Chapter 6

Logical properties of P/T
systems and their analysis

6.1 Basic logical properties

Only a few qualitative properties will be considered in this introductory chapter.
They are general in the sense that they are meaningful for any concurrent sys-
tem, not only for those modeled with Petri nets. Nevertheless, their statements
using Petri net concepts and objects make them specially “easy to understand”
in many cases. The properties to be considered are:

1) boundedness, characterising finiteness of the state space.

2) liveness, related to potential fireability in all reachable markings. Deadlock-
freeness is a weaker condition in which only global infinite activity (i.e.
fireability) of the net system model is guaranted, even if some parts of it
do not work at all.

3) reversibility, characterizing recoverability of the initial marking from any
reachable marking.

4) mutual exclusion, dealing with the impossibility of simultaneous submark-
ings (p-mutex) or firing concurrency (t-mutex).

Consider the net in Figure 6.1.a. Firing t5 leads to m = p3 + ps4. Firing
now t4, mq = p1 + pa is reached. Repeating w times the sequence ts5t4 the
marking m, = p; + wps is reached. So the marking of p3 can be arbitrarily
large, place ps is said to be unbounded. In practice, the capacity of the physical
element represented by p3 should be finite, so an overflow can appear, which is
a pathological situation.

The maximum number of tokens a place may contain is its (marking) bound.
A place is bounded if its bound is finite. A net system is bounded if each place is
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Figure 6.1: On qualitative pathological behaviors: (a) an unbounded, dead-
lockable (non-live), non-reversible net system; (b) increasing the initial marking
(e.g. mo[ps] = 1) the live net system can reach a deadlock state!

Figure 6.2: Bounded, live and reversible system and its reachability graph
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bounded. System boundedness (i.e. all places bounded) is a generally required
behavioural property.

For any initial marking we can define on the net structure of Figure 6.2a the
following token conservation laws:

m(p;] + mps] + m[ps] = mo[p1] + mo[ps2] + mo[ps] = k1 (mo)
m(p1] + m[ps] + mps] = mg[p1] + me[ps] + me[ps] = ko(myo)
m|(ps] = mo[ps] = k3(mo)

where mg is the initial marking and m any reachable marking. Therefore:

m(p;] < min(ky (mg), ko(m
m[p;] < ki(mo);i =2,3
m[pj]<k’2( 0)).7 4

m|[ps] = k3(myo)

o))

The above inequalities mean that for any mg the net system is bounded.
This property, stronger than boundedness, is called structural boundedness be-
cause it holds independently of the initial marking (only finiteness of mg is
assumed).

Let us consider now a different scenario where we fire ¢; from the marking in
Figure 6.1a. After that, no transition can be fired: a total deadlock situation has
been reached. A net system is said to be deadlock-free if always (i.e. from any
reachable marking) at least one transition can occur. A stronger condition than
deadlock-freeness is liveness. A transition t is potentially fireable at a given
marking m if there exists a transition firing sequence ¢ leading to a marking
m’ in which ¢ is enabled (i.e. m-Zym’ > Pre[P,t]). A transition is live if it
is potentially fireable in all reachable markings. In other words, a transition is
live if it never loses the possibility of firing (i.e. of performing some activity).
A net system is live if all the transitions are live.

For any initial marking we can define on the net structure in Figure 6.1a, non
liveness holds (in fact, a total deadlock can always be reached). Non-liveness
for arbitrary initial markings reflect a pathology of the net structure: structural
non-liveness. A net is structurally live if there exists at least one live initial
marking.

At first glance it may be accepted as intuitive that increasing the initial
marking (e.g. increasing the number of resources) of a net system “helps”
making it live. A paradoxical behaviour of concurrent systems is the following:
The net system in Figure 6.1b shows that increasing the number of resources
can lead to deadlock situations (Adding a token to ps, 2 can be fired and a
deadlock is reached!). In other words, in general, liveness is not monotonic with
respect to the initial marking. Nevertheless, it can be pointed out that liveness
can be marking-monotonic on certain net subclasses.
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Figure 6.3: On home states: (a) The initial marking is not a home state, but all
successor markings are home states; (b) Net system that presents two livelocks,
so there are no home states.

A marking is a home state if it is reachable from any other reachable mark-
ing. The initial marking of the net system in Figure 6.3a is not a home state:
after the firing of transition ¢3 or ¢4 it is not possible to recover this initial mark-
ing. Nevertheless, each one of the reachable markings from the initial one is a
home state. For some subclasses of net systems the existence of home states is
guaranteed [45, 40], but in general the existence of home states does not hold.
The net system in Figure 6.3.b [6] is live and bounded but there are no home
states. In fact, there exist two different terminal live behaviours that are mutu-
ally unreachable. Each one of these terminal live behaviours is called a livelock.
The set of home states of a net system 1s called the home space. The existence
of a home space for a net system is a desirable property because it is strongly
related to properties such as ergodicity, of crucial importance in the context of
performance evaluation or system simulation.

In the particular case that the initial marking is a home state, the net system
is reversible, so it is always possible to return to the initial marking.

Liveness, boundedness, and reversibility are just three different “good” (of-
ten required) behavioural properties that may be interesting to study in a net
system. Figure 6.4 shows that they are independent of each other, giving ex-
amples of the eight cases we may have.

The last basic property we introduce in this section is mutual exclusion. This
property captures constraints like the impossibility of a simultaneous access by
two robots to a single store. Two places (transitions) are in mutual exclusion
if can they never be simultaneously marked (fired). For instance, in the net
system in Figure 6.2 we can write: m[p1] + m[ps] + m[ps] = 1, so p1, p2, and
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Boundedness (B), liveness (L) and reversibility (R) are independent
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(1)  Bound of place p in (N, mg)
b(p) = sup{mip]lm € RS(A’, mo)}
(2)  pis bounded in (N, mg) iff b(p) < co
(3) (N,mg) is bounded if all places are bounded
(4) (N,m0> is deadlock-free iff Ym € RS(N,mo) Jt € T such
that ¢ is fireable at m
(5)  tislive in (M, mo) iff Ym € RS(N,mg) Jo such that m_“%m’

(6) (N, mg) is live if all transitions are live
(7) m € RS(N,mg) is a home state iff Ym’ € RS(N, mg) Jo such that
m'_Zym

(8) (N, myp) is reversible iff Ym € RS(N, mg) 3o such that m—Zymg

(9)  Mutual exclusion in (N, mg):
pi and p; are in marking mutual exclusion iff 2 m € RS(NV, mg) such
that (m[p;] > 0) and (m[p;] > 0)
t; and t; are in firing mutual exclusion iff 2 m € RS(NV, mg) such that
m > Pre[P,t;] + Pre[P, t;]

(10)  Structural properties (abstractions of behavioural properties):
N is structurally bounded iff Ymg (finite) (A, mq) is bounded
N is structurally live iff 3mg(finite) making (A, mg) a live system

Table 6.1: Summarising some basic logical properties

p3 are in mutual exclusion.
Table 6.1 summarises the definitions of the different properties we introduced
in this section.

6.2 Basic analysis techniques for P/T net sys-
tems

Conventionally, analysis techniques for Petri nets, are classified as: (1) Enu-
meration; (2) Transformation; and (3) Structural analysis. Simulation methods
have also been applied to study systems modeled with P/T nets. They proceed
playing the token game (firing enabled transitions) on the net system model
under certain strategies. In general, simulation methods do not allow to prove
properties, but they might be of great help for understanding the modeled sys-
tem or to fix the manifested problems during simulation. Simulation methods
are extremely useful when time is associated with the net evolution (timed sys-
tems), or when we wish to know the response of the system described with
a net in an environment which is also defined by simulation (see Part VII of
this book). In this section we do not consider simulation methods and we will
only overview the three previously mentioned analysis techniques on P/T nets
without interpretation.

Enumeration methods are based on the construction of a reachability graph

(RG) which represents, individually, the net markings and single transition fir-
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ings between them. If the net system is bounded, the reachability graph is finite
and the different qualitative properties can be easily verified. If the net system is
unbounded, the RG is infinite and its construction is not possible. In this case,
finite graphs known as coverability graphs can be constructed (see, for example,
[31, 33, 18]). In spite of its power, enumeration is often difficult to apply, even
in small nets, due to its computational complexity (it is strongly combinatory).

Analysis by transformation proceeds transforming a net system S = (M, mg)
into a net system 8’ = (N, mq’) preserving the set of properties IT to be verified
(i.e. & satisfies the properties IT iff S satisfies them). The final goal is to verify
the properties TT in &’ in a more easy way than in 8. The state space of S’
may be bigger than that of §, but &’ may belong to a subclass for which state
enumeration can be avoided.

Reduction methods are a special class of transformation methods in which a
sequence of net systems preserving the properties to be studied is constructed.
The construction is done in such a way that the net system (N’i+1,m0i+1> 1s
“smaller” (less markings or maintaining the reachability set it has less places or
transitions) than the previous in the sequence, (N;, mo;).

The applicability of reduction methods is limited by the existence of irre-
ducible net systems. Practically speaking, the reductions obtained are normally
considerable, and can allow the desired properties to be verified directly. Be-
cause of the existence of irreducible systems, this method must be complemented
by others.

Finally, structural analysis techniques investigate the relationships between
the behaviour of a net system and its structure (hence their name), while the
initial marking acts, basically, as a parameter. In this last class of analysis
techniques, we can distinguish two subgroups:

1) Linear algebra / Linear programming based techniques, which are based
on the net state equation. In certain analysis they permit a fast diagnosis
without the necessity of enumeration.

2) Graph based techniques, in which the net is seen as a bipartite graph and
some “ad hoc” reasonings (frequently derived from the firing rule) are
applied. These methods are especially effective in analysing restricted
subclasses of ordinary nets.

The three groups of analysis techniques outlined above are by no means ex-
clusive, but complementary. Normally the designer can use them according to
the needs of the ongoing analysis process. Obviously, although we have distin-
guished between transformation/reduction and structural analysis methods, it
must be pointed out that most popular reduction techniques act basically on
the net structure level and thus can be considered also as structural techniques.

For what concerns the qualitative analysis of interpreted systems, it should
be pointed out that conclusions about the properties of the underlying au-
tonomous model can be only sufficient (e.g. for boundedness), necessary (e.g.
for reachability) or neither sufficient nor necessary (e.g. for liveness). For par-
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ticular net subclasses under “reasonable assumptions” on the behaviour of the
environment necessary and sufficient conditions exist.

6.3 Analysis based on the reachability graph

Given a net system, § = (N, myg), its reachability graph (recall definition
2.5.4) is a directed graph, RG(S) = (V,E), where V = RS(S) and F =
{(m,t,m’)jm,m’ € RS(S) and m_"ym’'} are the sets of nodes and edges,
respectively.

If the net system § = (M, mg) is bounded, the RG(S) is finite and it can be
constructed, for example, by the algorithm 6.1. It finishes when all the possible
firings from the reachable markings have been explored. The tagging scheme
in step 2.1 ensures that no marking is visited more than once. Each marking
visited is tagged (step 2.1), and step 2.2.3 ensures that the only markings added
to V' are ones that have not previously added. When a marking is visited, only
those edges representing the firing of an enabled transition are added to the set
Ein 2.2.4.

Let us consider, for example, the net system in Figure 6.2 without the place
ps and its reachability graph, obtained by applying the algorithm 6.1,. The
net system has five markings, thus it is bounded. It is also easy to conclude
that all places are 1-bounded. A closer look allows to state that pi, ps and
pa (p1, ps and ps) are in mutual exclusion. Moreover, considering RS and the
net structure (the pre-function), firing concurrency between transitions b and ¢
can be decided. Observe at this point that introducing pe in our net system,
the reachability graph does not change, but transitions b and ¢ become in firing
mutual exclusion. This example shows that the obtained RG is a sequentialised
observation of the net system behaviour.

For unbounded net systems, S, RS(S) is not a finite set and therefore the con-
struction of RG(S) never ends. Karp and Miller [23] showed how to detect un-
boundedness of a net system by means of the following condition (incorporated
in step 2.2.2 of algorithm 6.1 as a break condition): the system & = (N, mgq) is
unbounded iff there exists m’ reachable from m € RS(S), m—Zym’, such that
m< m’ (the repetition of o allows to conclude on unboundedness because the
occurrence of o strictly increases the content of tokens of the starting marking

Coverability graphs allow to obtain finite representations of the RG of un-
bounded net systems [23, 31, 33, 18]. Roughly speaking, in a coverability graph
the set of nodes is a finite set of marking vectors (called the coverability set) that
covers all the markings of the reachability set. There is an edge, representing the
firing of a transition ¢, between two nodes, m and m’ if and only if ¢ is fireable
from m and a marking covered by m’ is reached. The loss of information in
the computation of a coverability graph makes that many important properties
(e.g. marking reachability or deadlock freeness) cannot be decided on it.

In order to analyse a given property in a bounded net system, the reachability
graph is used as the basis for the corresponding decision procedure. 1t allows to
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Algorithm 6.1 (Computation of the Reachability Graph)

Input - The net system & = (N, mg)
Output - The directed graph RG(S) = (V, E) for bounded net systems

1. Initialize RG(S) = ({mo},0); mg is untagged;
2. while there are untagged nodes in V do
2.1 Select an untagged node m € V and tag it
2.2 for each enabled transition, ¢, at m do
2.2.1 Compute m’ such that m—tym’;
2.2.2 if there exists m’ € V such that m” _Zym’ and m"g m’
then the algorithm fails and exits;
(the unboundedness condition of & has been detected)
2.2.3 if there is no m"” € V such that m’” = m’
then V := VU {m'}; (m'is an untagged node)
2.2.4 F:= FU{{(m,t,m’)}
3. The algorithm succeds and RG(S) is the reachability graph

decide whether the net system satisfies a given property. All procedures are, in
general, of exponential complexity in the size of the net (measured, for example,
by the number of places) but they are of polynomial complexity on the size of
the reachability graph (measured, for example, by the number of nodes and
arcs). The focus of the rest of this section is in two general decision procedures.

In the sequel we will call marking predicate to a propositional formula whose
atoms are inequalities of the form: 3° ) kym[p] < k, where k;, and k are
rational constants and A is a subset of places. Let us consider a net system
S = <N, m0>.

The first group of properties are the so called marking invariance properties.
A given marking predicate, IT, must be satisfied for all reachable markings (hence
the name of marking invariance property): Vm € RS((N,mg)), m satisfies TI.
Examples of this are:

1) k-boundedness of place p: Ym € RS(S), m[p] < k.

2) Marking mutual exclusion between p and p': Ym € RS(S), (m[p] = 0) Vv
(m[p'] = 0).
3) Deadlock-freeness: Ym € RS(S), V,¢p(m > Pre[P,]).

Marking invariance properties can be decided through Algorithm 6.2, which
is linear in the size of RS(S): each node is visited no more than once. If the
algorithm succeeds, then all reachable markings from mg satisfy II. If the
algorithm fails at step 2.2, there is a path in the RG(S) from mg, containing at
least a marking that does not satisfy II.

Example 6.1 (Analysis of marking invariances) Let us consider the net
system in figure 6.2 for which RS(S) = {p1 + ps, p2 + ps + s, p3 + pa + s,
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Algorithm 6.2 (Decision procedure for marking invariances)

Input - The reachability set RS(S). The property 11.
Output - TRUE if the property is verified.

1. Initialise all elements of RS(S) as untagged.
2. while there is an untagged node m € RS(S) do
2.1 Select an untagged node m € RS(S) and tag it
2.2 if m does not satisfy II
then return FALSE (the property is not verified).
3. Return TRUE

Algorithm 6.3 (Decision procedure for liveness invariances)

Input - The reachability graph RG(A/, mo). The property II
Output - TRUE if the property is verified.

1. Decompose RG(N, mg) into its strongly connected components Ci, ..., C,
Obtain the graph RG®(S) = (V., E.) by shrinking C1,...,C, to a single
node, i.e. Ve ={C1,...,Cr}. (Ci,t,C;) € Ec iff there exists (m,¢, m’) € E,
such that m is in the SCC C;, m' is in the SCC C;, and 1 # j.

3.  Compute the set F of terminal strongly connected components from RG“(S)

4. while there is a C; € F do
3.1 if C; it does not contain a m' satisfying 11

then return FALSE
3.2 Remove C; from F
5.  Return TRUE

p2 + ps + ps, p3 + ps + ps}. The execution of Algorithm 6.2 to verify the
mutual exclusion property between places ps and ps (Vm € RS(S), (m[ps] =
0) V (m[ps] = 0)) starts initialising all elements of RS(S) as untagged (step 1).
Then the markings are visited one by one (e.g. in the previous order) until
p2 + ps + pg 1s visited, where the predicate TI is false, hence the algorithm stops
and return FALSE.

The second group of properties are the so called liveness invariance proper-
ties. For each reachable marking of a net system, m, there exists at least a reach-
able marking from it satisfying the property IT: Vm € RS(S), 3m’ € RS(N, m),

m’ satisfies TI. Examples of this are:

1) Liveness of t: Vm € RS(S), 3m’ € RS(N, m) such that m’ > Pre[P,{].
2) mpy is home state: Ym € RS(S), 3Im’ € RS(N, m) such that m’ = my.
3) Reversibility: VYm € RS(S), 3m’ € RS(NM, m) such that m’ = mo.

These properties cannot be verified by an exclusive linear inspection of the
reachability set (as in algorithm 6.2). The verification requires to find a reach-
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able marking, satisfying II, from each one of the markings in RS(S). In order
to verify the property we will classify the markings of RS(S) into subsets of
mutually reachable markings through the concept of strongly connected compo-
nent of a directed graph. Therefore, the property will be easily verified checking
that each terminal strongly connected component contains at least a marking
satisfying I1. We recall now some basic concepts.

A path in a reachability graph RG(S) is any sequence my ... m;m; 1 ... my
of nodes of RG(S) = (V, E) where all succesive nodes m; and m;41 in the path
satisfy that (m;, ¢, m;;,) € E for some t. The reachability graph, RG(S), is
strongly connected iff there is a path from each node in V to any other node in
V. A strongly connected component (SCC) of a reachability graph is a maximal
strongly connected subgraph. A strongly connected component of a graph will
be called terminal if no node in the component has an edge leaving the compo-
nent. The strongly connected components of a digraph (V, F) can be found in
order (|[V|+ |E]) steps (e.g. [26]).

When computing the SCCs C4,...,C, of a reachability graph RG(S) =
(V,E), a new graph RG°(S) = (Ve, E.) is induced by shrinking the strongly
connected components to a single node, i.e. V. = {C1,...,C,}. For each edge
(m,t,m’y € E, such that m is in a SCC C;, and m’ is in a different SCC
C}, there is an induced edge (Cj,t,C;) € E.. The graph RG®(S) is an acyclic
digraph. Therefore the terminal SCCs of RG(S) can be identified with linear
complexity in the size of RG®(S). This fact will be exploited in the algorithm
6.3 for liveness invariance checking.

Algorithm 6.3 allows to decide liveness invariance properties. The algorithm
is of linear complexity in the size of the RG(S). If the algorithm succeeds,
all terminal SCCs contain at least one marking satisfying the property TI, and
therefore for all reachable marking there exists at least a successor marking
satisfyig the property I1. If the algorithm fails, there exists at least one terminal
SCC that does not contain markings satisfying the property I, and therefore the
reachable markings belonging to this SCC (at least) do not satisfy the liveness
invariance property.

Remark It is possible to design more specific (efficient) decision procedures
for the analysis of a property if we know, a priori, some characteristics of the
property to be verified or we know some other properties of the net system to
be analysed. For the first case we can consider as an example the reversibility
property. Tt is easy to see that if a net system is reversible then all terminal SCCs
must contain the initial marking, i.e. the reachability graph must be strongly
connected. For the second case, for example, we may know that the net system
is reversible; then liveness of a transition ¢ can be decided checking the existence
of an edge in the reachability graph labeled ¢ (since the reachability graph is
SC and therefore always is possible to reach the marking from which ¢ can be

fired).

Example 6.2 (Analysis of liveness invariances) Let us consider the net
system in Figure 6.3.b for which the reachability graph is depicted in Figure
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p4+pS5+p7+p9+p12+pl3 p4+pS+p8+p9+pll+pl3

Figure 6.5: Reachability graph of the net system in Figure 6.3.b
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6.5. The execution of the algorithm 6.3 to verify the liveness property of this
net system (Vm € RS(S), A,er [Fm’ € RS((NV, m)), m* > Pre[P,t]]) requires
the computation of the strongly connected components of the RG(S) (step 1).
In this case, there are three SCCs depicted in Figure 6.5 and named Cy, Cy and
Cs. The SCCs C5 and C'5 are the terminal ones. The step 4 of the algorithm will
verify that each one of these two SCCs contains for each transition ¢ a marking
m’ satisfying m’ > Pre[P,t] (equivalently, contains edges labelled with all
transitions of the net). The reader can observe by inspection of the figure that
all transitions appear in some edge of Cy and Cj, therefore the answer of the
algorithm will be TRUE.

The execution of the algorithm 6.3 to verify that the marking my = py +
p3+ps +p7+po+pia is a home state (Vm € RS(S), Im’ € RS(N, m) such that
m’ = my) gives as result FALSE, because the terminal SCC C5 contains the
marking my, but the terminal SCC Cs does not. Therefore, step 3.1 returns
FALSE.

From a practical point of view, it is commonly accepted today that systems
are too complex to be verified by hand. As a result, analysis increasingly is be-
coming synonymous with computer-aided verification [1]. Computer-aided veri-
fication means using a computer, for increased speed and reliability, to perform
the analysis steps. For instance, the following example considers the analysis
of a property belonging to the group of the so called synchronic properties [37],
pointing out that an analysis by hand can be very hard.

Example 6.3 Figure 6.6 shows a very simple net system: Parts are sent
from STORE 1 to STORE 2 and STORE 3. The subnet generated by places
{B,C, E, F} imposes some restrictions on the way parts are distributed to the
destination stores (i.e. partially schedule the distribution). The reachability
graph is, even if it has been “structured” for more clear presentation, difficult to
understand and manage. The reader can try to check on the reachability graph
(1) that the imposed distribution strategy is: parts are sent in a 1:1 relation to
the destination stores, but allowing sometimes until four consecutive sendings
to a given store (i.e. locally adjusting the possible demand, but maintaining the
overall fair distribution).

Summarising, analysis techniques based on the reachability graph are only
theoretically possible for bounded systems. They are very simple from a con-
ceptual point of view. The problem that makes this approach not practical
(impossible) in many cases is its computational complexity: the state space
ezplosion problem.

On the other hand, it must be pointed out that the reachability /coverability
graphs are computed for a given initial marking. This means that a parametric
analysis of a net system (needed in earlier phases of the system design) where
the initial marking of some places (e.g. representing the number of resources in
the system) is a parameter, is not possible since for each value of the parameter
a (completely different) new reachability graph must be computed. Moreover,
the reachability graph presents some difficulties in order to analyze properties
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) STORE 1

A+E+F+G

2
t1
2A+C+E @+F+2G
t3

15
13 B+C+2G

E+F+2G
t4

Figure 6.6: Parts of STORFE 1 are sent to STORE 2 and STORFE 3 according
to the strategy defined by the subnet generated by {B,C, E, F}: (a) the net
system; (b) the reachability graph.
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where the distinction between conflict and concurrency plays a fundamental role
(recall the net in figure 6.2, the reachability graph is the same with place pg and
without it!). This is because the reachability graph gives a sequentialized view
of the behaviour of the net system.

Although these analysis techniques present the drawbacks above mentioned,
for bounded net systems they are the more general ones and, in some cases, the
only way to verify a given property.

6.4 Net system reductions

In order to paliate the state space explosion problem several techniques has
been introduced to obtain reduced state spaces. As an example we can cite the
stubborn set method [43, 44]. These techniques work directly in the construc-
tion phase of the reachability graph maintaining the original net model. In
this section we review a different kind of reduction techniques named net sys-
tem reductions. These reductions proceed transforming the net structure and,
sometimes, the initial marking.

From an operational point of view, the approach is based on the definition
of a kit or catalog of reduction rules, each one preserving a subset of proper-
ties (liveness, boundedness, reversibility, etc) to be analysed. A reduction rule
characterises a type of subnet system (locality principle) to be substituted by
another (simpler) subnet system.

The preconditions to be fulfilled have a behavioural and/or structural for-
mulation. Behavioural preconditions can be more powerful for a given initial
marking, but their verification is usually much more complex. So precondi-
tions presented here are based on structural considerations and properties of
the initial marking (i.e. the initial marking is considered as a parameter).

The design of a catalog of reduction rules is based on a tradeoff between
completeness (i.e. transformation capabilities) and usefulness (i.e. applicabil-
ity).

Given a catalog of reduction rules, analysis by reduction (the transformation
procedure) is iterative by nature: Given the property (or properties) to be
analyzed, the subset of rules that preserve it (them) is applied until the reduced
system becomes irreducible. The irreducible system may be so simple that the
property under study is trivially checked (see Figure 6.9.d). In other cases,
the irreducible net is just “simpler” to analyse using another analysis technique
(e.g. we can obtain a reduced state space on which it is possible to analyse
the property that has been preserved in the reduction process). In other words,
techniques to analyse net system models are complementary, not exclusive.

Reduction rules are transformation rules interesting for net analysis. When
considered in the reverse sense they become expansion rules, interesting for net
synthesis: stepwise refinements (or top-down) approach. Examples of this ap-
proach can be found in the context of synthesis of live and bounded Free Choice
systems [17] or in the definition of subclasses of nets by the recursive application
of classical expansion rules as the case of Macroplace/Macrotransition systems
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- \/Bi N
RAL1. Fusion of series places RAZ2. Fusion of series transitions
RBI1. Elimination of identical place RB2. Elimination of identical transition
Q;%/CD%/ é:é:][(?/
RCI1. Elimination of self-loop place RC2. Elimination of self-loop transition

Figure 6.7: A basic reduction kit.

[15]. Using this approach, with adequate expansion rules, the model will ver-
ify by construction the specification. This is interesting when compared with
the more classical approach based on the iteration of the design and analysis
phases until the specification is satisfied. The iterative process has two basic
disadvantages:

1) the lack of general criteria for modifying (correcting) a model which does
not meet the requirements.

2) the operational difficulty inherent to the validation phase.

Nevertheless, since no kit of reduction rules is complete (i.e. able to fully
reduce any system), it is not possible to synthesize an arbitrary system by such
stepwise refinements.

A very basic kit of reduction rules is presented. Additional details are given
only for the rule of implicit places, which are redundancies in the net system
model: if an implicit place 1s removed, then illusory synchronizations disappear
and other reduction rules can be applied.

6.4.1 A basic kit of reduction rules

Figure 6.7 presents graphically the structural and marking conditions for a kit
of very particular cases of reduction rules. It is not difficult to observe that they
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Figure 6.8: a) A production cell with two machines, one robot and a store. b)
Net system specifying its behavior.

d)

Figure 6.9: The reduction process shows (see (d)) that the net system in figure

6.8 is live, 7-bounded and reversible.
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preserve properties such as liveness, the bound of places (thus boundedness),
and the existence of home states (but they do not preserve reversibility because

the rule RAT)

e RAL1is a particular case of the macroplace rule [34]. If the output place of
the transition has only this transition as input transition, then the entire
kit preserves the reversibility property.

e RAZ2is a particular case of the transition fusion rule [3]

e RBI and RC1 are particular cases of the implicit place rule [35, 37] (later
considered in more detail). Observe that RC can be trivially generalized
creating several self-loops in which the place always appears. Liveness,
the bound of places, and reversibility are preserved. Moreover if the place
contains several tokens, liveness, boundedness (in general not the bound
of the net system) and reversibility are preserved.

e RB2and RC2 are particular cases of identical and identity transition rules
[3], respectively.

An interesting remark is the analogy between rules at the same row in Figure
6.7: Basically rules RX2 are obtained from rules RX! by changing the role of
places and transitions (duality) and reversing the arrows (important only for

rules RA).

Example 6.4 The local controller attached to the production cell depicted
in Figure 6.8.a can be described by the given PN model. The places wait_load,
load, opy, wait_dep., and deposit represent the possible states of MACH 1; The
place R is marked when the robot is available; The places empty and parts
contain as many tokens as empty slots or parts are available in the temporary
buffer, etc. In this model actions are associated to places, e.g., MACH 2 per-
forms its operations while place ops 1s marked, and transitions represent atomic
instantaneous changes of state. External inputs (from plant sensors) condition
these possible changes of state, e.g., a load operation is initiated (transition #; is
fired) when MACH 1 is waiting for a raw part (wait_load marked), the robot is
available (R marked), and a raw part is detected by the sensor IIy (II; is true).
As an example of constraint that is reflected in the model, a deposit operation
cannot be initiated unless an empty slot is available. If the self-loops between
empty and t4 and between object and t9 were deleted the system could reach a
deadlock situation, e.g., MACH 2 is “withdrawing” a part when there are none
available but MACH 1 cannot deposit any because the robot is busy.

Let us consider now the net system in Figure 6.8.b. The subnet defined by
op; —t3 —wait_dep. verifies the precondition of rule RA{ (but in the constrained
form that preserves reversibility). Thus it can be reduced to a place, ps (Fig.
6.9.a). The same holds for op, — t¢ — wait_free that is reduced to ps (Fig.

6.9.a). The subnets t; — load — t5, t4 — deposit — t5, t7 — unload — tg, and

tg — withdraw — ¢1g can be reduced according to RAZ2 (see t12, tas, t7s and t910
in Fig. 6.9.a). Place R in Fig. 6.9.a is implicit (one of the trivial generalizations
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mentioned for RC!). Thus it can be removed, and wait.draw — ¢;2 — p3 and
t910 — ps — t7s can be reduced to pia and t7g910, respectively (see Figure 6.9.b).
Places p15 and wait_with. are implicit (RC7) in Figure 6.9.b, thus the net system
in Figure 6.9.c is obtained. Playing the token game, a place (e.g. object) can
became empty in Figure 6.9.c and t45 — object — t7g910 can be reduced (RA2)
to a single transition (Fig. 6.9.d). Therefore, the original net system is live,

7-bounded and reversible.

6.4.2 Implicit places

A place in a net system is a constraint to the firing of its output transitions.
If the removal of a place does not change the behaviour of the original net
system, it represents a redundancy in the system and it can be removed. A
place whose removal preserves the behaviour of the system is called an implicit
place. Two notions of behaviour equivalence are used to define implicit places.
The first one considers that the two net systems have the same behaviour if
they present the same fireable sequences. That is, this place can be removed
without changing the sequential observation of the behaviour of the net system
(i.e. the set of fireable sequences: interleaving semantics). Implicit places under
this equivalence notion are called sequential implicit places (SIP). The second
notion of equivalence imposes that the two net systems must have the same
sequences of steps. In this case the implicit places are called concurrent implicit
places (CIP) and their removal does not change the possibilities of simultaneous
occurrences of transitions in the original net system. Implicit places model
illusory synchronisations on their output transitions.

Definition 6.1 Let § = (N, mg) be a net system and §' = (N',mq’) the net
system resulting from removing place p from 8. The place p is a

1. Sequential Implicit Place (SIP) iff L(N,mo) = L(N',mq’), i.c., the re-

moving of place p preserves all firing sequences of the original net.

2. Concurrent Implicit Place(CIP) iff LS(N,mg) = LS(N',mg’), i.e., the

removing of place p preserves all sequences of steps of the original net.

It is easy to see that if a place p is a CIP then it is also a SIP (since
the preservation of the sequences of steps implies the preservation of the firing
sequences). Nevertheless, the contrary is not true in general. Let us consider,
for example, the net in Figure 6.2. The place pg is a SIP since its removal does
not change the set of firing sequences (the reachability graphs of the original net
system and the net system without place pg are the same), but the place pg is not
a CIP because after its removal transitions b and ¢ can occur simultaneously
and in the original net system they are sequentialised (i.e. the steps are not
preserved). A SIP with self-loops, in order to be a CIP may require more
tokens in its initial marking than those making it a SIP (in our example pg to
be CIP requires two tokens in the initial marking). In [9] it is proven that a
self-loop free SIP is also a CIP.
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Figure 6.10: a) Place py4 is firing implicit but not marking implicit. Remov-
ing p4 the “false” synchronisation in ¢4 disappears. b) The places in the set

{pe1,po2,pes} (or {p2,ps, ps}) are CIPs.

Let p be an CIP of the net system & and 8’ the net system S without p.
Let o5 be a fireable sequence of steps in &, such that mo-Z3sm. The sequence
0, is also fireable in the net system &', i.e., mo’ Z&m’. A trivial consequence of
this is that the reached markings in § and &', firing the same sequence oy, are
strongly related: Vq € P\ {p}, m[q] = m'[¢q]. Moreover, if s is a step enabled
at m’ the following h.olds: m’ > Pre’ - s — m[p] > Zte(p°n||§||) s[t] - Pre[p, t].
If p is a SIP the previous property can be writen in the following way: V¢ € p*,
m’ > Pre'[P',t] = m[p] > Pre[p, t].

The elimination of a CIP or a SIP preserves: deadlock-freeness, liveness and
marking mutual exclusion properties; but it does not preserve: boundedness or
reversibility. Moreover, the elimination of a CIP preserves the firing mutual

exclusion property, but this is not true for SIPs.

Example 6.5 The net system in Fig. 6.10.a is unbounded (p4 is the unique
unbounded place) and non-reversible (also because of py). Place py is a CIP.
Removing p4 the system becomes bounded and reversible! On the other hand,
place pg in Figure 6.2 imposes firing mutual exclusion between b and ¢. Being pg
a SIP, the reduction rule does not preserve firing mutual exclusion. According
to the definition, fireable sequences are preserved.

Sometimes it is practical to impose an additional condition to the defini-
tion of implicit places, asking their marking to be redundant (computable) with
respect to (from) the marking of the other places in the net (i.e. a marking re-
dundancy property). Let us consider the CIP pgy of the net system, §, depicted
in Figure 6.10.b. This place is CIP and its marking can be computed from the
marking of places p1, ps and ps: Vm € RS(S), m[pg1] = m[pi]+m[ps]+mps]—1.
This class of places will be called marking tmplicit places. Nevertheless, the
marking of some implicit places cannot be exclusively computed from the mark-

ing of the other places in the net. These places will be called firing implicit
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places. As an example consider the CIP py4 in Figure 6.10.a: Ym € RS(S), such
that mo—Zym, m[ps] = m[ps] + o[t1]). The classification of the implicit places
into marking and firing implicit places can be applied to the two previously de-
fined classes: CIP and STP. Because of the additional condition, marking implicit
places preserve the state space (i.e., the reachability graph of the net system
with and without p are isomorphous), therefore they preserve boundedness and
reversibility, too.

Implicit places presented until now are in a behavioural setting. In order
to do the verification we must resort to algorithms based on the reachabil-
ity graph with the inherent limitations and the high associated computational
complexity. Structurally implicit places is a class of places that become implicit
provided they are marked with enough tokens. The characterization of these
places and a good bound of the minimum initial marking needed to be implicit
can be done efficiently by means of Linear Programming techniques, avoiding
the construction of the reachability graph.

Definition 6.2 Let N be a net. A place p of N is a structurally implicit place
iff there exists a subset I, C P\ {p} such that C[p,T] > qul,, yq - Clg, T1,

where y, is a nonnegative rational number (i.e. Jy > 0, y[p] = 0 such that
y C<Clp,T] and I, = |ly]l-

Obviously, the above structural condition can be checked in polynomial time.
The next property gives the initial marking conditions to be satisfied by a struc-
turally implicit place to become a STP or a CIP. This condition is based on the
solution of a Linear Programming Problem (the LPP in 6.1) that computes an
upper bound of the minimal initial marking of a structurally implicit place to
be SIP or CIP in the net system (N, myg). Because, LPPs are of polynomial
time complexity [29], the evaluation of this condition has this complexity.

Property 6.3 Let (N,mq) be a net system. A structurally implicit place p
of N, with initial marking mg[p], is a SIP (CIP) if mo[p] > z, where z is the
optimal value of the LPP 6.1 witha = 1 (a0 = max{ztep. s[t]]s € LS(N,mq)} ).

z= min. y-mo+a-yu (6.1)
s.t.  y-C<ClpT]
y - Pre[P,t] 4+ p > Pre[p,t] Vit € p*
y20,yp]=0

If the optimal solution of the LPP 6.1, for a structurally implicit place p,
verifies that y - C = CJp, T], then p is a marking implicit place and the following
holds: Ym € RS(N,mg), mfp| =y m+ a - pu.

Observe that a structurally implicit place, p, can become implicit for any
initial marking of places P\ {p}, if we have the freedom to select an adequate
initial marking for it. This property is not true for CIPs (or SIPs) that are not
structurally implicit places. For example, the place p1o in Figure 2.4.ais a CIP
but it is not a structurally implicit place. Moreover, the place p1g 1s not implicit
if we change the initial marking of place p4 from 0 to 1.
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Figure 6.11: Places pg and ps (or ps and p7) are implicits

Example 6.6 Solving the LPP in 6.1 for the place pg in Fig. 6.11.a with
a = 1 we obtain z = 0, for the optimal solution: y = [0, 0, 1, 1, 1, 0, 1, 0,
0] and p = —1. Moreover, C[pg, T| = C[ps, T+ C[pa, T|+ C[ps, T|+ Clpz, T].
Because mg[p] > z = 0, pg is a SIP (since pg is self-loop free place it is also
a CIP) and can be removed. Being py a marking implicit place we can write:
¥m € RS(V', mo), mlps] = m(pa] + mlp] + mlps] + mlpr] — 1.

Once pg is removed, a similar computation for ps can be done and ps is also
shown to be a CIP. Figure 6.11.b shows a reduced net system. It can be obtained
reducing ps —b— p4 into a place (say pss4) (RA1) and finally ps— f —p1 —a—psa
into I14. The rule RA1 allows to fuse 114 and ps. The new place is implicit, so it
can be removed. Then a cycle with ps — d — p7 — € — pg remains. Finally it can
be reduced to a basic net, pg — t4e — ps, with one token. Therefore the original
net system is live, bounded. Tt is also reversible, but we cannot guarantee this
because of the fusion of p3 — b — py Into p34.

6.5 Linear algebraic techniques

Analysis techniques based on linear algebra allow the verification of properties of
a general net system. The key 1dea 1s simple, and it has been already commented
previously: Let & be a net system with incidence matrix C. If m is reachable
from mg by firing sequence o, then m = mg+ C-o. Therefore the set of natural
solutions, (m, &), of this state equation defines a linearisation of the reachability
set RS(S) denoted LRS®F(8). This set can be used to analyse properties like
marking and submarking reachability and coverability, firing concurrency, con-
flict situations, deadlock-freeness, mutual exclusion, k-boundedness, existence
of frozen tokens (they never leaves a place), synchronic relations, etc. To do
so, the properties are expressed as formulas of a first order logic having linear
inequalities as atoms, where the reachability or fireability conditions are relaxed
by satisfiability of the state equation. These formulas are verified checking exis-
tence of solutions to systems of linear equations that are automatically obtained
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from them [9]. For instance, if Vm € RS(S) : m[p] = 0 V m[p'] = 0; then places
p and p’ are in mutual exclusion. This is verified checking absence of (natural)
solutions to {m = mo+ C-o Am[p] > 0Am[p'] > 0}. Integer Linear Program-
ming Problems [30] where the state equation is included in the set of constraints
can be posed to express optimization problems, like the computation of marking
bounds, synchronic measures, etc. [9, 37]. This approach is a generalization of
the classical reasoning using linear invariants [25, 27], and it deeply bridges the
domains of net theory and convex geometry resulting in a unified framework to
understand and enhance structural techniques [9] (see subsection 6.5.1).

Unfortunately, it usually leads to only semidecision algorithms (i.e., only
necessary or only sufficient conditions) because, in general, RS(S) C LRS*#(S).
The undesirable solutions are named spurious.

Example 6.7 (Existence of spurious solutions and their consequences
in the analysis) Let us consider the net system depicted in Figure 2.3. The
corresponding net state equation has the following marking spurious solutions:
my =2-ps, My =2-py, m3=2-p3, My =2-p5, M5 = p3 + p4, Mg = p3 + pa.
The first four solutions allow to conclude that ps, ps, pa and ps are 2-bounded,
while they are really 1-bounded (check it). The solutions ms, ms and my are
total deadlocks. Then using the state equation we cannot conclude that the
system in Fig. 2.3 is deadlock-free.

Spurious solutions can be removed using certain structural techniques, con-
sequently improving the quality of the linear description of the system [11]. For
example, it is clear that adding implicit places, a new system model with identi-
cal behaviour is obtained. For some net systems, if the implicit places are chosen
carefully, the state equation of the new system may have no integer spurious
solution preventing to conclude on the bound of a place or the deadlock freeness
of the system.

Example 6.8 (Elimination of spurious solutions) The net system in
Figure 6.10.b has been obtained adding the implicit places pg1, ps2 and pas
to that in Figure 2.3. The above mentioned spurious solutions, m;, i = 1...6;
are not solutions of the new state equation. Moreover, we can conclude now
that the new (and original) net system(s) were 1-bounded and deadlock-free!

Anyway the algorithms based on linear algebra do decide in many situations,
and they are relatively efficient, specially if the integrality of variables is disre-
garded. (This further relaxation may spoil the quality, although in many cases
it does not [13, 37].) Moreover, these techniques allow in an easy way an initial
marking parametric analysis (e.g. changing the number of customers, size of
resources, initial distribution of customers and/or resources, etc). The applica-
tion of these techniques to the analysis of boundedness and deadlock-freeness
properties is illustrated in subsections 6.5.2 and 6.5.3, repectively.

In temporal logic terms, the above outlined approach is well suited for safety
properties (“some bad thing never happens”), but not so much for liveness prop-
erties (“some good thing will eventually happen”). For instance, the formula
expressing reversibility would be Vm € LRSSE(S) 236’3 0:mop=m+C o',
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but this is neither necessary nor sufficient for reversibility. The general approach
to linearly verify these liveness properties is based on the verification of safety
properties that are necessary for them to hold, together with some inductive rea-
soning [20]. For instance, deadlock-freeness is necessary for transition liveness,
and the existence of some decreasing potential function proves reversibility [36]
(see subsection 6.5.5).

Another important contribution of linear techniques to liveness analysis has
been the derivation of ad hoc simple and efficient semidecision conditions. In
subsection 6.5.4, we present one of these conditions based on a rank upper
bound of the incidence matrix, which was originally conceived when computing
the wisit ratios in certain subclasses of net models [8].

The following subsections study linear invariants, marking bounds and bound-
edness, deadlock-freeness, structural liveness and liveness, and reversibility.

6.5.1 Linear invariants

A p-flow (t-flow) is a vector y : P — @ such that y-C = 0 (x : 7" — @ such that
C-x = 0), where C is the incidence matrix of the net. The set of p-flows (t-flows)
is a vector space, orthogonal to the space of rows (columns) of C. Therefore,
the flows can be generated from a basis of the space. Natural and non-negative
flows are called semiflows: vectors y : P — IN such that y - C =0 (x : 7" — IN
such that C - x = 0). The following terminology is used with semiflows [27]:
The support of a p-semiflow (t-semiflow), y (x): ||yl = {p € Ply[p] > 0}
(IIx|] = {t € T|x[t] > 0}). A semiflow is cannonical iff the g.c.d. of its non-null
elements is equal to one. A net is conservative (consistent) iff there exists a
p-semiflow (t-semiflow) such that ||y|| = P (||x|| =T).

The set of cannonical semiflows of a given net can be infinite, since the
weighted sum of any two semiflows is also a semiflow. Consider now the case of
p-semiflows. A generator set of p-semiflows, ¥ = {y1, y2, ...,¥q}, is made up
of the least number of them which will generate any p-semiflow as follows:y =
Zy;E‘If ki yj, kj € Qand y; € . The p-semiflows of ¥ are said to be minimal.
The following result characterizes the generator set of the semiflows of a net.

Proposition 6.4 A semiflow is minimal iff it is cannonical and its support
does not contain strictly the support of any other p-semiflow. Moreover, the set
of minimal semiflows of a net is finite and unique.

From the above result, the number of minimal semiflows is less than or
equal to the number of incomparable vectors of dimension k (k = |P| or k =

|T|): Number of minimal semiflows < ( {kl;Q] > Where ( i ) denotes a
combinatory number and [%] denotes rounding up to an integer. In practice
this number is still too gross a bound for the number of minimal semiflows.
Algorithm 6.4 presents a simple version allowing the computation of the set
of minimal p-semiflows, ¥, from the incidence matrix of the net. Each row of
matrix ¥ memorizes the coefficients of the positive linear combination of rows
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Algorithm 6.4 (Computation of the minimal p-semiflows)

Input - The incidence matrix C. A fixed but arbitrary order in P is supposed.
Output - The p-semiflows’ matrix, ¥, where each row is a minimal p-semiflow.

1. A=C; ¥ =1,; {1, is an identity matrix of dimension n }
2. fori=1tomdo{m=|T|}
2.1 Add to the matrix [¥|A] all rows which are natural linear combinations
of pairs of rows of [¥|A] and which annul the i-th column of A
2.2 Eliminate from [¥|A] the rows in which the i-th column of A is non-null.
3. Transform the rows of ¥ into canonical p-semiflows and to remove all
non-minimal p-semiflows from ¥ using the characterization of proposition 6.4.

of matrix C which generated the row of A with the same index. In step 3 of the
algorithm, the rows of A are null and therefore each row ¥[i] is a p-semiflow:
P[7] - C = 0. The same algorithm can be used to compute the set of minimal
t-semiflows if the input of the algorithm is the transpose of the incidence matrix.

The computation of minimal p-semiflows (y) and minimal t-semiflows (x)
has been extensively studied [10]. Anyhow an ezponential number of minimal
semiflows may appear. Therefore the time complexity of this computation can-
not be polynomial.

P- and T- semiflows are dual structural objects leading to linear invariant
laws on the possible behaviours. These invariant laws arise from the structure
of the net, and the initial marking plays the role of a parameter specifying a
particular behaviour for the net. The two following classes of linear invariants
can be obtained,

1) From p-semiflows: y € N, y - C = 0 = Vmgp, Ym € RS(N,mg),
y -m =y mg (token conservation law)

2) From t-semiflows: x € N”, C-x = 0 = Jmy, Jo € L(N, my) such that
mo—Zymg and o = x (cyclic behaviour law)

Classical reasoning to prove logical properties uses these linear invariants on
the behaviour of a net system [25, 27]. The key idea is similar to that presented
for the analysis of properties from the net state equation: Let S be a net system
and ¥ a matrix where each row is a p-semiflow: ¥[i]- C = 0. If m is reachable
from mg, then ¥ -m = ¥ - mg. Therefore the set of natural solutions, m,
of this equation defines a linearisation of the reachability set RS(S) denoted
LRS\P(S). This set can be used to analyze properties in a similar way to the
method based on the state equation. Moreover, as in the case of the net state
equation, it usually leads to only semidecision algorithms because, in general,

RS(S) C LRS*#(8) c LRSY(S).

Example 6.9 (Analysis based on linear invariants) The marking linear
invariants induced by the minimal p-semiflows of the net system in Figure 6.8
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Figure 6.12: A decomposed view of the net system in Figure 6.8.

are the following:
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Because markings are non negative integers (i.e. Vp € P, m[p] > 0), the
following can be easily stated from the previous equalities:

1. Bounds: Vp; € P\{empty,object}, mlp;] < 1; mlempty] < T7;
and mJobject] < 7.

2. The places in each one of the following sets are in marking mutual exclu-
sion:
a) {wait_raw, load, op;, wait_dep., deposit}
b) {op,, wait_free, unload, wait_with., withdrawal}

c) {R, load, unload, deposit, withdrawal}

Finally, from a conceptual point of view, the consideration of semiflows pro-
vides decomposed views of the structure of the net model. In Figure 6.12 the
decomposition induced by the minimal p-semiflows of the system in Figure 6.8
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is graphically presented. The decomposed view of a net system is even useful
to derive an implementation. For example, the net system in Figure 6.8 can
be implemented using two sequential processes (for Machine! and Machine2)
and three semaphores (object, empty and R), where R is a mutual exclusion
semaphore.

Remark Other structural objects generalizing P- or T- semiflows have been
defined [27] leading to other kind of linear invariants. A first type to consider
are vectors y € IN" such that y - C£ 0. A vector, y, of this kind leads to the
following marking law: Ymg, Vm € RS(V,mg), y 'm < y -mg. A second type
are vectors x € IN™ such that C -x% 0. In this case, a vector x of this kind
leads to: Jmyg, o € L(N,mg) such that mg_2sm > mg and ¢ = x. This
linear invariants (expressed as inequalities) can be used for analysis purposes
in the same way that presented previously for linear invariants obtained from
semiflows.

6.5.2 Bounds and boundedness

The study of the bound of a place p, b(p), through linear algebraic techniques,
requires the linearisation of the reachability set in the definition of b(p) by means
of the state equation of the net. In this subsection we assume that m € IR” and
o € IR™. This linearisation of the definition of b(p) leads to a new quantity
called the structural bound of p, sb(p):

sb(p) =sup{m(p)m=moe+C -0 > 0,0 > 0} (6.6)

Let ep be the characteristic vector of p: eplq] :=if ¢ = p then 1 else 0. The
structural bound of p, sb(p), can be obtained as the optimal solution of the
following Linear Programming Problem (LPP):

sb(p) = max. ep-m (6.7)
s.t. m=mog+C.-0>0
>0

Therefore sb(p) can be computed in polynomial time. In sparse-matrix
problems (matrix C is usually sparse), good implementations of the classical
stmpler method leads to quasi-linear time complexities.

Because RS(8) € LRS*F(S), in general, we have that sb(p) > b(p) (recall
example 6.7). Therefore, if we are investigating the k-boundedness of a place
(i.e. m[p] < k), we have a sufficient condition in polynomial time: if sb(p) < k
then b(p) < k (i.e. p is k-bounded).

In the sequel we argue on classical results from linear programming and
convex geometry theories. We assume the reader is aware of these theories
(see, for example, [28, 29]); otherwise all the needed arguments are compiled
and adapted in [37]. The important point here is to convey the idea that other
theories are helpful to understand in a deep and general framework many sparse
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results on net systems’ behaviours. The dual linear programming problem of
6.7 is the following (see any text on linear programming to check it):

sb(p)’ = min. y-mg (6.8)
st. y-C<0
Yy >ep

The LPP in 6.7 has always a feasible solution (m = mg, ¢ = 0). Using
duality and boundedness theorems from linear programming theory, both LPPs
presented in 6.7 and 6.8 are bounded (thus p is structurally bounded) and
sb(p) = sb(p)’ iff there exists a feasible solution for the LPP 6.8: y > ey such
that y - C < 0.

The reader can easily check that the LPP in 6.8 makes in polynomial time
an “implicit search” for the structural bound of p on a set of structural objects
including all the p-semiflows. In this sense, we can say that analysis methods
based on the state equation are more general than those based on linear invari-
ants. That is, the dual LPPs of those based on the state equation consider not
only the p-semiflows but other structural objects as y > 0 such that y - C< 0.
On the other hand, we must say that the computational effort using the linear
invariants is greater than using the state equation, since the computation of
the minimal p-semiflows (in some cases, an exponential number!) must be done
previously to the study of the property.

From the above discussion and using the alternatives theorem (an algebraic
form of the Minkowski-Farkas lemma) the following properties can be proved:

Property 6.5 The following three statements are equivalent:
1. p is structurally bounded, 1.e. p is bounded for any mg.
2. There exists y > ep such thaty - C < 0. (place-based characterization)

3. For all x > 0 such that C -x > 0, C[p,T] -x = 0. (transition-based
characterization)

Property 6.6 The following three statements are equivalent:
1. N is structurally bounded, i.e. N is bounded for any mq.
2. There exists y > 1 such thaty - C < 0. (place-based characterization)
8. For all x > 0 such that C-x >0, C-x=0; t.e. 7x>0 st C-xx0.
(transition-based characterization)

6.5.3 Deadlock-freeness (and liveness)

Deadlock-freeness concerns the existence of some activity from any reachable
state of the system. Tt is a necessary condition for liveness, although in general
not sufficient. When no part of the system can evolve, it is said that the system
has reached a state of total deadlock (or deadlock for short). In net system
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terms, a deadlock corresponds to a marking from which no transition is fireable.
In order to study deadlock-freenes by means of linear algebraic techniques, the
property must be expressed as a formula of a first order logic having linear
inequalities as atoms, where the reachability or fireability conditions are relaxed
by satisfiability of the state equation. The formula to express that a marking
is a deadlock consists of a condition for every transition expressing that it is
disabled at such marking. This condition consists of several inequalities, one
per input place of the transition (expressing that the marking of such place
is less than the corresponding weight) linked by the “V” connective (because
lack of tokens in a single input place disables the transition). We give below
a basic general sufficient condition for deadlock-freeness based on the absence
of solutions satisfying simultaneously the net state equation and the formula
expressing the total deadlock condition commented above.

Proposition 6.7 Let (N, mq) be a net system. If there doesn’t exist any solu-
tion (m, o), for the system

m>0,06>0
VpE't m[p] < Pre[p,t;Vie T

then (N',mg) is deadlock-free.

Obviously, the deadlock conditions are non linear, because they are expressed
using the ”V” connective. Anyway we can express the above condition by means
of a set of linear systems as follows. Let a : T' — P be a mapping that assigns
to each transition one of its input places. If there doesn’t exist a such that the
system

m=mg+C. o (6.10)
m>0,0>0
mla(t)] < Pre[a(t),t;Vte T

has a solution, then (N, mg) is deadlock-free. The problem is that we have to
check it for every mapping a of input places to transitions so we have to check
HteT |*¢| systems of linear inequalities. If every transition has exactly one in-
put place (e.g. State Machines) then only one system needs to be checked,
but in general the number might be large. Nevertheless it is possible to reduce
the number of systems to be checked, preserving the set of integer solutions.
For this purpose, in [39] four simplification rules of the deadlock condition are
presented using information obtained from the net system, and a simple net
transformation obtaining an equivalent one wrt. the deadlock-freeness property
where the enabling conditions of transitions can be expressed linearly. As a
result, deadlock-freeness of a wide variety of net systems can be proven by ver-
ifying absence of solutions to a single system of linear inequalities. Even more,
in some subclasses it is known that there are no spurious solutions being dead-
locks, so the method decides on deadlock-freeness [40]. The following example
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presents the deadlock-freenes analysis of the net system in figure 6.8 applying
this technique.

Example 6.10 (Deadlock-freeness analysis and simplification rules)
Let us consider the net system in Figure 6.8. The direct application of the
method described in proposition 6.7 requires to check [[,c; [*t] = 36 linear
systems as that presented in 6.10. Nevertheless, below we show that we can
reduce the deadlock-freeness analysis on this net to check a unique linear system
applying the simplification rules presented in [39]. Solving the LPP 6.7 for
the places of the net system we obtain the following: sb(p) = 1, for all p €
P\ {empty, object }; and sb(empty) = sb(object) = 7 (the same can be obtained
from the linear invariants in Eqs 6.2-6.5). The transitions ¢, ¢4, t7 and tg are
those presenting complex conditions giving rise to the large number of linear
systems. The simplification of these consitions is as follows:

a) The non-fireability condition of ¢; is (m[wait_raw] = 0) V (m[R] = 0).
Taking into account that sb(wait_raw) = sb(R) = 1, we can apply a
particularization of rule 3 in [39] to replace the previous complex condition
by a unique linear inequality: Let ¢ be a transition such that each input
place verifies that its structural bound is equal to the weight of its output
arc joining it to . The non fireability condition for transition ¢ at a
marking m is ) .., m[p] < 3" . p Pre[p,{] — 1. That is, the amount of
tokens in the input places of ¢ is less than the needed. Therefore, for the
transition #; this linear condition is: m[wait raw] + m[R] < 1.

b) The non-fireability condition of ¢7 is (m[wait_free] = 0) V (m[R] = 0).
In a similar way to the case of transition #; we replace this condition by
m[wait_free] + m[R] < 1, since sb(wait_free) = sb(R) = 1 and rule 3 in
[39] can be applied.

c¢) The non-fireability condition of ¢4 is (m[wait_dep.] = 0) V (m[R] = 0) V
(m[empty] = 0). Since sb(wait_.dep.) = sb(R) = 1 and sb(empty) = 7
(i.e. only one input place of t7 has a sb greater than the weight of the

arc) rule 4 of [39] can be applied. Then, the previous complex condition
is replaced by the following linear condition:

sb(empty) - (m[wait_dep.] + m[R]) + m[empty] <
sb(empty) - (Pre[wait_dep., 7]+ Pre[R, T]) + Pre[empty, 7] — 1

i.e. 7(m[wait_dep.]+ m[R]) + m[empty] < 14.

d) The non-fireability condition of tg can be reduced to the following linear
condition by similar reasons to the case of transition #4: 7(m[wait_with.]+

m[R]) + mobject] < 14.

Applying the previously stated simplifications, the deadlock-freeness analysis
for the net system in Figure 6.8 is reduced to verify that there doesn’t exist any
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solution (m, o), for the following single linear system (the reader can check that
the system has no solutions).

m=mg+C o (6.11)
m>0,0>0

m|[wait raw] + m[R] < 1; for 1
m(load] = 0; for t5
mjop,] = 0; for t3
7(m[wait_dep.] + m[R]) + m[empty] < 14; for t4
m|[deposit] = 0; for t5
miop,] = 0; for tg
m[wait_free] + m[R] < 1; for t7
m[unload] = 0; for tg
7(m[wait_with.] + m[R]) + m[object] < 14; for tg
m[withdrawal] = 0; for 10

Linear invariants may also be used to prove deadlock-freeness. Using the
linear invariants in Egs. (6.2-6.5), we shall prove that our net system in Figure
6.8 is deadlock-free.

If there exists a deadlock, no transition can be fired. Let us try to con-
struct a marking in which no transition is fireable. When a unique input place
of a transition exists, that place must be unmarked. So m[load] = m[op,] =
m|[deposit] = m[op,] = m[unload] = m[withdrawal] = 0, and the linear invari-
ants in Eqs (6.2-6.5) reduce to:

m[wait_raw] + m[wait_dep.] = 1
m[wait _free] + m[wait_with.] = 1
mlempty] + m[object] = 7
m[R] =1
Since R should always be marked at the present stage, to prevent the firing

of t1 and t7, places wait_raw and wait_free should be unmarked. The linear
invariants are reduced once more, leading to:

m[wait_dep.] =1 (6.16)
m[wait_with.] = 1 (6.17)
m[empty] + m[object] = 7 (6.18)
m[R] = 1 (6.19)

Since m[wait_dep.] = m[wait_with.] = 1, to avoid the firing of #4 and %9,
mlempty] + m[object] = 0 is needed. This contradicts Eq (6.18), so the net
system is deadlock-free. A more compact, algorithmic presentation of the above
deadlock-freeness proof is:
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if m[load] + m[op,] + m[deposit] + m[op,] + m[unload] + m[withdrawal] > 1
then one of t9,t3,t5,t6,fg or t1q is fireable
else if m[wait_raw| + m[wait_free] > 1
then one of tor t7 1s fireable
else one of t4 or tg is fireable

As a final remark, we want to point out that liveness can be proved for the
net system in Figure 6.8. Liveness implies deadlock-freeness, but the reverse is
not true in general. Nevertheless, if the net is consistent and it has only one
minimal t-semiflow, as it happens in the example, where the unique minimal
t-semiflow i1s 1; then any infinite behaviour must contain all transitions with
relative firings given by such t-semiflow. Thus deadlock-freeness implies, in this
case, liveness.

6.5.4 Structural liveness and liveness

A necessary condition for a transition ¢ to be live in a system (N, mgq) is its
eventual infinite fireability, i.e. the existence of a firing repetitive sequence op
containing t: Jop € L(N,mg) such that moZ%m > mg and og[t] > 0.

Using the state equation as a linearisation of the reachability set, an upper
bound of the number of times ¢ can be fired in (N, mg) is given by the following
LPP (e¢[u] := if u =t then 1 else 0):

sr(t) = max. ey o (6.20)
s.t. m=mp+C-o0>0
>0

The dual of (LPP 6.20) is:

sr(t)) = min. y -mg (6.21)
st. y-C<—e
y >0

We are interested on characterizing when sr(t) goes to infinity. The LPP
6.20 has m = mgo and & = 0 as a feasible solution. Using first duality and
unboundedness theorems from linear programming and later the alternatives
theorem, the following properties can be stated:

Property 6.8 The following three statements are equivalent:

1. t is structurally repetitive (i.e. there exists a “large enough” mq such that
t can be fired infinitely often).

2. There does not exist y >0 such that y-C < —e¢ (place-based perspective }

3. There erists x > ey such that C-x > 0 { transition-based perspective }

Property 6.9 The following three statements are equivalent:
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Figure 6.13: Two conservative and consistent, struturally non-live nets: (a)
rank(C) = 4, |EQS| = 3, thus A is not structurally live; (b) rank(C) = 4,
[EQS| = 4, |CCS| = 3, thus no answer.

1. N is structurally repetitive (i.e. all transitions are structurally repetitive).

2. There does not exist y > 0 such thaty - C< 0

3. There exists x > 1 such that C-x >0

Aditionally, the following classical results can be stated [27, 7, 35]:
Property 6.10 Let N be a net and C its incidence matriz.

1. if N is structurally live then N is structurally repetitive.

2. if N is structurally live and structurally bounded then N is conservative
(Jy > 1 such that'y - C = 0) and consistent (Ix > 1 such that C -x = 0).

3. if N is connected, consistent and conservative then it is strongly con-
nected.

4. if N is live and bounded then N is strongly connected and consistent.

Net structures in Figure 6.13 are consistent and conservative, but there does
not exist a live marking for them. A more careful analysis allows to improve
the above result with a rank condition on the incidence matrix of A/, C. This
and other results are summarized in the next property. Recall, from section
1.2.2.4, that SEQS and SCCS denote the sets of Equal Conflict Sets and Coupled
Conflict Sets, respectively.

Property 6.11 Let N be a net and C its incidence matriz.
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1. if N is live and bounded then N is strongly connected, consistent, and
rank(C) < [SEQS| — 1.

2. if N is conservative, consistent, and rank(C) = [SCCS| — 1 then N is
structurally live and structurally bounded.

The condition in property 6.11.1 has been proven to be also sufficient for
some subclasses of nets [12; 40]. Observe that, even for structurally bounded
ordinary nets, we do not have a complete characterization of structural liveness.
Since |SCCS| < |SEQS], there is still a range of nets which satisfy neither the
necessary nor the sufficient condition to be structurally live and structurally
bounded! The added rank condition allows to state that the net in Figure 6.13.a
is structurally non-live. Nevertheless, nothing can be said about structural
liveness of the net in Figure 6.13.b.

Property 6.11 is purely structural (i.e., the initial marking is not considered
at all). Nevertheless, it is clear that a too small initial marking (e.g. the
empty marking) make non live any net structure. A less trivial lower bound
for the initial marking based on marking linear invariants is based on fireability
of every transition. If ¢ € T is fireable at least once, for any p-semiflow y,
y -mg >y - Pre[P,t]. Therefore:

Property 6.12 If (N, mq) is a live system, then Yy > 0 such thaty - C =0,
y -mo > maxier(y - Pre[P,¢]) > 1

Unfortunately no characterization of liveness exists in linear algebraic terms
for general nets. The net system in Figure 6.1.b adding a token to ps is con-
sistent, conservative, fulfills the rank condition and all p-semiflows are marked,
but it is non live.

6.5.5 Reversibility (and liveness)

Let us use now a Liapunov-stability-like technique to prove that the net system
in Figure 6.8 is reversible. It serves to illustrate the use of marking linear
invariants and some inductive reasonings to analyze liveness properties.

As a preliminary consideration that makes easier the rest of the proof, the
following simple property will be used: Let (A,m;) be a reversible system
and mgq reachable from m; (i.e., 3¢ € L(AN,m1) such that m;-Z3mg). Then
(N, myp) is reversible.

Assume m, is like mg (Figure 6.8), but making: m; [wait_raw] =m; [empty] =
0 , m;[wait_dep.] = 1 and m;[object] = 7.

Let us prove first that (A, m;) is reversible. Let w be a non-negative place
weighting such that w([p;] = 0 iff p; is marked in m;. Therefore, w[wait_dep.] =
w[R] = wlobject] = w[wait_with.] = 0 and w[p;] > 0 for all the other places.
The function v(m) = w-m has the following properties: v(m) > 0 and v(m;) =
0

For the system in Figure 6.8 a stronger property holds: v(m) =0 <= m =
my. This can be clearly seen because w - m = 0 <= m[wait_raw] = m[load] =
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mfop;] = m[deposit] = m[empty] = m[op,] = m[wait_free] = m[unload] =
m[withdrawal] = 0. Even more, it is easy to check the following: m; is the
present marking <= tg is the unique fireable transition.

If there exists (warning: in Liapunov-stability criteria the universal quantifier
is used!) a finite firing sequence (i.e., a finite trajectory) per reachable marking
m; such that m; “*sm; and v(m;) > v(m;41), in a finite number of transition
firings v(m) = 0 is reached. Because v(m) = 0 <= m = my, a proof that m;
is reachable from any marking has been obtained (i.e, (A", m1) is reversible).

Premultiplying the net state equation by w we obtain the following condi-
tion:if o =t; then [w -m;y <w-m;] <= w C[P,t;]<0

Now, removing in Figure 6.8 the places marked at m; (i.e., wait_dep., R,
object, wait_with.) and fireable transitions (i.e., t9) an acyclic net is obtained,
so there exists an w such that w - C[P,#;] < 0, Vj # 9.

For example, taking as weights the levels in the acyclic graph we have:

wlop;] = wlunload] = 1 (6.22)
w(load] = w[wait_free] = 2 (6.23)
wlwait_raw] = wlop,] = 3 (6.24)

w(deposit] = w[withdrawal] = 4 (6.25)
wlempty] = 5 (6.26)

andw-C=[-1,—-1,-1,—-1,—-1,—1,—1,—1, 44, —1]. In other words, the firing
of any transition, except tg, decreases v(m) = w - m.

Using the algorithmic deadlock-freedom explanation in previous sections, the
reversibility of (A, m;) is proven (observe that the p-invariants in Eqs (6.2-6.3-
6.4-6.5) remain for m;):

if m[load] + m[op,] + m[deposit] + m[op,] + m[unload] + m[withdrawal] > 1
then v(m) can decrease firing t5,13,15,t6,t8 or t1g
else if m[wait_raw] + m[wait_free] > 1
then v(m) can decrease firing ¢1or t7
else v(m) can decrease firing ¢4 or g is the unique fireable transition
(iff m;y is the present marking)

Because mg is reachable from m; (e.g. firing o = (tot10tst7ts)tats), (N, mg)
is a reversible system.

Once again liveness of the system in Figure 6.8 can be proved, because the
complete sequence (i.e. containing all transitions) ¢ = t1tatatatstotiotetrts can
be fired. Since the system is reversible, no transition loses the possibility of
firing (i.e., all transitions are live).

6.6 Siphons and traps
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Figure 6.14: Two consistent and conservative free choice nets: (a) Structurally

live rank(C) = 5, [EQS| = 5; (b) Structurally non-live rank(C) = 3, |[EQS| = 2.

By means of graph theory based reasoning it is possible to characterize many
properties of net subclasses. Siphons (also called structural deadlocks, or more
simply - but ambiguously - deadlocks) and traps are easily recognizable subsets
of places that generate very particular subnets.

Definition 6.13 Let N = (P, T, F) be an ordinary net.

1. A siphon is a subset of places, 3, such that the set of its input transitions
1s contained in the set of its output transitions: ¥ C P is a siphon <=
‘L CXe.

2. A trap s a subset of places, 8, such that the set of its output transitions is
contained in the set of its input transitions: 6 C P is a trap <= 6* C *0.

Y = {p1, p2, pa, p5, Ps} is a siphon for the net in Figure 6.14.a: *3 = {t7,
t1, ta, t3, t5}, while X* = *X U {ts}. X contains a trap, § = X\ {p5s}. In fact
6 is also a siphon (it is minimal: removing any number of places no siphon can
be obtained).

Siphons and traps are reverse concepts: A subset of places of a net A is a
siphon iff it is a trap on the reverse net, N~=! (i.e. that obtained reversing the
arcs, its flow relation, F').

The following property “explains” why structural deadlocks or siphons (think
on “soda siphons”) and traps are the names of the above concepts.

Property 6.14 Let (N, mg) be an ordinary net system.

1. If m € RS(NV,mo) is a deadlock state, then ¥ = {p|m[p] = 0} is an
unmarked (empty) siphon.
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2. If a siphon is (or becomes) unmarked, it will remain unmarked for any
possible net system evolution. Therefore all its input and output transitions
are dead. So the system is not-live (but can be deadlock-free).

3. If a trap is (or becomes) marked, it will remain marked for any possible
net system evolution (i.e. at least one token is “trapped”).

If a trap is not marked at mg, and the system is live, mg will not be recov-
erable from those markings in which the trap is marked. Thus:

Corollary 6.15 If a live net system is reversible, then mqg marks all traps.

Remark For live and bounded free choice systems a stronger property holds:
Marking all traps is a necessary and sufficient condition for reversibility [5]. The
net system in Figure 6.14.a is reversible. Nevertheless, if mg = [0, 1, 0, 0, 1, 0,
0], the new system is live and bounded but non reversible: The trap § = {p1,
P3, P4, P, pr} is not marked at mg.

A siphon which contains a marked trap will never become unmarked. So this
more elaborate property can be of helpful for some liveness characterizations.

Definition 6.16 Let N be an ordinary net. The system (N,mgq) has the
Marked-Siphon-Trap property, MST-property, if each siphon contains a marked
trap at mg.

A siphon (trap) is minimal if it does not contain another siphon (trap).
Thus, siphons in the above statement can be constrained to be minimal without
any loss of generality.

The MST-property guarantees that all siphons will be marked. Thus no
dead marking can be reached, according with property 6.14.1. Therefore:

Property 6.17 If (N, mo) has the MST-property, the system is deadlock-free.

Figure 6.15 presents some limitations of the MST-property for liveness char-
acterization.

Remark The MST-property is sufficient for liveness in simple net systems and
necessary and sufficient for free-choice net systems. As a corollary, the liveness
monotonicity result is true for the case of live free-choice systems: If (N, mg)
is a live free-choice system, then for all mg’ > mg, (N, mg’) is also live. The
previous result does not apply to Simple Net systems. The system in Figure
6.1.b is simple, ¥ = {p1, p2, pr} is a siphon (*X = {t3, t4, t1}, T* =*3 U {t2})
that does not contain any trap. If we assume mo[ps] = 1, t5 can be fired and X
becomes empty, leading to non-liveness.
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Figure 6.15: For the two nets, the MST-property does not hold, but: (a) The
simple net is live and bounded; (b) The non-simple net is non-live (although

deadlock-free) and bounded.

6.7 Analysis of net subclasses

In this section we quickly overview some of the analytical results for the sub-
classes defined in Chapter 2. We organise the material around properties instead
of describing the results for each subclass, what would lead to abundant redun-
dancies. (Of course, properties of large subclasses such as EQ systems, are
inherited by their subclasses such as FC or DF systems.)

Our intention is to show how the restrictions imposed by subclasses’ defini-
tions, at the price of losing some modelling capabilities, facilitate the analysis.
The designer must find a compromise between modelling power and availabil-
ity of powerful analysis tools, while one of the theoretician’s goals is obtaining
better results for increasingly larger subclasses.

The general idea behind the structure theory of net subclasses is to investi-
gate properties that every net system in the subclass enjoys, instead of analysing
each particular system. These general properties are useful in two ways:

e The designer knows that her/his system (if it belongs to an appropriate
subclass) behaves “well” (e.g., liveness monotonicity, existence of home
states).

¢ General analysis methods become more applicable or more conclusive (e.g.,
model checking for FC, liveness analysis for all the subclasses considered).

The technical development of the presented results, and many other details that
are out of the scope of this very succint presentation, can be found in [17], [14],

32], 38], [40].

6.7.1 Fairness and monopolies

In some systems, impartiality (or global fairness, that is, every transition appears
infinitely often in infinite sequences) can be achieved locally (every solution of
a — local — conflict that is effective infinitely often is taken infinitely often):
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Figure 6.16: A net system where local fairness does not guarantee impartiality,
and which can exhibit monopoly situations.

Theorem 6.18 Let S be a bounded strongly connected EQ system or DSSP. A
sequence o € L(S) is globally fair iff it is locally fair.

This property is not true in general. Take for instance the net system in
Figure 6.16. The sequence ¢ = {#1t5t3} is locally fair (actually, during the
occurrence of o no conflict is effective at all), but it is not globally fair since 4
never occurs. Conversely, the sequence o = {t1t3t4t3t1t2¢3}* is globally fair
but not locally since whenever ¢35 and ¢4 are in conflict ¢4 wins.

The equivalence of local and global fairness has two important consequences.
The first one 1s equivalence of liveness and deadlock-freeness, what facilitates the
analysis of liveness because it suffices to check the weaker property of deadlock-
freeness:

Theorem 6.19 Let S be a bounded strongly connected EQ system or DSSP.
Then S s lve off it 1s deadlock-free.

The second consequence is relevant for the eventual interpretation of the
model. Assume, for instance, that the system in Figure 6.16 is interpreted so
that transitions occur after a deterministic delay equal to their index. Then,
the system behaves repeating the occurrence of #; t53, never giving a chance
to t4, despite it was perfectly live in the autonomous model: the interpretation
has destroyed liveness leading to a monopoly situation (the “resources” needed
by t4 are “monopolized” by t5).

This can never happen to a bounded strongly connected EQ system or DSSP,
assuming the interpretation allows progress (i.e., a transition that is continu-
ously enabled eventually occurs): by imposing a fair conflict resolution policy,
which can be done in a distributed fashion provided structurally conflicting
transitions are allocated together, it is guaranteed that no action in the system
becomes permanently disabled if the autonomous model was live.
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6.7.2 Confluence and directedness

Persistent systems, which include structurally persistent ones (DF) enjoy a
strong confluence property: whenever from a given marking we reach two differ-
ent markings by firing two distinct sequences, then we can complete both such
sequences, each with the firings left with respect to the other, reaching in any
case the same marking [24]. Confluence is closely related to determinacy [22]:
interpreting sequences as executions and transition occurrences as operations,
when from a given point two different executions may occur, depending on op-
eration times or other external matters, each operation in one execution will
eventually occur in the other (assuming progress), possibly in a different order
and with a different timing.

Moreover, confluence facilitates checking liveness (non-termination) of per-
sistent systems: it suffices to find a repeatable sequence that contains every
transition. This is because such a repeatable sequence allows to construct a
sequence greater than any given sequence o fireable from the initial marking,
and this proves that ¢ can be continued to enable the repeatable sequence.

Stepping out from persistent systems, the presence of effective conflicts may
destroy confluence. Directedness is a weaker property that states that a common
successor of arbitrary reachable markings always exist, and which holds for some
subclasses:

Theorem 6.20 Let S be a live EQ system or DSSP. Let ma, my € RS(S).
Then RS(NV, ma) NRS(N, my) # 0.

Informally, directedness means that the effect of a particular resolution of
a conflict is not “irreversible”: there is a point where the evolution joints with
that which would have been if the decision had been other. The existence of
home states, 1.e., states that can be ultimately reached after whichever evolution,
follows from directedness and boundedness:

Theorem 6.21 Live and bounded EQ systems or DSSP have home states.

The system in Figure 6.3.b is an example of a live and 1-bounded system
without home states.
The existence of home state is an important property for many reasons:

e The system is known to have states to return to, which is often required
in reactive systems. Chosing one such state as the initial one makes the
system reversible, 1.e., mqg can always be recovered.

e Model checking is largely simplified, since there is only one terminal strongly
connected component in the reachability graph.

e Under a Markovian interpretation (e.g., as in generalized stochastic Petri
nets [2]), ergodicity of the marking process is guaranteed; otherwise, simu-
lation or computation of steady state performance indices could be mean-
ingless.
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6.7.3 Reachability and the state equation

As it was discussed in Section 6.5, reachable markings are solutions to the state
equation but, in general, not conversely: some solutions of the state equation
may be “spurious”. This limits the use of the state equation as a convenient
algebraic representation of the state space.

Fortunately stronger relations between reachable markings and solutions to
the state equation are available for some subclasses:

Theorem 6.22 Let S be a P/T system with reachability set RS and linearised
reachability set wrt. the state equation LRS®®.

1. If § 1s a live weighted T-system, or a live and consistent source private
DSSP, then RS = LRS®E (i.e. no spurious solutions). Moreover, if it is
a live MG, then the integrality constraints can be disregarded (because in
this case C is unimodular)

2. If S is a bounded, live, and reversible DF system, then m € RS iff m €
LRSS" and the unique minimal T-semiflow of the net is fireable at m.

3. If S is a live, bounded, and reversible FC system, then m € RS(S) iff
m e LRSSE(S) (integrality constraints on o can be disregarded) and every
trap is marked at m.

4. If 8 is a live EQ system or a live and consistent DSSP, and m,, my, €
LRS®Y, then RS(NV, ma) N RS(N, my,) # 0.

We can take advantage of the above statements in a diversity of situations.
For instance, the reachability characterisation for live MG allows to analyse some
of their properties through linear programming. Even the last, and weakest,
statement in the above theorem — a directedness result at the level of the
linearised reachability graph — can be very helpful. In particular, it implies that
there are no spurious deadlocks in live EQ systems, or live and consistent DSSP.
Therefore, the deadlock-freeness analysis technique presented in Subsection 6.5.3
— which in these cases requires a single equation system — allows to decide
liveness.

Figure 1.2.3 shows an example of a live and 1-bounded system with spurious

deadlocks.

6.7.4 Analysis of liveneness and boundedness

One of the properties that supports the claim that “good” behavior should
be easier to achieve in some subclasses than in general systems is liveness
monotonicity wrt. the initial marking. This means that liveness, provided that
the net is “syntactically” correct as we shall precise later, is a matter of having
enough tokens in the buffers (customers, resources, initial data, etc.), differently
to what happens in general systems where the addition of tokens may well cause
deadlocks due to poorly managed competition. For instance, in the net system
of Figure 6.1.b adding a token (in ps) to the initial marking destroys liveness.
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Theorem 6.23 Let (N, mg) be a live EQ system or DSSP. The EQ system or
DSSP (N, mg + Amyg), where Amg > 0 is live too.

Very often, a net system is required to be live and bounded. As we saw in
Section 6.3 the verification of liveness can be very hard. In some cases we are
able to decide using structural methods alone; in other cases we can characterise
the nets that can be lively and boundedly marked, so the costful enumeration
analysis needs to be used only when there is a chance of success.

Theorem 6.24 Let N be an EQ or DSSP net. A marking mo exists such that
(N, mg) is a live and bounded EQ system or DSSP iff N is strongly connected,
conservative (or consistent), and rank(C) = |[SEQS| — 1. Moreover, in EQ sys-
tems, liveness of the whole system s equivalent to liveness of each P-component
(the P-subnets generated by the minimal P-semiflows).

Particular cases of the above result are well-known in net theory. For in-
stance, in the ordinary case, the P-components of a FC net are strongly con-
nected SM, which are live iff they are marked, so the liveness criterion can
be stated as “there are no unmarked P-semiflows”. In the case of MG, which
are always consistent and rank(C) = [SEQS| — 1 = |T| — 1, the existence of
a live and bounded marking is equivalent to strong connectedness. Since their
P-components are their circuits, liveness can be checked removing the marked
places and verifying that the remaining net is acyclic.

6.8 Logical properties in time constrained mod-
els

It must be noticed that the interpretations concerning timing or synchronization
with external events restrict the behavior of the underlying autonomous model,
so they should be taken into account for the analysis. On the one hand this
may become extremely complicated in some cases because the notion of state
must be enlarged, e.g., time PNs [4]. On the other hand performing analysis
of the autonomous system only may not be conclusive except for some partic-
ular properties and subclasses of systems. For instance, the autonomous PN
in Figure 6.17 (a) is not bounded unless the interpretation ensures that ¢’ fires
as often as ¢; the autonomous PN in (b) is not live (fire ¢ twice) unless the
interpretation precises that the conflict is resolved in alternating fashion; in (c),
if ¢ takes always more time than ¢ to fire then the system will not return to
the initial marking and " will die, although the autonomous model is live and
reversible. In general it can be said that safety properties of the autonomous
system are preserved under any interpretation while liveness properties are nei-
ther necessary nor sufficient [35].

Fortunately, in some subclasses the the interpretation is not so disturbing.
For instance, we shaw that in strongly connected and bounded EQ or DSSP
liveness of the autonomous model is preserved under any “reasonable” inter-
pretation (i.e., allowing progress and fairly resolving local conflicts). Similarly,
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t

e =
(a) (b) (©)

Figure 6.17: The interpretation affects qualitative properties.

some interpretations preserve the properties for every net system. For instance,
under interpretations where the firing delay of transitions may range from zero
to infinity (e.g., stochastic PN), the interpreted model has the same logical
properties as the underlying autonomous model.
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