of Pn must be equal in 
the limit, in this way the distribution of Xn does not depend on the
initial distribution
Example

If a is the initial distribution, then the distribution of Xn, n ≥ 1 is:

(0.1(a1+a3),     a2,     0.9(a1+a3)), if n is odd
(   0.1a2,       a1+a3,      0.9a2 ), if n is even

Thus, the DTMC has not limit distribution.
If balance and normalization equations are solved, we get a unique solution
π = (0.05, 0.5, 0.45).

This means: if π is assumed as initial distribution, then π is also
the distribution for Xn, for all n.

⎥
⎥
⎥
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Steady-state behaviour
Example: limit and stationary distributions may be non unique

Then,

Limit distribution exists, but it is not unique since it depends on
the initial distribution: if a is the initial distribution

π = (0.111(a1+a2), 0.8889(a1+a2), a3) 

is a limit distribution for Xn, and it is also a stationary
distribution.

⎥
⎥
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⎦
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⎢
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Steady-state behaviour
Finite & irreducible DTMC ⇒ there exists a unique stationary distribution

Finite & irreducible DTMC ⇒ there exists a unique occupation distribution, 
and it is equal to the stationary distribution

Finite, irreducible & aperiodic DTMC ⇒ it has a unique limit distribution, 
and it is equal to the stationary distribution

Positive recurrent & aperiodic DTMC ⇒ there exists limit distribution
If in addition DTMC is irreducible, the limit distribution is independent of the
initial probability

Irreducible, positive recurrent & periodic DTMC with period d ⇒

An irreducible & aperiodic DTMC is positive recurrent ⇔ there exists a 
unique solution of balance equation

Irreducible, aperiodic & null recurrent DTMC ⇒ 0lim )( =
∞→

n
ijn

p

j
nd

ijn
dp π=

∞→

)(lim
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Example

A processor has certain tasks to perform
State transition diagram. Possible states:

idle (no task to do)
busy (working on a task)
waiting (stopped for some resource)
broken (no longer operational)
repair (fixing the failure)

idle busy waiting broken repair

0.05

0.05

0.2

0.75

0.3

0.3

0.3

0.55

0.6

0.4

0.5

0.5

0.4

0.1
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Example

Transition probability matrix representation
idle busy wait broken repair

P =

0.2 0.75 0.0 0.05 0.0
0.3 0.3 0.3 0.1 0.0
0.0 0.55 0.4 0.05 0.0
0.0 0.0 0.0 0.5 0.5
0.6 0.0 0.0 0.0 0.4

⎡

⎣

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

idle busy waiting broken repair

0.05

0.05

0.2

0.75

0.3

0.3

0.3

0.55

0.6

0.4

0.5

0.5

0.4

0.1
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Example
Properties: finite state space, irreducible, aperiodic

⇒ it has a unique limit distribution, 
and it is equal to the stationary distribution

Solution:

πT P = π T

πTe = 1

π =(0.2155, 0.3804, 0.1902, 0.1167, 0.0972)T

idle busy waiting broken repair

0.05

0.05

0.2

0.75

0.3
0.3

0.3

0.55

0.6

0.4

0.5

0.5

0.4

0.1

)(lim n
n

ππ
∞→

=
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Example

π =(0.2155, 0.3804, 0.1902, 0.1167, 0.0972)T

Other performance indices:
Availability:   P(idle + busy + wait) = 0.7861
(in other words, 78.61% of the time)

So, not available: 21.39% of the time

Working time: P(busy + wait) = 0.57
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Definitions

Remember DTMC
pij is the transition probability from i to j over 
one time slot
The time spent in a state is geometrically 
distributed

Result of the Markov (memoryless) property
When there is a jump from state i, it goes to 
state j with probability
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Definitions

Continuous time version

qij is the transition rate from state i to state j

i
j

k

qij

qik
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Definitions

Formally:
A CTMC is a stochastic process {X(t) | t ≥0, t ∈ lR}  s.t. 
for all t0,...,tn-1,tn,t ∈ lR, 0≤t0<…<tn-1<tn<t ,  for all n ∈ lN

Alternative (equivalent) definition: 
{X(t) | t ≥0, t ∈ lR}  s.t.   for all t,s ≥ 0 
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Definitions

Homogeneity
We are considering discrete state (sample) space, then
we denote

pij(t,s) = P(X(t+s)=j | X(t)=i), for s > 0.

A CTMC is called (time-)homogeneous if

pij(t,s) = pij(s)   for all t ≥ 0
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Definitions

Time spent in a state:
Markov property and time homogeneity imply that if at
time t the process is in state j, the time remaining in 
state j is independent of the time already spent in state
j : memoryless property.

⇒ time spent in state j is exponentially distributed.
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Definitions

Transition rates:
In time-homogeneous CTMC, pij(s) is the probability of
jumping from i to j during an interval time of duration s.
Therefore, we define the instantaneous transition rate
from state i to state j as:

And the exit rate from
state i as   – qii

Q = [qij]  is called infinitesimal generator matrix
(Q matrix)

t
tp

q ij

tij Δ
Δ
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lim
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t
tpqq ii
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Steady-state distribution
Kolmogorov differential equation:

Denote the distribution at instant t:   πi(t) = P(X(t)=i)
And denote in matrix form:  P(t) = [pij(t)]

Then π(t) = π(u)P(t-u) ,  for u < t  
(we omit vector transposition to simplify notation)

Substituting u = t–Δt and substracting π(t–Δt):

π(t) – π(t–Δt) = π(t–Δt) [P(Δt) – I],   with I the identity matrix

Dividing by Δt and taking the limit

Then, by definition of Q = [qij], we obtain the
Kolmogorov differential equation

t
ItPtt

dt
d

t Δ
−Δ

=
→Δ

)(lim)()(
0

ππ

Qtt
dt
d  )()( ππ =
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Steady-state distribution

Since also π(t)e = 1,  with e = (1,1,…,1)
If the following limit exists

then taking the limit of Kolmogorov differential
equation we get the equations for the steady-
state probabilities:

πQ = 0 (balance equations)

πe = 1 (normalizing equation)

)(lim t
t

π
∞→
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Examples

Example 1: A 2-state CTMC
Consider a simple 
two-state CTMC

The corresponding
Q matrix is given by

The Kolmogorov differential
equation yields:

Given that π1(0) = 1, 
we get the transient solution:
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Examples

And the steady-state
solution comes from
πQ = 0; πe = 1:

We get:

Which can also be obtained by taking the limits as t ∞ of
the equations for π1(t) and π0(t).

1
0
0

10

10

01

=+
=−
=−

ππ
λπμπ
μπλπ

μλ
μπ

μλ
λπ

+
=

+
= 10        ;

μλ
λ

μλ
λ

μλ
λππ

μλ
μ

μλ
λ

μλ
μππ

μλ

μλ

+
=

+
−

+
==

+
=

+
+

+
==

+−

∞→∞→

+−

∞→∞→

t

tt

t

tt

et

et

)(
00

)(
11

lim)(lim

lim)(lim

balance eq.



Javier Campos. Performance modelling and evaluation: 4. Continuous time Markov chains 15

Examples
Example 2: 
A simple open system with loss

Works enter to the system with exponentially distributed
(parameter λ) interarrival time (Poisson process)
The service time in both processing stations is exponentially
distributed with rate μ
If a work ends in station 1 when station 2 is busy, station 1 is
blocked
If station 1 is busy or blocked when a work arrives, arriving
work is lost
Questions: 

proportion of lost works? 
mean number of working stations? 
mean number of works in the system?

1 2

may be lost

μ μ
λ

(Poisson)
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Examples

The set of states of the system:
S={(0,0), (1,0), (0,1), (1,1), (b,1)}
0 empty station
1 working station
b blocked station

State transition diagram:           Infinitesimal generator
matrix:

1 2

may be lost

μ μ
λ

(Poisson)

0,0 1,0 0,1

1,1 b,1

λ μ μ

μ μ

λ

μ

Q =

00
10
01
11
b1

−λ λ 0 0 0
0 −μ μ 0 0
μ 0 −(λ + μ) λ 0
0 μ 0 −2μ μ
0 0 μ 0 −μ
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⎢ 
⎢ 
⎢ 
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⎥ 
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Examples

Steady-state solution:
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Examples
Proportion of lost works?

Is the probability of the event “when a new work arrives, the first
station is non-empty”, i.e.:

Mean number of working stations?
In state (0,0) there is no working station and in state (1,1) there
are two; in the rest of states there is only one, thus

Mean number of works in the system?
In state (0,0) there is no one; in states (1,1) and (b,1) there are two
and in the rest there is only one, thus

π10 + π 11 + π b1 =
3ρ2 + 2ρ

3ρ 2 + 4ρ + 2

B = π 01 + π10 + π b1 + 2π 11 =
4ρ 2 + 4ρ

3ρ 2 + 4ρ + 2

L = π 01 + π10 + 2π b1 + 2π 11 =
5ρ2 + 4ρ

3ρ 2 + 4ρ + 2
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Examples

Example 3: I/O buffer with limited capacity
Records arrive according to a Poisson process (rate λ)
Buffer capacity: M records
Buffer cleared at times spaced by intervals which are 
exponentially distributed (parameter μ) and independent
of arrivals

λ λ λ λ

μ

μ
μ
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Examples
Steady-state solution:

⇒

Thus, for example, the mean number of records in the buffer in 
steady-state:
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Definition

A CTMC with state space S = {0,1,…} 
is called a birth-death process if the only non-
zero transition rates are qi,i+1 and qi+1,i , i ≥ 0,
representing births and deaths, respectively.

λn = birth rate in state n (i.e., λn = qn,n+1)
μn = death rate in state n  (i.e., μn = qn,n-1)

Population model

(Poisson process is a particular case of pure birth process)

•   •   • n n+1 •  •  •n-1

λn-1 λn

µn µn+1

0 1 2

λ1λ0

µ2µ1
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Definition

Markov Process

Birth-Death
process

Poisson 
process
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Definition

Infinitesimal generator matrix:
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Steady-state distribution

Balance equations: πQ = 0
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Steady-state distribution

Then,

And normalizing equation, πe = 1, then,

ergodicity condition:
πn > 0, for all n ≥ 0, i.e.
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Example

Let X(t) be the number of bacteria in a 
colony at instant t.
Evolution of the population is described by:

the time that each of the individuals takes for
division in two (binary fission), independently of
the other bacteria, and
the life time of each bacterium (also
independent)

Assume:
Time for division is exponentially dist. (rate λ)
Life time is also exponentially dist. (rate μ)
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Example

Then, X(t) is a birth-death process with

λn = nλ, n=0,1,2… and μn = nμ, n=1,2…
λ0 = 0  ⇒ state 0 is an absorbent state!

⇒ πn = 0, n>0
¿?

•   •   • n n+1 •  •  n-1
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Example

Define P (t) as the average population at time t, 
then

P ’(t) = (λ – μ)P (t)
(the derivative is defined as the instantaneous rate
of change of a function)

⇒ P (t) = P (0)e (λ–μ)t

Then, 
if λ < μ: the population tends to 0
if λ > μ: the population tends to infinity
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Basic definitions

Lipsky: “... a queue is a line of customers waiting to
be served”
Gross and Harris: “A Queueing System can be 
described as customers arriving for service, 
waiting for service if it is not immediate, and if
having waited for service, leaving the system after
being served”
Cooper: “The term Queueing Theory is often used
to describe the more specialized mathematical
theory of waiting lines”
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Basic definitions

In computer systems, many jobs share the 
system resources such as CPU, disks, and 
other devices.
When the resource is in use by one job, all 
other jobs wanting to use the resource 
have to wait in queues 
Queueing theory helps determine the 
amount of time spent by jobs in various 
queues, and in turn helps predict the 
response time, device utilizations, and 
throughput 
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Basic definitions

Basic queueing model

State of the model: the number of customers in the
queue (including those being served) 
The state space may be unbounded, i.e. infinite (if an
infinite population is assumed)

Customer population

Arrival
process

Service
discipline

Queue

Servers
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Basic definitions

The following should be specified (to enable analysis):
Customer population
Arrival process
Number of servers
Service discipline
Service time distribution
System capacity

Customer population

Arrival
process

Service
discipline

Queue

Servers



Javier Campos. Performance modelling and evaluation: 6. Queueing models 7

Basic definitions

Population size 
Potential customers  who can enter the queue
Real systems have finite population
However, if population is large, assume infinite for ease 
of analysis

Arrival process
Customers arrive at t1,t2,…,tj
Interarrival time τj := tj-tj-1
Assume interarrival times τj are IID random variables
E.g., Poisson process, Erlang, hyperexponential, general

Service time distribution
Assume IID random variables
E.g., exponential, Erlang, hyperexponential, and general
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Basic definitions
Service disciplines

FIFO (or FCFS), first in first out most common
LIFO (or LCFS), last in first out
RR, Round Robin, a small fraction of time corresponds to each
customer, cyclically
PS, Processor Sharing, limit situation of RR when the fraction 
of time tends to 0
Random
Priority disciplines…

Non preemptive: an ongoing service is not interrupted
Preemptive-resume: it is interrupted and resumes later on
Preemptive-restart: it is interrupted and restarts later on

Number of servers
One/many (identical) servers

System capacity
Waiting space + number in service
Infinite assume if capacity is large



Javier Campos. Performance modelling and evaluation: 6. Queueing models 9

Outline

Basic definitions
Notation
General results
M/M/1 queue
M/M/c queue
M/M/∞ queue
M/M/c/B queue
M/M/1/B/P queue
An Erlangian model: M/Ek/1
Models with general distributions



Javier Campos. Performance modelling and evaluation: 6. Queueing models 10

Notation

Kendall notation
A/S/m/B/K/SD
A is interarrival time distribution
S is service time distribution
m is number of servers
B is number of buffers (system capacity)
K is population size
SD is service discipline
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Notation

Some common abbreviations
M (Markov): denotes exponential (and thus 
“memoryless” distribution)
D (Deterministic): values are constant
Ek (Erlang): Erlang distribution with k phases
Hk (Hyperexponential): Hyperexponential
distribution with k branches
PH, phase type distribution
G (General): denotes distribution not specified; 
results are valid for all distributions
Bulk arrivals denoted using superscripts. E.g. 
M[x]
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Notation

Coefficient of variation, CV2=σ2/μ2, gives a 
measure of the degree of irregularity of a positive 
random variable compared with an expon. dist. r.v.

CV2=1: exponential model; the most frequently used
pattern; good mathematical properties
CV2=0: deterministic model

CV2=1/k: Erlang-k model; 
intermediate between
exponential and deterministic

CV2>1: Hyperexponential model; 
associated with parallel servers

k-th phase

server

1st phase
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Notation

Examples
M/M/3/20/1500/FCFS is a single queue system 
such that:

Interarrivals are exponentially distributed
Service times are exponentially distributed
There are three servers
System capacity is 20; max. queue size is 20 – 3 = 17
Population size is 1500
Service discipline is FCFS

M/M/3: Typically, assume infinite system 
capacity, infinite population, and FIFO service. 
In such cases, last three parameters dropped.
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Notation Queue

Servers

Arrivals
λ μ

Previous
arrival Arrival Service begins Service ends

τ w s

r

τ = interarrival time
λ = mean arrival rate = 1/E[τ]

May depend upon # of jobs in 
system

s = service time per job
S = E[s] = mean service time
μ = mean service rate per 
server = 1/E[s]; total service 
rate = mμ
X = throughput (mean number of
completions per time unit)

nq = # of jobs waiting in queue
L= E[nq]
ns = # of jobs recv. service
n = # of jobs in system

n = nq + ns is the queue length
N = E[n]
r = response time

Waiting for service plus time 
receiving service

R = E[r]
w = waiting time in queue
W = E[w]They are r.v.’s (except mean values)
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General results

Stability Condition
For stability, mean arrival rate should be less 
than mean service rate:

λ < mμ
Does not apply to finite population systems and 
finite capacity systems

Queues for finite population systems cannot grow 
indefinitely
By definition, queues for finite buffer systems cannot 
grow indefinitely
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General results

Number in System versus Number in Queue
Number of jobs in system equals those waiting 
plus those being served

n = nq + ns

E[n] = E[nq]+E[ns]
That is, mean number of jobs in system equals mean 
number in queue plus mean number being served

If service rate of servers independent of 
number of jobs in the queue, then

Var[n] = Var[nq]+Var[ns]
Cov(nq,ns) = 0
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General results

Time in System versus Time in Queue

Time spent by a job in system is sum of waiting 
time and service time. That is, r = w + s

Mean response time equals sum of the mean waiting 
time and the mean service time. R = W + S

If service rate independent of # of jobs in 
queue

Cov(w,s) = 0

Var[r] = Var[w] + Var[s]
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General results

Utilization Law
Utilization of a system (U) = fraction of time 
the system is busy

Assuming number of arrivals equal number of 
completions (λ = X): U = λ⋅S
In case of queues with m servers: U = λ /(mμ)

SX
T

T
T

TU

⋅=
⋅

⋅
=

=

s)completion of(number 
) period during (busy times)completion of(number 

 period during busy time
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General results

A disk is serving 50 requests/sec; each 
request requires 0.005 seconds of service. 

1) What is the Utilization? 
U = 50 x 0.005 = 0.25   (25%)

2) Maximum possible service rate?
U = 1 = (0.005)X
X = 200 requests/sec
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General results

A router forwards 100 packets/second 
onto a link. The transmission time (i.e., time 
to put packets onto the link), on average, is 
1 ms. 

1) What is the link utilization?
Link throughput: X = 100 packets/sec
Service time: S = 0.001 sec
U = XS = 0.1   (10%)

2) Link capacity?
U = 1 = 0.0001X ⇒ X = 1000 packets/sec
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General results

Number versus Time: Little´s Law
Assume Job Flow Balance: number of arrivals equal 
number of completions (λ = X)

New jobs not generated in the system
Jobs not lost (forever) in the system
If jobs lost in the system (e.g., due to finite capacity), law 
applies with adjusted arrival rate

Mean # in system = arrival rate x mean response time
N = λ R

Mean # in queue = arrival rate x mean waiting time
L = λ W

We will intuitively derive this law …
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General results

Intuitively…
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General results

A spy working for Burguer King tries to know 
how many clients are inside of a McDonald´s. 
He cannot enter but he observes:

Each hour, 32 clients arrive in average
Each one stays inside 12 minutes in average

By Little’s Law, the average number of
customers inside McDonald´s is

N = λR = 0.53 customers/min * 12 min = 6.4 customers
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M/M/1 queue

One server, one queue, FIFO service
exponentially distributed interarrival and 
service times
infinite population, infinite capacity
Can be model as a birth-death process

Constant birth and death rates
λ λ

2 3

λ

μ

0 1

λ

μ μ μ
State n represents n customers in the system.
Remember notation: πn = steady-state probability of being in state n.
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M/M/1 queue

Steady-state solution:
From balance equations

Traffic intensity

Ergodicity condition

Bad cases
λ > μ: transient MC
λ =μ: null recurrent MC

Then, if ρ < 1
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M/M/1 queue

Performance indices:
Utilization: prob. of one or more jobs in system
(= mean # jobs in service)

U = 1 – π0 = ρ
Mean # jobs in system

Mean # jobs in queue
ρ
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M/M/1 queue

Mean response time (by Little’s Law)

Mean waiting time in queue (Little’s Law)

Prob. of finding n or more jobs in system
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M/M/1 queue

Waiting time and response time distributions

Waiting times in queue exponentially distributed

P (w ≤ t) = 1 – ρ e -μt (1-ρ)

Response times exponentially distributed

P (r ≤ t) = 1 – e -μt (1-ρ)
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M/M/1 queue

Burke theorem: 
If λ < μ then the departure process of a M/M/1 
queue is a Poisson process with parameter λ
(like the arrival process).
Proof:

The reversed process of a stochastic process is a 
dual process

with the same state space
in which the direction of time is reversed

(like vieweing a video film backwards)
If the reversed process is stochastically identical to 
the original process, that process is called reversible.
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M/M/1 queue
A necessary and sufficient condition for reversibility are 
the detailed balance equations:

An ergodic (λ < μ) M/M/1 queue satisfies the detailed
balance equations:

If i,j are not adjacent then qij and qji are null
If i,j are adjacent then, i = n, j = n+1, qij = λ, qji = μ and

Thus, an ergodic M/M/1 queue is reversible.
The departure process of an M/M/1 queue is equal to the
arrival process of the reversed queue.
Since the reversed queue is again an M/M/1 queue then its
arrival process is Poisson.
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M/M/1 queue

Example
Packets arrive at 100 packets/second at a 
router. The router takes 1 ms to transmit the 
incoming packets to an outgoing link. Using an 
M/M/1 model, answer the following:

What is utilization?
Probability of n packets in router?
Mean time spent in the router?
Probability of buffer overflow if router could buffer 
only 5 packets?
Buffer requirement to limit packet loss to 10-6?
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M/M/1 queue
Arrival rate 

λ = 100 pps
Service rate 

μ = 1/0.001 = 1000pps 
Traffic intensity 

ρ = 0.1
Mean packet residence time 
at router

r = (1/μ)(1/(1-ρ))
= 1.01 ms 

Prob. of buffer overflow
P(# ≥ 6) = ρ6 = 10-12

To limit loss to less than 10-6

ρn ≤ 10-6

n > log(10-6)/log(0.1) > 3
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M/M/c queue

c servers, one queue, FIFO service, 
exponentially distributed interarrival and 
service times
infinite population, infinite capacity
Can be model as a birth-death process

State transition diagram for M/M/c queue

•   •   • c c+1 •  •  •c-1

λ λ

cµ

0 1 2

λλ

2µµ

λ

3µ cµ(c-1) µ cµ

λ
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M/M/c queue

Mean arrival rate: λ
Mean service rate: cμ
Traffic Intensity (avg. utilization): 

ρ = λ/(cμ)
ρ < 1 for stability

Flow balance equations yield:
πn = ((cρ)n/n!)π0, n = 1,…,c-1
πn = ((cρ)n/(c!cn-c))π0, n ≥ c

And the probability of zero jobs in system
11
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M/M/c queue

Other performance measures
Newly arrivals wait if all servers are busy, i.e., 
if c or more jobs are in the system
P (# ≥ c jobs) = πc+ πc+1+ πc+2+…

C(ρ,c) = [(cρ)c]/[c!(1-ρ)] π0
C(ρ,c) is known as Erlang’s C formula

Mean # of jobs in system
N =E[n] = Σnπn, n = 0, 1, …, ∞

= [π0(cρ)c]/[c!(1-ρ)2] + cρ
= cρ + ρ C(ρ,c)/(1-ρ)
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M/M/c queue

Mean # of jobs in queue
L = E[nq] = Σ(n-c)πn, n = c, …, ∞

= [π0ρ(cρ)c]/[c!(1-ρ)2] 
= ρ C(ρ,c)/(1-ρ)

Mean response time (Little’s law) 
N = λ R
R = 1/μ + C(ρ,c)/[cμ(1-ρ)]

Mean waiting time in queue (Little’s law)
W = L/λ= [ρ C(ρ,c)/(1-ρ)]/λ = C(ρ,c)/[cμ(1-ρ)]
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M/M/c queue

Exercise
Compare the following three systems

a) Two independent M/M/1 queues with arrival rate λ/2 
and service rate μ.

b) One M/M/1 queue with arrival rate λ and service rate
2μ.

c) One M/M/2 queue with arrival rate λ and service
rate μ each server.

λ/2

λ/2

µ

µ λ

2µ

λ

µ

µ

(a) (b) (c)
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M/M/∞ queue

As many servers as customers arrive to the 
system
one queue, FIFO service, exponentially 
distributed interarrival and service times
infinite population, infinite capacity
can be model as a birth-death process

•   •   • n n+1 •  •  • n-1

λ λ

(n+1) µ

0 1 2

λλ

2µµ

λ

3µ nµ(n-1) µ

λ

 

λn = λ ∀n∈N
μn = nμ ∀n∈N
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M/M/∞ queue

Steady-state solution:

Performance indices:
Mean # of jobs in system

Mean response time (Little’s law)

π n =
λ
μ( )n
n!

e−λ μ (Poisson distribution)

N = nπ n
n=0

∞

∑ =
λ
μ

Obviously equal to mean 
service timeμλ
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M/M/c/B queue

c servers, one queue, FIFO service, 
exponentially 
distributed 
interarrival and 
service times
infinite population
capacity of system equal to B
can be model as a finite birth-death 
process

c servers

(c-1)μ cμ cμ cμ cμ

c-1 c c+1
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M/M/c/B queue
Steady-state distribution:

Exercise: taking the limit as B→∞ and restricting (λ/(cμ)<1 we
get the result for M/M/c/∞.
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M/M/c/B queue

Performance
measures:

Effective arrival rate
(rate of jobs actually
entering the system)
Expected # of jobs in 
system
Mean # jobs waiting in 
queue
Mean response time and
mean witing time
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M/M/c/B queue

The particular case of M/M/1/B

Expected # of jobs in system

Mean # jobs waiting in queue
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Outline
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M/M/1/B/P queue
An Erlangian model: M/Ek/1
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M/M/1/B/P queue

Single server model with system capacity B
and population size P (potential customers)
If there are P–n individuals available:

arrival rate is (P–n)λ
Thus, it can be modeled as a finite birth-death 
process with birth/deadth rates:

μμ

λ
λ

=
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M/M/1/B/P queue

Steady state:

Mean # customers in system
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M/M/1/B/P queue

Special case:
B = P : “machine-repairman” model
P independent machines each of which fails as 
Poisson process.
Then they can be viewed as queueing up for a 
single repairman who repairs machines in an
exponentially distributed time.
Availability of the system is defined as the
probability of finding the system capable of
doing some work (at least one machine running) 

availability = 1-πP
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Outline
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An Erlangian model: M/Ek/1

Exponentially distributed interarrivals
Erlang phase k service time

Erlang is nor memoryless (for k > 1)    
⇒ the normal description of the state of the queue

results in a non-Markovian process
We change definition of state

State = number of stages of service to be completed which
are currently in the system

E [X] = 1/μ;   CV2=1/k

λ

kμ kμ kμ kμ
• •1 2 3 k
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An Erlangian model: M/Ek/1

We get a CTMC that is not a birth-death
process

0 1 k-1 k+1k•  •  • •  •  •

λ
λ λ λ λ

kµ kµ kµ kµ kµ kµ
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An Erlangian model: M/Ek/1

Steady-state solution: Return to balance 
equations… πQ = 0

Solving equations and defining ρ=λ/μ

etc.
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Models with general distributions

M/G/1 queue
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Basic concepts

A QN is a collection of 
servers/queues interconnected 
according to some topology 
where jobs departing from one 
server arrive at another 
queue for service.
Servers may be

processing elements in a computer, e.g. CPU or I/O 
devices,
stations/nodes in a communication network (may be 
widely separated geographically),
machines in a flexible manufacturing system,
semaphores in a traffic map of a city, etc., etc.

Topology represents the possible routes taken by 
tasks through the system.
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Basic concepts

May be several different classes of tasks
(multiclass network):

different service requirements at each node,
different routing
behaviours,
more complex notation, 
but straightforward
generalisation of the
single-class network in principle,
we will consider only the single class case.

multiclass network
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Basic concepts

Types of networks:
An open QN has 
external arrivals and 
departures.
A closed QN has no 
external arrivals or 
departures. The number 
of customers circulating 
remains constant 
(population) .
A mixed QN is open for 
some workloads (classes) 
and closed for others 
(multiclass QN case).
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Basic concepts

QN input parameters:
The number of stations within the network.
The servicetime distribution (we assume exponential but 
could be different), may be specified as the average 
service time si, or the service rate µi = 1/si.
The scheduling or queueing discipline at each station: 
FCFS, LCFSPR, PS (processor sharing), IS (infinite 
number of servers, i.e. a delay node: no queueing)
The routing probabilities of the customers among all the 
stations, specified as qij, which gives the fraction of the 
customers completing service at station i that join queue 
j.
The population size N for closed queueing networks, or 
the interarrivaltime distribution for the open networks 
(given as the external arrival rate λi).
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Basic concepts

QN output parameters (performance measures) 
include:

Resource utilization Ui representing the fraction of the 
time that the resource at station i is busy.
Throughput λi denoting the average number of job 
completions per unit time at station i.
Average queue length Qi denoting the number of 
customers in the queue i including the customer in 
service.
Average response time Ri denoting the amount of time 
that a customer spends at a station i.
Average waiting line length Li denoting the number of 
customers waiting in line i excluding the customer in 
service.
Average waiting time Wi denoting the amount of time a 
customer spends waiting for service at station i.
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Outline

Basic concepts
Open queueing networks
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Open queueing networks

Assume single class of customers.
M servers, 1,2…,M, with FCFS discipline and
exponential service times, mean μi.
External Poisson arrivals into node j, rate γj (1≤j≤M) (= 0 if no 
arrivals). Total external arrivals: Poisson with rate
λ0=γ1+…+γM. For instance λ0=10.
State space of network S = {(n1,…,nM) | ni ≥ 0 }

queue length vector random variable is (N1,…,NM)
p(n) = p(n1,…,nM) = P(N1=n1,…,NM=nM)

1 2

3

4 5
1/2

1/2

1/2

1/2

1/2

1/20.5λ0

0.2λ0
0.3λ0
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Open queueing networks
The outside of the network can be represented as a new queue
labelled 0.
Routing probability matrix Q = {qij | 0 ≤ i,j ≤ M}

q0j = γj, j =1…M; q00 = 0.
qij = probability that on leaving node i a task goes to node j
independently of past history (1 ≤ i,j ≤ M).
qi 0 = 1 – (qi 1 + … + qi M), i =1…M.
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Open queueing networks

Traffic equations:
For each queue i:

Example:  λ4 = 0.3λ0 + ½λ4  ⇒ λ4 = 0.6λ0
In matrix form and adding virtual “queue” 0:

independent of Poisson assumption since we are only
considering mean numbers of arrivals in unit time
assumes only the existence of a steady state

Miq
M

j
jijii ≤≤+= ∑

=

1for    ,
1

λγλ
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Open queueing networks

Arrivals to a node are not in general 
Poisson.
If there is no feedback then all arrival
processes are Poisson because
1. departure process of M/M/1 queue is Poisson
2. superposition of independent Poisson

processes is Poisson
1 2

3

4 5
1/2

1/2

1/2

1/2

1/2

1/20.5λ0

0.2λ0
0.3λ0
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Open queueing networks

Example: consider the simple open QN

Each queue behaves as an independent M/M/1 with
arrival rate λ and service rate μi.

i.e., the probability of ni jobs in the queue i in steady state
is (1–ρi)ρi

ni with ρi =λ/μi (utilization of queue i).
Then, the joint probability is just the product:

Any QN exhibiting such a property is called a product
form QN (PF-QN or QN with a product form solution).

k
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n
kk
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Open queueing networks

Visit ratios: they are the
relative throughputs, 
normalized for a given queue
(for instance queue 1).
In the example

11 =
=

v
vQv
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3

4 5
1/2

1/2

1/2

1/2

1/2

1/20.5λ0

0.2λ0
0.3λ01

3v2 = v1
1
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Open queueing networks

Steady-state queue length probabilities
Jackson’s theorem (1963)

The number of tasks at any server is independent of the
number of tasks at every other server in the steady state.
Node i behaves as if it were subjected to Poisson arrivals, 
rate i (1≤i≤M).
Thus, even though arrivals at each node are not, in general, 
Poisson, we can treat the system as if it were a collection of
M independent M/M/1 queues (PF-QN).
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C is a normalization constant



Javier Campos. Performance modelling and evaluation: 7. Queueing networks 16

Open queueing networks

Example
Registry of motor vehicles in a city

Reception: a person directs the customer to the right
employee – 20 seconds in average
Employees: execute the tasks – two different
employees depending of the type of vehicle –
10 minutes / 5 minutes
Collector: collects the money – 1 minute

1

2

3

4λ

0.3

0.7 0.9

0.1

0.2

0.8

reception

employee 2

employee 1

collector
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Open queueing networks
Throughput (traffic equations):

Utilizations:

Steady-state condition: all utilizations < 1
λ < 0.00427 customers/sec. (15.38 cust/hour)
bottleneck station: employee 2

λ1 = λ
λ2 = 0.3λ + 0.1λ3

λ3 = 0.7λ + 0.2λ2

λ4 = 0.8λ2 + 0.9λ3

⎫ 

⎬ 
⎪ 
⎪ 

⎭ 
⎪ 
⎪ 

⇒

λ1 = λ
λ2 = 0.38λ
λ3 = 0.78λ
λ4 = λ

ρ1 = s1λ1 =
ρ2 = s2λ2 = 600 * 0.38λ =
ρ3 = s3λ3 = 300 *0.78λ =
ρ4 = s4λ4 =

20λ
228λ
234λ
60λ
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Open queueing networks

Steady-state queue length probabilities :

Bounds for the mean queue lengths
(using λ < 0.00427)

π n1,n2 ,n3 ,n4
= (1 − 20 λ)(20 λ ) n1 ⋅ (1 − 228λ )(228λ )n2 ⋅

⋅(1 − 234 λ)(234 λ) n3 ⋅ (1 − 60λ )(60λ )n4

E [ n 1 ] = ρ 1

1 − ρ 1

= 20 λ
1 − 20 λ

≤ 0 .093

E [ n 2 ] = ρ 2

1 − ρ 2

= 228 λ
1 − 228 λ

≤ 36 .82

E [ n 3 ] = ρ 3

1 − ρ 3

= 234 λ
1 − 234 λ

≤ ∞

E [ n 4 ] =
ρ 4

1 − ρ 4

=
60 λ

1 − 60 λ
≤ 0 .34

reception is busy at
most 8,5% of the time

bottleneck

collector is busy at
most 25,6% of the
time
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Open queueing networks

Response time (waiting time of a customer in 
the system), by Little’s law:

T = N
λ

=
E[n1] + E[n2 ]+ E[n3 ]+ E[n4 ]

λ
=

= 20
1− 20λ

+ 228
1− 228λ

+ 234
1− 234λ

+ 60
1− 60λ
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Outline

Basic concepts
Open queueing networks
Closed queueing networks
BCMP networks
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Closed queueing networks

Closed network:
Assume single class of customers.
Closed: no external arrivals or
departures (no γi terms). N customers.
The M queues/servers must be of
one of these kinds:

FCFS with exponentially distributed service times
LCFS preemptive-resume with Cox service times
PS with Cox service times
IS with Cox service times

μ2 μpμ1
b0

1-b0

bp-1b2b1

1-b1 1-b2 1-bp-1

Cox distribution



Javier Campos. Performance modelling and evaluation: 7. Queueing networks 22

Closed queueing networks

Routing probabilities satisfy
State space S = {(n1,…,nM) | ni ≥ 0;                } 
for population N.

|S| = number of ways of putting N balls into M bags

finiteness of S ⇒ steady state always exists

NnM
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Closed queueing networks

Traffic equations:
For each queue i:

homogeneous linear equations with an infinity of solutions
which differ by a multiplicative factor (because |I — Q| = 0 
since rows all sum to zero)

Visit ratios: they are the relative
throughputs, normalized for a given
queue (for instance queue 1).
Relative utilization of a server or service demand:

Is the visit ratio (or relative throughput) weighted by 
the mean service time

Miq
M
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Closed queueing networks

Steady-state queue length probabilities:
Gordon-Newell’s theorem (1967)

G(N) is a normalization constant

π n1,n2 ,…,nM
=

1
G(N)

ui
ni

β i (ni )i=1

M

∏

β i (ni ) =
ni! si ni ≤ ci

ci!ci
ni −ci si ni ≥ ci

⎧ 
⎨ 
⎩ 

ci = number of
servers in 

station i

G(N) =
u i

ni

β i(ni )i=1

M

∏
∀n, ni

i=1

M

∑ =N

∑
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Closed queueing networks

Other performance indices:

In particular, the actual utilization:

Mean queue length

then

P{ni ≥ n} = ui
n G(N − n)

G(N)

ρi = P{ni ≥1} = ui
G(N −1)

G(N)

E[n] = nP{n}
n=1

∞

∑ = P{k}
k =n

∞

∑
n=1

∞

∑ = P{k ≥ n}
n=1

∞

∑

E[ni ] = ui
n G( N − n)

G (N )n =1

N

∑
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Closed queueing networks

Example: A small computer system with
Floppy disk: mean access time 280 msec FCFS
Hard disk: mean access time 40 msec FCFS
CPU: mean computing time 28 msec RR (1msec)

1

2

3

0.7

0.1

0.2

FD

CPU

HD
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Closed queueing networks

Relative utilizations:

Normalization constant for different populations
(computed using the formula computat. expensive)

Steady-state solution for 6 works

v2 = 0.7v1 ⇒ 1
40

u2 = 0.7 1
28

u1 ⇒ u2 = u1

v3 = 0.2v1 ⇒ 1
280

u3 = 0.2 1
28

u1 ⇒ u3 = 2u1

1

2

3

0.7

0.1

0.2

FD

CPU

HD

G(0) G(1) G(2) G(3) G(4) G(5) G(6)
1 4 11 26 57 120 247

247
2211

247
1 21

2121

2121

6
6

6,,

nn
nnnn

nnnn

−−
−−

−− =⋅⋅⋅=π
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Closed queueing networks

Actual utilizations:

Throughput:

ρi = ui
G(N −1)

G(N)
⇒ ρ1 = ρ2 =1⋅120

247
= 0.4858

ρ3 = 2 ⋅120
247

= 0.9717

λ1 = ρ1 ⋅ μ1 = 0.4858
0.028

= 17.35

λ2 = ρ2 ⋅ μ2 =
0.4858
0.040

= 12.145

λ3 = ρ3 ⋅ μ3 = 0.9717
0.280

= 3.47
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Closed queueing networks

Average queue lengths:

Average response time of each station (Little) :

E[n1] = E[n2 ] = 1+ 4 +11+ 26 + 57 +120
247

= 0.8866

E[n3 ] = 26 ⋅1+ 25 ⋅ 4 + 24 ⋅11+ 23 ⋅26 + 22 ⋅57 + 2 ⋅120
247

= 4.2267

seconds   218.1][

seconds   073.0][

seconds   0511.0][

3

3
3

2

2
2

1

1
1

==

==

==

λ

λ

λ

nER

nER

nER
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Closed queueing networks

Main problem: 

computation of the normalization constant G(N)
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Outline

Basic concepts
Open queueing networks
Closed queueing networks
BCMP networks
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BCMP networks

Multiclass QN

Questions:
What is the predicted increase in the throughput of query 
transactions if the load of update transactions is moved to 
off-peak hours?
How will the response time change if the total I/O load of 
query transactions is moved to disk 2?
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BCMP networks

Generalization of product form solution for
networks with different classes of customer and
extension to several service disciplines
Customers are allowed to change class membership

different chains of classes
Chain: subset of classes in which a customer can change
(i.e., changes from one chain to another are not allowed)

Classes can be open or closed (mixed QN).
In open networks, the time between successive arrivals
of a class is exponentially distributed.
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BCMP networks

Service stations can obey any of the four following
possibilities:

Type 1: FCFS, single server, exponentially distributed
with service rate dependent on the total number of
customers at the station but the same mean for all
classes of customer
Type 2: Processor sharing, Cox distribution (may be 
distinct for each class of customer)
Type 3: Infinite-server, Cox distribution (may be 
distinct for each class of customer)
Type 4: LCFS, preemptive-resume, Cox distribution (may 
be distinct for each class of customer)
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BCMP networks

Baskett-Chandy-Muntz-Palacios Gomez’s
theorem (1975)

Under the previous conditions, the steady-state
probability distribution has a product form…

where G is a normalizing constant (it assures
that the probabilities sum to one), A(n) is a 
function of the external arrival processes only, 
and the functions, pi(ni) are the “per-node” 
steady-state distributions.
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BCMP networks

The important point of this result is that there
are explicit expressions for the pi functions. 
They are as follows:

When node i is of type FCFS, we have in the load-
independent case

and in the load-dependent case
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BCMP networks

When node i is of type PS or LCFS-PR, we have in the
load-independent case

and in the load-dependent case
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BCMP networks

When node i is of type IS, we have in the load-
independent case

and in the load-dependent case
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BCMP networks

Finally, the term A(n) is determined by the
arrival processes in the following manner. 

If all chains are closed, then A(n) = 1.
If the arrivals depend on the total system population, 
then it is equal to

where k is the network population.
If the arrivals are per chain, then

where NC is the number of routing chains and kc is the
population in routing chain c.

Notation is hard, but it can be programed…
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Convolution algorithm
Mean value analysis algorithm
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Reminder

Gordon-Newell’s theorem for closed QN 
with a single server in each station

where ui are relative utilizations, 
with vi the relative throughput, i.e. solution of

thus, ui are real positive solutions of

G(N) is a normalization constant:
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Convolution algorithm

Buzen, 1973: single class of customers
Bruell and Balbo, 1980: multiclass QN
Define
Then (a)

(b)

(c)
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Convolution algorithm

Algorithm for g(n,m) = iterative relationship (a) together
with initial conditions (b) and (c)
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Observe: the leftmost column can be computed in the same way if
it is assumed that there is a column of zeros immediately to the left.

The entire rightmost
column is of interest
since g(n,M)=G(n), 
n=0,1…,N, thus the
values G(n) are by-
products from the
computation of G(N).

m
n
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Convolution algorithm

Space complexity: O(N)
Only one column at a time!

Algorithm:
{Assumed that um,m=1,…,M are known}
c0:=1;
for n:=1 to N do cn:=0;
for m:=1 to M do
for n:=1 to N do
cn:=cn + um * cn-1;

Time complexity: O(N⋅M)
N⋅M additions and multiplications for the computation of
G(1), …, G(N)
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Convolution algorithm

Numerical considerations
G(N) depends on the relative utilizations ui, 
i=1,…,M ⇒ choosing ui’s much bigger or smaller
than 1 will surely lead to problems
Table for the example
presented in previous
lecture

u1=u2=1; u3=2

247716
120615
57514
26413
11312
4211
1110

321 uuu

G(n), n=0,…,6
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Outline

Computation of normalization constant: 
Convolution algorithm
Mean value analysis algorithm
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Mean value analysis algorithm

Objective: to avoid the computation of G(N)
We saw that the mean queue length in station i is

Then:

And the average response time at station (Little’s law):
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Mean value analysis algorithm

Mean value theorem

Interpretation: The queue length distribution
seen by an arriving customer is the steady-
state distribution with himself removed from
the network.
Thus the average number of customers found
by an arriving customer is simply E[ni | N-1] and
the average delay is (1/μi)(1+ E[ni | N-1])

( )]1|[11)( −+= NnENR i
i

i μ



Javier Campos. Performance modelling and evaluation: 8. Computational algorithms for closed QN 11

Mean value analysis algorithm

Computation of the throughput
Apply Little’s law to all the net:

Average number of customers = N
Average delay =

Computation of actual 
utilizations:
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Mean value analysis algorithm

And remember that the mean queue length
(Little’s law):

MinE
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Mean value analysis algorithm

Putting all together: MVA algorithm
1. Compute visit ratios v:  v = vQ;  v1 = 1
2. E[ni | 0]:=0,  i=,…,M
3. For n:=1 to N do
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Mean value analysis algorithm

Complexity of MVA algorithm
Equal to the Convolution algorithm for the computation of
G(N).
Requires less storage than Convolution algorithm since no 
memory is allocated for G(n), n=1,…,N, constants.

Advantages of MVA algorithm:
It is more robust as compared to Convolution algorithm
since it never computes G (avoids overflow/underflow
problem).
It computes directly all the interesting average 
performance measures for each value of the population in 
the network.
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Mean value analysis algorithm

Disadvantage of MVA algorithm:
It is a method for computing the average 
values, so it is impossible to construct the
complete description of the steady-state
probability distribution function

(therefore it is impossible to get other
measures on the system such as “what is the
probability of queue 3 having two or more 
customers?”)
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Introduction to the use of bounds

Preliminary design phases of a system:
many of the system parameters are not known
accurately
the number of alternative designs that need to
be considered may be very large

⇒ exact solution can be very expensive
and not justifiable
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Introduction to the use of bounds

Performance bounds:
require much less computation as compared to
the exact
allow to quickly evaluate several alternatives
and reject those that are clearly bad
there exist techniques that can provide
increasingly tighter bounds at the expense of
increasing computation
most of the techniques are valid only for
product form queueing networks
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Introduction to the use of bounds

Here we see…
the less accurate and quickest technique, valid
for any network: asymptotic bound analysis, and
the first known technique for product form
networks: balanced job bound analysis
… for the case of networks with:

single class of customers, and
single-server (fixed rate) nodes and possibly delay
nodes (infinite-server)

They allow to obtain bounds for the
throughput of the network.
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Introduction to the use of bounds

Terminology and notation:
If the network contains several delay nodes, we
can merge all of them into one delay node

it suffices to consider only one delay node
We index the delay node as  0  and denote the
relative utilization of this node by  Z.
The single-server stations will be indexed as 
1,…,M, with ui being the relative utilization of
node i.
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Introduction to the use of bounds

Without loss of generality:

u1 ≤ … ≤ uM (node M is the bottleneck)

Hence Q1(N) ≤ … ≤ QM(N)  for any population N

because ∑
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Introduction to the use of bounds

Visit ratio at station 1 is 1, then the throughput of
the network will be computed with respect to this
station.
Additinal notation:

Total utilization (only for
single server stations): 

Average relative utilization
(only for single server stations): 

(Relative) residence time at node i
(visit ratio x average delay):

∑
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Outline

Introduction to the use of bounds
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Asymptotic bound analysis

Kleinrock, 1976
It does not require product form property
to hold
The bounds are obtained by considering
two extreme situations: 

no queueing takes place at any node, and
all nodes are loaded as heavilly as the
bottleneck node
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Asymptotic bound analysis

Upper bound on throughput (of station 1):
Without any queueing, the average delay time is
L + Z therefore, by Little's formula, 

However, this bound may not satisfy the
restriction that the utilization of any node
cannot exceed 1

Additional constraint (M is the bottleneck):
Then the upper bound on throughput is:
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Asymptotic bound analysis

Lower bound on throughput:
the throughput will be minimum if every customer had to
wait behind the remaining N – 1 other customers at every
single-server station in the network…

Notice that:
we did not use the product form assumption in deriving
these (upper and lower) bounds,
the bounds could however be rather loose,
subsequent bounds are tighter but do require the
product form assumption.

ZNL
NN
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Asymptotic bound analysis
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Balanced job bounds

Zahorjan et al., 1982
Mean Value Theorem is used, thus the
analysis is valid only for product form
queueing networks.
Remember:

Then, the relative residence time at node i
is:
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Balanced job bounds

Summing over all nodes we get the “average 
cycle time” of the network, i.e., the
average delay in all stations (assuming that
there are no delay nodes):

Since uM ≥ ui for all i, we have
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Balanced job bounds

Lower bound for the throughput: Applying
Little’s law to the whole net (L=λW). 

N = λ(N) CT(N) ⇒ λ(N) = N /CT(N) ⇒

Notice that this bound essentially assumes that
all nodes are loaded as heavily as the
bottleneck node.
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Balanced job bounds

Upper bound for the throughput.
Lemma: if xi,yi, i = 1,…,n, are such that x1 ≤ … ≤ xn and y1 ≤ … 
≤ yn, then

Setting xi = ui and yi = Qi(N):

Hence, since ua = L/M and from
we get

Then, the throughput upper bound is (Little’s law):

∑∑∑
===

≥
n

j
j

n

i
i

n

i
ii yx

n
yx

111

1

)()(
11

NQuNQu
M

i
ia

M

i
ii ∑∑

==

≥

( )∑
=

−++=
M

i
ii NQuLNCT

1

)1(1)(

auNLNCT )1()( −+≥

auNL
NN

)1(
)(

−+
≤λ



Javier Campos. Performance modelling and evaluation: 9. Performance bounds for QN 19

Balanced job bounds
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( ))1(1)( −+= NQuNR iiiSince , the following interpretation can be made:
• The upper bound on throughput is equal to the throughput of a system

composed of M centers each with relative utilization ua.
• The lower bound on throughput is equal to the throughput of a system

composed of "L/uM centers" (which is not integer, in general) each with
relative utilization uM.
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Justification

In real computer systems cooperation and
competence relationships are usual.
Synchronization primitives are necessary
for expressing these relationships.
Product form queueing networks do not
allow the explicit representation of a 
general synchronization primitive.
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Justification

Example: blocking phenomena in 
computer systems, arise because a job
requires more than one resource before it
can be processed
1. Holding a channel and a disk drive before data 

transfer can occur.
2. Obtaining a memory partition before job

processing can occur.
3. Obtaining a database lock before the data 

item can be read from the disk.
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Justification

Possible solutions to the problem of lack of
expressivity of QN:

Ad hoc extensions of QN
Define a new formalism with synchronization
primitive (like Petri nets or process algebra)
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Justification

Ad hoc extensions of QN
Passive resources

Example: a memory limited system

A R

terminals

memory queue processor
I/O devices

memory partitions
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Justification

Ad hoc extensions of QN (cont.)
Forks and joins

Example: multitasking feature of operating systems

F J

F J

JF
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Justification

In general, product form solution does not
hold for the previous ad hoc extensions.
A formal and unified definition is needed
as well as computation techniques.

⇒Define a new formalism with
synchronization primitive
(like Petri nets or process algebra)
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Definitions

Autonomous Petri nets
(place/transition nets or P/T nets)

Petri Nets is a bipartite valued graph
Places: states/data (P)
Transitions: actions/algorithms (T)
Arcs: connecting places and transitions (F)
Weights: labeling the arcs (W)

inscriptions  
in the arcs 

N = < P,   T,   F,   W > 

PRE POST 
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Definitions
Net Static part

Places : State variables (names)
Transitions: Changes in the state 
(conditions)

Marking Dynamic part
Marking : State variables (values)

Event/Firing
Enabling: the pre-condition is 
verified
Firing: change in the marking
the pre-condition “consumes” 
tokens
the post-condition “produces” 
tokens

1

2 4

53

d

b c e

f

6

a

42

3

42

3

⇒
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Definitions
Net Static part
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Definitions

PN and its algebraic representation based
on state equation

Linear representation of PNs, the structure:

Pre-incidence matrix

Post-incidence matrix

Incidence matrix, C = Post – Pre
(marked) Petri Net is finally defined by:

>=< PostPre,,,TPN

    : PxT p,t +→ N)(Pre

    : PxT p,t +→ N)(Post

0,mN=Σ
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Definitions

1 

2 4 

5 3 
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Incidence matrix C   (= Post – Pre) cannot ”see” self loops
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Definitions

State equation definition

Integrating in one execution (sequence of firing)

where σ (bold) is the firing counting vector of σ

Very important: unfortunately…

⇔+> )1([)( kmtkm 0)()()(
)()()1(

≥++=
=+=+

ttkm
tkmkm

PrePost
C

σ⋅+=⇒>σ C00 )()([ mkmkmm

)([)( 00 kmmmkm >σ/≥≥⋅+= ⇒ 0σ  0,σC
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Definitions

Design methodologies:
1. Parallel composition by…

+ bottom-up methodology

synchronization

fusion
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Definitions

Design methodologies (cont):
2. Sequential composition by refinement

+ top-down methodology
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Definitions

Design methodologies (cont): 
typical synchronization schemes

8. Guarda (condición  
    de lectura)

5.  Fork-Joint

i

j

6.  Sub programa 
     (p  ,p    están en mutex)i j

ℜ

7.  Recurso compartido (     )ℜ

Π1 Π2

2. Semáforo, S

S

Π1 Π2

3.  RV/Semáforo simétrico

S 2S1

4. RV/Semáforo asimétrico 
    (master/slave)

Π1 Π2

S 2

S 1

1. Rendezvous, RV

RV
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Definitions

PN syntactic subclasses
State machines

Subclass of ordinary PN 
(arc weights = 1)
Neither synchronizations 
nor structural parallelism 
allowed
Model systems with a 
finite number of states
Their analysis and 
synthesis theory is well-
known

1

4

5

d

c e

f

6

a
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Definitions

PN syntactic subclasses (cont.)
Marked Graphs

Subclass of ordinary PN (arc weights 
= 1)
Allow synchronizations and 
parallelism but not allow decisions
No conflicts present
Allow the modeling of infinite 
number of states
Their analysis and synthesis theory 
is well-known

1

2 4

53

d

b c

a
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Definitions

PN syntactic subclasses (cont.)
Free-Choice nets

Subclass of ordinary PN (arc 
weights = 1)
Allow synchronizations, parallelism 
and choices
Choices and synchronizations 
cannot be present in the same 
transition
Their analysis and synthesis 
theory is well-known

There are other syntactic 
subclasses…

1

2 4

53

d

b c e

f

6

a
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Functional properties and analysis
Functional basic properties

Boundedness: finiteness of the state space, i.e. the marking of 
all  places is bounded

Safeness = 1-boundedness (binary marking)
Mutual Exclusion: two or more places cannot be marked 
simultaneously (problem of shared resources)
Deadlock: situation where there is no transition enabled
Liveness: infinite potential activity of all transitions

Home state: a marking that can be recovered from every 
reachable marking
Reversibility: recovering of the initial marking

kpNkPp ≤∈∃∈∀ )( such that   m

>>∃∀∈∀ [t[σTt '  such that ', reachable, , mmmm'm

0mmm >∃∀ σ[σ  such that    reachable, 
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Functional properties and analysis

Structural basic properties: 
N is structurally bounded if for all m0, 
<N, m0> is bounded

N is structurally live if there exists a m0 for 
which  <N, m0> is live
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Functional properties and analysis

Analysis techniques (for the computation
of functional properties)

Enumerative: based on reachability graph
Structural: based on the structure of the
model, considering m0 as a parameter
Reduction/transformation: rules that preserve 
a given property and simplify the model
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Functional properties and analysis

Enumerative analysis: exhaustive sequential
enumeration of reachable states

Problem 1: state explosion problem
Problem 2: lost of information about concurrent
behaviour

1

d

2

3

b

4

5

c
6

a

1(6)

24(6)

34(6)

35(6)

25(6)

cb

c b

a

d

Adding place 6 does not modify
reachability graph but b and c
cannot fire simultaneously.

reachability graph



Javier Campos. Performance modelling and evaluation: 10. Petri nets 29

Functional properties and analysis

Enumerative analysis (cont.): 
Bounded system finite reachability graph

1

t

2t

t t

3 4

t

3

4

2

1

5

0100

0010

1000

0011

1010

0101 0110

M

M
t

t t

t

t t t t

t

0

2
2 3

4

1t1 1 4

4

5

5

1001

M1

M3

M6

M4

M7

M5

unbounded system
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Functional properties and analysis

Enumerative analysis (cont.):
Deadlock exists There exists a terminal 
node in the RG

1

t

2t
t t

3 4

3

4

2

1

0100

0010

1000

0011

1010

0110

M

M
t

t t

t

t t

t

0

2

2 3

4

t1

4

4

5

5

1001

M1

M3 M4

M6

M5

M3 is a deadlock
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Functional properties and analysis

Enumerative analysis (cont.): 
Live net  in all the strongly connected components of 
the RG all transitions can be fired
Reversible net  there is only one strongly connected 
component in the RG

live and
non-reversible

systemp

p

c

b

d

p
p

p

a

1

2

35
4

10103

01102

01013

10012

10101

01100

01011

10010

a

b

d

c

c

a

Cd

C2

1

M1

M2a

b

c

M0
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Functional properties and analysis

Structural analysis:
Based either on convex geometry (linear 
algebra and linear programming), or
Based on graph theory
We concentrate on first approach.

Definitions:
P-semiflow: y ≥ 0,  yT.C = 0
T-semiflow: x ≥ 0,  C.x = 0
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Functional properties and analysis

Properties:
1. If y is a P-semiflow, then the next token conservation 

law holds (or P-invariant):

for all m ∈ RS(N, m0) and for all m0 ⇒
⇒ yT. m = yT. m0. 

Proof: if m∈RS(N, m0) then m = m0 + C.σ, and pre-
multiplying by yT:

yT. m =  yT. m0 + yT.C.σ = yT.m0

P-semiflows Conservation of tokens
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Functional properties and analysis

Properties (cont.):
2. If m is a reachable marking in N, σ a fireable sequence 

with σ =x, and x a T-semiflow, the next property 
follows (or T-invariant):

m [σ >m

Proof: if is a T-semiflow, m=m0+C.x=m0

T-semiflows Repetitivity of the marking

P and T-semiflows can be computed using 
algorithms based in Convex Geometry (linear 
algebra and linear programming)



Javier Campos. Performance modelling and evaluation: 10. Petri nets 35

Functional properties and analysis

Definitions:
N is conservative ⇔ ∃y > 0, yT.C = 0
N is  structurally bounded  ⇔ ∃ y ≥ 1, yT.C ≤ 0
(computable in polynomial time)

Properties: pre-multiplying by y the state equation
N conservative ⇒ yT. m = yT. m0

(token conservation) 
N structurally bounded ⇒ yT. m ≤ yT. m0

(tokens limitation) 
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Functional properties and analysis

Definitions:
N is consistent  ⇔ ∃ x > 0,  C.x = 0
N is  structurally repetitive  ⇔ ∃ x ≥ 1, C.x ≥ 0

Properties:
<N,m0> repetitive ⇒ N  structurally repetitive
N  structurally live ⇒ N  structurally repetitive
N structurally live and structurally bounded ⇒
structurally repetitive and structurally bounded
⇔ consistent and conservative
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Petri nets with temporal interpretation

Addition of temporal interpretation to
autonomous Petri nets:

Timed Petri nets (TPN):
Ramchandani, 1974

(Interval) Time Petri nets (ITPN):
Merlin and Faber, 1976

Stochastic Petri nets (SPN): 
Symons, 1978; Natkin, 1980; Molloy, 1981 

Generalized stochastic Petri nets (GSPN)
Ajmone Marsan, Balbo, Conte, 1984
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Petri nets with temporal interpretation

Basic idea:
Queueing network (QN) =

= structure
queue rooms, stations, 
and deterministic routing

+ distribution of customers (or population)
(distributed) state of the model

+ stochastic interpretation
random routing, service times,
number of servers

⇒ dynamic behaviour: movement of customers
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Petri nets with temporal interpretation

Stochastic Petri net (SPN) =
= structure

places, transitions, 
and arcs

+ distribution of tokens (or marking)
(distributed) state of the model

+ stochastic interpretation
random routing, service times, 
number of servers

⇒ dynamic behaviour: movement of tokens (firing rule)
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Petri nets with temporal interpretation

Autonomous Petri nets

Non-determinism with respect to

duration of activities and
routing

Not valid for performance evaluation
(quantitative analysis: throughput,
response time, average marking)

p1

p2

t1

t4 t5

t3t2

p3 p4
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Petri nets with temporal interpretation

Reduction of the non-determinism
Define duration of activities
(elapsed time from enabling to
firing of a transitions)

Constant Timed Petri nets
Interval Time Petri nets
Random (exponentially distrib.) 

Stochastic Petri nets
Random or immediate

Generalized Stochastic PNs
Define server semantics
(single/multiple/infinite)
Define routing at conflicts

Race between timed transitions
Random choice

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

ρ1 ρ2

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

ρ1 ρ2

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

α β

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

α β

k=
k servers ∞ server
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Outline
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Basic exact analysis of SPN

Stochastic Petri nets
Duration of activities: exponentially distributed
random variables
Single server semantics at each transition
Conflicts resolution: race policy

The reachability graph of the SPN is
isomorphic to a Continuous Time Markov Chain
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Basic exact analysis of SPN

The reachability graph of the SPN is isomorphic to a 
Continuous Time Markov Chain

α

γ 

β 

1 

2 

3 

4 

32 4

1 3

234

1 2

22 4

γ

α

γ

α

β

β

β
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Basic exact analysis of SPN

The reachability graph of the SPN is isomorphic to a 
Continuous Time Markov Chain

32 4

1 3

234

1 2

22 4

γ

α

γ

α

β

β

β

α

γ

β

1

2

3
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Basic exact analysis of SPN

The reachability graph of the SPN is isomorphic to a 
Continuous Time Markov Chain
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β
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3
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Basic exact analysis of SPN

The reachability graph of the SPN is isomorphic to a 
Continuous Time Markov Chain
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β
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Basic exact analysis of SPN

The reachability graph of the SPN is isomorphic to a 
Continuous Time Markov Chain
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22 4
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α
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Basic exact analysis of SPN

The reachability graph of the SPN is isomorphic to a 
Continuous Time Markov Chain

32 4

1 3

234

1 2

22 4

γ

α

γ

α

β

β

β

α

γ

β

1

2

3
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Basic exact analysis of SPN

Shared memory multiprocessor

Both processors behave in a similar way:
A cyclic sequence of: local activity, then
an access request to the shared memory, and then
accessing the shared memory
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Basic exact analysis of SPN

All transitions have exponentially
distributed durations, except for t2 and
t5, 
access request to
the shared memory
(immediate)

GSPN
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Basic exact analysis of SPN

Reachability graph

It is not isomorphic to a Continuous Time Markov Chain
(infinite rates are not allowed in CTMCs)
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Basic exact analysis of SPN

Tangible reachability graph

It is isomorphic to a Continuous Time Markov
Chain
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Basic exact analysis of SPN

Infinitesimal generator matrix of the
CTMC
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Basic exact analysis of SPN

The stationary distribution can be 
computed (steady state probability of each
state)

And from here, compute performance
index:

Processing power = average number of
processors effectively (locally) working = 
2π1+π2+π3
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Preliminary comments

Interest of bounding techniques
preliminary phases of design

many parameters
are not known
accurately
quick evaluation and
rejection of those
clearly bad

complexity

accuracy

bounds

exact
solution
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Preliminary comments

Net-driven solution technique
stressing the intimate relationship between
qualitative and quantitative aspects of PN’s
structure theory of net models

efficient computation techniques
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Outline

Preliminary comments
Introducing the ideas: Marked Graphs case
Generalization: use of visit ratios
Improvements of the bounds
A general linear programming statement
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generally distributed service times 
(random variables Xi with mean        )

we assume infinite-server semantics

Introducing ideas: Marked Graph case

p1
p2

p3

p4

p5

t1

t2

t3

t4

exact cycle time (random variable):
average cycle time: 

but (non-negative variables):

therefore:

X = X1 + max{X2, X3} + X4
Γ = s [t1] + E[max{X2, X3}]+ s [t4]

X2, X3 ≤ max{X2, X3} ≤ X2 + X3

s [t1] + max{s [t2],s [t3]} + s [t4] ≤ Γ ≤ s [t1] + s [t2] + s [t3]+ s [t4]

s [t j]
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Introducing ideas: Marked Graph case

Thus, the lower bound for the average cycle
time is computed looking for the slowest
circuit

Interpretation:
an MG may be built synchronising
circuits, so we look for the bottleneck

Γ ≥ max
C∈{circuits
of the net}

s [ti]
ti∈C
∑

# tokens in C

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
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Introducing ideas: Marked Graph case

Computation:

( is the vector of
average service times)

(the proof of this comes later for a more general case)

solving a linear programming problem
(polynomial complexity on the net size)

Γ ≥ maximum y⋅Pre⋅s 
subject to y⋅C = 0

y⋅m0 = 1
y ≥ 0

s 
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Introducing ideas: Marked Graph case

Even if naïf, the bounds are tight!
Lower bound for the average cycle time

it is exact for deterministic timing
it cannot be improved using only mean values of
r.v. (it is reached in a limit case for a family of
random variables with arbitrary means and
variances)

max{s [t2],s [t3]} ≤ E[max{X2, X3}]
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Introducing ideas: Marked Graph case

they behave “as deterministic”
for the ‘max’ and ‘+’ operators
in the limit (α→1)

Xμ,σ (α) =
μα with probability 1−ε

μ α +
1−α

ε
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ with probability ε

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
ε =

μ2(1−α)2

μ2(1−α)2 +σ2

(0 ≤α ≤1)

E Xμ,σ (α)[ ]= μ ; Var Xμ,σ (α)[ ]= σ2

lim
α→1

E max Xμ,σ (α), X ′ μ , ′ σ (α)( )[ ]= max μ, ′ μ ( )

E Xμ,σ (α) + X ′ μ , ′ σ (α)[ ]= μ + ′ μ , ∀ 0≤α <1
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Introducing ideas: Marked Graph case

Upper bound for the average cycle time

it cannot be improved for 1–live MG’s using
only mean values of r.v. (it is reached in a limit
case for a family of random variables with
arbitrary means)

Γ ≤ s [t]
t∈T
∑
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Introducing ideas: Marked Graph case

Xμ
i (ε) =

0 with probability 1−εi

μ

εi
with probability εi

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

(0 < ε <1) E Xμ
i (ε)⎡ 

⎣ 
⎤ 
⎦ = μ ; E Xμ

i (ε)2⎡ 
⎣ 

⎤ 
⎦ =

μ2

εi

If X j = Xs [tj]
j−1 (ε ), ∀t j ∈T ,

E[max(Xi, X j )] = s [ti]+ s [t j] +o(ε)

then for varying (decreasing) values of ε:
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Outline

Preliminary comments
Introducing the ideas: Marked Graphs case
Generalization: use of visit ratios
Improvements of the bounds
A general linear programming statement
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Generalization: use of visit ratios

Visit ratios = relative throughput
(number of visits to ti per each visit to t1)

average interfiring time of t1

v[t] =
χ[t]
χ[t1]

= Γ[t1] χ[t]
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Generalization: use of visit ratios

For some net classes v can be computed as:

p3

p 7

p 10

p12

p 9

p 8

p11

t1
t2 t 3 t4

t 5

p 1 p2

p4
p5

t6

p 6

t 7

t 8 t 9

t 10 t 11

C⋅v = 0;
r1v[t2] = r2v[t1];
r3v[t4] = r4v[t3];

v[t1] = 1



Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 16

Generalization: use of visit ratios

Little’s law (L=λW) applied to a place 
p:

Assume that timed transitions are never in conflict
(conflicts are modelled with immediate transitions), then
either all output transitions of p are immediate or p has a 
unique output transition, say t1, and t1 is timed, thus:

μ [ p] = (Pre[p,T ] ⋅χ) r [ p]

μ [ p] = (Pre[p,T ] ⋅χ) r [ p] = Pre[p, t1] χ[t1] r [p]

≥ Pre[p, t1] χ[t1] s [t1] = Pre[p, t j ] χ[t j ] s [t j]
j=1

m
∑
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Generalization: use of visit ratios

Then:

Hence:                                   where

Premultiplying by a P–semiflow y

Γ[t1] μ [ p] ≥ Pre[ p, t j] Γ[t1] χ[t j] s [t j ]
j=1

m
∑ = Pre[p, t j] v[t j ] s [t j]

j=1

m
∑

Γ[t1] μ ≥ Pre⋅D D [t] = s [t]v[t] is the average service
demand of t

(y ⋅C = 0, y ≥ 0, thus y⋅μ = y ⋅m0 ),

Γ[t1] ≥ maximum y ⋅Pre⋅D 
y ⋅m0

subject to y ⋅C = 0
1⋅y > 0
y ≥ 0

Γ[t1] ≥ maximum
y ⋅Pre⋅D 

q
subject to y ⋅C = 0

1⋅y > 0
q = y ⋅m0
y ≥ 0
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Generalization: use of visit ratios

Since y·m0 > 0  (live system), we change y/q  to y and we obtain
(1·y > 0  is removed because y·m0 = 1  implies 1·y > 0):

again, a linear programming problem
(polynomial complexity on the net size)

Γ[t1] ≥ maximum y ⋅Pre⋅D 
subject to y ⋅C = 0

y ⋅m0 =1
y ≥ 0
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Generalization: use of visit ratios

Interpretation: slowest subsystem generated by P–semiflows, in isolation

minimal P–semiflows
y1 = (1,0,1,1,0,0,1,0,1,0,0,0)
y2 = (0,1,0,0,1,1,0,1,0.1,0,0)
y3 = (0,0,0,0,0,0,0,0,1,1,1,0)
y4 = (0,0,0,0,0,0,0,0,0,0,0,1)

p3

p 7

p 9

t1
t2

t 5

p 1

p4

t6

t 8

t 10

p 10

p 8

t 3 t4

p2

p5

t6

p 6

t 7

t 9

t 11

p12 t 5

p 10
p 9 p11

t 8 t 9

t 10 t 11

N4

N1 N2

N3

Γ[t1] ≥ max { (s [t5]+ s [t6] + s [t10])/ 3,
(s [t6]+ s [t7] + s [t11])/ 2,
s [t10]+ s [t11],
s [t5] }
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Generalization: use of visit ratios

Upper bound for the average interfiring
time

remember the marked graphs case (v = 1): 

Γ[t1] ≤ v[t] s [t]
t∈T
∑ = D [t]

t∈T
∑

Γ ≤ s [t]
t∈T
∑
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Outline
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Improvements of the bounds

Structural improvements
bounds still based only on the mean values (not
on higher moments of r.v., insensitive bounds)

lower bound for the average interfiring time:
use of implicit places to increase the number of
minimal P–semiflows
upper bound for the average interfiring time:
use of liveness bound of transitions to improve the
bound for some net subclasses
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Improvements of the bounds

Use of implicit places

t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p4 p5

q1-q

Γ[t5] = qs [t3]+ (1− q)s [t4]

Γ[t1] ≥ maximum y ⋅Pre⋅D 
subject to y ⋅C = 0

y ⋅m0 =1
y ≥ 0

Γ[t5] ≥ max qs [t3],(1− q)s [t4]{ }
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Improvements of the bounds

t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p4 p5

q1-q
t1 t2

t3 t 4

t 5

p1

p2 p3

p4 p5

q 1-q

p6

in this case, we get the exact value!

Γ[t1] ≥ maximum y ⋅Pre⋅D 
subject to y ⋅C = 0

y ⋅m0 =1
y ≥ 0

Γ[t5] = qs [t3]+ (1− q)s [t4]
Γ[t5] ≥ max qs [t3], (1− q)s [t4], qs [t3]+ (1− q)s [t4]{ }
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Improvements of the bounds

in general…

t1 t2

t3 t4

t5

p1

p2 p3

p4 p5

q 1-q

t7

p6 p7

t6

Γ[t1] ≥ maximum y ⋅Pre⋅D 
subject to y ⋅C = 0

y ⋅m0 =1
y ≥ 0

Γ[t7] ≥ max { qs [t3] + s [t6] + s [t7],

(1− q)s [t4]+ s [t5]+ s [t7] }
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Improvements of the bounds

t1 t2

t3 t4

t5

p1

p2 p3

p4 p5

q 1-q

t7

p6 p7

t6
p8

in general, the bound is non-reachable

(deterministic
timing)

Γ[t7] ≥ max { qs [t3] + s [t6] + s [t7],

(1− q)s [t4] + s [t5]+ s [t7],

qs [t3] + (1− q)s [t4]+ s [t7] }

Γ[t7] = qmax{s [t5],s [t3] + s [t6]}+ (1− q)max{s [t4] + s [t5],s [t6]}+ s [t7]
= max { qs [t3] + s [t6]+ s [t7],

(1− q)s [t4] + s [t5] + s [t7],

qs [t3] + (1−q)s [t4] + (1− q)s [t5] +qs [t6] + s [t7],

qs [t5] + (1−q)s [t6] + s [t7] }
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Improvements of the bounds

Use of liveness bounds

upper bound for the average interfiring time:

reachable for 1-live marked graphs, but…

p1
p2

p3

p4

p5

t1

t2

t3

t4
Γ ≤ s [t]

t∈T
∑
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Improvements of the bounds

p1
p2

p3

p4

p5

t1

t2

t3

t4

it can be improved for k–live marked graphs

liveness bound of t2

Γ ≤ s [t1] +
s [t2]

2
+ s [t3] + s [t4]
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Improvements of the bounds

Definitions of enabling degree, enabling bound, structural
enabling bound, and liveness bound

instantaneous enabling degree of a transition at a given marking

e[t](m) = 2
2
t 

e[t](m) =sup k ∈Ν : ∀p ∈ •t, m[ p] ≥ k Pre[p, t]{ }
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Improvements of the bounds

enabling bound of a transition in a given system:
maximum among the instantaneous enabling degree at all
reachable markings

eb[t2] = 2
p1

p2

p3

p4

p5

t1

t2

t3

t4

eb[t] = sup k ∈Ν : ∃m0
σ

⎯ → ⎯ m, ∀p∈• t, m[p] ≥ k Pre[p, t]⎧ ⎨ 
⎩ 

⎫ ⎬ 
⎭ 
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Improvements of the bounds

liveness bound of a transition in a given system:
number of servers available in t in steady state

t

2

p1 1 t 2

t 3

p2

p3
lb[t1] = 1 < 2 = eb[t1]

lb[t] = sup k ∈Ν : ∀ ′ m ,m0
σ

⎯ → ⎯ ′ m ,∃m, ′ m ′ σ 
⎯ → ⎯ ⎯ m∧∀p∈• t,m[p]≥ k Pre[p, t]⎧ ⎨ 

⎩ 
⎫ ⎬ 
⎭ 
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Improvements of the bounds

structural enabling bound of a transition in a given
system: structural counterpart of the enabling bound
(substitute reachability condition by  

m = m0 + C · σ; m,σ ≥ 0)

Property: For any net system seb[t] ≥ eb[t] ≥ lb[t],     t.
Property: For live and bounded free choice systems,

seb[t] = eb[t] = lb[t],       t.

seb [t] = maximum k
subject to m0[p]+C[p,T] ⋅σ ≥ k Pre[p, t], ∀p∈P

σ ≥ 0

∀

∀



Javier Campos. Performance modelling and evaluation: 12. Performance bounds for SPN 33

Improvements of the bounds

improvement of the bound for live and bounded free 
choice systems:

this bound cannot be improved for marked graphs
(using only the mean values of service times)

Γ[t1] ≤
v[t] s [t]

seb[t]t∈T
∑ =

D [t]
seb[t]t∈T

∑
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Outline

Preliminary comments
Introducing the ideas: Marked Graphs case
Generalization: use of visit ratios
Improvements of the bounds
A general linear programming statement
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A general linear programming statement

The idea

linear operational laws

a linear function

maximize [or minimize]   f (μ , χ)

subject to any linear constraint that we are able to state
for μ , χ, and other needed additional variables
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A general linear programming statement

A set of linear constraints:

… …

(state equation)

(flow balance equation)

μ = m0 +C⋅σ

χ[t] Post[p, t]

t∈• p
∑ ≥ χ[t] Pre[p, t],

t∈p•
∑ ∀p∈P

χ[t] Post[p, t]

t∈• p
∑ = χ[t] Pre[ p, t],

t∈p•
∑ ∀p∈P bounded

χ[ti]
ri

=
χ[t j ]

rj
, ∀ti, t j ∈T : behavioural free choice

(e.g. Pre[P, ti]= Pre[P, t j])
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A general linear programming statement

(minimum throughput law)

(maximum throughput law)χ[t] s [t] ≤
μ [p]

Pre[ p, t]
, ∀t ∈T, ∀p∈• t

χ[t] s [t] ≥ μ [p]− Pre[ p, t]+1
Pre[p, t]

, ∀t ∈T persistent,age memory or

immediate: •t = {p}
… …

μ , χ, σ ≥ 0
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A general linear programming statement

It can be improved using second order
moments
It can be extended to well-formed
coloured nets
It has been recently extended to Time 
Petri Nets (timing based on intervals, 
usefull for the modelling and analysis of
real-time systems)
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A general linear programming statement

It is implemented in GreatSPN
select place (transition) object (       )
click right mouse button and select “show”
click again right mouse button and select
“Average M.B.” (“LP Throughput Bounds”)
click left mouse button for upper bound
click middle mouse button for lower bound
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A general linear programming statement

Example: a shared-memory multiprocessor
set of processing modules (with local memory) 
interconnected by a common bus called the “external
bus”
a processor can access its own memory module directly
from its private bus through one port, or it can access
non-local shared-memory modules by means of the
external bus
priority is given to external access through the external
bus with respect to the accesses from the local 
processor

M1 P1 M2 P2 M3 P3 M4 P4
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A general linear programming statement

Timed Well-Formed Coloured Net (TWN) model of
the shared-memory multiprocessor

Average service time of timed transitions equal to 0.5
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A general linear programming statement

The linear constraints for the LPP
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A general linear programming statement

The “automatic” results:

The exact solution with exponential distribution would be

Improving of lower bound with more “ad hoc” constraints:

The improved bound:

2]__[ χ
11
8

≤≤ aee

71999.1]__[ χ =aee

3][b;0][b;0][ === QueueChoiceChoiceμ

2]__[ χ1 ≤≤ aee
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Outline

Decomposition of models
Flow equivalent aggregation
Iterative algorithm: marked graphs case
Iterative algorithm: general case
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Decomposition of models

Interest of approximation techniques

complexity

accuracy

bounds

exact
solution

approx.
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Decomposition of models

Basic idea:

reduce the complexity of the analysis of a complex
system

when

the system is too complex/big to be solved by 
any exact analytical technique
a simulation is too long (essentially if many different
configurations must be tested or it must be included in 
some optimization procedure)
some insights about the internal behaviour of subsystems
are wanted (writing equations might help)
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Decomposition of models

Principle:
decompose the system into some subsystems

reduce the analysis of the whole system by those of the
subsystems in isolation

if the solution technique was, e.g., O(n3) on the state space
size n, the cost of solving the isolated subsystems would be 
O(n3/1000), i.e. three orders of magnitud less…

original system
state space size: n

two subsystems
state space size of each: n/10
(for example)
(i.e., one order of magnitud less)
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Decomposition of models

Advantages:
drastical reduction of complexity and computational
requirements
enables to extend the class of system that can be solved
by analytical techniques

Problems and limitations
Decomposition is not easy!

“net-driven” means to use structural information of the net 
model to assure that “good” qualitative properties are 
preserved in the isolated subsystems (e.g., liveness, 
boundedness…)

Approximation is not exact!
problem of error estimation or at least bounding the error

Accurate techniques are usually very especific to
particular problems need of expertise to select the
adequate technique…
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Decomposition of models
Steps in an approximation technique based on decomposition:

Partition of the system into subsystems:
definition of rules for decomposition
consideration of functional properties that must/can be 
preserved

Characterization of subsystems in isolation:
definition of unknowns and variables
decisions related with consideration of mean variables or
higher order moments of involved random variables
consideration or not of the “outside world”
need of a skeleton (high level view of the model) and
characteristics considered in it

Estimation of the unknown parameters:
writing equations among unknowns
direct or iterative technique (in this case, definition of
fixed point equations)
considerations on existence and uniqueness of solution
computational algorithm for solving the fixed point equation
(implementation aspects, convergence aspects)
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Outline

Decomposition of models
Flow equivalent aggregation
Iterative algorithm: marked graphs case
Iterative algorithm: general case
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Flow equivalent aggregation

The system: Partition:

p6 p8

p7

p9

p10

t7

t8

t11

t13

t12

p2

p1
1

p3

p4

p5

p1 t2

t3

t4

t
5

t6

t9 t10

p2

p1
1

p3

p6 p8

p4

p5

p7

p9

p10

p1 t2

t3

t4

t5

t6

t7

t8

t11

t13

t12
t9 t10
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Flow equivalent aggregation

Characterization of subsystems. 
Behaviour is characterized by:

path a token takes in the PN 
(what percetage leave through t5 and t6)
time it takes a token to be discharged

p2

p11

p3

p4

p5

p1 t2

t3

t4

t5

t6

t9 t10

•way-in places: p1

•sink transitions: t5, t6
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Flow equivalent aggregation

Reduction of the subsystem:

ppin td(n) tout1(n)

tout2(n)

•routing rates of tout1(n) and tout2(n)?

•service rate of td(n)?

(marking dependent: n=M(pin)

p2

p11

p3

p4

p5

p1 t2

t3

t4

t5

t6

t9 t10



Javier Campos. Performance modelling and evaluation: 13. Approximate analysis of models 12

Flow equivalent aggregation

Aggregated system:

p6 p8

p7

p9

p10

t7

t8

t11

t13

t12

ppin
td(n)

tout1(n)

tout2(n)

p2

p11

p3

p6 p8

p4

p5

p7

p9

p10

p1 t2

t3

t4

t5

t6

t7

t8

t11

t13

t12

t9 t10
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Flow equivalent aggregation

Estimation of the unknown parameters:
Analyze the subnet in isolation with
constant number of tokens

delay and routing are dependent on
the number of tokens in the
system
compute delay and routing for all
possible populations

p2

p11

p3

p4

p5

p1

t2

t3

t4

t5

t6

t9 t10

Parameters of the subsystem in isolation
# tokens v5 v6 thrput
1 0.500 0.500 0.400
2 0.431 0.569 0.640
3 0.403 0.597 0.780
4 0.389 0.611 0.863
5 0.382 0.618 0.914
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Flow equivalent aggregation

When the subnet is substituted back, routing and delay are 
going to be state dependent (n=M(pin))

p6 p8

p7

p9

p10

t7

t8

t11

t13

t12

ppin
td(n)

tout1(n)

tout2(n)

Comparison of State Spaces & throughput
#tokens # states throughput %error

aggregat original aggregat original
1 5 9 0.232 0.232 0.00
2 12 41 0.381 0.384 0.78
3 22 131 0.470 0.474 0.84
4 35 336 0.521 0.523 0.38
5 51 742 0.548 0.547 <0.10
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Flow equivalent aggregation
Limitations:

Assumption: the service time depends only on the number of
customers which are currently present in the subsystem.

The behaviour of the subsystem is assumed independent of the
arrival process

It is exact for product-form queueing networks.
The error is small if in the original model:

the arrivals to the subsystem are “close” to Poisson arrivals and
the processing times are approximately exponential

On the other hand, the error can be very large if
there exist internal loops
in a subnet, or
there exist trapped
tokens in a fork-join, 
or…
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Outline

Decomposition of models
Flow equivalent aggregation
Iterative algorithm: marked graphs case
Iterative algorithm: general case
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Iterative algorithm: marked graphs
case

Net-driven solution techniques
stressing the intimate relationship between
qualitative and quantitative aspects of PN’s
structure theory of net models

efficient computation techniques

Marked graphs: subclass of ordinary nets
(no choices) (no weights)

... ... ... ...

YES NO
A

B

C

D

E
F

G

H I
J

K

L

M

N

O

P

Q R
S

T

U V

WZ3

Z2

Z1Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19 T14

T6

T5

T10 T9

T13

T11
T12

T7

X
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Iterative algorithm: marked graphs
case

A
B

C

D

E
F

G

H I
J

K

L

M

N

O

P

Q R
S

T

U V

WZ3

Z2

Z1Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19 T14

T6

T5

T10 T9

T13

T11
T12

T7

X

cut

A
B

C

D

E
F

G

H I
J

K

L

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X
M

N

O

P

Q R
S

T

U V

WT14

T6

T5

T10 T9

T13

T11
T12

T7

original model + definition of cut

Z3

Z2

Z1

partition of the model into
modules (subnets) connected
through buffers (places)
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Iterative algorithm: marked graphs
case

A
B

C

D

E
F

G

H I
J

K

L

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X the solution of isolated modules 
is difficult and useless:
(in this case) they are unbounded!

the modules must be complemented
with an abstract view of the rest;
components are obtained

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3
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Iterative algorithm: marked graphs
case

A
B

C

D

E
F

G

H I
J

K

L

M

N

O

P

Q R
S

T

U V

WZ3

Z2

Z1Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19 T14

T6

T5

T10 T9

T13

T11
T12

T7

X

cut

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

original model (89358 states)

three components:
aggregated systems
(low level views) 
and basic skeleton
(high level view)

AS1 (8288 states) AS2 (3440 states)

BS (231 states)
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Iterative algorithm: marked graphs
case

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

iterative solution: pelota algorithm (response time approximation technique)

solution of smaller CTMC’s,
improving in each step the
response time of the
abstract part
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Iterative algorithm: marked graphs
case

Substitute a subnet by a set of places

interface transitions (input/ouput of buffers) are 
preserved
add one place from each input to each output transition
the set of new places can be superposed in the original 
model preserving the behaviour: implicit places

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N

O

P

Q R
S

T

U V

W

T10 T9

T13

T11
T12

T7

beta_1
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Iterative algorithm: marked graphs
case

Compute the initial marking of new places
minimum initial marking to make them implicit
computed using Floyd’s all-pairs shortest paths
algorithm:

the MG is considered as a weighted graph
(transitions are vertices and the initial marking of
places are the weigths of the arcs)
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Iterative algorithm: marked graphs
case

The abstract view has “very good quality”:
the language of firing sequences of the
aggregated system is equal to that of the
original system projected on the preserved
transitions
the reachability graph of the aggregated
system is isomorphous to that of the original 
system projected on the preserved places
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Iterative algorithm: marked graphs
case

Definition of unknowns:

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3
Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

service time of rho_i service time of tau_j service time of
rho_i and tau_j

+ throughput of each system
+ response time of interface transitions at each system
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Iterative algorithm: marked graphs
case

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

response time approximation of the
left hand subnet for a token that

exits through T2:
(Little’s law) 

exits through T3:

thus, solve the CTMC and compute: R2, R3 and also χ

  
R2 = μ [alph_1]

χ[t2] 

  
R3 = μ [alph_ 2]

χ[t3] 

first aggregated system

  (χ[t2] = χ[t3] = χ)  
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Iterative algorithm: marked graphs
case

second aggregated system

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3

select tau_1 and tau_2 as:

where f is computed using the skeleton:
linear search until the throughput of
the skeleton is equal to the throughput
computed for the first aggregated system

    

tau_1= f .R2
tau_2= f .R3  

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

    

tau_1= f .R2
tau_2= f .R3  skeleton
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Iterative algorithm: marked graphs
case

The algorithm:

select a cut Q;
derive aggregated systems AS1,AS2 and skeleton BS;
give initial value µt

(0) for each t∈TI2;
k:=0;  {counter for iteration steps}
repeat
k:=k+1;
solve aggregated system AS1 with

input:  µt
(k-1) for each t∈TI2,

output: ratios among µt
(k) of t∈TI1, and X1(k);

solve basic skeleton BS with
input:  µt

(k-1) for each t∈TI2,
ratios among µt

(k) of t∈TI1, and X1(k),
output: scale factor of µt

(k) of t∈TI1;
solve aggregated system AS2 with

input:  µt
(k-1) for each t∈TI1,

output: ratios among µt
(k) of t∈TI2, and X2(k);

solve basic skeleton BS with
input:  µt

(k) for each t∈TI1,
ratios among µt

(k) of t∈TI2, and X2(k),
output: scale factor of µt

(k) of t∈TI2;
until convergence of X1(k) and X2(k);
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Iterative algorithm: marked graphs
case

Service rates (arbitrary): 
T2=0.2; T4=0.7; T6=0.3; T8=0.8; T9=0.6; T10=0.5;
Ti=1.0,   i=1,3,5,7,11,12,13,14,15,16,17,18,19

Throughput of the original system:   0.138341
State space of the original system:  89358

Results using the approximation technique:
State space AS1: 8288; State space AS2: 3440; State space BS: 231

AS1 AS2
X1          tau_1      tau_2     tau_3      X2          rho_1     rho_2     rho_3
0.17352  0.05170  0.16810  0.88873  0.12714  0.89026  0.21861  0.14354
0.14093  0.06265  0.19707  0.91895  0.13795  0.88267  0.21363  0.13509
0.13856  0.06325  0.19821  0.92054  0.13841  0.88239  0.21343  0.13467
0.13844  0.06328  0.19827  0.92062  0.13843  0.88237  0.21342  0.13465
0.13843  0.06328  0.19827  0.92064  0.13843  0.88238  0.21342  0.13465
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Outline

Decomposition of models
Flow equivalent aggregation
Iterative algorithm: marked graphs case
Iterative algorithm: general case
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Iterative algorithm: general case

Arbitrary P/T system + structured view

partition into modules (functional units) 
connected through places (buffers)
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Iterative algorithm: general case

All P/T systems have serveral structured
views, varying between:

a single module (empty set of buffers)

as many modules as transitions (all places are 
considered as buffers)
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Iterative algorithm: general case

Substitute a subnet
by a set of
implicit places

derived from
minimal P-semiflows
of the subnet
(sum of the incidence
rows of places)
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Iterative algorithm: general case
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Iterative algorithm: general case

The quality of the abstract view is “not as 
good as” in the MG’s case

the language of firing sequences of the
aggregated system includes that of the
original system projected on the preserved
transitions
the reachability graph of the aggregated
system includes that of the original system
projected on the preserved nodes
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Iterative algorithm: general case

Problems in the composition:

The RG of an aggregated system may include
spurious markings and firing sequences that do 
not correspond to actual markings and firing
sequences of the original system

we can obtain even non-ergodic systems
(CTMC cannot be solved)
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Iterative algorithm: general case
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Iterative algorithm: general case

Solution for the problem:
select only the strongly connected component
of the RG that includes the projection of the
initial marking
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Iterative algorithm: general case

More problems: 
Spurious markings (and/or firing seq.) may still
be present, 

but the solution is possible!
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Iterative algorithm: general case

It is possible to eliminate all the spurious markings
with additional computational effort

use a Kronecker expression of the infinitesimal 
generator of the original system

implement a depth-first search to build the
RS
reduce the infinitesimal generators of the
aggregated systems, using the information
about reachability in the original system

The whole reachability set must be derived but the
CTMC is not solved (throughput is approximated
from the solution of CTMC of subsystems)
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