Chapter 2

Untimed Petri Nets

2.1 Introduction

Typical discrete event dynamic systems (DEDS) exhibit parallel evolutions
which lead to complex behaviours due to the presence of synchronisation and
resource sharing pheonomena. Petri nets (PN) are a mathematical formalism
which is well suited for modelling concurrent DEDS: it has been satisfactorily
applied to fields such as communication networks, computer systems, discrete
part manufacturing systems, etc. Net models are often regarded as self docu-
mented specifications, because their graphical nature facilitates the communica-
tion among designers and users. The mathematical foundations of the formalism
allow both correctness (i.e., logical) and efficiency (i.e., performance) analysis.
Moreover, these models can be (automatically) implemented using a variety of
techniques from hardware to software, and can be used for monitoring purposes
once the system is readily working. In other words, they can be used all along
in the life cycle of a system.

Rather than a single formalism, PN are a family of them, ranging from low to
high level, each of them best suited for different purposes. In any case, they can
represent very complex behaviours despite the simplicity of the actual model,
consisting of a few objects, relations, and rules. More precisely, a PN model of
a dynamic system consists of two parts:

1. A net structure, an inscribed bipartite directed graph, that represents the
static part of the system. The two kinds of nodes are called places and
transitions, pictorially represented as circles and boxes, respectively. The
places correspond to the state variables of the system and the transitions
to their transformers. The fact that they are represented at the same
level is one of the nice features of PN compared to other formalisms. The
inscriptions may be very different, leading to various families of nets. If the
inscriptions are simply natural numbers associated with the arcs, named
weights or multiplicities, Place/Transition (P/T) nets are obtained. In
this case, the weights permit the modelling of bulk services and arrivals.
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A historically and conceptually interesting subclass of P/T nets is obtained
when all weights are one. These nets are said to be ordinary, and they
lead, for example, to a straightforward but important generalisation of
automata models. More elaborate inscriptions, associated with places,
transitions, and arcs, lead to the so called High Level Petri Net formalisms.

2. A marking, pictorially represented by tokens inside the places, that repre-
sents a distributed overall state on the structure. The marking of a place
(state variable) is its state value. A net system is a net structure together
with an initial marking. The system dynamics (i.e., the system behaviour)
is given by the evolution rules for the marking. The basic rule allows the
occurrence of a transition when the input state values fulfill some con-
dition expressed by the arc inscriptions. The occurrence of a transition
changes the values of its adjacent state variables, according again to the
arc inscriptions.

The above separation allows one to reason on net based models at two differ-
ent levels: structural and behavioural. From the former we may derive some
“fast” conclusions on the possible behaviours of the modelled system. Purely
behavioural reasonings can be more conclusive, but they may require costly
computations, or even they may not be feasible. The structural reasoning can
be regarded as an abstraction of the behavioural one: for instance, instead of
studying whether a given system has a finite state space, we might investigate
whether the state space is finite for every possible initial state; or we could study
whether there erists an initial state that guarantees infinite activity rather than
deciding this for a given initial state, etc.

The interpretation of a model precises the semantics of objects and their be-
haviour, eventually making explicit the connection of this model to the external
world within a given type of application (i.e., the interpretation considers the
environment in which the model will be exercised). An interpretation may give
a “physical” meaning to the net’s entities (places, transitions, tokens), evolu-
tion conditions and, possibly, will define the actions generated by the evolutions.
Interpreted graphs, apart from PN, are common in the modelling of systems.
Among many others, the following are classic (state based) graph interpreta-
tions: State Diagrams (SD) and Algorithmic State Machines (ASM) represent-
ing sequential switching systems, State Transition Rate Diagrams (STRD) rep-
resenting continuous time homogeneous Markov Chains, Resource Allocation
Graphs (RAG), Program Evaluation and Review Technique (PERT) graphs,
etc. Some represent the global states (SD, ASM, STRD), others represent the
state in a distributed fashion (RAG, PERT, PN).

The basic PN formalism can be further interpreted, in order to describe
different perspectives of a given system along its life cycle. The variety of
interpretations yields a major advantage of modelling with nets: Net systems
provided with appropriate interpretations can be used along the design and
operation of systems, using a single family of formalisms, and basic concepts
and results are shared (can be reused) by the different interpretations, leading
to some economy in the analysis and synthesis of models. Taking into account
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the scope of this book, a particularly interesting family of net interpretations
is obtained when time and probabilities are associated with the model (see
Chapter 3). The present chapter is devoted to the introduction of the basic PN
formalism, where the dynamics of the net system is governed only by the net
evolution rules, and not by external events, timing, etc. This basic formalism is
conventionally referred to as autonomous PN. Also the name untimed PN is used
when the kind of further interpretations one has in mind have something to do
with time. The autonomous evolution of a net model is said to be (completely)
non deterministic in the sense that neither the resolution of conflicts nor the
occurrence time of an enabled transition are specified at all.

The rest of the chapter is organised as follows: In Section 2.2 we introduce
what we consider the basic PN formalism, and explore its abilities for the mod-
elling of systems. Other PN formalisms are presented in Sections 2.3, 2.4, and

2.5.

2.2 Place/Transition Nets and Systems

In this section we introduce formally Place/Transition net systems, emphasising
the distinction between net (the structure) and system (the net with a marking,
and its evolution rules), and showing with an example how P/T systems are
able to model DEDS. We describe in some detail several modelling features of
P/T systems, namely the locality of states and actions, and the representation
of the diverse phenomena found in parallel and distributed systems. This mod-
elling features allow to represent in a natural way typical situations such us
sinchronisation, mutual exclusion, conflicts, etc., and to apply both top-down
and bottom-up synthesis methodologies to the design of systems.

2.2.1 Net Structure

In PN systems the state is described in a distributed fashion by means of a
set of state variables. Places (represented as circles) are the support of these
state variables. Individual actions, which transform the state variables they
are connected to, are modelled by transitions (represented as bars or boxes).
In the Place/Transition formalism, places and transitions are related through
a weighted flow relation. Let us give now the formal definitions and see some
examples.

Definition 2.1 (P/T net, graph oriented)
A Place/Transition (P/T) net is a four-tuple:

N =(P,T,F,W)
where:

1. P and T are disjoint finite non empty sets, the places and transitions
respectively.
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2. F C(PxT)U(T x P) is the flow relation (set of directed arcs). Without
loss of generality isolated nodes are forbidden: dom(F)Urange(F) = PUT.

3. W: F — IN; assigns a weight or multiplicity to each arc.
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Figure 2.1: A Place/Transition net system and its incidence matrices.

The graph of Figure 2.1 — do not care about the black dots in places by now
— is a net structure. Arcs are labelled with natural numbers, the arc weights
or multiplicities. By convention, unlabelled arcs are weighted one. All the arc
weights in the example net are one, except for W(ps,ts) and W (ts, p1) that are
two. A place p is an input (resp. output) place of transition ¢ if there exists
an arc going from p to ¢ (resp. from ¢ to p). In Figure 2.1, {ps,ps} are input
places of t3 while {t2,%5} are the output transitions of ps. Observe that the
adjacency relations between nodes, which will determine later the relationship
between states and actions, are fixed by the net structure, hence they are static.

There is an alternative representation of P/T nets where the flow relation is
described in matrix form. It naturally leads to an interesting state equation-like
description of the system evolution.

Definition 2.2 (P /T net, matrix oriented)
A P/T net is a four-tuple:

N = (P, T, Pre, Post)
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where:
1. P and T are as in Definition 2.1.

2. Pre,Post € INPIXITE gre the pre- and post- incidence matrices.

With the matrix notation, there is an arc going from place p to transition
t when Pre[p,t] # 0, and the value of Pre[p,t] is precisely the arc weight.
Similarly, for post-incidence, Post[p,t] = W (¢, p) when different from zero.

(b) (©
Figure 2.2: Self-loops.

The dot notation is used for pre- and post-sets of nodes: *v = {u | (u,v) € F'}
and v* = {u]| (v,u) € F'}, a notation that is extended to sets. For instance,
p2* = {t2,t5}, and *TUT® = P. A transition ¢ such that [t*] > 1 (resp. |*¢| > 1)
is called a fork (resp. a join). A place p such that |*p| > 1 (resp. [p*| > 1) is
called an collector (resp. a distributor). In the example of Figure 2.1, t4 is a
fork, t3 is a join, ps is a distributor, and p; is a collector. A pair made up of a
place p and a transition t is called a self-loop if p is both input and output of ¢.
Figures 2.2 (a), (b), and (c) show several self-loops. A net is said to be pure if
it has no self-loop. Pure nets are completely characterised by a single matrix:
C = Post —Pre. This is called the incidence matriz of the (pure) net. Positive
(negative) entries in C represent the post- (pre-) incidence function. If the net
is not pure, C “does not see” the self-loops (thus it is not an incidence matrix
but just a token flow matriz as will be shown later on).

By reversing arcs or interchanging places and transitions we get the reverse
net, N7, or the dual net, N, of N'. Both transformations together lead to
the reverse-dual or transpose net, N™@. Sometimes in net theory relations are
established between a net and its reverse, dual, or reverse-dual.

| N | (P, T, Pre, Post) | C |
NT (P, T,Post,Pre) -C
Ne | (T, P, Post™ Pret) | -Ct
N7 | (T, P,Pre" Post™) | Ct

A net N is subnet of N (written N’ C N') when P’ C P, 7" C T and its pre-
and post-incidence matrices are Pre’ = Pre[P’, T'] and Post’ = Post[P’,T"].
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Subnets are generated by subsets of places and transitions. When a subnet
is generated by a subset V' of nodes of a single kind, it is assumed that it is
generated by VU*V UV*®. Subnets generated by a subset of places (transitions)
are called P- (T-) subnets.

2.2.2 Net Systems: Marking and Token Game

The structure of a net is something static. Assuming that the behaviour of a
system can be described in terms of the state and its changes, the dynamics on
a net structure is created by defining its initial state and the state evolution
rule.

Definition 2.3 (Marking and P/T system)

The marking of a net N is a place indezed vector, m € ]Nlpl, which assigns
a non negative integer (number of tokens) to each place. A P/T net system
is the pair § = (N,mg) (or, more explicitly, S = (P, T, F,W,mq) or § =
(P, T,Pre,Post,mg)) where N is a P/T net and mq is its initial marking.

The number of tokens at a place represents the local state of the place
(i.e., the value of the state variable represented by that place, which in the P/T
formalism is an integer, so it can be interpreted as a counter or store). The state
of the overall net system is defined by the collection of local states of the places.
Therefore, the vector m is the state vector of the DEDS described by the net
system. Pictorially, we put m[p] black dots (tokens) in the circle representing
place p. The marking of the net system in Figure 2.1 is mg = [0,0,0,0, 1, 2].
For the sake of convenience, we shall often use a bag-like notation for markings,
e.g., m = ps+ 2pg.

The evolution of the distributed state is defined through a firing or occur-
rence rule, informally named as the “token game”. This is because net structures
can be seen as a sort of “checkers”, the tokens as “markers”, and the firing rule
as the “game rule”. Transitions represent potential “moves” in the token game.
(Observe, though, that tokens are not moved but destroyed and created at each
“move”, possibly in a different number.)

Definition 2.4 (Enabling and occurrence)
The marking in a net system evolves as follows:

1. A transition is said to be enabled at a given marking when each input

place has at least as many tokens as the weight of the arc joining them.
Formally, t is enabled at m iff m > Pre[P,t].

The number of simultaneous enablings of a transition t at a given marking
m is called its enabling degree, and is denoted by e(m)[t]. Formally,
e(m)[t] = max{k € N4 | m > k- Pre[P,t]}. (The enabling degrees at m
of all the transitions are collected in the enabling vector, e(m).)

2. The occurrence, or firing, of an enabled transition s an atomic operation
that removes from (adds to) each input (output) place a number of tokens
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equal to the weight of the arc joining the place (transition) to the transition

(place). Formally, the occurrence of t at marking m, denoted by m_ym’,
yields the marking m’ = m + C[P, t].

The pre-condition of a transition can be seen as the resources required for
the transition to be fired. The post-condition represents the resources produced
by the firing of the transition. The only transition enabled in the net system
of Figure 2.1 is t5. Its firing leads to the marking 2p; + ps, where #; is enabled
with enabling degree two: ¢; could occur now two times “simultaneously”, self-
concurrency or reentrancy can be modelled. When a transition is required not
to be self-concurrent, e.g., because it represents a single server, we can explicitly
show it in the model by using a self-loop like that in Figure 2.2 (b). The same
schema can be applied to model a k-servers transition by putting k& tokens in
place p.

Remark Observe that in the firing rule of our abstract model, enabled tran-
sitions are never forced to fire. This is a form of non determinism. In practical
modelling the interpretation partially governs the firing of enabled transitions
(e.g., depending on whether or not an external event associated to an enabled
transition occurs). It must also be noticed that it is not precised whether the oc-
currence of a transition takes some time, since time has not been introduced yet.
This is again dependant on the interpretation we give to the model. Generally
speaking, a transition can implement a system activity, so its occurrence would
take some time, or it can represent the completion of a system activity, thus
being instantaneous. In this book, we mainly consider the latter interpretation.
Anyway, transitions representing system activities can be implemented by a
path instantaneous begin transition — activity in course place — instantaneous
end transition, as in Figure 2.2 (d) with respect to (c).

Interleaving Semantics: Sequential Observations

A common way of describing the behaviour of a P/T system is by means of its
sequential observations. So to say, the observer is supposed to “see” only single
events, e.g., one transiton occurring at a time. The nterleaving semantics of a
net system is given by all possible sequences of individual transition occurrences
that could be observed from the initial marking. If two transitions a and b are
enabled simultaneously and the occurrence of one does not disable the other,
in principle they could occur at the same time, but the sequential observer will
see either a followed by b or viceversa. The name interleaving semantics comes
from this way of seing simultaneous occurrences.

Definition 2.5 (Sequences, language, and reachability)
Let 8 be a P/T system.

1. An occurrence or firing sequence from m is a sequence ¢ =1ty -ty --- €
T such that m-smy - - *smy - - .. If the firing of sequence o yields the

marking m’, this is denoted by m_"ym’.
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2. The language of S, denoted by L(S), is the set of all the occurrence se-

quences from my.

3. The reachability set of S, denoted by RS(S), is the set of all the markings

reachable from mgo by firing some sequence in L(S).

4. The reachability graph of S, denoted by RG(S), is a labelled graph where
the vertices are the reachable markings, and there 1s an edge labelled t from
vertez m to verter m’ iff m—"ym’.

(See more on the reachability graph and its use in the analysis in Chapter 6.)

Concurrent Semantics: Multiple Enablings and Steps

If firings take some time, the occurrences of several transitions could be simul-
taneous — or overlap in time. Physically, it will never be the case if firings
are supposed to be instantaneous, unless a strong deterministic timing is as-
sumed, but representing them in a step makes explicit the fact that they need
not occurring in a precise order.

Definition 2.6 (Steps)

A step enabled at m is a multiset of transitions such that they could occur
“stmultaneously”. A step can be represented in vector form: s[t] denotes the
number of times that transition t ts in step s. With this notation, the step s
s enabled at m iff m > Pre-s. The occurrence of step s can be denoted by
m-_2ym’, or m—Zsm’ if o0 is an arbitrary sequentialisation of s. In fact, every
sequentialisation of the step is fireable so, in practice, the reachable markings
can be computed considering individual transition occurrences only.

In the reachability graph we could represent an arc from a marking to another
one labelled with the step, but this would be in some sense redundant, since all
the possible sequentialisations of the step would appear too. For example, from
P2 + p3 + ps in the net of Figure 2.1, ¢5 + ¢3 is a (maximal) enabled step, and
therefore the sequences 5t3 and #3t5 are fireable.

Interleaving semantics assumes that only the language is important to de-
scribe the behaviour. Instead, if also the steps and/or the enabling degrees are
important, we will speak of a concurrent semantics. Later on we shall show
examples where the distinction between interleaving and concurrent semantics
is important.

State Equation and Semiflows

The firing count (or Parikh) vector of a sequence o is defined as o[t] = #(¢, o).
Let S be a P/T system and let m € RS(S). Integrating the evolution equation
in Definition 2.4.2 (i.e., m—ym’ = m’ = m + C[P,t]) from mg to an arbitrary
m we get:

mo-sm=>m=mo+C 0O (2.1)
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This is known as the state equation of the system, on which several structural
analysis methods are based (see Chapter 6). In particular, left and right nonneg-
ative annullers of the token flow matrix are called P- and T-semiflows, respec-
tively. These dual structural objects lead to linear invariant laws on the possible
behaviours. If y is a P-semiflow (i.e., y > 0 and y- C = 0), then y -m = y - my.
For instance, y = pa+ ps is a P-semiflow of the net in Figure 2.1, and it induces
the invariant mq + ms = 1. If x is a T-semiflow (i.e., x > 0 and C - x = 0),
then the firing of any sequence with firing count vector x leads from a marking
back to itself. For instance, x = 2¢; + 2t5 + #5 is a T-semiflow corresponding to
the cyclic sequence tgt1t1t5t5. It is important to note that these invariant laws
are structural, they abstract from the initial marking. A P-semiflow induces a
marking invariant law for every initial marking, while a T-semiflow indicates
that there exist initial markings for which a corresponding cyclic behaviour is
possible.

Modelling DEDS with Net Systems

Petri nets, as introduced so far, are a mathematical formalism, in the same
sense as differential equations are. While the latter are useful for describing
continuous dynamical systems, the former are introduced for the description of
(asynchronous) DEDS. Let us illustrate now a possible physical interpretation
that PN can be given, by means of an example.

Example 2.1 (Multicomputer PLC) A Programmable Logic Controller
(PLC) is a device to control a process or plant. It works in a cyclic fashion: plant
variables are sampled, some calculations are performed, and actions to the plant
are emitted, once and again. In order to control a complex or distributed plant
we may have a PLC with multicomputer architecture. Assume we want to model
a PLC consisting of two computers each of them containing a double-access
memory which are connected by a shared bus. The two computers synchronise
to start a control cycle. Then they perform their calculations independently,
unless they need to read external data (i.e., residing in another computer’s
memory) using the common bus. At this level of detail, we disregard the bus
control policy.

The net system of Figure 2.1 is an abstract model of such a multicomputer
PLC, where the identity of the computers is disregarded (they are modelled as
indistinguishable). The tokens in place pg model the two computers that will
start a control cycle when #¢ fires. The tokens in place p; model the computers
engaged in private calculations. The occurrence of ¢; models the fact that a
computer finishes a piece of these computations. Then, either it has completed
its actions in the present cycle and becomes idle again (t5 fires) until a new
cycle is started, or it requires external data (o fires). If the bus is ready, what
is modelled by ps being marked, then the computer can use it (3 fires and p4
becomes marked). Computers queue up in ps for the bus when it is not ready.
(Observe, though, that no queueing policy is specified.) Once the communica-
tion is completed, the computer goes on with its private computations and the
bus is released (firing of t4).
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2.2.3 Locality and the Synthesis of Models

It is clear from the definitions of the net structure, state representation, and
evolution rule, that there exists a locality principle on both states and actions.
Place p1 of the example net informs on the number of computers performing
private calculations, independently of the bus or even of other informations we
might have on the computers. Transition ¢ models the start of a control cycle,
which changes only the state of the computers.

The locality both of the state representation and the actions is another
crucial feature of PN, which permits the modelling of complex distributed be-
haviours. Its importance for the synthesis of models resides in the fact that
nets can be locally modified, either refined or coarsened, with no alteration of
the rest of the model. Tt is also possible that different nets, modelling differ-
ent parts of a system, can be composed by sharing some nodes (representing
common activities and states). In other words, nets can be synthesised using
top-down and bottom-up approaches. Top-down synthesis is any procedure that
starting with an initial — abstract — model, leads to the final model through
stepwise refinements. In a bottom-up approach modules are produced, possibly
in parallel by different groups of designers, and later composed.

As an example, assume we want to be more precise about “the private cal-
culations” | that consist on the parallel execution of some codes. Moreover, once
the bus is released it must undertake some set-up operations before becoming
ready for a new access. Figure 2.3 (a) shows a refined model of our multicom-
puter PLC, where both place and transitions refinements are illustrated. A
modular way of constructing the net is shown in Figure 2.3 (b), as a sychro-
nisation of the model of the computers and the model of the bus. (Place p)
modelling “bus busy” is redundant with place ps modelling “computer using
” and can be removed.)

bus

2.2.4 Causal Dependence, Conflicts, and Concurrency

Let us discuss now the adequacy of the formalism to modelling DEDS with
concurrent or parallel activities. Informally, the three basic phenomena to be
represented are causal dependence, 1.e., some actions require that others are
performed first, conflicts, 1.e., some actions are alternative, a decision on which
one will occur must be taken, and concurrency, i.e., there are actions that may
occur simultaneously. These phenomena are readily represented by PN models
in a very natural way. They are the basis for the modelling of typical schemas in
parallel and distributed systems, like mutual exclusion, join-assembly, rendez-
vous, etc. Example 2.1 will be used for illustration purposes.

Concurrency

Causal dependence and conflicts are classical notions in sequential systems, like
finite automata, although the presence of concurrency modifies them somehow,
so we shall start with the latter. Two transitions are concurrent at a given
marking if they can occur “simultaneously”, that is, in a step:
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Figure 2.3: Synthesising the model of the multicomputer PLC of Example 2.1:
(a) A refined model; (b) As a synchronisation of two sub-models.

Definition 2.7 (Concurrency relation)
Transitions t; and t; are in concurrency relation at marking m, denoted by

(ti,t;) € Cc(m), when m-“ym’, m-Yym”, ej(m’) > 0, and e;(m") > 0.

In other words, (t;,¢;) € Cc(m) when m > Pre[P,t;] + Pre[P,t;]. For
instance, assume tg and then ¢; and t5 are fired in the example, leading to
p1 + p3 + ps; therefore, transitions #; and ¢35 are enabled and may occur simul-
taneously. Notice that steps allow to express true concurrency. In the case of
interleaving semantics, as we mentioned, concurrency of two (or more) actions
a and b is represented by the possibility of performing them in any order, first
a and then b, or viceversa. Nevertheless, the presence of all possible sequen-
tialisations of the actions does not imply that they are “truly” concurrent, as
the example in Figure 2.2 (c) illustrates: a@ and b can occur in any order, but
they cannot occur simultaneously, and in fact the step a 4+ b is not enabled. The
distinction is specially important if transitions a and b were to be refined. In
Figure 2.2 (d), a and b have been refined. It is clear that, for instance, a; and
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by are not concurrent, which is incongruent with a and b being concurrent.

Remark Tt is important at this point to distinguish between concurrency of
transitions (as abstract model objects) and concurrency of system activities,
which 1s again a matter of the interpretation of the model. In case transitions
implement system activities, both things coincide: the occurrence of transitions
would take some time, so their occurrences may overlap in time; in this sense,
they could occur simultaneously. On the other hand, if transitions represent
just the completion of some system activity (hence they are instantaneous) two
system activities are concurrent when the transitions that represent their com-
pletion are simultaneously enabled. With the former interpretation the activities
modelled by a and b in Figure 2.2 (c) are not concurrent. Nevertheless, if ¢ and
b represent the completion of two activities, these activities are concurrent (al-
though the completion of one interrupts the other). Even the activities whose
completion is modelled by ¢ and ¢’ in Figure 2.4 (a) would be concurrent, al-
though these transitions are not concurrent either in an interleavings or a steps
sense!  With the interpretation of occurrences as completions, concurrency of
two transitions means that the completion of one activity does not interrupt
the other.

Causal Dependence

Roughly speaking, causal dependences are represented by the partial ordering
of actions induced by the flow relation. For instance, it is clear in the example
that ¢4 occurs after ¢3, and that to fire ¢3, both ¢5 and ¢4 must occur before, in
whichever order — apart from the first time. If intantaneous occurrences are
considered, the (immediate or direct) causal dependence at a given marking can
be formalised as the following relation between transitions:

Definition 2.8 (Causality relation)
Transition t; 1s in direct causality relation with t; at marking m, denoted

by (ti,t;) € Cs(m), when m-"ym’ and ej(m') > ¢;(m).

If multiple transition occurrences were allowed, steps rather than individual
occurrences of transitions should be considered in the definition.

Causal dependences appear in the form of sequences (e.g., t4 follows t3),
as in sequential systems, but also in the form of synchronisations (e.g., t3 is a
synchronisation of a computer and the bus).

The very basic net construct used to model causal dependences is a place
connecting two transitions. Transitions connected through a place are said to be
in structural causal relation ((t;,1;) € SCs when ¢;* U *t; £ (). The very basic
net construct used to model synchronisations is a transition with more than one
input place, i.e., a join transition (it takes its name from the fork-join schema,
the reverse kind of transition — more than one output — is called a fork). Tt

can also be said that a multiple arc from a place to a transition is a sort of
synchronisation, because several “individuals” (tokens) must assemble in front
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of the transition to enable it, as it happens with tg, where the two computers
synchronise to start a control activity.

® @ 0
(a) (b) (@
O O |
VAV
(d)

Figure 2.4: Conflicts and structural conflicts.

Conflicts

Regarding conflicts, in sequential systems they are clearly the situation in which
two actions are enabled so one must be chosen to occur. For instance, Fig-
ure 2.4 (a) shows a conflict between ¢ and ¢'. Things become more complicated
in the case of concurrent systems, where the fact that two transitions are en-
abled does not necessarily imply that we must choose one. Sometimes, the
“sequential” definition — there is a conflict when two transitions are enabled
and the occurrence of one disables the other — is suitable, namely in 1-bounded
systems. But in other cases a new definition is needed. Assuming the example
net (Figure 2.1) was marked with p1 + p2 + ps, 5 and ¢2 would obviously be in
conflict, meaning that if the computer in ps is ready to finish it cannot need the
bus, and viceversa. Consider now the marking 2ps + p5. Neither the occurrence
of t5 disables t5 nor the converse, but the firing of one decreases the enabling de-
gree of the other: so to say, each token must decide which way to go. Formally,
there is a conflict situation when the enabling vector is not an enabled step. In
Figure 2.4 (b), neither the occurrence of ¢ or ¢’ disables the other, but the firing
of ¢ decreases the enabling degree of ¢ from three to one. The enabling vector
is 3¢ 4+ ¢/, while the (maximal) enabled steps are 3t and ¢ +¢'. By the way, this
example shows that conflict does not imply absence of concurrency: t and t' are
involved in a conflict, but they could occur concurrently, as in ¢ +#'.

Once the notion of conflict has been clarified, we introduce a relation be-
tween transitions, to account for the transitions which are involved in a conflict
situation at a given marking. Depending on whether we interpret occurrences
as instantaneous or not, again we obtain slightly different definitions (and again
we strengthen the former, due to the main orientation of the book):

Definition 2.9 (Conflict relation)
Transition t; is said to be in effective conflict relation with t; at marking m,

denoted by (t;,t;) € Cf(m), when m-'ym’ and ej(m') < ¢;(m).
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This relation is antisymmetric: In Figure 2.4 (b), ¢’ is in effective conflict
with ¢, but not the other way round, because a firing of ¢+ does not decrease
the enabling degree of #/. If transition occurrences were not instantaneous, then
we should take into account the possibility of multiple firings of a transition.
Therefore, we should also say that ¢ is in conflict with ¢/, because firing # twice
(or thrice) does change the enabling degree of t. In such case, it would be
better to say that two transitions t; and ¢; are in conflict relation at m when
m % ¢;(m) - Pre[P,t;] + ¢;(m) - Pre[P,;], which is symmetric. Observe that
it has not been defined either how or when a given conflict should be solved,
leading to non determinism in the behaviour.

The very basic net construct used to model conflicts is a place with more
than one output transition, i.e., a distributor place. In fact, distributor places
are needed to model conflicts, but the converse is not true. Due to the regulation
circuit in Figure 2.4 (c), t and t' are never in effective conflict although they
share an input place. The output transitions of a distributor place are said
to be in structural conflict relation ({t;,t;) € SCf when *¢; N *t; # #). This
relation is reflexive and symmetric, but not transitive. Its transitive closure is
named coupled conflict relation, and it partitions the transitions of a net into
coupled conflict sets (CCS(t) denotes the coupled conflict set containing ¢). In
Figure 2.4 (d) ¢ and t" are not in structural conflict relation but they are in
coupled conflict relation, through ¢'.

> =-0@ B
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Figure 2.5: Non equal conflicts and confusion.

Remark Very often in the literature, our structural conflicts are called simply
“conflicts”, but we prefer to add the adjective structural to better distinguish
from the behavioural, hence dynamical, notion of (effective) conflict, which de-
pends on the marking. As we have noted, a structural conflict makes possible
the existence of an effective conflict, but it does not guarantee it, e.g. Fig-
ure 2.4 (d), except for the case of equal conflicts, where all the transitions in
structural conflict have the same precondition. Transitions ¢ and ¢’ are said to be
in equal conflict relation, (t,t') € EQ, when ¢t = t' or Pre[P,t] = Pre[P,t'] # 0.
This equivalence relation partitions the transitions into equal conflict sets. The
equal conflict set containing ¢ is denoted by EQS(¢). Figure 2.4 (e) shows an
equal conflict set.

When structural conflicts are not equal, it may well be the case that the
“conflicting” transitions become gradually enabled, as shown by the examples
in Figure 2.5: none of them is in a conflict situation, although in the three
cases one “conflicting” transition is enabled, namely ¢ in (a) and t" in (b) and
(c); after firing ¢, a conflict appears in the three cases. An intriguing situation
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arises when different sequentialisations of a step involve a conflict resolution or
not. This is known as the confusion phenomenon, illustrated in Figure 2.5 (b)
and (c): in both cases the step ¢ 4 " can be fired. If we fire ¢ first, a conflict
between ¢’ and #" appears, that is solved in favour of /. If we fire ¢/ and then
t, no conflict appears. This phenomenon will be particularly annoying when
considering priorities later on.

Control Flow and Synchronisation Schemas

It goes without saying that the habitual control flow structures (e.g., sequence,
if-then-else, iteration, par-begin/par-end, etc.) are readily modelled using PN,
as Figure 2.6 illustrates. (In this example the interpretation adds information on
how to solve conflicts, or the actions that correspond to the firing of transitions.)

loop
10
while C1 do
if C2
then 11
else 12
par_begin
13
14
par_end
end
end

Figure 2.6: Control flow of a simple parallel-PASCATL-like program.

Also, conventional synchronisation schemas, like rendez-vous, semaphores,
fork-join, mutex, etc., can easily be represented by net constructs, as Figure 2.7
illustrates.
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Figure 2.7: Conventional synchronisation schemas: (a) rendez-vous, (b)
semaphore, (c) symmetric rendez-vous/semaphore, (d) asymmetric rendez-
vous/semaphore (master/slave), (e) fork-join, (f) subprogram (p and p’ must
not be marked simultaneously), (g) mutex, (h) guard (condition reading).

2.2.5 Subclasses and Extensions of the Basic Formalism

Net systems are difficult to deal with. This reflects the inherent complexity of
concurrent systems; where the subtle interactions between conflicts and synchro-
nisations hinder the analysis and synthesis. A common approach to cope with
difficult problems is to restrict to easier instances of them. (Linear differential
equations with constant coefficients are easier to solve than general ones, yet
they are very useful in practice.) A compromise must be found between mod-
elling power and availability of results. Some subclasses of P/T net systems will
be introduced in Section 2.3.

On the other hand, the basic P/T formalism is unable to represent certain
system behaviours. Enriching this formalism will allow to model a larger class
of systems, again at the price of possibly losing some analysis capabilities. In
Sections 2.4 and 2.5, we will concentrate on two extensions, net systems with
inhibitor arcs and/or priorities, and coloured net systems, respectively.

At this point, it is important to make a distinction between modelling or
expressive power and convenience, in order to better appreciate the relative
merits of the different formalisms, restrictions, and extensions. We shall say
that a formalism has greater (theoretical) modelling power than anoher when
the former can model systems that the latter cannot. For instance, PN have
greater modelling power than finite automata since they can model systems with
an infinite state space (even with such a simple net as a place where tokens arrive
through the firing of a transition and depart through the firing of another one,
a single queue-like net system).



2.3. SYNTACTICAL SUBCLASSES 17

When the systems that two formalisms can model are the same, i.e., when
they have the same modelling power, the distinction of these formalismsis a mat-
ter of convenience, which is not necessarily a mere matter of taste or verbosity.
Besides the size and clarity of a model in each formalism, other aspects are im-
portant in judging the relative convenience of two formalisms, e.g., the ability
to costruct models by refinement and composition, the ability to adequately
represent data and control, the analysability, or the degree of parametrization.
Assume, for instance, coming back to Example 2.1, that instead of having a
fixed system with two computers and a bus, we are designing the PLC. Then,
to decide the number of computers (N) and buses (B < N), we might be inter-
ested on some performance indices versus those parameters. In our P/T model
the only changes are the initial marking of places ps and ps and the weight,
while the finite automaton (which is isomorphous to the reachability graph)
has Zf:o 4N=1 states, showing up the state space explosion problem. The fact
that the structure of the model is not (or little) changed is interesting from a
“readability” point of view, but also — and this is perhaps more important —
from the perspective of the analysis, which is often based on the structure.

Rating a formalism as more or less convenient than another is not always
easy or even possible, since convenience comprises aspects which are typically
contradictory, such as compactness and analysability. In some cases, sound and
complete (preferably syntactical) transformations exist to translate models from
one formalism to another, which can be used to apply analysis techniques de-
velopped for a cumbersome formalism to a model produced in an abbreviated
formalism, which is then seen as “more convenient” (more compact and iden-
tically analysable, leaving other aspects apart). Generally speaking, though,
such transformations are impractical and it is highly desirable to develop the
direct analysability of abbreviated formalisms, thus increasing their overall con-
venience.

2.3 Syntactical Subclasses

Subclasses of net systems can be defined either restricting the behaviour or
the structure (or syntax) of the model. A possible way of obtaining syntactical
subclasses is restricting the inscriptions (e.g., nets with every weight equal to one
are ordinary) or the topology, usually aiming at limiting the interplay between
conflicts and synchronisations. The latter can be achieved either by giving a
general restriction, typically on distributor places and/or join transitions (e.g.,
there are no joins), or by giving rules to construct models (e.g., sequential
functional entities are synchronised by some restricted message passing).

2.3.1 Ordinary Nets and Elementary Net Systems

A P/T net is said to be ordinary when every arc weight equals to one. Therefore,
the occurrence of a transition consumes one token from each input place, and
produces one token for each output place. In modelling terms, if the transition
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performs some service and tokens represent clients queueing up in places, serving
simultaneosly a bundle of clients, or the simultaneous arrival of a group of clients
to a queue cannot be modelled — at least directly.

Figure 2.8: Ordinary implementation of a weighted net.

In fact, implementing a weighted P/T net by an ordinary one can be achieved
by using a net transformation like the one shown in Figure 2.8. Basically,
what the transformation does is collecting the input tokens in a pipe (places
iz) that drives them to place #;. Then, they are pushed one by one (thanks
to places ¢;) through the places op, ... from which they are collected by the
output transitions. Nevertheless, the size of the resulting model grows as the
weights do, and it is artificially complex, eventually loosing its appealing clarity.
Moreover, although the interleaving semantics is preserved, disregarding the
occurrence of the added transitions (i.e., the languages of both systems are the
same modulo a projection), if we consider a concurrent semantics, the behaviour
is not preserved: After firing ¢1 the two tokens in p enable the step 2¢4, which is
never enabled in the ordinary implementation. This is easily solved substituting
each output transition by a sequence invisible transition — cumulating place
— output transition, to cumulate the enablings. Doing so, the same steps can
occur in both net systems (disregarding the added transitions). But still the
concurrent semantics is not fully preserved when there are output arcs from a
distributor place having different weights. For instance, in the original model,
after the firing of t5 both t3 and t4 become enabled at the same time (the latter
with enabling degree three) and a conflict appears, whereas in the ordinary
implementation such conflict might be hidden if tokens were directed one by
one towards f4 without ever enabling ¢3. These subtle differences will be of
some importance when time is incorporated to the model.

In the particular case that the bound of every place is one (i.e., the system is
1-bounded, or safe), places can be interpreted as boolean conditions, which hold
or not depending on whether they are marked or not. A transition is an event
that may occur when its pre-conditions hold. After its occurrence, the pre-
conditions become false and the post-conditions are made true. If we want to
adhere to this interpretation, we can modify the occurrence rule, so we need not
worrying about 1-boundedness: A transition £ is enabled when its pre-conditions
hold and its post-conditions don’t. This is usually known as Elementary Net
(EN) systems. The idea of taking into account the marking of the output places
when defining the enabling of a transition can be extended to general P/T nets
by assigning a capacity to each place. Nevertheless, capacities are a minor
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modelling convenience since they can be simulated using complementary places
(i.e., the reverse of a given place p marked with the capacity of p minus its
current marking, later on we shall show some examples) preserving both the
interleaving and concurrent semantics.

te |

Ps*

Ps

Figure 2.9: An EN model of the multicomputer PLC of Example 2.1.

Let us show how one would model the system in Example 2.1 using an EN
system. Now places represent conditions, so we cannot model all the computers
in a certain state by putting several tokens in a place. Instead, we model each
computer individually as a sequential system (see Figure 2.9). The possible
states are modelled by the places: waiting for a new cycle (pi), calculating (p?),
deciding (p}), waiting for the bus (p}), and using the bus (p}). The synchro-
nisation of the two computers is represented by the merging of the transitions
that model the start of a new cycle in each computer (¢s). The bus forces the
computers’ states “using the bus” to be mutually exclusive.
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2.3.2 Topological Subclasses

Historically, subclasses of ordinary nets have received special attention because
powerful results were early obtained for them. In this presentation some of them
appear as subclasses of their weighted generalisations for the sake of concision.
Regarding the modelling power, clearly some subclasses have less than others if
the former are properly included in the latter. Also the weighted generalisations
have more modelling power than their ordinary counterparts since, in general,
the ordinary implementations of weights do not preserve the (topological) class
membership.

Join-free and State Machines

A P/T net N is join-free (JF) when no transition is a join, i.e., |*¢|] < 1 for
every t. With these nets, proper synchronisations cannot be modelled. A is
a weighted P-net when every transition has one input and one output place,
ie., |*t| = [t*] = 1 for every ¢t. An ordinary weighted P-net is a P-net or state
machine (SM), a name due to the fact that when marked with only one token
each place represents a possible global state of the (sequential) system. With
more than one token concurrency appears: an SM with k tokens represents k
instances of the same sequential process evolving in parallel. Given an adequate
stochastic interpretation, strongly connected SM correspond to closed Jackson
Queueing Networks.

Distributor-free and Marked Graphs

A P/T net N is distributor-free (DF) when no place is a distributor, i.e., [p*| < 1
for every p. With these nets, conflicts cannot be modelled. They are also
called structurally persistent because the structure enforces persistency, that is,
the property that a transition can only be disabled by its own firing. N is
a weighted T-net when every place has one input and one output transition,
ie, |*p| = |p*| = 1 for every p. An ordinary weighted T-net is a T-net or
marked graph (MG), a name due to a representation as a graph where the nodes
are the transitions and the arcs joining them are marked (that is, places have
been obviated). As some examples, MG can model activity ordering systems,
generalising PERT graphs, job-shop systems with fixed production routing and
machine sequencing, flow lines, Kanban systems, etc. For instance, the net in
Figure 2.10 (a) is a MG. Given an adequate stochastic interpretation, strongly
connected MG correspond to Fork/Join Queueing Networks with Blocking.

Equal Conflict and Free Choice

A P/T net NV is equal conflict (EQ) when every pair of transitions in structural
conflict are in equal conflict, i.e., they have the same pre-incidence function:
*tN*t # 0 implies Pre[P,t] = Pre[P,t']. An ordinary EQ net is an (eztended)
free choice net (FC). Free choice nets play a central role in the theory of net
systems because there are powerful results for their analysis and synthesis while
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Figure 2.10: Modelling a flow line with three machines and two buffers. Each
buffer is modelled by two places, for the parts and “holes”, respectively (the later
initially marked with h; holes). Each machine is modelled by a state machine,
initially idle, where the “working-state” is shaded; they follow a blocking after
service policy (they start their work even if there are no holes in the output
buffer, so they might stay blocked before unloading). The different models
consider: (a) reliable machines, (b) machines with operation dependent failures
(may fail only when working), and (c) machines with time dependent failures
(may fail at any time). Scrapping (part is discarded) is possible in the case of

unreliable machines.

they allow the modelling of systems allowing both conflicts and synchronisations.
It is often said that FC can be seen as MG enriched with SM-like conflicts
or, equivalently, SM enriched with MG-like synchronisations. However, they
cannot model mutex semaphores or resource sharing, for instance. The nets
in Figure 2.6 and Figure 2.10 (b) are FC. The net in Figure 2.1 is EQ. The
fundamental property of EQ systems is that whenever a marking enables some
transition ¢, then it enables every transition in EQS(¢) = CCS(t). It can be said
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that the structural and behavioural notions of conflict coincide. Tt is also said
that conflicts and synchronisations are neatly separated, because it is easy to
transform the net so that no output of a distributor place is a join: Figure 2.4 (f)
is the result of transforming (e).

Asymmetric Choice, or Simple

A P/T net N is asymmetric choice (AC), sometimes called Simple, when it is
ordinary and p* N p’* # @ implies p* C p’* or viceversa. In these nets, the
conflict relation 1s transitive. They generalise FC, and allow modelling to a
certain extent resource sharing. The nets in Figure 2.9 and Figure 2.10 (c) are
AC.

The above subclasses are defined through a global constraint on the topology.
Their relations are illustrated in the graph of Figure 2.11, where a directed
arrow connecting two subclasses indicates that the source properly includes the
destination, and the constructs depicted illustrate the typical situations that
distinguish each subclass.
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Figure 2.11: Relations between some basic syntactical subclasses.
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Modular Subclasses

Subclasses can also be defined in a modular way, by giving some modules and
how interconnecting them. Very often the modules are monomarked SM, repre-
senting sequential systems which run in parallel communicating in a restricted
fashion. A few examples follow.

Superposed automata systems (SA) are composed by monomarked SM syn-
chronised by transition merging, that is, via rendez-vous. They lead to general
— although structured — bounded systems models. For instance, duplicating
the places p in the net of Figure 2.9 an SA net is obtained: the four automata
are the three computers (for each i: p! = computing, p} = deciding, p§ =
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waiting bus, p, = using bus, and pi = waiting new cycle) and the bus (p5 =
ready, pil = granted to 7). The computers synchronise at tg to start a cycle,
and each computer synchronises with the bus at t and #i to take and release
it, respectively.

Systems of buffer-cooperating functional entities are modules (depending on
the kind of modules we obtain different subclasses) synchronised by message-
passing through buffers in a restricted fashion. A P/T system § is in this class

when:

e P=BuWlY, P, T =3, T;. The net systems S; generated by P; and T; are
the functional entities or modules, and the places of B are the buffers.

e For every b € B, there exists ¢ such that b* € T;, that is, buffers are
output private. Moreover if ¢,# € T; are in EQ relation in A, then
Pre[b,t] = Pre[b,#'], that is, buffers do not modify the EQ relations of
the modules. These restrictions on buffers prevent competition.

In case the modules are monomarked SM we obtain deterministically synchro-
nised sequential processes (DSSP). These can be buffer-interconnected again,
leading to a hierarchical class of systems, recursively defined, that is called
{DS}* SP. They allow the modelling of hierarchically coupled cooperating sys-
tems. The net systems in Figure 2.10 (a) and (b) can be seen as — rather
trivial — examples of buffer-cooperating systems, where the places modelling
the buffers are precisely the buffers, while each machine is modelled by an SM.
Systems of Simple Sequential Processes with Resources (S*PR) are SM syn-
chronised by a restricted resource sharing. The restrictions impose that there
is a place in each SM which is contained in every cycle and does not use any
resource (an “unavoidable idle state”), and that every other place uses one
(possibly shared) resource. They allow the modelling of rather general flexible
manufacturing systems, or similar systems where resource sharing is essential.

2.4 Inhibitor Arcs and Priorities

According to their definition, P/T net systems do not allow modelling zero tests,
that is, transitions that are enabled only if some place is empty. The extensions
that we discuss in this subsection will allow the modelling of zero tests, so they
clearly increase the theoretical modelling power, actually leading to Turing ma-
chines. On the other hand, the extended model is less amenable of analysis. For
instance, differently from P/T systems, boundedness is undecidable in systems
with inhibitor arcs or priorities [18, 26]. Let us first give the formal definitions.

Definition 2.10 (Inhibitor arcs and priorities)
A P/T net with inhibitor arcs and priorities is a six-tuple:

N = (P, T,Pre, Post, Inh, pri)

where:
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1. (P,T,Pre,Post) is a P/T net.
2. Inh € INIPIXITL i the inhibition incidence matriz.
3. pri€ NIl s the priority wvector.

Nets where Inh = 0 or pri = k - 1 have no inhibitor arcs or no priorities,
respectively, and the corresponding matriz or vector is not explicited.

Inhibitor arcs and priorities modify the enabling condition of the occurrence
rule: A transitiont is enabled at m iff m > Pre[P,t], m < Inh[P,t], and there
is no t' such that pri[t'] > pri[t] which is enabled. It is often convenient to
distinguish whether a transition is not enabled only due to the priorities. We
shall say that t has concession at m when m > Pre[P,t] and m < Inh[P,t].
The enabling degree and the occurrence rule for enabled transitons are as in
plain P/T systems. (Naturally, disabled transitions — even if it is due only to
inhibitor arcs or priorities — have enabling degree zero.)

Inhibitor arcs are depicted as circle-headed directed arcs from places to tran-
sitions, labelled with the corresponding arc weight (unless it is one). The inhi-
bition set of a transition ¢ is denoted by °¢ = {p | Inh[p, t] # 0}. The inhibited
set of a place p is denoted by p°. The lowest priority transitions (conventionally
priority zero) are depicted as boxes, while the rest are depicted as bars, labelled
with the priority level when greater than one.
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Figure 2.12: Three models of the lazy lad.

Let us illustrate the modelling capabilities of inhibitor arcs and priorities
by means of a simple example. Assume we want to model a lazy lad living on
his own. When there is nothing to eat he cooks several dishes until he gets
desperately hungry and he starts eating. From then on, he eats what he has
cooked until the fridge is empty, what makes him switch again to cooking mode.
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Figure 2.12 shows two possible models of this behaviour. In (a) the inhibitor arc
prevents switching from eating mode (p3 marked) to cooking mode (p2 marked)
by inhibiting ¢35 when the fridge (p1) is not empty. In (b) the lower priority of
the transition from eating to cooking (t3) prevents its firing unless the fridge
(p1) is empty. The reader is invited to get convinced that plain P/T systems
cannot model this behaviour because there is no way to check that the fridge,
assumed to have unlimited capacity, is empty.

Inhibitor arcs from bounded places can be implemented (preserving the in-
terleaving semantics) using the complementaries of these places, as shown in the
example of Figure 2.12 (c), where we have supposed that at most seven dishes
fit in the fridge. This simple transformation does not work so well, though,
when concurrent semantics is considered. In the example of Figure 2.13 clearly
(b) is an interleaving semantics preserving implementation of (a), but it does
not preserve either the enabling degree or the steps. In [4] the complementary
place schema is generalised to preserve the (sequentialisable) steps in the case
of 1-bounded systems, but, to the best of our knowledge, there is no general
technique to implement inhibitor arcs preserving the concurrent semantics, so
their convenience in some cases should not be undervalued.

N N\
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(a) (b)

Figure 2.13: Inhibitor arcs and enabling degree. In (a) e(m)[t] = 2, and in (b)
e(m)[t] =1.

It is possible to implement a system with inhibitor arcs using priorities and
viceversa, even in the unbounded case and preserving concurrent semantics,
so both extensions can be interchanged except for modelling convenience (the
transformations are rather cumbersome [9]). Inhibitor arcs have the advantage
that they are graphically represented in the net structure, while the influence of a
priorities definition on the enabling of some transition is not so clearly reflected,
and is not so local. On the other hand, priorities arise naturally when a timing
interpretation is considered. Therefore, despite their formal equivalence, both
extensions are allowed on equal footing, because they have been introduced to
cope with different situations.

Concurrent Semantics of Inhibitor Arcs and Priorities

Let us precise the concurrent semantics of inhibitor arcs and priorities by means
of a couple of paradoxical examples. Look at the net systems in Figure 2.14 (a)
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and (b), which are independent — somehow similar, though — examples, not
the implementation of one another. In both cases, the enabling vector is t + 2t’
(this may account for the concurrency of some system activities whose com-
pletion was modelled by these transitions). If the occurrence of ¢ and #' took
some time, it would be possible to start their firing in parallel, leading to the
(maximal) step ¢ + 2¢', meaning that there is no conflict. The odd thing about
this step is that not all its sequentialisations can occur: in (a) the occurrence
of ¢ disables ', while in (b) the occurrence of t’ enables the higher priority
t"”, thus disabling ¢. This poses the problem that it is not possible to obtain
the reachable markings considering individual transition occurrences only, as in
plain P/T net systems. For instance, the marking 3p” is reachable in (a) by
firing ¢ + 2¢’, and the marking p + 2p” is reachable in (b) by firing 2¢', markings
that cannot be reached by individual transition occurrences, unless we substi-
tute every transition whose firing takes some time by a sequence instantaneous
transition — place — instantaneous transition, in order to explicitly manifest
that their firing takes time, as depicted in Figure 2.14 (c) and (d). If firings are
regarded as instantaneous, such steps make little sense, and they will be con-
sidered as non fireable (despite Definition 2.6 which was meant for plain P/T
systems). Therefore, the step ¢+2t in the examples above is not fireable, so the
enabling vector is not a fireable step, and then we would say there is a conflict.
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Figure 2.14: Inhibitor arcs, priorities, concurrency, and conflicts.
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Generalisation of Inhibitor Arcs: Logical Guards

Following the line of inhibitor arcs, richer extensions can be devised, generalising
the kind of condition that “guards” the enabling of a transition. A first step
in such direction would be the addition of test arcs from places to transitions,
which disable the transition if the marking of the place is less than the weight of
the arc. Notice that they differ from self-loops such as that in Figure 2.13 (b),
because when the transition is enabled the enabling degree does not depend
on the marking in the source of the test arc. Clearly, in the case of bounded
systems, using complementary places it is possible to implement test arcs with
inhibitor arcs, and viceversa. Both inhibitor and test arcs guard the enabling
with a simple condition on the marking of a place. More general conditions
could be allowed (e.g., propositional logic predicates), but perhaps these would
put too much information about the behaviour of the system away from the
structure (i.e., net) of the model, which is somehow against the rationale of
using nets. Since, in the case of bounded nets, these more general conditions
can be implemented — preserving the concurrent semantics — by inhibitor
arcs, after adding some places and possibly replicating some transitions (see
Figure 2.15 for an example), they are mainly a matter of (minor) modelling
convenience, and we refrain from introducing them formally.

3

m[p] < m[p]
OR
m[p] =2 AND m[p]=1

(b{pl =b[p] =3)

Figure 2.15: Implementing complex enabling conditions in bounded systems.

In Figure 2.15 (a), the enabling of transition ¢ is conditioned by the marking
of places p and p’ (besides the input place of ¢): ¢ is enabled when *¢ is marked
and m[p] < m[p'] Vmlp] > 2 Am[p'] = 1. It is assumed in this example that
the marking bounds of p and p’ are three. In Figure 2.15 (b) we duplicated
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transition ¢ to represent the disjunction, and used complementary (or similar)
places as needed to obtain elementary conditions where the marking of places
is upper-bounded (that is, expressible as inhibitor arcs). More precisely:

e In order to represent the disjunction, we duplicate transition ¢: the in-
stance t, is enabled when m[p] < m[p’], while the instance t; is enabled
when mlp] > 2 Am[p] = 1.

e The condition m[p] > 2 is checked through the complementary place of p,
P3—p. Since m[ps_,] = 3 —m(p], m[p] > 2 & mlps_,] < 2.

e The condition m[p'] = 1 is m[p/] < 2 and m[p/] > 1 & m[pg_p/] < 3,
where p3_p is the complementary of p'.

e The condition m[p] < m[p'], i.e., m[p]—m[p'] < 0, is checked through place
Pp—p'+3, for which m[p,_,/413] = m[p] — m[p'] 4+ 3 (it is easily obtained
generalising the complementary place idea as follows: Clpp_piy3,T] =
Clp, T - C[p', T], and mq[pp_p4+3] = mg[p] — mg[p'] + 3; the addition of
three is to force it to have a nonnegative marking). Clearly, m[p] —m[p’] <
0& m[pp_p/+3] < 4.

2.5 Coloured Nets and Systems

In this section an important extension of PNs is presented. By way of introduc-
ing elaborated inscriptions associated with places, transitions, and arcs it allows
to write compact models of complex systems. Among the many High Level Petri
Nets (HLPN) formalisms, we shall restrict ourselves to the Coloured Petri Nets
(CPN) formalism [22] and in particular to the subclass of Well-formed Nets
(WN) [10].

The new interesting feature introduced by CPNs is the possibility of having
distinguished tokens (this explains the adjective coloured: the tokens may be
represented graphically as dots of different colour instead of being all black dots;
actually the “colour” attached to a token may be any kind of information). Each
token in CPNs may carry information whose type depends on the place where
it is located, hence the definition of a CPN must include the specification of a
colour domain for each place (denoted cd(p), p € P) that is the type of data
attached to the tokens in that place.

If the number of possible colours is finite, CPNs have the same theoretical
modelling power as P/T net systems, since an algorithmical transformation,
called unfolding, permits to obtain an equivalent — typically far larger and
more cumbersome — P/T model of any given CPN model, as we shall see in
Subsection 2.5.3.

Let us immediately use this new feature in an example: assume we are
modelling a communication system and we need to represent a (finite) buffer
that may contain messages, possibly with different destination. The buffer could
be represented by a place, named buffer, whose colour domain is the set of all
possible destination site identifiers. The number of tokens “coloured” with a
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given identifier represents the number of buffered messages for the corresponding
destination site. A P/T representation of the same buffer, should comprise as
many places as the number of possible destinations, and the number of messages
for a given destination would be represented by the number of (black) tokens
into the corresponding place. We shall see in Subsection 2.5.3 that this P/T
system can be automatically obtained from the CPN representation by unfolding
it. Observe that if the destination of a message is irrelevant in the description
of the system behaviour, then the token colour is just redundant information
and we could represent the buffer with a single place containing as many black
tokens as the overall number of messages in the buffer. We shall discuss in more
detail the issue of redundant colour information in Subsection 2.5.3.

The state, or marking, in CPNs is represented by the multiset of coloured
tokens associated with each place. As in P/T systems the state change is per-
formed by transition firing. Since the tokens in CPNs are distinguished, some
additional information is needed to define the coloured tokens that are with-
drawn from the input places and put into the output places of a given transition
when 1t fires. This information, associated with each arc, defines a multiset over
the colour domain of the place connected to the arc.

Coming back to the example above we may have a transition representing
the reception of a message by destination site d; (named t_recq;) with input
place buffer and with the corresponding input arc labelled {d;}, meaning that
t_recy; may fire only if at least one token with associated colour d; is in place
buffer, and its firing withdraws a token of colour d; from its input place. Notice
that if there are N destination sites, then we need N transitions to represent the
reception of a message by any possible destination. Since the behaviour of these
N transitions is the same up to the identity of the receiver, it is convenient
to “fold” them into one representative transition (say t_rec), parameterized
with the identity of the receiver (let us use variable r to denote the transition
parameter). The possible values of the transition parameter(s) define the so
called transition colour domain. In this case, we need to define the enabling
and firing rule of each “instance” of t{_rec, denoted (t_rec,r = d;) or simply
(t_rec,d;) with d; € cd(t_rec). The inscription associated with each arc of this
new model is a function of the transition parameter(s) giving a multiset over the
colour domain of the corresponding place. In our example, the arc connecting
place buffer and transition ¢_rec (with parameter r) has an associated function
returning the set {r}.

Observe that the evolution from P/T nets to CPNs resembles the evolu-
tion from the first assembly languages to the more recent typed programming
languages.

CPNs with finite colour classes have the same modelling power than P/T
nets, because an equivalent P/T net can always be built using the unfolding
algorithm, but CPNs are more convenient, not only for their compactness and
readability but also for their significantly higher degree of parameterization that
can be exploited at the analysis level [21, 20, 19, 33, 11] (see Chapter 7).
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Figure 2.16: CPN model of a multicomputer PLC
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2.5.1 Colored Petri Nets Formal Definition

Let us formally define the CPN structure, marking, and dynamics. As for P/T
nets, it is possible to give both a graph and matrix oriented definition: we give
only the matrix oriented version.

Definition 2.11 (CPN, matrix oriented) A Coloured Petri Net is a siz-
tuple:
N = (P, T,Pre,Post,C, cd)

where:

1. P and T are disjoint finite non empty sets (the places and transitions of
N),

2. C is the finite set of finite colour classes,

3. ¢d: PUT — C is a function defining the colour domain of each place and
transition,

4. Pre[p,t], Post[p,t]: cd(t) — Bag(cd(p)) are the pre- and post- incidence

matrices.

If Ve € cd(t),Pre[p,t](c) = 0 (Ve € cd(t), Postlp,t](c) = B) then there
isn’t any arc from place p to transition ¢ (from transition ¢ to place p). The
definition of incidence matrix naturally extends to CPNs: the elements of the
incidence matrix are functions Clp,t] : ed(t) — Bag(cd(p)) defined as Clp,t] =
Post[p,t] — Pre[p, t].

Remark Observe that some of the places and transitions in a CPN model may
be “neutral”, that is a place may contain undistinguished tokens (black dots)
and a transition may have no parameters (i.e., transitions with only one possible
instance). In this case we may define the “neutral” colour class Cy = {e} and

define the colour domain of any neutral place p (transition t) as cd(p) = C,
(cd(t) = C).

The functions associated with arcs connecting neutral places/transitions
have a simplified definition: if the arc connects a neutral place and a neutral
transition the corresponding function may be represented by an integer constant
function (the multiplicity in P/T nets); the function associated with an arc con-
necting a coloured transition ¢ and a neutral place is a function e¢d(t) — IN,
finally the function connecting a neutral transition and a coloured place p is a
(constant) multiset over cd(p).

We may extend CPNs with priorities and inhibitor arcs:

Definition 2.12 (CPN with priorities and inhibitor arcs) A Coloured Petri
Net with priorities and inhibitor arcs is an eight-tuple:

N = (P,T,Pre, Post, Inh, pri, C, cd)

where:
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1. P, T,C, cd, Pre and Post are as in Definition 2.11,
2. Inhlp,t]: cd(t) — Bag(cd(p)) is the matriz defining the inhibitor arcs and

assoctated functions,

3. pri[t]: cd(t) — IN is a vector that associates with each transition t a
function defining the priority of each instance.

Nets where Inh[p,t] = 0 (i.e., a constant function always returning an empty
set) orpri = k-1 (where 1 in this context represents a vector of constant func-
tions always returning 1) have no inhibitor arcs or no priorities, respectively,
and the corresponding matriz or vector is not explicited.

Definition 2.13 (CPN marking and system) The marking of a CPN is a
place indezed vector which assigns to each place p a multiset over cd(p): m[p] €

Bag(cd(p)).

A CPN system is a couple S = (N,mq) where N is a CPN and mq its
wmitial marking.

Using the vector notation for bags, we may denote m[p][c] the number of to-
kens of colour ¢ € cd(p) in m[p]. Nevertheless, in what follows the abbreviation
m|p, ¢] will be used instead of m[p][¢].

Pictorially, we write the multiset of coloured tokens in a place using a formal
sum notation for bags into the circle representing the place. The initial marking

of the system in Figure 2,16 is mg = [(, 0,0, 0,01+ ...+ bnp, 1+ ...+ €ne, mq +

...+ my.], or in a more convenient formal sum notation mg = p5(b1 + ...+
bub) + pe(er + ... + ene) + pr(my + ... 4+ mye) (to avoid listing all the empty
places).

The evolution of a CPN system is defined through a firing rule (once more we
want to stress the fact that in this case the firing concerns a transition instance
(t, ¢) rather than a transition).

Definition 2.14 (Enabling and occurrence in CPNs)
The marking in a CPN system evolves as follows:

1. A transition instance (t,¢) is said to be enabled at a given marking when
the multiset of coloured tokens in each input place p € *(t) contains at
least as many tokens of (any) colour ¢’ € cd(p) as the multiplicity of ¢ in
Prelp,t](c). Formally, (t,c) is enabled at m iff m > Pre[P,t](c).

The number of simultaneous enablings of a transition instance (t,c) at a

given marking m is called its enabling degree, and is denoted by e(m)[(t, c)].
Formally, e(m)[(t,c)] = max{k € N, |m > k- Pre[P,t](c)}. (The en-

abling degrees at m of all the transition instances are collected in the en-

abling vector, e(m).)

2. The occurrence, or firing, of an enabled transition instance (t,c) is an
atomic operation that removes from (adds to) each input (output) place
the multiset of tokens obtained by applying the function associated with
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the corresponding arc, to the transition colour c. Formally, the occurrence
of (t,c) at marking m, denoted by m“_’cgm’, yields the marking m’' =
m + C[P,#](c)

8. Inhibitor arcs and priorities modify the enabling condition and the oc-
currence rule: a transition instance (t,c) is enabled at m iff m >
Pre[P,1](c), ¥p € P,¥¢' € Inhp,{](c), mlp,¢] < (Inblp,{](c))[c], and
there is no transition instance (t',c') such that pri[t'](c') > pri[t](c) which
15 enabled.

The concepts of concession and enabling degree introduced in Defini-
tion 2.10 for P/T with inhibitor arcs and priorities naturally extend to
the CPN formalism.

Remark Observe that in CPNs we may have different instances of the same
transition that are concurrent, or different instances of the same transition that
are in conflict with each other (e.g., because they need the same coloured tokens
from a shared input place). Moreover, a given transition instance might be

multiply enabled (self-concurrency).

Next we revisit the multicomputer PLC example. Taking advantage of the
compactness of CPN models, we shall present in fact an extension of Exam-
ple 2.1, with a net of comparable size. The aim of this example is twofold: on
one hand we want to show how complex information can be included in a very
compact form, on the other hand we want to highlight the fact that a model
abstracting out the inessential details, is preferable than a model containing
useless information both from the point of view of the model comprehension
and correctness, and from the point of view of the analysis complexity: this
latter issue will be discussed in Subsection 2.5.3.

Example 2.2 (Multicomputer PLC revisited)

Assume that instead of three computers and one bus, nb busses are available
to serve the remote memory accesses of ne computers. Only one external access
to the same memory can be served at a time, while a local and an external
memory access can occur concurrently, since the memory of each computer in
the system is dual-port.

We use colours to distinguish tokens representing different computers, memo-
ries and busses and to distinguish tokens representing different memory requests
and accesses. The CPN model of the multi-computer PLC is depicted in Fig-
ure 2.16. Places and transitions have essentially the same meaning as those in
the P/T example. Place p; has been added representing the memories that are
not involved in any external access.

Another important difference between this model and the PN model of
Fig. 2.1 is the additional priority structure: all transitions have priority' set
to 0 except t5, t3 and t5: Ve, prifte](c) = 1, Ve, prifts](c) = 1, Ve, prifts](c) = 2.

I Transitions with priority 0 are pictorially represented as white boxes, while transitions
with priority greater than O are represented as black thin bars.
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The rationale for defining priorities in this way is the following: transitions
t1, t4 and tg represent operations that take time while transitions t5,%5 and
ts represent logical actions that take a negligible amount of time to complete:
hence once a process has finished its local computation it immediately decides
whether to perform a memory request or to end its computation, moreover, if it
decides for a memory access and the needed resources are available, the access
immediately starts. Therefore a firing sequence as t1, ta, t3 or 1, t5 appears as
an atomic action from the point of view of any other transition whose priority
is set to 0.

The colour domains of the places and the transitions are defined hereafter:

e Places:

— cd(p1) = cd(p2) = ed(ps) = {ei, i =1, ..., nc}: the set of computers;

— cd(ps) = {eireqomy,i,j = 1,...,nc}: the set of possible memory
access requests,

— cd(ps) = {eicaccomy via by, i,5 = 1,... ne,k = 1,..., nb}: the set
of possible memory accesses;

— cd(ps) = {bs,i=1,...,nb}: the set of busses;
— cd(p7) = {m;,i=1,...,nc}: the set of memories;
¢ Transitions:
— cd(t1) = {e;, i = 1,...,nc}: the possible local computation activity
instances;

— cd(ty) = {e;reqomj,i,j = 1,...,nc,i # j}: the possible memory
access request instances;

— cd(t3) = cd(t4) = {eireqom; wvia by, i,j = 1,...,nc,i # j,k =

1,...,nb}: the possible memory access instances;
— cd(ts) = {e;,i=1,...,nc} : the possible instances of an “end control
cycle”;

— cd(tg) = {e} : the (unique) possible instance of a synchronization
among all the computers composing the PLC.

The arc functions are defined as follows:
e id is the identity function;
e compl : cd(ty) — Bag(cd(pz)), is defined as compl(e;_req-m;) = {e; };

o comp2 : cd(ts) — Bag(cd(p1)), is defined as comp2(e;_req_-m; via_by) =

{ei};

o memreq : cd(tz) — Bag(cd(ps)), is defined as memreq(e; _req-m; _via_by) =
{eireg-m; };
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e mem : cd(t4) — Bag(ed(pr))(= cd(ts) — Bag(ed(pr))), is defined as

mem(e; _req_m; _via_by) = {m;};

o bus : cd(ts) — Bag(cd(ps))(= cd(ts) — Bag(cd(ps))), is defined as

bus(e;_req-m;_via_by) = {by};

e allcomp : cd(tg) — Bag(cd(pe))(= cd(ts) — Bag(ed(p1))), is a constant

function defined as allcomp = {e;,i=1,...,nc}.

To better understand the enabling and firing rules for CPNs let us play the
token game on this example. The initial marking comprises the set F = {e;,i =
1,...,nc} of computers in place pg, meaning that initially all the computers are
ready to synchronize for starting a control cycle, the set B = {b;,i=1,... nb}
of busses in place ps, meaning that all busses are initially idle, and the set
M = {m;,i =1,...,nc} of all memories in place p; meaning that there are no
memories initially involved in a remote access. The unique transition initially
enabled is 5. After firing ¢ the whole set ' disappears from pg and appears in
p1. In this new marking, nc transition instances are enabled, namely (¢1,€;),7 =
1,...,nc, meaning that each computer e¢; may now perform a local computation
(firing of (1, €;)): observe that the instances (t1,¢;) and (t1,¢;),j # 7 are not in
conflict with each other, because they withdraw tokens of different colour from
the common input place p;. Indeed the arc function id appearing on the input
arc of ¢1 returns a set containing a single token whose colour is the same as the
transition colour instance.

Let us assume that (¢, e5) fires, then the token of colour e is withdrawn from
place p1, and put into place ps. In this new state there are three transitions that
have some instance with concession, namely ¢, ¢5 and t5, but only the following
nc instances (tz,esreq-m;),j = 1,3,... nc and (f5,es) are actually enabled,
because of their higher priority. Observe that all these transition instances are in
conflict one with the other because they all need the token of colour es in place
pa2. Let us assume that (t5, es_req_mq) fires, meaning that computer es wants to
access memory myq: function compl in this case returns a single token of colour
€9, that is withdrawn from ps, while the id function on the output arc causes
a token of the same colour as the transition instance to be put into place ps.
Again, in the new marking only the instances of the higher priority transition ¢3
are enabled (i.e., (t3, ea_req_mi_via_by), k = 1,...,nb). The firing of transition
instance (t3, ea_req_mq _via_b1) withdraws a token of colour e5_req_m; from place
p3 (see definition of function memreq), a token of colour my from p7 and a token
of colour by from ps (see definition of functions mem and bus) and puts a token of
colour e5_req_my wvia_by into place py (because of the id function on the output
arc).

Summarizing, the main differences between this model and its P/T coun-
terpart are the following: we have refined the P/T model to take into account
the identity of the computers composing the system, and in particular we have
used this identity to check that only one remote access at a time is allowed on
the same memory. Observe however, that concurrent remote accesses to the
same memory are possible only if more than one bus is available (an hypothesis
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that is true only in the CPN example). We have also added a priority structure
that allows to distinguish between transitions representing time consuming ac-
tivities and transitions representing logical actions that can be completed into

a negligible amount of time.

2.5.2 Well-formed Nets

Well-formed Nets (WN) are a subclass of CPNs whose peculiarity is a very
structured syntax for the definition of the place and transition colour domains
and of the arc functions. The motivation for such syntax is the POSSibility
of automatically exploiting the intrinsic symmetries of the model to efficiently
generate an “aggregated” reachability graph (the algorithm will be presented in

Chapter 7).
The starting point in the structured definition of the WN colour syntax is the
set of basic colour classes {C1,...,Cn}. A basic colour class C; is a nonempty,

finite (possibly circularly ordered) set of colours; intuitively, a basic colour class
can be defined as a set of colours identifying objects of the same nature. A basic
colour class is ordered if a successor function is defined on its elements, such that
it induces a circular ordering on the class elements. Examples are the class of
processors, the class of memories, the class of busses, etc. An example of ordered
class is the class of processors connected in a ring topology. Basic colour classes
are disjoint (i.e.,Vi,j : i # j,C; N C; = @), moreover, a class may be partitioned
into several static subclasses (C; = Ci1U.. . UCi o Vi k:j#k,CijNCir = 0):
colours belonging to different static subclasses represent objects of the same type
but with different behaviour, for example the basic colour class of processors
could be partitioned into two (disjoint) static subclasses, one containing the
fast processors and the other containing the slow ones. We denote C; the set of
static subclasses of C;.

The place colour domains, are defined by composition through the Carte-
sian product operator of basic colour classes. The colour domain of a place is
similar to a C-language structure declaration, i.e., the information associated
with tokens comprises one or more fields, each field in turn has a type selected
from the set of basic colour classes {C4,...,Cp}. The identification of the fields
is positional (there is no name associated with a field).

With reference to the multicomputer PL.C example, we may have two basic
colour classes: the class E of computers, and the class B of busses. We do not
define the class M of memories, instead we use the same colours in class E to
identify memories (since there is a one-to-one correspondence among computers
and memories): as we shall see in a moment, this is needed to be able to
define the arc functions. In this new setting, let us give the new colour domain
definition for the places of the multicomputer PLC model:

¢ Cd(pl) = Cd(p?) = Cd(pa) = Cd(p7) = E’
o cd(ps) = E X E.
o cd(ps) = E x E x B;
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e cd(ps) = B;

The transition colour domains, are used to define the parameters of transi-
tions and their type; each parameter has a type selected from the basic colour
classes, moreover restrictions can be defined on the possible colour instances of
a transition (i.e., on the possible values assigned to parameters) by means of a
transition predicate, or guard. Therefore, the definition of a transition colour do-
main comprises two parts: a list of typed parameters, and the guard, defined as
a Boolean expression of (a restricted set of) basic predicates on the parameters.
Each parameter is associated with a variable appearing in the arc functions of
the input, output and inhibitor arcs of the transition?. We shall denote var; (t)
the subset of transition ¢ parameters of type C;, and wvar(t) the whole set of
transition ¢ parameters.

Definition 2.15 (Standard Predicates) A standard predicate (or guard)} as-
soctated with a transition t 1s a boolean expression of basic predicates. The
allowed basic predicates are: x = y, x =ly, d(x) = C;;, d(x) = d(y), where
x,y € var;(t) are parameters of t of the same type, ly denotes the successor of
y (assuming that the type of y is an ordered class), and d(z) denotes the static
subclass x belongs to.

Here follows the new colour domain definition for the transitions in our
running example (the colour domain is defined as a pair (transition parameters
type, guard)):

o cd(t1) = cd(ts) = ((x) € E, true);

Observe that the definition of cd(¢2) explains why we had decided to use the
same class to represent both the memories and the computers: the guard z # y
makes sense only if 2 and y are parameters of the same type. If we had defined
two basic classes, £ and M, and if y in ¢5 had type M instead of E, then the
guard of ¢5 should have been something like ((z = e;) A ((y=m2) V...V (y =
Mpe))) V(=€) A(f(ly=ml)V(y=m3)V...V(y =mp))) V...V ((x =
enc) A ((y = ml) V...V (y = mpc—1))) but this guard is made up by boolean
composition of basic predicates not allowed by the WN formalism. The only
way of implementing these predicates in WNs, is to partition both £ and M
in ne static subclasses, F*,i =1,...,ncand M7, j =1,... ne, each containing
only one element, and rewrite the basic predicate x = e; (y = my) as d(z) =

20bserve that the scope of a variable appearing on a given arc is the corresponding transi-
tion: instances of the same variable appearing in arcs of the same transition actually represent
the same parameter, while different instances of the same variable associated with different
transitions are independent.
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E' (d(y) = MJ). As we shall see in Chapter 7, by so doing we destroy the
symmetries of the model and prevent the state aggregation.

The arc functions are defined as weighted (and possibly guarded) sums of
tuples, the elements composing the tuples are in turn weighted sums of basic
functions, defined on basic colour classes and returning multisets of colours in
the same class. Given this definition, it is more appropriate to refer to the arc
inscriptions as arc expressions instead of arc functions.

Definition 2.16 (Arc expressions) An arc expression associated with an arc
connecting place p and transition t has the following form:

Z §k.[predk]Fk
k

where 8y is a positive integer, Fy, is a function and [predy] is a standard predi-
cate. The value of function “[pred]f” is given by:

[pred|f(c) = Ifpred(c) then f(c) else 0.

Each Fy, : c¢d(t) = Bag(cd(p)) is a function of the form

F=Q® Q@ H=Ufi )

C,e Cj=1,..e;

with e; representing the number of occurrences of class C; in colour domain of

place p, i.e., cd(p) = Qcicc ®j=1,e. Ci = Qcec O
Each function f{ in turn is defined as:

fi = Zlai7q.Sci’q + Z Bz + o 12)
g=1

z€var;(t)

where Sc, ,, x and !z are basic functions (defined hereafter), a; o, Br and 7y
are natural numbers.

The multiset returned by a tuple of basic functions is obtained by Cartesian
product composition of the multisets returned by the tuple elements. As it can
be observed in the formal definition of arc expressions, there are three types of
basic functions: the projection function, the successor function and the diffu-
sion/synchronization function. The syntax used for the projection function is z,
where z is one of the transition variables (i.e., one of the transition parameters:
it is called projection because it selects one element from the tuple of parameter
values defining the transition colour instance), the syntax used for the successor
function is !z where z is again one of the transition variables, it applies only
to ordered classes and returns the successor of the colour assigned to 2 in the
transition colour instance. Finally, the syntax for the diffusion/synchronization
function is Se¢, (or Scmv)I 1t is a constant function that returns the whole set
of colours of class Cj (of static subclass Cj ; C C;). It is called synchronization
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when used on a transition input arc because it implements a synchronization
among a set of coloured tokens contained into a place, while it is called diffusion
when used on a transition output arc because it puts several tokens of different
colour into a place.

Let us define some arc expression for the multicomputer PL.C example: some
trivial examples are function allcomp = (Sg), or the identity function on the in-
put and output arcs of transition t5 id = (). Let us consider the arc expression
on the input/output arcs of some transitions:

to: compl = (x), id = (x,y);
t3: memreq = (x,y), mem = (y), bus = (2), id = (x,y, z);
ty: id = (x,y, z), mem = (y), bus = (z), comp2 = (x).

Observe that the structure of the arc expressions (i.e., the position of the
basic functions in a tuple) must be consistent with the position of the “fields”
in the colour domain of the corresponding place, i.e., the type of the multiset
returned by the j-th element in the arc expression is equal to the type of the
J-th field in the corresponding place colour domain.

All basic ingredients have now been introduced: let us formally define WNs.
Definition 2.17 (Well-formed Nets) A Well-formed net is an eight-tuple:
N = (P, T,Pre, Post, Inh, pri, C, cd)

where:

1. P and T are disjoint finite non empty sets (the places and transitions of
N),

2. C={C4,...,Cy} is the finite set of finite basic colour classes, (we use the
convention that classes with indexr up to h are not ordered, while classes
with higher index are ordered),

3. ¢cd is a function defining the colour domain of each place and transition;
for places it is expressed as Cartesian product of basic colour classes (rep-
etitions of the same class are allowed), for transitions it is expressed as
a pair { variable types, guard ) defining the possible values that can be
assigned to transition variables in a transition instance; quards must be
expressed in the form of standard predicates,

4. Pre[p,t],Post[p,t]: cd(t) — Bag(cd(p)) are the pre- and post- incidence
matrices, expressed in the form of arc expressions,

5. Inhlp,t]: cd(t) — Bag(cd(p)) is the matriz defining the inhibitor arcs and
assoctated arc expressions,
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6. pri[t]: cd(t) = IN is a vector that associates with each transitiont a func-
tion defining the priority of each instance; there is a restriction on the
priority functions: two instances of a given transition may be assigned
different priorities only if there exists a standard predicate capable of dis-
tinguishing the two. In other words the specification of pri[t] could be
qiven as:
pri[t] : case
(I)] N
(1)2 )

(I)k L Nng
default : ngequir

Since WNs are a subclass of CPNs; it 1s possible to define both the marking
and dynamics of WNs as in CPNs. The initial marking of a WN is thus a place
indexed vector which assigns to each place p a multiset over cd(p): mlp] €
Bag(cd(p)). For reasons that will become clear in a later chapter, it is useful to
define a symmetric initial marking of a WN model:

Definition 2.18 (Symmetric Marking of a WN) A marking m of a WN
model is symmetric if it can be expressed as follows:

Yp € P,mp] = Yo agé
€Qo,ec €1

where € is a tuple of static subclasses (consistent with the colour domain of the
corresponding place), and az € IN is the coefficient of tuple . As usual a tuple
(A1, ..., Ag) of sets represents the set of tuples obtained by composing the sets
through the Cartesian product operator:

<A1,...,Ak> = ® Az
i=1,...,k

In summary the WN formalism poses more constraints on the modeller than
the CPN formalism, so the more permissive CPN formalism appears to be more
convenient at first sight. Nevertheless, in most cases the structured WN colour
definition is natural and leads to “cleaner” models. Moreover, the availability of
specific analysis algorithms (that will be presented in Chapter 7) that rely on the
symmetry properties of WNs arc functions, transition predicates, and priority
functions, represents a crucial advantage that supports the high convenience of
the WN formalism.

2.5.3 Unfolding, Folding, and Decolouring: Choosing the
Appropriate Detail Level

Given a CPN with finite colour domains, it is always possible to derive an
equivalent P/T net by applying an unfolding algorithm. While the unfolding
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of a CPN is unique, the inverse operation of folding a P/T net to obtain a
more compact, coloured representation of the same model, may lead to several
alternative CPN models, depending on the point of view of the folding and
the desired degree of “compactation”. In the extreme case, we may fold all
the places into one place, whose marking would encode the whole system state,
and all the transitions into one transition; in this case the arc functions on the
arcs connecting the unique place and the unique transition would embed all
the information on the system dynamics, resulting in the loss of any “visual”
information. In this sense, a more restrictive formalism, can force the modeller
to avoid hiding too much information in the arc functions (e.g., very complex
functions are hardly expressed by composing simple basic functions as those
allowed by the WN formalism),

Another important issue concerns the possibility of introducing redundant
colour information in a CPN model: the possibility of including a lot of infor-
mation in the model with very little effort, makes this eventuality more frequent
than in P/T nets. The structured nature of the WN formalism, makes it rela-
tively easy to automatically discover and remove some redundant colour infor-
mation, helping the modeler in identifying the relevant details of the modeled
system, and reducing the complexity of the model analysis. Later in this section
we shall discuss how the CPN model of the multicomputer PLC example can
be decoloured.

Definition 2.19 (Unfolding of a CPN) The P/T net
Npjr = (P, T',Pre’, Post', Inh’, pri’) resulting from the unfolding of a CPN
Nepn = (P, T, Pre, Post, Inh, pri, C, cd) is defined as follows:
o P'={(p,c),p€ Pcec cd(p)}
o T'={{t,e),t €T, c€ cd(t)}
Pre'[(p, ), (t, )] = (Pre[p, #](c'))c]
¢ Post'[(p,c),(t,c')] = (Post[p, ](c'))[c]
Inh'[(p, c), {t,¢')] = (Inh[p,#](c"))[]
o pri[(t, )] = prilt](c)

The initial marking mop;r of the unfolded P/T net is defined as follows:
mOP/TKp; o)l = mocpn(p, ]

Basically, the unfolding consists of replicating each place and each transition
as many times as the cardinality of the corresponding colour domain, and by
including an arc of weight w from place (p,c) to (t,c’) iff Pre[p,t](c)[¢] = w
(similarly for functions Post and Inh). There is a clear correspondence between
a marking in the CPN and that of its unfolding: place (p, ¢) contains n tokens
in marking m iff m[p, ¢] = n.
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————

Figure 2.17: Unfolded model of a multicomputer PLC with three computers
and two busses

Figure 2.17 shows the unfolding of the multicomputer PLC CPN assuming
three computers and two busses. Comparing this net with its coloured counter-
part it can be observed that in the CPN only the subnets with some similarity
have been folded resulting in a CPN model with very simple arc functions, i.e.,
in a model that is parametric, has the same amount of visual information as its
uncoloured counterpart, and is more readable (especially when the number of
computers and busses in the system grows). Tt is possible to recognize the three
copies of the place representing the memories, the two copies of the (place -
transition - place) subnet representing the busses not being used in an external
access, and three copies of the submodel of the computers behaviour, that in
turn has some replicated parts to represent the possible alternative choices in
issuing a memory request, and the possible alternative choices in acquiring a bus
to perform an access. Needless to say, this model can become huge and difficult
to read as the number of computers and busses increases, while the CPN model
structure does not change.

Let us study the possible presence of redundancy in the colour specification
of the CPN model of the multicomputer PLC: this discussion is very informal,
it will be formalized later. The first observation concerns the colour class used
for the busses: this colour is never actually used to influence the behaviour of
the system (a memory access can start if any bus is available), so that the token
rapresenting busses, could be “decoloured” (i.e., made all black tokens) without
affecting the possible “event sequences” that can be observed by playing the



2.6. BIBLIOGRAPHICAL REMARKS 43

token game on the net (see Figure 2.18(b)). The second observation concerns
the colour used to distinguish memories, in the particular case of nb =1 (only
one bus in the system): indeed in this situation, the place representing the
memories not involved in any external access becomes implicit (i.e., its removal
does not change the behaviour at all), and can therefore be removed. After
this transformation the information of the identity of the memory requested for
an external access becomes redundant (after place p7 is removed, the synchro-
nization on the memory colour in transition ¢3 disappears, hence the memory
identity information doesn’t affect the possible event sequences) and can there-
fore be canceled from the net (see Figure 2.18(c)). The new CPN model after
this two decolouring steps, has only one basic colour class, F, and the only tran-
sition that actually uses the colour information to fire is ¢, since it can fire only
if the set F is present in pg. Observe however, that due to the conservativity
property of the net, there can never be more than one token of a given colour ¢;
in any place, so that the enabling condition of ¢ could be simply changed into
a check for the presence of |E| = nc tokens in pg. This last decolourization step
leads us back to a P/T model (see Figure 2.18(d)).

As we shall see in Chapter 7 this type of redundant colour simplification can
be algorithmically defined, and hence automatized, for WN models.

2.6 Bibliographical Remarks

Petri nets were introduced in the Ph.D. thesis of C.A. Petri [27]. Today it
is a very rich but relatively young field having impact on many different in-
dustrial sectors. More than in seminal/historical papers we mainly (but not
only) refer to books, tutorials or surveys, where the specialised contributions
are explicitely pointed. A bibliography on Petri nets is periodically gath-
ered by the Gesellschaft fur Informatik, Bonn University, Germany, and pub-
lished in the Petri Net Newsletter. This bibliography and other informations
on Petri nets can be accessed electronically via the Petri nets WWW page
(http://wuw.daimi.aau.dk/PetriNets/), a service supplied by the Datalo-
gisk Afdeling I Matematisk Institut (DAIMI), Aarhus University, Denmark.
Introductory texts to Petri nets and their applications are [26, 5, 30, 31, 22, 1].
[25, 32, 13] are surveys. The material of two advanced courses on Petri nets is
collected in [6, 7, 8]. The International Conference (formerly European Work-
shop) on Application and Theory of Petri Nets takes place every year, since
1980. Since 1992, the proceedings are published within Springer’s Lecture Notes
in Computer Science (LNCS). Before, selected papers appeared in Advances in
Petri Nets, a subseries of LNCS edited by G. Rozenberg. Focused on High-Level
Petri Nets, [23] is a selection of papers.

Some net models (including P/T and EN) and subclasses are surveyed in [3].
The basic subclasses (SM, MG, FC, and AC) and some qualitative analytical
results can be found in several of the introductory texts, and also in the more
specialised book [15]. Some net models (including P/T and EN) and subclasses
are surveyed in [3]. The basic subclasses (SM, MG, FC, and AC) and some
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(b) Changes in the colour definition: (¢) Changes in the colour definition:
o cd(ps) = E X E; o cd(ps) = E;
o cd(ts) = cd(ts) = {{z,y) € E x E); o cd(ts) = cd(ts) = {{z) € E, true);

¢ id = (z) on all arcs.

Figure 2.18: Removing redundant colours when nb =1
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qualitative analytical results can be found in several of the introductory texts,
and also in the more specialised book [15]. Other subclasses are studied in
research papers [35, 36, 14, 29, 34, 28, 16].

Other concepts of priorities have been proposed in order to model systems
in which a local priority specification is introduced to compare only some pairs
of transitions [4]. The two concepts of local and global priority have equiva-
lent modelling power, in the sense that each one can simulate the other even
considering a concurrent semantics [9]. However, the two mechanisms have dif-
ferent levels of modelling convenience, depending on the nature of the modelled
system. Since global priority levels can be naturally related to a timing seman-
tics (priority zero transitions model timed activities, while higher priority ones
model instantaneous routing) they are preferred in the context of this book.
Regarding the concurrent semantics of systems with priorities (and/or inhibitor
arcs), compared to [4], we have taken the position to allow only the steps that
can be linearised, the same as [24], a paper on the concurrent semantics of nets
with inhibitor and test arcs.

Other extensions, besides inhibitor arcs and priorities, have been proposed
in the literature. Basically, what extensions do is removing some basic assump-
tions of net models: inhibitor arcs and priorities concern the logic of enablement,
which in basic net models is exclusively in terms of consumption (i.e., a transi-
tion for which enough resources are available is enabled). Another assumption of
basic net models is that the effect of the occurrence of a transition on its neigh-
bourhood is fixed, what is relaxed in nets with reset arcs [2], self-modifying nets
[37], and, more generally, nets with marking-dependent arc cardinalities [12].
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