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Basic concepts

Discrete Event Systems (DES): 
Systems whose state variables are 
seen/considered discrete
(they take values in N or in a fixed alphabet)

The state space is discrete
Changes of state are due to events

Time is a singular variable
Synchronous systems: a clock −accesible from all
nodes of the system− exists strong
synchronization of clocks total order of events
Asynchronous systems: there is no global time 
events are ordered by causal relations partial
order of events

…
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Basic concepts

Discrete Event Systems (cont.): 
…

DES appear in several application domains
Integrated manufacturing, Protocol engineering, 
Logistics, Computer architecture, Software 
engineering…

There exist simulation languages for DES with
constructors valid to represent:

Jobs/activities, resources, duration of activities, 
logic validation…
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Basic concepts

Discrete? / continuous?

Predator/prey
 

problem
Volterra-Lotka

 
equation

1) Discrete, n ∈
 

{0, 1, 2}
2) Continuous, n ∈

 
(0, nmax

 

)
3) Discrete:  molecules
4) ¿…?
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Basic concepts

Models
Abstraction of reality

Physical model
Simulation program
Textual/graphic description
Formal model

DES: many complex/paradoxical situations
⇒ Interest

 
of

 
formal models
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Formal models

Advantages using formal models
Better comprehension (avoid ambiguities and
contradictions; identify properties; suggest
potential solutions…)
Increase the confidence level on the design
Help in the correct dimensioning
Help in the implementation and documentation
Increase re-usability

Need
 

of
 

formal methods
 

is
 

well-accepted
 

in 
mature

 
engineering

 
domains

 
(vs. emerging)
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Formal models

Formal models: credibility versus tractability
Reality

Mod 1 Mod 2 Mod 3 Mod 4

Relatively credible
Tractable

Credible
Relatively tractable

Very credible
Intractable

Not very credible
Very tractable

size

complexity

Real system
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Formal models

Maturity of a scientific/technical discipline
Formalisms
Models (paradigmatic)
Analysis/synthesis techniques
Tools (automated) to build/analyse/implement
Standardization: Norms (ISO, CCITT, ...) 

First DES problem:
No consensus on a “better formalism”
(it

 
does

 
not

 
exist

 
a formalism

 
so concise

 
and

 tractable
 

as differential
 

equations
 

for
 continuous

 
systems)
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Formal models
It

 
does

 
not

 
exist

 
a single formalism…

Life
 

cycle: family
 

of
 

formalisms
 (each

 
one

 
adapted

 
for

 
a given

 
phase)

Paradigm:
An entire constellation of beliefs, values and techniques, and so 
on, shared by the members of a given community. 
A conceptual framework for reducing the chaotic mass to some
form of order.
The total pattern of perceiving, conceptualizing, acting, 
validating, and valuing associated with a particular image of
reality that prevails in a science or a branch of sience (T. Kuhn). 

Modelling paradigm:
Conceptual framework allowing to obtain formalisms from some
common (few and basic) concepts and principles.

Conceptual and operative economy
Coherence
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Formal models
Formalisms for the modelling of DES

Sequential
Functional (untimed)

Regular expresions, grammars…
Automata, state diagrams, abstract state machines…

+

 

Probabilistic/possibilistic

 

extensions…
Timed

Timed automata (deterministic, probabilistic, possibilistic…)
Markov chains…

Concurrent
Functional (untimed)

Product automata
Petri nets
Process algebras (CCS, CSP…)

Timed
Queueing networks
Conjunctive/disjunctive graphs (PERT, GERT…)
Max-plus algebras
Timed Petri nets (deterministic, stochastic, fuzzy…)
Timed process algebras (deterministic, stochastic, fuzzy…)
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Formal models

Examples of problems
Nederland intercity train network

Minimum periods
Used periods, flexibility
Efect of mutual waitings between
trains (synchronizations)
Critical lines
Fleet and distribution to guarantee
minimum period
Optimum lines structure
Dynamics after specific
perturbations
Variability of service under
stochastic hypothesis
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Formal models

Main basic modelling approaches (M. Bunge)
Descriptive / analytic (what is?)
Internal

 
representation:

System: objects + relations
States, events producing changes
“Process” is

 
not

 
a primitive

 
concept

Automata, Petri
 

nets, Markov
 

chains, Queueing
 

networks
Constructive / processes-based (how is observed?)
External

 
representation

 
(I/O)

“Process” is a primitive concept
System: set of processes + synchronization constraints
Structured processes
Regular expressions, Process

 
algebras
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Formal models

Petri nets (vector addition systems)
Duality states and events

Place: state variable
Transition: state transformer
Marking: value of state

State equation (but…)
Dependency (sequentialization) and independency
(parallelism) of events. 
Causal structure
True concurrency (versus interleaved sequential
observations)
Temporal realism (performance, scheduling)
Locality (states and actions) design methodologies
(top-down, bottom-up)
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Basic concepts

Petri nets:

A formal, graphical, executable technique 
for the specification and analysis of 
concurrent, discrete-event dynamic 
systems; a technique undergoing 
standardisation.

http://www.petrinets.info/

http://www.petrinets.info/
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Basic concepts

Formal:

The
 

technique
 

is
 

mathematically
 

defined. 
Many

 
static

 
and

 
dynamic

 
properties

 
of

 
a 

PN (and
 

hence
 

a system
 

specified
 

using
 

the
 technique) may be mathematically

 
proven.
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Basic concepts

Graphical:
The technique belongs to a branch of mathematics 
called graph theory. 

A PN may be represented graphically as well as 
mathematically. 

The ability to visualise
 

structure and behaviour
 

of 
a PN promotes understanding of the modelled

 system.

Software tools exist which support graphical 
construction and visualisation.
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Basic concepts

Executable:

A PN may be executed and the dynamic behaviour
 observed graphically. 

PN practitioners regard this as a key strength of 
the PN technique, both as a rich feedback 
mechanism during model construction and as an aid 
in communicating the behaviour

 
of the model to 

other practioners
 

and lay-persons.

Software tools exist which automate execution.
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Basic concepts

Specification:

System
 

requirements
 

expressed
 

and
 verified

 
(by formal analysis) using

 
the

 technique
 

constitute
 

a formal system
 specification.
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Basic concepts
Analysis:
A specification in the form of a PN model may be formally 
analysed, to verify that static and dynamic system 
requirements are met.

Methods available are based on Occurrence graphs (state 
spaces), Invariants and Timed PN. The inclusion of timing 
enables performance analysis.

Modelling
 

is an iterative process. At each iteration analysis 
may uncover errors in the model or shortcomings in the 
specification. In response the PN is modified and re-

 analysed. Eventually a mathematically correct and consistent 
model and specification is achieved.

Software tools exist which support and automate analysis.
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Basic concepts

Concurrent:

The representation of multiple independent 
dynamic entities within a system is 
supported naturally by the technique, 
making it highly suitable for capturing 
systems which exhibit concurrency, e.g., 
multi-agent systems, distributed 
databases, client-server networks and 
modern telecommunications systems.
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Basic concepts

Discrete-event dynamic system:

A system which may change state over time, based 
on current state and state-transition rules, and 
where each state is separated from its neighbour

 by a step rather than a continuum of intermediate 
infinitesimal states.

Often falling into this classification are 
information systems, operating systems, 
networking protocols, banking systems, business 
processes and telecommunications systems.
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Basic concepts

Standardisation:

2004-12-02
Achieved

 
Published

 
Standard status: 

ISO/IEC 15909-1:2004 Software and
 

system
 engineering

 
-

 
High-level

 
Petri

 
nets

 
-

 
Part

 
1: Concepts, 

definitions
 

and
 

graphical
 

notation. Available
 

from
 

ISO, 
SAI Global and

 
others.

2005-06-23
New

 
Working

 
Draft

 
of

 
ISO/IEC 15909-2 Software and

 Systems
 

Engineering
 

-
 

High-level
 

Petri
 

Nets
 

Part
 

2: 
Transfer

 
Format

 
submitted

 
for

 
a combined

 
ISO/IEC 

SC7 WD/CD registration
 

and
 

CD ballot. Comments
 welcomed

 
-

 
formal or

 
otherwise. [ Editor's

 
Announcement

 | ISO/IEC 15909-2 WD (Version
 

0.9.0) ]
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Definition

Continuous systems:
Circuits diagrams
Block diagrams
Bond graphs
…

Discrete event systems:
State diagrams
Algorithmic state
machines
PERTs
QNs
…

Graphical representations

Useful
 

to
 

inform
 

about
 

model
 

structure

a picture is better than a thousand words
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Definition

In Petri Nets: two basic concepts
(→

 
graphical

 
objects)

states/data (PLACES)
actions/algorithms (TRANSITIONS)

++
 

weight (labeling) of the arcs
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Definition

Autonomous Petri nets
(place/transition nets or P/T nets)

Petri Nets is a bipartite valued graph
Places: states/data (P)
Transitions: actions/algorithms (T)
Arcs: connecting places and transitions (F)
Weights: labeling the arcs (W)    (“ordinary nets” weights = 1)

inscriptions  
in the arcs 

N = < P,   T,   F,   W > 

PRE POST 
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Definition
Net Static part

Places : State variables (names)
Transitions: Changes in the state 
(conditions)

Marking Dynamic part
Marking : State variables (values)

Event/Firing
Enabling: the pre-condition is 
verified
Firing: change in the marking

the pre-condition “consumes” 
tokens
the post-condition “produces” 
tokens

42

3

42

3

⇒
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Definition

PN syntactic subclasses
State machines

Subclass of ordinary PN 
(arc weights = 1)
Neither synchronizations 
nor structural parallelism 
allowed
Model systems with a 
finite number of states
Their analysis and 
synthesis theory is well-
known

1

4

5

d

c e

f

6

a
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Definition

PN syntactic subclasses (cont.)
Marked Graphs

Subclass of ordinary PN 
(arc weights = 1)
Allow synchronizations and 
parallelism but not allow decisions
No conflicts present
Allow the modeling of infinite 
number of states
Their analysis and synthesis theory 
is well-known

1

2 4

53

d

b c

a
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Definition

PN syntactic subclasses (cont.)
Free-Choice nets

Subclass of ordinary PN 
(arc weights = 1)
Allow synchronizations, parallelism 
and choices
Choices and synchronizations 
cannot be present in the same 
transition
Their analysis and synthesis 
theory is well-known

Every outgoing arc from a place is 
either unique or is a unique 
incoming arc to a transition.

1

2 4

53

d

b c e

f

6

a
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Definition

PN syntactic subclasses (cont.)
Extended free-choice

If two places have some common 
output transition, then they have 
all their output transitions in 
common.

Simple (or asymmetric choice)
If two places have some common 
output transition, then one of them 
has all the output transitions of 
the other (and possibly more).

And other… (modular subclasses)
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State
 

equation

PN and its algebraic representation based
on state equation

Linear representation of PNs, the structure:

Pre-incidence matrix
( {0,1} for ordinary nets)

Post-incidence matrix
( {0,1} for ordinary nets)

Incidence matrix, C = Post – Pre
(marked) Petri Net is finally defined by:

>=< PostPre,,,TPN

    : PxT p,t +→ N)(Pre

    : PxT p,t +→ N)(Post

0,mN=Σ
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State
 

equation

1 

2 4 

5 3 

d 

b c e 

f 

6

a 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000
001000
010100
001000
000010
000001

6
5
4
3
2
1

p
p
p
p
p
p

fedcba

Pre

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

010000
000100
100001
000010
000001
001000

6
5
4
3
2
1

p
p
p
p
p
p

fedcba

Post

Incidence matrix
 

C   (= Post –
 

Pre)
 

cannot ”see” self loops
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State
 

equation

State equation definition

Integrating
 

in one
 

execution
 

(sequence
 

of
 

firing)

where
 

σ (bold) is
 

the
 

firing
 

counting
 

vector of
 

σ

⇔+> )1([)( kmtkm 0)()()(
)()()1(

≥−+=
=+=+
ttkm

tkmkm
PrePost

C

σ⋅+=⇒>σ C00 )()([ mkmkmm
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State
 

equation

Very
 

important: unfortunately…

)([)( 00 kmmmkm >σ/≥≥⋅+= ⇒ 0σ  0,σC
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State
 

equation

Example (of problems): place marking bound

Problem: spureous
 

solutions
 

⇒ semidecision

[ ]
),(s.t.

max

0mRm
pm

N∈
≤ [ ]

mnm

mm
pm

+∈

⋅+=

N),(         

s.t.
max

0

σ

σC
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Modelling
 

features
 

and
 

examples

Modelling expressivity
Sequences
Conflicts (decisions, iterations)
Concurrency and synchronizations

Duality places versus transitions
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Modelling
 

features
 

and
 

examples

Design methodologies:
1.

 
Parallel

 
composition

 
by…

synchronization
 
and

 
fusion

+ bottom-up methodology
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Modelling
 

features
 

and
 

examples

Design methodologies (cont):
2.

 
Sequential

 
composition

 
by refinement

 

+ top-down
 

methodology
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Modelling
 

features
 

and
 

examples

Design methodologies (cont): 
typical synchronization schemes

8. Guarda (condición  
    de lectura)

5.  Fork-Joint

i

j

6.  Sub programa 
     (p  ,p    están en mutex)i j

ℜ

7.  Recurso compartido (     )ℜ

Π1 Π2

2. Semáforo, S

S

Π1 Π2

3.  RV/Semáforo simétrico

S 2S1

4. RV/Semáforo asimétrico 
    (master/slave)

Π1 Π2

S 2

S 1

1. Rendezvous, RV

RV
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Modelling
 

features
 

and
 

examples

Modelling example 1: 
Basic manufacturing

 
cell

producer/consumer
with

 
buffer 

and
 

mutual exclusion
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Modelling
 

features
 

and
 

examples

Modelling example 2: Shared memory multiprocessor
two

 
processors

 
with

 
similar behaviour

two
 

local memories
 

and
 

one
 

shared
 

common
 

memory
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Modelling
 

features
 

and
 

examples

Modelling example 3: Token ring LAN
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Basic properties
Concurrent/parallel
systems are difficult to
understand

It is easy to make
mistakes
Need for easy express
properties and proof
techniques
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Basic properties
Behavioural properties (for m0) 

Boundedness: finiteness of the state space, i.e. the marking of 
all  places is bounded

Safeness = 1-boundedness (binary marking)
Mutual Exclusion: two or more places cannot be marked 
simultaneously (problem of shared resources)
Deadlock: situation where there is no transition enabled
Liveness: infinite potential activity of all transitions

Home state: a marking that can be recovered from every 
reachable marking
Reversibility: recovering of the initial marking

kpNkPp ≤∈∃∈∀ )( such that   m

>>∃∀∈∀ [t[σTt '  such that ', reachable, , mmmm'm

0mmm >∃∀ σ[σ  such that    reachable, 
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Basic properties

Boundedness, 
deadlock, liveness…

Mutual exclusion
m(p2) + m(p4) + m(p5) = 1 

⇒
 

mutex
 

(p2, p4, p5)

(i.e., m(p2) .
 

m(p4) = 0)

p1

p3 p4p2

t2
t4

t1

t3

1

2

5

3

4
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Basic properties

Structural basic properties: 
(“there

 
exists

 
m0

 

…”
 

or
 

“for
 

all
 

m0
 

…”)
They

 
are abstractions

 
of

 
behavioural

 
properties

N is structurally bounded if 
for all m0, <N, m0> is bounded

N is structurally live if 
there exists a m0 for which  <N, m0> is live
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Basic properties

Independence of
Liveness
Boundedness
Reversibility
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Analysis
 

techniques

Analysis techniques for the computation of
functional properties

Enumerative
Exahustive exploration of the state space, thus based
on reachability graph

Only valid for bounded systems
Conclusions are valid only for a given m0

For unbounded systems: coverability graph
Lost of part of information of state space thus we
cannot conclude about some of the properties
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Analysis
 

techniques

Analysis techniques for the computation of
functional properties (cont.)

Reduction/transformation of the model
<N i, m0

i>   → <N i+1, m0
i+1>

Rules that preserve the property under study and
simplify the model for the analysis of such property

Structural
Based on the structure of the model, considering m0
as a parameter
Make use of relation between structure and behaviour
using

 
techniques

 
coming

 
from…

Convex geometry / linear programming (invariants)
Graph theory (siphons, traps, handles, bridges…)
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Reachability
 

graph

Enumerative analysis: exhaustive sequential
enumeration of reachable states

Problem 1: state explosion problem
Problem 2: sequential enumeration ⇒ lost of
information about concurrent behaviour

1

d

2

3

b

4

5

c
6

a

1(6)

24(6)

34(6)

35(6)

25(6)

cb

c b

a

d

Adding
 

place 6 does
 

not
 

modify
 reachability

 
graph

 
but

 
b and

 
c

 cannot
 

fire
 

simultaneously.

reachability
 

graph
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Reachability
 

graph

Example of “easy” solution of a conflict
with a regulation net
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Reachability
 

graph

Bounded system finite reachability 
graph

1

t

2t

t t

3 4

t

3

4

2

1

5

0100

0010

1000

0011

1010

0101 0110

M

M
t

t t

t

t t t t

t

0

2
2 3

4

1t1 1 4

4

5

5

1001

M1

M3

M6

M4

M7

M5

unbounded
 

system
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Reachability
 

graph

Deadlock exists There exists a terminal 
node in the RG

M3

 

is
 

a deadlock

1

t

2t
t t

3 4

3

4

2

1

0100

0010

1000

0011

M

M
t

t t

t

0

2

2 3

4

t1

4

1001

M1

M3 M4
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Reachability
 

graph

Live net  in all the strongly connected 
components of the RG all transitions can be fired
Reversible net  there is only one strongly 
connected component in the RG

live
 

and
 non-reversible

 systemp

p

c

b

d

p
p

p

a

1

2

35
4

10103

01102

01013

10012

10101

01100

01011

10010

a

b

d

c

c

a

Cd

C2

1

M1

M2a

b

c

M0
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Net transformations

Kit(s) of reduction rules
Rule:

Preconditions on the structure
Preconditions on the marking
Change of structure
Change of marking

Application of the rule:
If preconditions hold then apply changes

Problems:
For a given kit of rules, there exist irreducible systems
Trade-off: 

kit
 

reduction
 

power
 

versus kit
 

application
 

complexity
Observation:

for
 

some
 

net subclasses
 

(for
 

instance
 

live
 

and
 

bounded
 

free 
choice

 
nets) there

 
exist

 
complete kits

 
of

 
reduction

 
rules
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Net transformations

A basic kit of reduction rules
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Net transformations

Example: a manufacturing cell
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Net transformations

Implicit places:
A place is implicit in <N,m0> if never is the
unique constraint for the firing of its output 
transitions
Therefore: elimination of an implicit place does
not change the set of firable sequences
Then: elimination of implicit places preserves 
liveness and synchronic properties (distance, 
fairness…)
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Net transformations

Implicit places (cont.):

p1
 

and
 

p2
 

are implicit
 

for
 

m0
p2

 

is
 

not
 

structurally
 

implicit

p1

1

2

3
4

5

6

7

8

9

p2
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Net transformations

Implicit places (cont.):
Place p is structurally implicit in N if
for

 
all

 
initial

 
marking

 
of

 
the

 
other

 
places, 

an
 

initial
 

marking
 

of
 

p can be defined
 

such
 

that
 p is

 
implicit

An struct. implicit place may be implicit or not

1

2
5

3

4k

k=1

2
5

4

1

2

3

4

k≥2
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Net transformations

Implicit places (cont.):
Property: a place p is structurally implicit if and
only if ∃ y ≥ 0, y(p)=0 such that yTC ≤ C(p).

Property: if p is structurally implicit and
m0(p) ≥ yTm0, then p is implicit.
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Convex
 

geometry
 

and
 

PNs

Structural analysis:
Based either on convex geometry (linear 
algebra and linear programming), or
Based on graph theory
We concentrate on first approach.

Definitions:
P-semiflow: y

 
≥

 
0,  yT.C

 
= 0

T-semiflow: x
 

≥
 

0,  C.x
 

= 0
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Convex
 

geometry
 

and
 

PNs

Properties:
1.

 
If y

 
is a P-semiflow, then the next token conservation 

law holds (or P-invariant):

for all m
 

∈ RS(N, m0

 

) and for all m0

 

⇒
⇒

 
yT. m

 
= yT. m0

 

. 

Proof: if
 

m∈RS(N, m0

 

) then
 

m
 

= m0

 

+ C.σ, and
 

pre-
 multiplying

 
by yT:

yT. m =  yT. m0

 

+ yT.C.σ
 

=
 

yT.m0

P-semiflows Conservation of tokens
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Convex
 

geometry
 

and
 

PNs

Properties (cont.):
2.

 
If m

 
is a reachable marking in N, σ a fireable

 
sequence 

with σ
 

= x, and  x
 

a T-semiflow, the next property 
follows (or T-invariant):

m
 

[σ > m

Proof: if x
 

is
 

a T-semiflow, m = m0

 

+C.x
 

= m0

T-semiflows Repetitivity of the marking

P and T-semiflows can be computed using 
algorithms based in Convex Geometry (linear 
algebra and linear programming)
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Convex
 

geometry
 

and
 

PNs

Definitions:
N is conservative ⇔ ∃ y > 0, yT.C = 0
N is  structurally bounded  ⇔ ∃ y ≥ 1, yT.C ≤ 0
(computable in polynomial time)

Properties: pre-multiplying by y the state equation
N conservative ⇒ yT. m = yT. m0

(token
 

conservation) 
N structurally bounded ⇒ yT. m ≤ yT. m0

(tokens
 

limitation) 
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Convex
 

geometry
 

and
 

PNs

Definitions:
N is consistent  ⇔ ∃ x > 0,  C.x = 0
N is  structurally repetitive  ⇔ ∃ x ≥ 1, C.x ≥ 0

Properties:
<N,m0> repetitive ⇒ N  structurally repetitive
N  structurally live ⇒ N  structurally repetitive
N structurally live and structurally bounded ⇒
structurally repetitive and structurally bounded
⇔ consistent and conservative
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Convex
 

geometry
 

and
 

PNs

Example: Producer/consumer with buffer in mutex
mwait_raw

 

+
 

mload

 

+
 

mop1

 

+ mwait_dep

 

+ mdeposit

 

= 1
 

[1]
mdeposit

 

+ mobject

 

+ mwithdrawal

 

+ mempty

 

= 7
 

[2]
mop2

 

+mwait_free

 

+munload

 

+mwait_with

 

+mwithdrawal

 

= 1 [3]
mR

 

+mload

 

+
 

mdeposit

 

+ munload

 

+ mwithdrawal

 

= 1   [4]

For
 

instance, from
 

[1]:
mwait_raw

 

≤

 

1
 

⇔

 

pwait_raw

 

is
 

1-bounded
(mwait_raw

 

= 0)   OR  (mload

 

=
 

0)   
⇒ pwait_raw

 

and
 

pload

 

are in MUTEX 

Non-negative invariants ⇒
⇒

 
provide

 
a decomposed

 
view

 
of

 the
 

original model
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Convex
 

geometry
 

and
 

PNs

Applications of decomposed view of the model

Partial analysis

Implementation
of the model
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Convex
 

geometry
 

and
 

PNs

Absence of deadlock
if mload + mop1 + mdeposit + mop2 +munload +mwithdrawal ≥ 1
then

 
(t2

 

+ t3

 

+ t5

 

+ t6

 

+ t8

 

+ t10

 

) is
 

firable
else

if
 

mwait_raw

 

+ mwait_free

 

≥
 

1
then

 
(t1

 

+ t7

 

) is
 

firable
else

 
(t4

 

+ t9

 

) is
 

firable



Javier Campos. Petri nets and performance modelling: 3. Functional analysis 88

Convex
 

geometry
 

and
 

PNs

Reversibility (with m0(empty)=7 and m0(object)=0):
(Lyapunov-like

 
proof

 
technique

potential
 

function:V(m)
 

= WT.m
 

with
 

W(p)=0
 

⇔
 

m0

 

(p)>0 )
if mload + mop1 + mdeposit + mop2 +
+ munload + mwithdrawal ≥ 1
then

 
V(m)  may decrease

else
 

if
 

mwait_raw

 

+ mwait_free

 

≥
 

1
then

 
V(m) may decrease

else
 

V(m) may decrease OR 
t1

 

is the unique firable
 transition (⇔ m0

 

)
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Convex
 

geometry
 

and
 

PNs

Liveness
σ = t1,t2,t3,t4,t5,t9,t10,t6,t7,t8 is firable
The net is reversible

Then
 

it
 

is
 

live
Fairness

C has a unique left annuller
x

 
= (1,1,1,1,1,1,1,1,1,1)T

for
 

all
 

scheduling: all
 

components
 

work!
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Convex
 

geometry
 

and
 

PNs

Linear programming and PNs
Example: structural marking bound of a place

[LPP]

Polinomial time (on the net struct. size) computation
Other properties can be analyzed: synchronic
properties, dead transitions, mutex, etc.

[ ]

mnm

mm
pm

+∈

⋅+=

N),(         

s.t.
max

0

σ

σC
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Convex
 

geometry
 

and
 

PNs

General comments
Advantages:

Efficient computation
Analysis independent of initial marking
(m0 is only a parameter)

Problems:
Only necessary or sufficient conditions are obtained
(in general)
The heart of the matter is that σ (vector) does not 
exactly represent σ (sequence)
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Introduction

Formalism: conceptual framework suited
for a given purpose
Life cycle: all phases, from preliminary
design, detailed design, implementation, 
tuning…
Different goals in each phase →

→ different formalisms
Family of formalisms: PARADIGM 
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Introduction

Why time augmenting the formalism?
Autonomous Petri nets

Non-determinism with respect to
Which enabled transition will fire?
When will it fire?

duration of activities and
routing

Not valid for performance evaluation
(quantitative analysis: throughput,
response time, average marking)

p1

p2

t1

t4 t5

t3t2

p3 p4
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Introduction

Formalism suitable for system life cycle.
Two

 
characteristics:

Different and
interrelated
abstraction
levels
Different
interpretations

Au
to

n.

St
oc

h.

D
et

.

In
te

rv
.

Fu
zz

y

Ex
t.

 I
/O

In
te

rp
re

ta
ti

on
s

Obj. PN

Pr/T, CPN

P/T

EN

Abstraction
levels

H
LP

N

Timed

Space
Of

formalisms
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Interpreted
 

graphs

Interpreted graphs as formalisms for
Discrete-Event Dynamic Systems

Basic initial
 

idea: 

Formalism
 

= graph
 

(precedence
 

relations…) +
+ interpretation

 
(meaning, 

control…)
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Interpreted
 

graphs

Graphs as sequential formalisms
(Valued) binary

 
relations

 
over

 
a finite

 
set

 (states, locations…) are represented
 

as (valued) 
directed

 
graphs

Vertices (entities)
Arcs (relations)

Matricial representations
Adjacency (vertex-vertex)
Incidence (vertex-arc)

Graph



Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 102

Interpreted
 

graphs

Interpretation
Just the “meaning” of mathematical entities

Example: locations and connections (static)
typical

 
problem: traveling

 
salesman

Wider sense: meaning and external control of
evolution

Meaning of entities
Connection of the model with the outside (the effect
of the “rest of the world”)

events
 

and
 

external
 

conditions
what

 
happened? When

 
did

 
it

 
happen?
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Interpreted
 

graphs
Example (interpretation 1): state diagram

Vertices: global states (possible values of unique state variable)
Arcs: transitions between states

Sequentiel
 

system
 

(Moore
 

like)

conditions & input events → transitions
output → states

System
 

evolution
 

depends
 

on
 

the
 

outside
 

world
 

through
 

events
 and

 
conditions

 
represented

 
with

 
the

 
input

 
variables.

C

M

A B

D

l r1 1

l r22

T

T

1

2

1

2

3 4

5

MAC

B

6 7
l1l2

r 2 r1

l 1 l 2,

r1 r 2,

D

A C

D B

AC
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Interpreted
 

graphs
Other example (interpretation 2): 

Continuous Time Markov Chain
State

 
diagrams

 
+ “speed” of

 
transitions

Vertices: global states (= state diagrams)
Arcs: transition rates between states

system evolution depends on “outside” time
events depend on time

1

2

3 4

5

6 7

μ

β δ

δ β

α γ

γ αC

M

A B

D

l r1 1

l r22

T

T

1

2
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Interpreted
 

graphs

Examples of formalisms for parallel behaviour
PERT (Program Evaluation and Review Technique)

Vertices = events
Arcs = activities (labelled with durations)
Special characteristics:

AND/AND logic (different from
state diagrams or Markov chains)
Acyclic
Only one execution each time
Evolution depends on “outside” time (min, max, or average)
Distributed state of the system

Typical
 

problem: Critical
 

Path
 

Method
computation

 
of

 
shortest time to complete the project
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Interpreted
 

graphs

Gordon-Newell queueing networks
Vertices = stations+queues
Arcs = routing of jobs
Special characteristics:

No synchronizations
Parallel evolution of jobs
OR/OR logic
(identity of job is preserved)
Distributed state of the system

Typical
 

problems: performance
 

queries
 

(mean queue
 

lengths, 
throughput, etc)

μ
1

μ
2

μ
3 μ

4

μ
5

μ
6 μ

7

π
2

1−π
2

π
5

1−π
5
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Interpreted
 

graphs

Fork-Join queueing networks
Vertices = stations
Arcs = queues
Special characteristics:

No decisions
Only forks and joins
AND/AND logic (jobs are created
and destroyed)
Distributed state of the system

Typical
 

problems: performance
 

queries
 

(mean queue
 

lengths, 
throughput, etc)

μ
1

μ
2

μ
3

μ
4

μ
5

μ
6 μ

7
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Interpreted
 

Petri
 

nets
Abstract

 
formalism

 
↔ Reality

Generic meaning:
Place = state variable
Marking = value of variable
Transition = transformation of state
Firing = event that produces transformation

Particular meanings (annotations):
Place (and marking)

State of subsystem Si
Condition Cj is true
Resource Rk is available
Stock of parts in a store…

Transition (and firing)
Subsystem Si evolves
End of activity Aj
A customer arrives
A fail occurs…
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Interpreted
 

Petri
 

nets

Interpretation
(relation

 
with

 
the

 
environment)

⇓
Constraints

 
over

 
the

 
evolution

(imposed
 

by the
 

environment)
⇓

Reduction
 

of
 

non-determinism
Synchronization with signals (from the environment)
Time constraints

Typical interpretations:
Marking diagrams (and Grafcet)
Timed interpretations (time augmented Petri nets)
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Interpreted
 

Petri
 

nets

Timed interpretations
Specification of activities and servers

sensibilization → start of activity
firing → end of activity
transition → service station (# servers)

Specification
 

of:
delay
# servers
(multi-sensibilization:
single, multiple, or
infinite)

delay

…

MEGAFILLING Stations Ltd.

…

p

t

p

t

s

k=
k servers ∞

 

server
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Interpreted
 

Petri
 

nets

Specification of resolution of conflicts
race policy (race between timed
enabled transitions)
preselection (random or
deterministic choice)

Immediate transitions
Modelling of synchronizations or routing
Zero delay ⇒
higher priority
in case of conflict

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

ρ1 ρ2

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

ρ1 ρ2

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

α β

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

α β

α

γ

β

1

2

3

4
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Interpreted
 

Petri
 

nets

Reduction of the non-determinism
Define duration of activities
(elapsed

 
time from

 
enabling

 
to

 
firing

 
of

 
a transitions)

Constant Timed Petri nets (TPN, Ramchandani, 1974)
Interval Time Petri nets (TPN, Merlin and Faber, 1976)
Random (exponentially distrib.) Stochastic Petri nets
(SPN, Symons, 1978; Natkin, 1980; Molloy, 1981)
Random or immediate Generalized Stochastic Petri nets
(GSPN, Ajmone Marsan, Balbo, Conte, 1984)

Define server semantics
(single/multiple/infinite)

Define routing at conflicts
Race between stochastically timed transitions
Preselection (probabilistic or deterministic choice)
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Interpreted
 

Petri
 

nets

Interpretation and logic properties
An interpretation restricts possible behaviour

Some reachable markings are not reachable anymore
Analysis of qualitative properties of the autonomous model
can be non conclusive

In general, a marking does not define a state
In a SPN:

The same reachable makings than autonomous model
(support of r.v. = [0,∞) and race policy gives positive 
probabilities to all possible outcomes of conflicts)

A marking does define a state (memoryless property)

unbounded?

t t'
t"

t

t'

2
t t'

total deadlock? live?
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Continuous
 

time Markov
 

chains

Stochastic process
discrete state space
continuous time

qij is the transition rate from state i to state j

i
j

k

qij

qik



Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 120

Continuous
 

time Markov
 

chains

Formally:
A CTMC is a stochastic process {X(t) | t ≥0, t ∈ lR}  s.t. 
for

 
all

 
t0

 

,...,tn-1

 

,tn

 

,t∈
 

lR, 0≤t0

 

<…<tn-1

 

<tn

 

<t ,  for
 

all
 

n ∈
 

lN

Alternative (equivalent) definition: 
{X(t) | t ≥0, t ∈ lR}  s.t.   for all t,s ≥ 0 

))(|)((
))(,,)(,)(|)(( 0011

nn

nnnn

xtXxtXP
xtXxtXxtXxtXP

===
===== −− K

))(|)((
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Continuous
 

time Markov
 

chains

Homogeneity
We are considering discrete state (sample) space, then
we denote

pij

 

(t,s) = P(X(t+s)=j | X(t)=i), for
 

s > 0.

A CTMC is called (time-)homogeneous if

pij

 

(t,s) = pij

 

(s)   for
 

all
 

t ≥
 

0
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Continuous
 

time Markov
 

chains

Time spent in a state:
Markov property and time homogeneity imply that if at
time t the process is in state j, the time remaining in 
state j is independent of the time already spent in state
j : memoryless property.

⇒
 

time spent
 

in state
 

j is
 

exponentially
 

distributed.
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Continuous
 

time Markov
 

chains

Transition rates:
In time-homogeneous CTMC, pij(s) is the probability of
jumping from i to j during an interval time of duration s.
Therefore, we define the instantaneous transition rate
from state i to state j as:

And the exit rate from
state i as   – qii

Q = [qij]  is called infinitesimal generator matrix
(Q matrix)

t
tp

q ij

tij Δ
Δ

=
→Δ

)(
lim

0

t
tpqq ii

tij
ijii Δ

−Δ
=−=

→Δ
≠
∑ 1)(lim

0

i
j

k

qij

qik
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Continuous
 

time Markov
 

chains
Steady-state distribution

Kolmogorov differential equation:
Denote the

 
distribution

 
at

 
instant

 
t:   πi

 

(t) = P(X(t)=i)
And

 
denote in matrix

 
form:  P(t) = [pij

 

(t)]

Then
 

π(t) = π(u)P(t-u) ,  for
 

u < t  
(we

 
omit

 
vector transposition

 
to

 
simplify

 
notation)

Substituting
 

u = t–Δt and
 

substracting
 

π(t–Δt):

π(t) –
 

π(t–Δt) = π(t–Δt) [P(Δt) –
 

I],   with
 

I the
 

identity
 

matrix

Dividing
 

by Δt and
 

taking
 

the
 

limit

Then, by definition
 

of
 

Q = [qij

 

], we
 

obtain
 

the
 Kolmogorov

 
differential

 
equation

t
ItPtt

dt
d

t Δ
−Δ

=
→Δ

)(lim)()(
0

ππ

Qtt
dt
d  )()( ππ =
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Continuous
 

time Markov
 

chains
Since also π(t)1T = 1,  with 1 = (1,1,…,1)
If

 
the

 
following

 
limit

 
exists

 

then
 

taking
 

the
 

limit
 

of
 

Kolmogorov
 

differential
 

equation
 we

 
get

 
the

 
equations

 
for

 
the

 
steady-state

 
probabilities:

π Q = 0
 

(balance equations)

π 1T
 

= 1
 

(normalizing equation)

)(lim t
t

π
∞→
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Stochastic
 

Petri
 

nets

Time interpretation of Petri nets:
Duration of activities: exponentially distributed
random variables
Single server semantics at each transition
Conflicts resolution: race policy

The
 

reachability
 

graph
 

of
 

the
 

SPN is
 isomorphic

 
to

 
a Continuous

 
Time Markov

 
Chain
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Stochastic
 

Petri
 

nets

The
 

reachability
 

graph
 

of
 

the
 

SPN is
 

isomorphic
 

to
 

a 
Continuous

 
Time Markov

 
Chain

32 4

1 3
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Stochastic
 

Petri
 

nets
The CTMC associated with a (bounded) SPN is obtained:

The state space S = {si} of the CTMC is equal to the
reachability set RS(m0) of the underlying PN (mi ↔ si)
The transition rate from state si (corresponding to marking mi) 
to state sj (mj) is obtained as the sum of the service rates of
transitions enabled in mi whose firing leads to marking mj.

If transitions have single-server semantics and marking
independent rates, the components of Q are:

where

⎪⎩

⎪
⎨
⎧

=−

≠
=

∑
∈

jiq

jiw
q

i

k
ij imjekT

   si,

   si,       
)(

∑
∈

=
)( imekT
ki wq

})(|{)( j
T

iihhij mmmeTTme h⎯⎯→⎯∧∈=
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CTMC-based
 

exact
 

analysis
Let π(mi,τ) be the probability for the SPN to be at the state
mi at instant τ.

The Kolmogorov differential equation for the associated
CTMC is:

in matrix
 

form:

and
 

its
 

solution
 

can be expressed
 

as:

where
 

π(0) is
 

the
 

initial
 

probability
 

distribution

(usually
 

πi

 

(0) = 1 if
 

mi

 

= m0 and
 

πi

 

(0) = 0 otherwise)

∑
∈

τπ=
τ
τπ

TkT
kkj

i mq
d
md ),(),(

Qπ
d

dπ )()(
τ=

τ
τ

τπ=τπ Qe)0()(
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CTMC-based
 

exact
 

analysis
The steady-state “solution” of an SPN is based on the study
of the probability distribution of the set of reachable
markings

The limit behaviour of that distribution

is
 

computed
 

by solving
 

the
 

following
 

system
 

of
 

linear 
equations

where
 

0 and
 

1Τ
 

are vectors
 

of
 

the
 

size
 

of
 

π
 

with
 

all
 

the
 components

 
equal

 
to

 
0 and

 
1 respectively

),,( ||1 RSππ=π K

)(lím τπ=π
∞→τ

⎩
⎨
⎧

=π
=π

Τ 1 
 
1

0Q
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CTMC-based
 

exact
 

analysis

The steady-state distribution π is used for the
computation of performance indices of interest
Performance indices can be expressed from
reward functions defined over the markings of the
SPN, the average reward is computed as average 
value of the reward of the steady-state
distribution

where
 

r(m) represents
 

a given
 

reward
 

function

∑
∈

π=
)0(

)(  
mRSim

iimrR
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CTMC-based
 

exact
 

analysis

To compute the probability of a given
condition Γ(m) in the SPN

First, we define the reward function:

Then, the desired probability is computed as:

where

⎩
⎨
⎧ =Γ

=
otherwise,0

)(  if,1
)(

truem
mr

∑∑
∈∈
π=π=Γ

AimmRSim
iiimrP  )(    }{

)0(

})(|)({ 0 truemmRSmA ii =Γ∈=
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CTMC-based
 

exact
 

analysis

Example: mean number of tokens at place pj
The reward function is

Then the average marking of place:

where
 

A(j,n) = {mi

 

∈
 

RS(m0 ) : mi

 

(pj

 

) = n} and
 

the
 sum

 
is

 
constrained

 
to

 
n ≤k if

 
place is

 
k-bounded

npmnmr j == )(  ifonly  and if   )(

∑∑
>∈

=π=μ
0n)0(

)},({ )(   )( njAPnmrp
mRSim

iij
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CTMC-based
 

exact
 

analysis

Other example: throughput of transition Tj
(average number

 
of

 
firings

 
per

 
time unit)

A transition can fire only if it is enabled, thus
the reward function is

Then the throughput of Tj is

where
 

Aj

 

= {mi

 

∈
 

RS(m0 ) : Tj

 

∈
 

e(mi

 

)}

⎩
⎨
⎧ ∈

=
caso otroen ,0

)(  si,
)(

meTw
mr jj

∑∑
∈∈

π=π=χ
jAimmRSim

ijiij wmr
)0(
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CTMC-based
 

exact
 

analysis

Shared memory multiprocessor

Both
 

processors
 

behave
 

in a similar way:
A cyclic sequence of: local activity, then
an access request to the shared memory, and then
accessing the shared memory
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CTMC-based
 

exact
 

analysis

All transitions have exponentially
distributed durations, except for t2 
and t5, 
access request to
the shared memory
(immediate)

GSPN
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CTMC-based
 

exact
 

analysis

Reachability graph

It
 

is
 

not
 

isomorphic
 

to
 

a Continuous
 

Time Markov
 

Chain
 (infinite rates

 
are not

 
allowed

 
in CTMCs)
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CTMC-based
 

exact
 

analysis

Tangible reachability graph

It
 

is
 

isomorphic
 

to
 

a Continuous
 

Time Markov
 Chain
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CTMC-based
 

exact
 

analysis

Infinitesimal generator matrix of the
CTMC
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CTMC-based
 

exact
 

analysis

The stationary distribution can be computed
(steady state probability of each state)

And from here, compute, for instance, utilization
rate of shared memory

In this case, it is equal to the steady-state probability of
the unique state with p2 (shared memory is free) marked

12][ π=μ p
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CTMC-based
 

exact
 

analysis

Other example, processing power
Average number of processors effectively
(locally) working

We define the reward function

Then:

][][)( 63 pmpmmrP +=

3212)( 
)0(

π+π+π=π= ∑
∈ mRSim

iiP mrP
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Preliminary
 

comments

Interest of bounding techniques
preliminary phases of design

many parameters
are not known
accurately
quick evaluation and
rejection of those
clearly bad

complexity

accuracy

bounds

exact
solution
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Preliminary
 

comments

Net-driven solution technique
stressing the intimate relationship between
qualitative and quantitative aspects of PN’s
structure theory of net models

efficient
 

computation
 

techniques
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generally
 

distributed
 

service
 

times 
(random

 

variables Xi

 

with
 

mean        )

we
 

assume
 

infinite-server
 

semantics

Introducing
 

ideas: Marked
 

Graph
 

case

p1
p2

p3

p4

p5

t1

t2

t3

t4

exact
 

cycle
 

time (random
 

variable):
average cycle

 

time: 

but
 

(non-negative
 

variables):

therefore:

X = X1 + max{X2, X3} + X4
Γ = s [t1] + E[max{X2, X3}]+ s [t4]

X2, X3 ≤ max{X2, X3} ≤ X2 + X3

s [t1] + max{s [t2],s [t3]} + s [t4] ≤ Γ ≤ s [t1] + s [t2] + s [t3]+ s [t4]

s [t j]
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Introducing
 

ideas: Marked
 

Graph
 

case

Thus, the
 

lower
 

bound
 

for
 

the
 

average cycle
 time is

 
computed

 
looking

 
for

 
the

 
slowest

 circuit

Interpretation:
an

 
MG may be built

 
synchronising

 circuits, so we
 

look
 

for
 

the
 

bottleneck

Γ ≥ max
C∈{circuits
of

 

the

 

net}

s [ti]
ti∈C
∑

# tokens
 

in C

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
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Introducing
 

ideas: Marked
 

Graph
 

case

Computation:

(
 

is
 

the
 

vector of
average service

 

times)

(the
 

proof
 

of
 

this
 

comes later
 

for
 

a more general case)

solving
 

a linear programming
 

problem
(polynomial

 
complexity

 
on

 
the

 
net size)

Γ ≥ maximum y⋅Pre⋅s 
subject

 
to y⋅C = 0

y⋅m0 = 1
y ≥ 0

s 
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Introducing
 

ideas: Marked
 

Graph
 

case

Even if naïf, the bounds are tight!
Lower bound for the average cycle time

it is exact for deterministic timing
it cannot be improved using only mean values of
r.v. (it is reached in a limit case for a family of
random variables with arbitrary means and
variances)

max{s [t2],s [t3]} ≤ E[max{X2, X3}]
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Introducing
 

ideas: Marked
 

Graph
 

case

they
 

behave
 

“as deterministic”
for

 

the
 

‘max’ and
 

‘+’ operators
in the

 

limit
 

(α→1)

Xμ,σ (α) =
μα with

 
probability 1−ε

μ α +
1−α

ε
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ with

 
probability ε

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
ε =

μ2(1−α)2

μ2(1−α)2 +σ2

(0 ≤α ≤1)

E Xμ,σ (α)[ ]= μ ; Var Xμ,σ (α)[ ]= σ2

lim
α→1

E max Xμ,σ (α), X ′ μ , ′ σ (α)( )[ ]= max μ, ′ μ ( )

E Xμ,σ (α) + X ′ μ , ′ σ (α)[ ]= μ + ′ μ , ∀ 0≤α <1
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Introducing
 

ideas: Marked
 

Graph
 

case

Upper bound for the average cycle time

it cannot be improved for 1–live MG’s using
only mean values of r.v. (it is reached in a limit
case for a family of random variables with
arbitrary means)

Γ ≤ s [t]
t∈T
∑
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Introducing
 

ideas: Marked
 

Graph
 

case

Xμ
i (ε) =

0 with
 

probability 1−εi

μ

εi
with

 
probability εi

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

(0 < ε <1) E Xμ
i (ε)⎡ 

⎣ 
⎤ 
⎦ = μ ; E Xμ

i (ε)2⎡ 
⎣ 

⎤ 
⎦ =

μ2

εi

If X j = Xs [tj]
j−1 (ε ), ∀t j ∈T ,

E[max( Xi, X j )] = s [ti]+ s [t j] +o(ε)

then
 

for
 

varying
 

(decreasing) values
 

of
 

ε:
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Generalization: use of
 

visit
 

ratios

Visit ratios = relative throughput
(number

 
of

 
visits

 
to

 
ti

 

per
 

each
 

visit
 

to
 

t1
 

)

average interfiring
 

time of
 

t1

v[t] =
χ[t]
χ[t1]

= Γ[t1] χ[t]
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Generalization: use of
 

visit
 

ratios

For some net classes v can be computed as:

p3

p 7

p 10

p12

p 9

p 8

p11

t1
t2 t 3 t4

t 5

p 1 p2

p4
p5

t6

p 6

t 7

t 8 t 9

t 10 t 11

C⋅v = 0;
r1v[t2] = r2v[t1];
r3v[t4] = r4v[t3];

v[t1] = 1
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Generalization: use of
 

visit
 

ratios

Little’s law (L=λW) applied to a place 
p:

Assume
 

that
 

timed
 

transitions
 

are never
 

in conflict
 (conflicts

 
are modelled

 
with

 
immediate

 
transitions), then

 either
 

all
 

output transitions
 

of
 

p are immediate
 

or
 

p has a 
unique

 
output transition, say

 
t1

 

, and
 

t1

 

is
 

timed, thus:

μ [ p] = (Pre[p,T ] ⋅χ) r [ p]

μ [ p] = (Pre[p,T ] ⋅χ) r [ p] = Pre[p, t1] χ[t1] r [p]

≥ Pre[p, t1] χ[t1] s [t1] = Pre[p, t j ] χ[t j ] s [t j]
j=1

m
∑
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Generalization: use of
 

visit
 

ratios

Then:

Hence:                                   where

Premultiplying
 

by a P–semiflow
 

y

Γ[t1] μ [ p] ≥ Pre[ p, t j] Γ[t1] χ[t j] s [t j ]
j=1

m
∑ = Pre[p, t j] v[t j ] s [t j]

j=1

m
∑

Γ[t1] μ ≥ Pre⋅D D [t] = s [t]v[t] is
 

the
 

average service
demand

 
of

 
t

(y ⋅C = 0, y ≥ 0, thus y⋅μ = y ⋅m0 ),

Γ[t1] ≥ maximum y ⋅Pre⋅D 
y ⋅m0

subject
 

to y ⋅C = 0
1⋅y > 0
y ≥ 0

Γ[t1] ≥ maximum
y ⋅Pre⋅D 

q
subject

 
to y ⋅C = 0

1⋅y > 0
q = y ⋅m0
y ≥ 0
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Generalization: use of
 

visit
 

ratios

Since
 

y·m0

 

> 0  (live
 

system), we
 

change
 

y/q  to
 

y
 

and
 

we
 

obtain
(1·y

 
> 0  is

 
removed because

 
y·m0

 

= 1  implies
 

1·y
 

> 0):

again, a linear programming
 

problem
(polynomial

 
complexity

 
on

 
the

 
net size)

Γ[t1] ≥ maximum y ⋅Pre⋅D 
subject

 
to y ⋅C = 0

y ⋅m0 =1
y ≥ 0
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Generalization: use of
 

visit
 

ratios

Interpretation: slowest
 

subsystem
 

generated
 

by P–semiflows, in isolation

minimal
 

P–semiflows
y1 = (1,0,1,1,0,0,1,0,1,0,0,0)
y2 = (0,1,0,0,1,1,0,1,0.1,0,0)
y3 = (0,0,0,0,0,0,0,0,1,1,1,0)
y4 = (0,0,0,0,0,0,0,0,0,0,0,1)

p3

p 7

p 9

t1
t2

t 5

p 1

p4

t6

t 8

t 10

p 10

p 8

t 3 t4

p2

p5

t6

p 6

t 7

t 9

t 11

p12 t 5

p 10
p 9 p11

t 8 t 9

t 10 t 11

N4

N1 N2

N3

Γ[t1] ≥ max
 

{ (s [t5]+ s [t6] + s [t10])/ 3,
(s [t6]+ s [t7] + s [t11])/ 2,
s [t10]+ s [t11],
s [t5] }
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Generalization: use of
 

visit
 

ratios

Upper bound for the average interfiring
time

remember
 

the
 

marked
 

graphs
 

case (v
 

= 1): 

Γ[t1] ≤ v[t] s [t]
t∈T
∑ = D [t]

t∈T
∑

Γ ≤ s [t]
t∈T
∑
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Improvements
 

of
 

the
 

bounds

Structural improvements
bounds

 
still

 
based

 
only

 
on

 
the

 
mean values

 
(not

 on
 

higher
 

moments
 

of
 

r.v., insensitive
 

bounds)
lower bound for the average interfiring time:
use of implicit places to increase the number of
minimal P–semiflows
upper bound for the average interfiring time:
use of liveness bound of transitions to improve the
bound for some net subclasses
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Improvements
 

of
 

the
 

bounds

Use of implicit places

t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p4 p5

q1-q

Γ[t5] = qs [t3]+ (1− q)s [t4]

Γ[t1] ≥ maximum y ⋅Pre⋅D 
subject

 
to y ⋅C = 0

y ⋅m0 =1
y ≥ 0

Γ[t5] ≥ max qs [t3],(1− q)s [t4]{ }
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Improvements
 

of
 

the
 

bounds

t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p4 p5

q1-q
t1 t2

t3 t 4

t 5

p1

p2 p3

p4 p5

q 1-q

p6

in this case, we get the exact value!

Γ[t1] ≥ maximum y ⋅Pre⋅D 
subject

 
to y ⋅C = 0

y ⋅m0 =1
y ≥ 0

Γ[t5] = qs [t3]+ (1− q)s [t4]
Γ[t5] ≥ max qs [t3], (1− q)s [t4], qs [t3]+ (1− q)s [t4]{ }
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Improvements
 

of
 

the
 

bounds

in general…

t1 t2

t3 t4

t5

p1

p2 p3

p4 p5

q 1-q

t7

p6 p7

t6

Γ[t1] ≥ maximum y ⋅Pre⋅D 
subject

 
to y ⋅C = 0

y ⋅m0 =1
y ≥ 0

Γ[t7] ≥ max
 

{ qs [t3] + s [t6] + s [t7],

(1− q)s [t4]+ s [t5]+ s [t7] }
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Improvements
 

of
 

the
 

bounds

t1 t2

t3 t4

t5

p1

p2 p3

p4 p5

q 1-q

t7

p6 p7

t6
p8

in general, the
 

bound
 

is
 

non-reachable

(deterministic
timing)

Γ[t7] ≥ max
 

{ qs [t3] + s [t6] + s [t7],

(1− q)s [t4] + s [t5]+ s [t7],

qs [t3] + (1− q)s [t4]+ s [t7] }

Γ[t7] = qmax{s [t5],s [t3] + s [t6]}+ (1− q)max{s [t4] + s [t5],s [t6]}+ s [t7]
= max

 
{ qs [t3] + s [t6]+ s [t7],

(1− q)s [t4] + s [t5] + s [t7],

qs [t3] + (1−q)s [t4] + (1− q)s [t5] +qs [t6] + s [t7],

qs [t5] + (1−q)s [t6] + s [t7] }
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Improvements
 

of
 

the
 

bounds

Use of liveness bounds

upper bound for the average interfiring time:

reachable
 

for
 

1-live
 

marked
 

graphs, but…

p1
p2

p3

p4

p5

t1

t2

t3

t4
Γ ≤ s [t]

t∈T
∑



Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 173

Improvements
 

of
 

the
 

bounds

p1
p2

p3

p4

p5

t1

t2

t3

t4

it
 

can be improved
 

for
 

k–live
 

marked
 

graphs

liveness
 

bound
 

of
 

t2

Γ ≤ s [t1] +
s [t2]

2
+ s [t3] + s [t4]
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Improvements
 

of
 

the
 

bounds

Definitions of enabling degree, enabling bound, structural
enabling bound, and liveness bound

instantaneous enabling degree of a transition at a given marking

e[t](m) = 2
2
t 

e[t](m) =sup k ∈Ν : ∀p ∈ •t, m[ p] ≥ k Pre[p, t]{ }
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Improvements
 

of
 

the
 

bounds

enabling bound of a transition in a given system:
maximum among the instantaneous enabling degree at all
reachable markings

eb[t2

 

] = 2
p1

p2

p3

p4

p5

t1

t2

t3

t4

eb[t] = sup k ∈Ν : ∃m0
σ

⎯ → ⎯ m, ∀p∈• t, m[p] ≥ k Pre[p, t]⎧ ⎨ 
⎩ 

⎫ ⎬ 
⎭ 
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Improvements
 

of
 

the
 

bounds

liveness bound of a transition in a given system:
number of servers available in t in steady state

t

2

p1 1 t 2

t 3

p2

p3
lb[t1

 

] = 1 < 2 = eb[t1

 

]

lb[t] = sup k ∈Ν : ∀ ′ m ,m0
σ

⎯ → ⎯ ′ m ,∃m, ′ m ′ σ 
⎯ → ⎯ ⎯ m∧∀p∈• t,m[p]≥ k Pre[p, t]⎧ ⎨ 

⎩ 
⎫ ⎬ 
⎭ 
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Improvements
 

of
 

the
 

bounds

structural enabling bound of a transition in a given
system: structural counterpart of the enabling bound
(substitute reachability condition by  

m = m0 + C · σ; m,σ ≥ 0)

Property: For
 

any
 

net system
 

seb[t] ≥
 

eb[t] ≥
 

lb[t],     t.
Property:

 
For

 
live

 
and

 
bounded

 
free choice

 
systems,

 seb[t] = eb[t] = lb[t],       t.

seb [t] = maximum k
subject

 
to m0[p]+C[p,T] ⋅σ ≥ k Pre[p, t], ∀p∈P

σ ≥ 0

∀

∀
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Improvements
 

of
 

the
 

bounds

improvement of the bound for live and bounded free
 

 
choice

 
systems:

this
 

bound
 

cannot
 

be improved
 

for
 

marked
 

graphs
 (using

 
only

 
the

 
mean values

 
of

 
service

 
times)

Γ[t1] ≤
v[t] s [t]

seb[t]t∈T
∑ =

D [t]
seb[t]t∈T

∑
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Outline

Preliminary comments
Introducing the ideas: Marked Graphs case
Generalization: use of visit ratios
Improvements of the bounds
A general linear programming statement
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A general linear programming
 

statement

The idea

linear operational
 

laws

a linear function

maximize
 

[or
 

minimize]   f (μ , χ)

subject
 

to any
 

linear constraint
 

that
 

we
 

are able
 

to
 

state
for μ , χ, and

 
other

 
needed

 
additional

 
variables
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A general linear programming
 

statement

A set of linear constraints:

… …

(state
 

equation)

(flow
 

balance equation)

μ = m0 +C⋅σ

χ[t] Post[p, t]

t∈• p
∑ ≥ χ[t] Pre[p, t],

t∈p•
∑ ∀p∈P

χ[t] Post[p, t]

t∈• p
∑ = χ[t] Pre[ p, t],

t∈p•
∑ ∀p∈P bounded

χ[ti]
ri

=
χ[t j ]

rj
, ∀ti, t j ∈T : behavioural

 
free choice

(e.g. Pre[P, ti]= Pre[P, t j])
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A general linear programming
 

statement

(minimum
 

throughput
 

law)

(maximum
 

throughput
 

law)χ[t] s [t] ≤
μ [p]

Pre[ p, t]
, ∀t ∈T, ∀p∈• t

χ[t] s [t] ≥ μ [p]− Pre[ p, t]+1
Pre[p, t]

, ∀t ∈T persistent,age
 

memory
 

or

immediate: •t = {p}
… …

μ , χ, σ ≥ 0
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A general linear programming
 

statement

It can be improved using second order
moments
It can be extended to well-formed
coloured nets
It has been recently extended to Time 
Petri Nets (timing based on intervals, 
usefull for the modelling and analysis of
real-time systems)
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A general linear programming
 

statement

It is implemented in GreatSPN
select place (transition) object (       )
click right mouse button and select “show”
click again right mouse button and select
“Average M.B.” (“LP Throughput Bounds”)
click left mouse button for upper bound
click middle mouse button for lower bound
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A general linear programming
 

statement

Example: a shared-memory multiprocessor
set of processing modules (with local memory) 
interconnected by a common bus called the “external
bus”
a processor can access its own memory module directly
from its private bus through one port, or it can access
non-local shared-memory modules by means of the
external bus
priority is given to external access through the external
bus with respect to the accesses from the local 
processor

M1 P1 M2 P2 M3 P3 M4 P4
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A general linear programming
 

statement

Timed Well-Formed Coloured Net (TWN) model of
the shared-memory multiprocessor

Average service
 

time of
 

timed
 

transitions
 

equal
 

to
 

0.5
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A general linear programming
 

statement

The linear constraints for the LPP
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A general linear programming
 

statement

The “automatic” results:

The
 

exact
 

solution
 

with
 

exponential
 

distribution
 

would
 

be

Improving
 

of
 

lower
 

bound
 

with
 

more “ad hoc” constraints:

The
 

improved
 

bound:

2]__[ χ
11
8

≤≤ aee

71999.1]__[ χ =aee

3][b;0][b;0][ === QueueChoiceChoiceμ

2]__[ χ1 ≤≤ aee
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Outline

Preliminary comments
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Decomposition
 

of
 

models

Interest of approximation techniques

complexity

accuracy

bounds

exact
solution

approx.
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Decomposition
 

of
 

models

Basic idea:

reduce the
 

complexity
 

of
 

the
 

analysis
 

of
 

a complex
 system

when

the system is too complex/big to be solved by 
any exact analytical technique
a simulation is too long (essentially if many different
configurations must be tested or it must be included in 
some optimization procedure)
some insights about the internal behaviour of subsystems
are wanted (writing equations might help)
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Decomposition
 

of
 

models

Principle:
decompose the system into some subsystems

reduce the analysis of the whole system by those of the
subsystems in isolation

if
 

the
 

solution
 

technique
 

was, e.g., O(n3) on
 

the
 

state
 

space
 size

 
n, the

 
cost

 
of

 
solving

 
the

 
isolated

 
subsystems

 
would

 
be 

O(n3/1000), i.e. three
 

orders
 

of
 

magnitud less…

original system
state

 

space
 

size: n

two
 

subsystems
state

 

space
 

size
 

of
 

each: n/10
(for

 

example)
(i.e., one

 

order
 

of
 

magnitud less)
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Decomposition
 

of
 

models

Advantages:
drastical reduction of complexity and computational
requirements
enables to extend the class of system that can be solved
by analytical techniques

Problems and limitations
Decomposition is not easy!

“net-driven” means to use structural information of the net 
model to assure that “good” qualitative properties are 
preserved in the isolated subsystems (e.g., liveness, 
boundedness…)

Approximation is not exact!
problem of error estimation or at least bounding the error

Accurate techniques are usually very especific to
particular problems need of expertise to select the
adequate technique…
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Decomposition
 

of
 

models
Steps in an approximation technique based on decomposition:

Partition of the system into subsystems:
definition of rules for decomposition
consideration of functional properties that must/can be 
preserved

Characterization of subsystems in isolation:
definition of unknowns and variables
decisions related with consideration of mean variables or
higher order moments of involved random variables
consideration or not of the “outside world”
need of a skeleton (high level view of the model) and
characteristics considered in it

Estimation of the unknown parameters:
writing equations among unknowns
direct or iterative technique (in this case, definition of
fixed point equations)
considerations on existence and uniqueness of solution
computational algorithm for solving the fixed point equation
(implementation aspects, convergence aspects)
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Flow
 

equivalent
 

aggregation

The system: Partition:

p6 p8

p7

p9

p10

t7

t8

t11

t13

t12

p2

p1

 
1

p3

p4

p5

p1 t2

t3

t4

t

 
5

t6

t9 t10

p2

p1

 
1

p3

p6 p8

p4

p5

p7

p9

p10

p1 t2

t3

t4

t5

t6

t7

t8

t11

t13

t12
t9 t10
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Flow
 

equivalent
 

aggregation

Characterization of subsystems. 
Behaviour is characterized by:

path a token takes in the PN 
(what percetage leave through t5 and t6)
time it takes a token to be discharged

p2

p11

p3

p4

p5

p1 t2

t3

t4

t5

t6

t9 t10

•way-in places: p1

•sink
 

transitions: t5, t6
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Flow
 

equivalent
 

aggregation

Reduction of the subsystem:

ppin td

 

(n) tout1

 

(n)

tout2

 

(n)

•routing
 

rates
 

of
 

tout1

 

(n) and
 

tout2

 

(n)?

•service
 

rate
 

of
 

td

 

(n)?

(marking
 

dependent: n=M(pin

 

)

p2

p11

p3

p4

p5

p1 t2

t3

t4

t5

t6

t9 t10
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Flow
 

equivalent
 

aggregation

Aggregated system:

p6 p8

p7

p9

p10

t7

t8

t11

t13

t12

ppin
td

 

(n)

tout1

 

(n)

tout2

 

(n)

p2

p11

p3

p6 p8

p4

p5

p7

p9

p10

p1 t2

t3

t4

t5

t6

t7

t8

t11

t13

t12

t9 t10
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Flow
 

equivalent
 

aggregation

Estimation of the unknown parameters:
Analyze the subnet in isolation with
constant number of tokens

delay and routing are dependent on
the number of tokens in the
system
compute delay and routing for all
possible populations

p2

p11

p3

p4

p5

p1

t2

t3

t4

t5

t6

t9 t10

Parameters of the subsystem in isolation
# tokens v5 v6 thrput
1 0.500 0.500 0.400
2 0.431 0.569 0.640
3 0.403 0.597 0.780
4 0.389 0.611 0.863
5 0.382 0.618 0.914
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Flow
 

equivalent
 

aggregation

When the subnet is substituted back, routing and delay are 
going to be state dependent (n=M(pin))

p6 p8

p7

p9

p10

t7

t8

t11

t13

t12

ppin
td

 

(n)

tout1

 

(n)

tout2

 

(n)

Comparison of State Spaces & throughput
#tokens # states throughput %error

aggregat original aggregat original
1 5 9 0.232 0.232 0.00
2 12 41 0.381 0.384 0.78
3 22 131 0.470 0.474 0.84
4 35 336 0.521 0.523 0.38
5 51 742 0.548 0.547 <0.10
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Flow
 

equivalent
 

aggregation
Limitations:

Assumption: the service time depends only on the number of
customers which are currently present in the subsystem.

The behaviour of the subsystem is assumed independent of the
arrival process

It is exact for product-form queueing networks.
The error is small if in the original model:

the arrivals to the subsystem are “close” to Poisson arrivals and
the processing times are approximately exponential

On the other hand, the error can be very large if
there exist internal loops
in a subnet, or
there exist trapped
tokens in a fork-join, 
or…
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Iterative
 

algorithm: marked
 

graphs
 

case

Net-driven solution techniques
stressing the intimate relationship between
qualitative and quantitative aspects of PN’s
structure theory of net models

efficient
 

computation
 

techniques

Marked graphs: subclass of ordinary nets
(no choices) (no weights)

... ... ... ...

YES NO
A

B

C

D

E
F

G

H I
J

K

L

M

N

O

P

Q R
S

T

U V

WZ3

Z2

Z1Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19 T14

T6

T5

T10 T9

T13

T11
T12

T7

X
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Iterative
 

algorithm: marked
 

graphs
 

case

A
B

C

D

E
F

G

H I
J

K

L

M

N

O

P

Q R
S

T

U V

WZ3

Z2

Z1Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19 T14

T6

T5

T10 T9

T13

T11
T12

T7

X

cut

A
B

C

D

E
F

G

H I
J

K

L

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X
M

N

O

P

Q R
S

T

U V

WT14

T6

T5

T10 T9

T13

T11
T12

T7

original model
 

+ definition
 

of
 

cut

Z3

Z2

Z1

partition
 

of
 

the
 

model
 

into
modules

 
(subnets) connected

through
 

buffers
 

(places)
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Iterative
 

algorithm: marked
 

graphs
 

case

A
B

C

D

E
F

G

H I
J

K

L

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X the
 

solution
 

of
 

isolated
 

modules 
is

 
difficult

 
and

 
useless:

(in this
 

case) they
 

are unbounded!

the
 

modules must
 

be complemented
with

 
an

 
abstract

 
view

 
of

 
the

 
rest;

components
 

are obtained

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3
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Iterative
 

algorithm: marked
 

graphs
 

case

A
B

C

D

E
F

G

H I
J

K

L

M

N

O

P

Q R
S

T

U V

WZ3

Z2

Z1Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19 T14

T6

T5

T10 T9

T13

T11
T12

T7

X

cut

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

original model
 

(89358 states)

three
 

components:
aggregated

 
systems

(low
 

level
 

views) 
and

 
basic

 
skeleton

(high
 

level
 

view)

AS1

 

(8288 states) AS2

 

(3440 states)

BS (231 states)
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Iterative
 

algorithm: marked
 

graphs
 

case

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

iterative
 

solution: pelota algorithm
 

(response time approximation
 

technique)

solution
 

of
 

smaller
 

CTMC’s,
improving

 
in each

 
step

 
the

response time of
 

the
 abstract

 
part
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Iterative
 

algorithm: marked
 

graphs
 

case

Substitute a subnet by a set of places

interface transitions (input/ouput of buffers) are 
preserved
add one place from each input to each output transition
the set of new places can be superposed in the original 
model preserving the behaviour: implicit places

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N

O

P

Q R
S

T

U V

W

T10 T9

T13

T11
T12

T7

beta_1
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Iterative
 

algorithm: marked
 

graphs
 

case

Compute the initial marking of new places
minimum initial marking to make them implicit
computed using Floyd’s all-pairs shortest paths
algorithm:

the MG is considered as a weighted graph
(transitions are vertices and the initial marking of
places are the weigths of the arcs)
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Iterative
 

algorithm: marked
 

graphs
 

case

The abstract view has “very good quality”:
the language of firing sequences of the
aggregated system is equal to that of the
original system projected on the preserved
transitions
the reachability graph of the aggregated
system is isomorphous to that of the original 
system projected on the preserved places
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Iterative
 

algorithm: marked
 

graphs
 

case

Definition of unknowns:

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3
Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

service
 

time of
 

rho_i service
 

time of
 

tau_j service
 

time of
 rho_i and

 
tau_j

+ throughput
 

of
 

each
 

system
+ response time of

 
interface

 
transitions

 
at

 
each

 
system
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Iterative
 

algorithm: marked
 

graphs
 

case

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

response time approximation
 

of
 

the
left

 
hand

 
subnet

 
for

 
a token

 
that

exits
 

through
 

T2:
(Little’s

 
law) 

exits
 

through
 

T3:

thus, solve
 

the
 

CTMC and
 

compute: R2

 

, R3

 

and
 

also
 

χ

  
R2 = μ [alph_1]

χ[t2] 

  
R3 = μ [alph_ 2]

χ[t3] 

first
 

aggregated
 

system

  (χ[t2] = χ[t3] = χ)  
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Iterative
 

algorithm: marked
 

graphs
 

case

second
 

aggregated
 

system

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3

select
 

tau_1 and
 

tau_2 as:

where
 

f is
 

computed
 

using
 

the
 

skeleton:
linear search

 
until

 
the

 
throughput

 
of

the
 

skeleton
 

is
 

equal
 

to
 

the
 

throughput
computed

 
for

 
the

 
first

 
aggregated

 
system

    

tau_1= f .R2
tau_2= f .R3  

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

    

tau_1= f .R2
tau_2= f .R3  skeleton
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Iterative
 

algorithm: marked
 

graphs
 

case

The
 

algorithm:

select a cut Q;
derive aggregated systems AS1,AS2 and skeleton BS;
give initial value µt

(0) for each t∈TI2;
k:=0;  {counter for iteration steps}
repeat
k:=k+1;
solve aggregated system AS1 with

input:  µt
(k-1) for each t∈TI2,

output: ratios among µt
(k) of t∈TI1, and X1(k);

solve basic skeleton BS with
input:  µt

(k-1) for each t∈TI2,
ratios among µt

(k) of t∈TI1, and X1(k),
output: scale factor of µt

(k) of t∈TI1;
solve aggregated system AS2 with

input:  µt
(k-1) for each t∈TI1,

output: ratios among µt
(k) of t∈TI2, and X2(k);

solve basic skeleton BS with
input:  µt

(k) for each t∈TI1,
ratios among µt

(k) of t∈TI2, and X2(k),
output: scale factor of µt

(k) of t∈TI2;
until convergence of X1(k) and X2(k);
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Iterative
 

algorithm: marked
 

graphs
 

case

On the (theoretical) convergence of the algorithm:
Theorem [D.R. Smart, Fixed Point Theorems, Cambridge Univ. Press, 
1974]:   
f : D ⊂ Rn → Rn continuous in a compact, convex, non-empty D, f(D) ⊆ D
(i.e. contractive) ⇒ ∃ x ∈ D such that f(x) = x.
The previous algorithm can be written:

input: μ(0)

 

--

 

initial

 

rates

 

of

 

interface

 

transitions

 

TI.
n := 0   --

 

loop

 

counter
repeat

n := n+1
μ(n)

 

:= G(μ(n - 1))
until

 

convergence

 

of

 

μ(n)

output: X (μ(n))  --

 

vector of

 

approximated

 

throughput
Theorem: for a live strongly connected MG, function G in the algorithm
is continuous and there exists a compact, convex, non-empty set S such
that G(S) ⊆ S.
Corollary: there exists x such that G(x) = x.
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Iterative
 

algorithm: marked
 

graphs
 

case

On
 

the
 

practical
 

convergence:
Service

 
rates

 
(arbitrary): 

T2=0.2; T4=0.7; T6=0.3; T8=0.8; T9=0.6; T10=0.5;
Ti=1.0,   i=1,3,5,7,11,12,13,14,15,16,17,18,19

Throughput
 

of
 

the
 

original system:   0.138341
State

 
space

 
of

 
the

 
original system:  89358

Results
 

using
 

the
 

approximation
 

technique:
State

 
space

 
AS1: 8288; State

 
space

 
AS2: 3440; 

State
 

space
 

BS: 231
AS1

 

AS2
X1          tau_1      tau_2     tau_3      X2          rho_1     rho_2     rho_3
0.17352  0.05170  0.16810  0.88873  0.12714  0.89026  0.21861  0.14354
0.14093  0.06265  0.19707  0.91895  0.13795  0.88267  0.21363  0.13509
0.13856  0.06325  0.19821  0.92054  0.13841  0.88239  0.21343  0.13467
0.13844  0.06328  0.19827  0.92062  0.13843  0.88237  0.21342  0.13465
0.13843  0.06328  0.19827  0.92064  0.13843  0.88238  0.21342  0.13465
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Iterative
 

algorithm: general case

The story was:
Marked graphs case
Weighted T-systems

Non-trivial extension!
Definition of new structure concepts (gain, weighted
marking, resistance)
More complex aggregated subsystems
Similar iterative algorithm

DSSP: deterministic systems of sequential
processes

Decomposition problems, partial results…
General case: new decomposition approach
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Iterative
 

algorithm: general case

Arbitrary P/T system + structured view

partition
 

into
 

modules
 

(functional
 

units) 
connected

 
through

 
places (buffers)
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Iterative
 

algorithm: general case

All P/T systems have serveral structured
views, varying between:

a single module (empty set of buffers)

as many modules as transitions (all places are 
considered as buffers)
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a1

a2

a3

a4

I1

I2

I3

I4I5

I6
t2t1

t3 t4

t5 t6 t7

b1

b2

c1

c2
c3

c4
c5

c6
c7

Iterative
 

algorithm: general case

module 1
module 2

buffers



Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 226

Iterative
 

algorithm: general case

Substitute a subnet
by a set of
implicit places

derived
 

from
 minimal

 
P-semiflows

 of
 

the
 

subnet
 (sum

 
of

 
the

 
incidence

 rows
 

of
 

places)

a1

a2

a3

a4

I1

I2

I3

I4I5

I6
t2t1

t3 t4

b1

b2

c1

c2
c3

t5 t6 t7

c4
c5

c6
c7

d1
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Iterative
 

algorithm: general case

a1

a2

a3

a4

I1

I2

I3

I4I5

I6
t2t1

b1

b2

d1

d2

d3

I1

I2

I3

I4I5

I6

t3 t4

t5 t6 t7

b1

b2

c1

c2
c3

c4
c5

c6
c7

d4

I1

I2

I3

I4I5

I6

b1

b2

d1

d2

d3 d4

first
 

aggregated
 

system second
 

aggregated
 

system

skeleton
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Iterative
 

algorithm: general case

The quality of the abstract view is “not as 
good as” in the MG’s case

the language of firing sequences of the
aggregated system includes that of the
original system projected on the preserved
transitions
the reachability graph of the aggregated
system includes that of the original system
projected on the preserved nodes
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Iterative
 

algorithm: general case

Problems in the composition:

The
 

RG of
 

an
 

aggregated
 

system
 

may include
 spurious markings

 
and

 
firing

 
sequences

 
that

 
do 

not
 

correspond
 

to
 

actual markings
 

and
 

firing
 sequences

 
of

 
the

 
original system

we
 

can obtain
 

even
 

non-ergodic
 

systems
(CTMC cannot

 
be solved)
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Iterative
 

algorithm: general case

P1

P2

P3

P4

P5

P6

P7

P8
P9

P10

P11

t1

t2

t3

t4

t6

t5

t7

t8

t9

t10

t11

t12

P1

P2

P3

P4

P5

P9

P10

P11

t1

t2

t3

t4

t6

t5

t9

t10

t11

t12
h2

original system: 
limited

 
and

 
reversible, thus

 
ergodic

aggregated
 

system:
it

 
has a total deadlock
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Iterative
 

algorithm: general case

Solution for the problem:
select

 
only

 
the

 
strongly

 
connected

 
component

 of
 

the
 

RG that
 

includes
 

the
 

projection
 

of
 

the
 initial

 
marking

P1

P2,P10 P3,P11

P7,P10

P4,P10 P5,P10

P9,P10

P6,P11

P4,P11

P9,P11

t1

t6

t7 t8

t3

t11

t4

t2

t5

t9

t3

t12

P6,P10
t9

P8,P10
t10

P1

P2,P10 P3,P11

h2,P10

P4,P10 P5,P10

P9,P10

h2,P11

P4,P11

P9,P11

P5,P11

t1

t6

t9 t10

t3

t11

t4

t2

t5

t9 t10

t3

t12

RG of

 

the

 

original system RG of

 

the

 

aggregated

 

system
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Iterative
 

algorithm: general case

More problems: 
Spurious

 
markings

 
(and/or

 
firing

 
seq.) may still

 be present, 
but

 
the

 
solution

 
is

 
possible!

P1

P2

P3

P4

P5

P6 t1

t2

t3t4

t6

t5 h2

2

22

2
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Iterative
 

algorithm: general case

It is possible to eliminate all the spurious markings
with additional computational effort

use a Kronecker expression of the infinitesimal 
generator of the original system

implement a depth-first search to build the
RS
reduce the infinitesimal generators of the
aggregated systems, using the information
about reachability in the original system

The whole reachability set must be derived but the
CTMC is not solved (throughput is approximated
from the solution of CTMC of subsystems)
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Kronecker
 

product
 

and
 

DTMC

Kronecker product
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Kronecker
 

product
 

and
 

DTMC

If we merge two independent Discrete
Time Markov Chains (DTMC) with state
spaces S1 and S2 and transition
probabilities P1 and P2, the resulting state
space and transition probability matrix are:

S = S1
 

x S2
 

and
 
P

 
= P1

 

⊗
 

P2
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Kronecker
 

product
 

and
 

DTMC

Example
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Kronecker
 

sum
 

and
 

CTMC

Kronecker sum
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Kronecker
 

sum
 

and
 

CTMC

If we merge two independent Continuous
Time Markov Chains (CTMC) with state
spaces S1 and S2 and infinitesimal 
generators Q1 and Q2, the resulting state
space and infinitesimal generator are:

S = S1
 

x S2
 

and
 
R

 
= R1

 

⊕
 

R2
 (and

 
Q

 
= Q1

 

⊕
 

Q2
 

)
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Kronecker
 

sum
 

and
 

CTMC

Example
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Structured
 

view
 

of
 

stochastic
 

Petri
 

nets

We come back to structured view of PN’s

partition
 

of
 

PN into
 

modules
 

(functional
 

units) 
connected

 
through

 
places (buffers)
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Structured
 

view
 

of
 

stochastic
 

Petri
 

nets

Example: the system, S

module 1

module 2

buffers
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Structured
 

view
 

of
 

stochastic
 

Petri
 

nets

Extended system, εS (addition of a set of implicit
places)
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Structured
 

view
 

of
 

stochastic
 

Petri
 

nets

Low level (sub)systems, LS

.



Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 250

Structured
 

view
 

of
 

stochastic
 

Petri
 

nets

Basic skeleton, BS : high level view
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Reachability
 

set
 

construction

We define the following subsets of
reachability sets, for each z ∈ RS(BS)  
(i.e. z is a high level state)
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Reachability
 

set
 

construction
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Reachability
 

set
 

construction
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CTMC generation
 

and
 

solution

Basic idea: split the behaviour in two:

transitions that change the high level view
transitions that do not change the high level
view
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CTMC generation
 

and
 

solution

For
 

the
 

system
 

S
 

:  Q
 

= R
 

– rowsum(R)
For

 
the

 
components

 
LSi

 

:  Qi

 

= Ri

 

– rowsum(Ri

 

)

Technique:
1.

 
Consider

 
Q

 
and

 
R

 
in blocks

 
(z,z’), of

 
size

 
⏐RSz

 

(S)⏐⋅⏐RSz’

 

(S)⏐

2.
 

Consider
 

Qi

 

and
 

Ri

 

in blocks
 

(z,z’), of
 

size
 ⏐RSz

 

(LSi

 

)⏐⋅⏐RSz’

 

(LSi

 

)⏐

3.
 

Describe each
 

block
 

of
 

Q
 

and
 

R
 

as tensor expression
 

of
 the

 
blocks

 
of

 
Qi

 

and
 

Ri
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CTMC generation
 

and
 

solution

Blocks R(z,z) have non-null entries that
are due only to non interface transitions

Blocks R(z,z’) with z ≠ z’ have non-null
entries that are due only to the firing of
interface transitions (TI)
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CTMC generation
 

and
 

solution

The result:
Transition rates among reachable states are 
correctly computed
for

 
all

 
z,z’ ∈

 
RS(BS): 

R(z,z’) is
 

a submatrix
 

of
 

G(z,z’)

Unreachable states are never assigned a non-
null probability
for

 
all

 
m

 
∈

 
RS(S) and

 
for

 
all

 
m’ ∈

 
PS(S) \

 
RS(S):

G[m,m’] = 0
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CTMC generation
 

and
 

solution

Computational costs
To solve an SPN with classic method

Build and store the RG
Compute the associated CTMC
Solve the characteristic equation π ⋅ Q = 0

To solve an SPN with Kronecker approach
Build and store the K+1 auxiliary models
Compute the RGi of each auxiliary model
Compute matrices Ri(z,z’)  and Ki(t)(z,z’) 
Solve the characteristic equation π ⋅ Q = 0
Whole system RG and matrix is never stored
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Software Performance
 

Engineering: basics

Traditional software development
Main focus on software correctness

Functional requirements, capabilities
What the software will do?

Non-functional requirements
quality requirements like accuracy, performance, 
security, modifiability, easiness of use... 
introduced later in the development process:

“Fix-it-later” approach
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Software Performance
 

Engineering: basics

Typical example of fix-it-later approach:
Denver airport story (1994)

Integrated automated baggage handling system
Planned development budget increased by 2 billion US$
Opening of the airport was delayed 16 months
To make it work it was necessary to reduce its
complexity and loads, the concept of “fully automated” 
was gone

Conceptually: line balancing problem
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Software Performance
 

Engineering: basics

Software Performance Engineering
A systematic, quantitative approach to
construct software systems that meet
performance objectives
Two important dimensions

Responsiveness: ability to meet its objectives for
response time or throughput
Scalability: ability to continue to meet responsiveness
as the demand for the software functions increases
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Software Performance
 

Engineering: basics

The objective of the approach
Predicting performance goals at early phases of
the life cycle
Evaluating performance goals at final phases

The way
Use of performance modelling

Formal models coupled with software requirements, 
architectures, specifications and design documents
Automation of the approach (CASE tool development)
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Software Performance
 

Engineering: basics

Research community
Term “SPE” coined in 1981 by Connie U. Smith
The International Workshop on Software and
Performance (WOSP)

Santa Fe, US, 1998; Ottawa, CA, 2000; Rome, IT, 
2002; 
Redwood City, US, 2004; Palma de Mallorca, ES, 
2005; 
Buenos Aires, AR, 2007
An international workshop sponsored by ACM 
SIGMETRICS, ACM SIGSOFT, IFIP WG 6.3 and 7.3 

About 5000 entries in scholar.google.com



Javier Campos. Petri nets and performance modelling: 7. Software performance 270

Outline

Software Performance Engineering: basics
A Software Performance Process
Annotated UML Diagrams
Integrating with Petri nets: case study
Performance analysis
Automation of the approach
Real example
Conclusions
Bibliography



Javier Campos. Petri nets and performance modelling: 7. Software performance 271

A Software Performance
 

Process

What, when and how conduct SPE activities
during software development

Integrated method for SPE:
Integration of software models and
performance models
Integration of performance analysis in the
software life cycle
Methodology suitable for automation (tool)
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A Software Performance
 

Process

Integration of software models and
performance models

System design: The behaviour and architecture
of the system is described by a set of UML 
diagrams
Annotated design: the UML design is annotated
according to a standard OMG profile
Performance model: the annotated design is
translated to a performance modelling
formalism (SPN)
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A Software Performance
 

Process

Integration of performance analysis in the
software life cycle

The method applies at software specification
time
The precision of performance predictions
matches the software knowledge available at
each stage
Feedback information is possible

when a direct correspondence exists between
software specification abstraction level and
performance model evaluation results
understanding the quantitative impact of design
alternatives (effect of system changes on
performance)
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A Software Performance
 

Process

Methodology suitable for automation (tool)
Following the OMG architectural framework for
SPE tools
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A Software Performance
 

Process
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select_sw(name)

create_salesman(info_sale)

X
request(info_sale)

observe_GUI_catalog(ci)

refine_catalog(refinement_plus)

select_sw(name)

electronic_comerce

1..n

info_sale_plus

ci+1

delete_browser

Sw ManagerAlfred

[not satisfied]

{1K}

{1K}

{1K}

{100K}

{100K}{100K}

{0.9} {1K} {1K}

{1K} {1K}
{1K}

{1K}

{1K}

[satisfied]
{0.1} {1K..100K}

{1K..100K}

Brow ser Agent

c1:Catalog

select_sw_service(info)

create_browser(c1)

create_catalog (info_plus)

get_catalog(info_plus)

Salesman

show_catalog_GUI(ci)

refine_catalog(refinement)

[info_need]  more_information(refinement2, ci)

select_sw(name)

create_salesman(info_sale)

X
request(info_sale)

observe_GUI_catalog(ci)

refine_catalog(refinement_plus)

select_sw(name)

electronic_comerce

1..n

info_sale_plus

ci+1

delete_browser

Sw ManagerSw ManagerAlfredAlfred

[not satisfied]

{1K}

{1K}

{1K}

{100K}

{100K}{100K}

{0.9} {1K} {1K}

{1K} {1K}
{1K}

{1K}

{1K}

[satisfied]
{0.1} {1K..100K}

{1K..100K}
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Annotated
 

UML Diagrams

Use Cases and actors:
Starting point to describe 
system behaviour
Specify the requirements of
a system, subsystem or class
and their functionality
Tag: probability that
an actor executes
a use case
Detailed later
with sequence
diagrams

“Mail client” model
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Annotated
 

UML Diagrams

Sequence Diagrams:
Used to detail Use Cases
Specify a set of partially ordered messages
Each message defines a communication
mechanism and the roles to be played by 
sender/receiver

Represent
 

patterns
 

of
 

interaction
 

between
 objects
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Annotated
 

UML Diagrams

Sequence Diagrams
(cont):

Tags: message sizes, 
messages routing
rates
Will be used to derive 
a SPN performance
model of a particular 
scenario
(together with a set
of state charts)
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Annotated
 

UML Diagrams

Statecharts:
Used to describe the behaviour of a model
element, such as an object
Describe possible state sequences and actions
during the life of the object
Complete view of system behaviour: life of all
the objects involved used to derive a SPN 
performance model
Particular scenario: Statecharts together with
a Sequence Diagram used to derive a SPN 
performance model of concrete executions
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Annotated
 

UML Diagrams

Statecharts (cont):
Elements for integration of performance
information: activities, guards and events

Activities: tasks performed in a given state
annotated computation time
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Annotated
 

UML Diagrams

Statecharts (cont):
Elements for integration of performance
information: activities, guards and events

Guards: conditions in a transition that must hold to
fire the event annotated routing rates
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Annotated
 

UML Diagrams

Statecharts (cont):
Elements for integration of performance
information: activities, guards and events

Events: messages in the sequence diagram between
server and receiver objects annotated message
size
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Annotated
 

UML Diagrams

Activity Diagrams:
Refine doActivities in a Statechart
We use them for detailing internal control flow
of a process
In contrast to Statecharts, driven by external
events

more detailed modelling of Statecharts

Used to derive a SPN performance model
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Annotated
 

UML Diagrams

Activity Diagrams (cont):
Performance annotations: 

Routing
rates
Activity
durations
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Annotated
 

UML Diagrams

Deployment diagram:
Models the distribution of software 
components in the hardware platform/network
and O.S. resources
Annotated with transfer bit rate of the
communication network
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Integrating
 

with
 

Petri
 

nets: case study

A basic mail client

We focus in the first use case: 
check mail from a server using the POP3 
protocol
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Integrating
 

with
 

Petri
 

nets: case study
The client tries to establish a TCP connection with the server via
port 110 (Statechart for the class ClientHost: client behaviour)
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Integrating
 

with
 

Petri
 

nets: case study

If it succeeds reception of greeting message
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Integrating
 

with
 

Petri
 

nets: case study

Both client and server begin authentication (authorization) 
phase
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Integrating
 

with
 

Petri
 

nets: case study

The client sends username/password through USER and
PASS command combination
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Integrating
 

with
 

Petri
 

nets: case study
If server answers “ok” to both messages, the POP3 session enters
the transaction phase, otherwise... “err”...
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Integrating
 

with
 

Petri
 

nets: case study

The client checks for new mail using LIST command
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Integrating
 

with
 

Petri
 

nets: case study

If there is any new mail, the client obtains every mail by 
means of RETR and DELE commands
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Integrating
 

with
 

Petri
 

nets: case study

Once all mails have been downloaded, interaction ends with
QUIT command
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Integrating
 

with
 

Petri
 

nets: case study

The POP3 server enters the update state and releases
acquired resources during transaction phase
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Integrating
 

with
 

Petri
 

nets: case study

Statechart for the class ServerHost: server behaviour
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Integrating
 

with
 

Petri
 

nets: case study

Statechart for the actor User: user’s behaviour
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Integrating
 

with
 

Petri
 

nets: case study

Translation of statecharts to Labelled GSPN’s
Compositional approach
From basic modelling elements of statecharts to LGSPN’s

Initial and final states
Simple states (activities, entry and exit)
Transitions (internal and outgoing)

Translation: 
input model (statechart element) output model (LGSPN)

Composition of LGSPN’s
Using a composition operator that fuses nodes with equal
labels
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Integrating
 

with
 

Petri
 

nets: case study

“Flat” UML statechart
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Integrating
 

with
 

Petri
 

nets: case study

Each simple state is modelled by a LGSPN representing the
basic elements of states and transitions...
Simple state

 
with

 
no activity

 
and

 
immediate

 
outgoing

 
transition

basic nets (BS)
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Integrating
 

with
 

Petri
 

nets: case study

Each simple state is modelled by a LGSPN representing the
basic elements of states and transitions...
Simple state

 
with

 
no activity

 
and

 
no immediate

 
outgoing

 
transition

basic nets (BS)
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Integrating
 

with
 

Petri
 

nets: case study

Each simple state is modelled by a LGSPN representing the
basic elements of states and transitions...
Simple state

 
with

 
activity

 
and

 
immediate

 
outgoing

 
transition

basic nets (BS)
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Integrating
 

with
 

Petri
 

nets: case study

Each simple state is modelled by a LGSPN representing the
basic elements of states and transitions...
Simple state

 
with

 
activity

 
and

 
no immediate

 
outgoing

 
transition

basic nets (BS)
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Integrating
 

with
 

Petri
 

nets: case study
Translation of other elements: Deferred events, internal transitions, outgoing transitions
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Integrating
 

with
 

Petri
 

nets: case study

Composing the simple state...
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Integrating
 

with
 

Petri
 

nets: case study

Translation of other elements (“non-flat” 
SC)

Composite states, 
concurrent states, 
submachine states, 
fork and join, 
junction and choice, 
synchronous states...

Details in the literature
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Integrating
 

with
 

Petri
 

nets: case study

The same for the initial pseudo-states and
final states
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Integrating
 

with
 

Petri
 

nets: case study
The LGSPN model of the Statechart is the composition of
all simple states, and initial and final states

If there are several Statecharts composition of all of
them
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Integrating
 

with
 

Petri
 

nets: case study

Coming back to the mail example...

Statechart for the class 
ClientHost: client behaviour
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Integrating
 

with
 

Petri
 

nets: case study

In the behaviour of Serverhost
We decide to describe more in detail activity
associated to state Authorization using an
Activity Diagram
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Integrating
 

with
 

Petri
 

nets: case study

Refinement of Authorization with an AD
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Integrating
 

with
 

Petri
 

nets: case study
Statecharts and activity diagrams all together (clienthost, 
serverhost, user)

clienthost

user

serverhost
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...: case study
Finally, 
Sequence Diagram

Represents a 
particular 
scenario
of execution
Example of
interaction
between
clienthost and
serverhost
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Integrating
 

with
 

Petri
 

nets: case study

Superposition of Statecharts, Activity
Diagrams and Sequence Diagram
analysable model of the concrete execution
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Performance
 

analysis

Effect on the downloading time for
different connection speeds of

number of mails
proportion of
them with
attached files

0

100

200

300

400

500

600

700

800

t (sc.)

1 attach,
3 text

3 attach,
4 text

5 attach,
6 text

5 attach,
14 text

9 attach,
10 text

avg. mean of e-mails (from P', P'')28,8 Kbps

56 Kbps

ADSL 256 Kbps
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Performance
 

analysis

Effective transfer rate of the client
(connection speed 56 Kbps)

Higher amount
of data 
minimizes
the relative
amount of
time spent by
protocol
messages
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Performance
 

analysis

Execution time of the SD scenario varying
Attach files sizes
Network speed

0

50

100

150

200

250

300

350

100 300 500 700 1000

Attach size

t (
sc

.)

Modem 28,8 Kbps
Modem 56 Kbps
ADSL 256 Kbps
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Automation
 

of
 

the
 

approach

“A key factor in the successful application of early
performance analysis is automation.”
“Characterizes the maturity of the approach and
the generality of its applicability.”

ArgoSPE: 
A Software Performance

 
Engineering

 
Tool
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Automation
 

of
 

the
 

approach

ArgoSPE
Implements most of the features explained in this talk
and some others
The system is modeled as a set of UML diagrams
Annotated according to the UML Profile on
schedulability, performance and time specification

Activity durations, routing probabilities, message sizes, 
network speed, population, initial state, resident classes

Performance queries are defined on UML diagrams
State population, stay time, message delay, network delay, 
response time

Translated into GSPN
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Automation
 

of
 

the
 

approach

Architecture of ArgoSPE:
Follows the architectural framework proposed
in UML-SPT 

ArgoUML CASE tool

ArgoSPE modules
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Automation
 

of
 

the
 

approach

ArgoSPE menu integrated in ArgoUML editor
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Automation
 

of
 

the
 

approach

Details: 
A tool paper presented in PN’06 Conference:

“ArgoSPE: Model-based
 

software performance
 

evaluation”
José Merseguer

 
and

 
Elena Gómez-Martínez 

Tigris.org: Open Source Software Engineering Tools
http://argospe.tigris.org

download
 

the
 

tool, tool
 

description, detailed
 

user
 documentation, developer

 
documentation, examples...

free software available
 

under
 

GNU General Public
 

License

http://argospe.tigris.org/
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Real example

Retrieving and installing software using internet in 
a mobile environment
Usual solution: tucows-like
(Tucows.com = the largest online software 
download site)
SPE approach for a new mobile agent-based
solution (Antarctica project of University of
Vasque Country)
Goal: compare performance indices of both
solutions (before implementing Antarctica)

Minimize network connection time
Study the impact on performance of agents intelligence
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Real example

Steps:
Model both solutions using annotated UML 
diagrams
Generate PN performance models for both
solutions
Analyze performance indices under different
scenarios
Recommend the best choices and in which cases 
the use of the new mobile agent-based
approach is preferable
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Real example

Tucows-like approach
Sequence Diagram
with durations and
routing annotations
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Real example

Tucows-like approach (cont.)
Sequence Diagram + Statecharts

performance
model
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Real example

Mobile agent-based approach: description

Browser

Software Manager Agent Salesman
SOFTWARE PLACE

GATEWAY SUPPORT NODE (GSN)

Alfred

Browser

Salesman

MU PLACE

USER COMPUTER

Static agent

Mobile agent

Creation
Communication
Travel

Alfred, the butler!
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Browser Agent

c1 :Catalog

select_sw_service(info)

create_browser(c1 )

create_catalog (info_plus)

get_catalog(info_plus)

Salesman

show_catalog_GUI(ci )

refine_catalog(refinement)

[info_need]  more_information(refinement2, ci )

select_sw(name)

create_salesman(info_sale)

X
request(info_sale)

observe_GUI_catalog(ci )

refine_catalog(refinement_plus)

select_sw(name)

electronic_comerce

1..n

info_sale_plus

ci+1

delete_browse 
r

Sw ManagerAlfred

[not satisfied]

{1K}

{1K}

{1K}

{100K}

{100K}{100K}

{0.9} {1K} {1K}

{1K} {1K}
{1K}

{1K}

{1K}

[satisfied]
{0.1} {1K..100K}

{1K..100K}

Real
 

example
Mobile agent-based approach:
Annotated Sequence Diagram
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Real example

Mobile agent-based approach: Alfred class
Statechart

WAIT

Do:add_info1

Do:add_info2Do:add_info3

Do:create_GUI(c )

select_sw_service(info)

<< more_services>>

^SwManager.get_catalog(info_plus)

show_catalog_GUI(ci)

^user.observe_GUI_catalog(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

^browser.select_sw(name)

[ ^user satisfied]select_sw(name)

{1sec}

{1sec}

{1sec}

{1sec}

{1K}

{1K}

{1K}{1K}

{1K}

{1K}

{100K}

{100K}
{0.1}

{0.9}

WAIT

Do:add_info1

Do:add_info2Do:add_info3

Do:create_GUI(c )

select_sw_service(info)

<< more_services>>

^SwManager.get_catalog(info_plus)

show_catalog_GUI(ci)

^user.observe_GUI_catalog(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

^browser.select_sw(name)

[ ^user satisfied]select_sw(name)

{1sec}

{1sec}

{1sec}

{1sec}

{1K}

{1K}

{1K}{1K}

{1K}

{1K}

{100K}

{100K}
{0.1}

{0.9}
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Real example

Simplified version of the LGSPN component
corresponding to Alfred

wait_Alfred
show_GUI_catalog

refine_catalog

create_GUI

add_info2

browser.
refine_catalog

add_info3

add_info1

select_sw_service
select_software

Sw_manager.
get_catalog

user.
observe_GUI_catalog

browser.
select_sw_browser

WAIT

Do:add_info1

Do:add_info2Do:add_info3

Do:create_GUI(c)

select_sw_service(info)

<<more_services>>

^SwManager.get_catalog(info_plus)

show_catalog_GUI(ci)

^user.observe_GUI_catalog(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

^browser.select_sw(name)

[^user satisfied]select_sw(name)

{1sec}

{1sec}

{1sec}

{1sec}
{1K}

{1K}

{1K}{1K}

{1K}

{1K}

{100K}

{100K}
{0.1}

{0.9}

WAIT

Do:add_info1

Do:add_info2Do:add_info3

Do:create_GUI(c)

select_sw_service(info)

<<more_services>>

^SwManager.get_catalog(info_plus)

show_catalog_GUI(ci)

^user.observe_GUI_catalog(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

^browser.select_sw(name)

[^user satisfied]select_sw(name)

{1sec}

{1sec}

{1sec}

{1sec}
{1K}

{1K}

{1K}{1K}

{1K}

{1K}

{100K}

{100K}
{0.1}

{0.9}

WAIT

Do:add_info1

Do:add_info2Do:add_info3

Do:create_GUI(c)

select_sw_service(info)

<<more_services>>

^SwManager.get_catalog(info_plus)

show_catalog_GUI(ci)

^user.observe_GUI_catalog(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

^browser.select_sw(name)

[^user satisfied]select_sw(name)

{1sec}

{1sec}

{1sec}

{1sec}
{1K}

{1K}

{1K}{1K}

{1K}

{1K}

{100K}

{100K}
{0.1}

{0.9}

Alfred agent
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Real example

Simplified version of the LGSPN component
corresponding to the software manager agent

WAIT

Do:add_info4 {1sec}

^salesman.reply(info_sale_plus) {1K}

request(info_sale)
{1K}

Do:create_catalog
{1min}

Do:create_browser
{1sec}

^catalog.create_catalog(info_plus)
{1K}

^browser.create_browser(ci)
{1K}

Do:get_info
{0.5sec..50sec}

get_catalog(info_plus)
{1K}

more_information(refinement2,ci)
{1K..100K}

^browser.reply(catalog)
{100K}

WAIT

Do:add_info4 {1sec}

^salesman.reply(info_sale_plus) {1K}

request(info_sale)
{1K}

Do:create_catalog
{1min}

Do:create_browser
{1sec}

^catalog.create_catalog(info_plus)
{1K}

^browser.create_browser(ci)
{1K}

Do:get_info
{0.5sec..50sec}

get_catalog(info_plus)
{1K}

more_information(refinement2,ci)
{1K..100K}

^browser.reply(catalog)
{100K}

WAIT

Do:add_info4 {1sec}

^salesman.reply(info_sale_plus) {1K}

request(info_sale)
{1K}

WAITWAIT

Do:add_info4 {1sec}

^salesman.reply(info_sale_plus) {1K}
Do:add_info4 {1sec}

^salesman.reply(info_sale_plus) {1K}

request(info_sale)
{1K}

Do:create_catalog
{1min}

Do:create_browser
{1sec}

^catalog.create_catalog(info_plus)
{1K}

^browser.create_browser(ci)
{1K}

Do:create_catalog
{1min}

Do:create_catalog
{1min}

Do:create_browser
{1sec}

Do:create_browser
{1sec}

^catalog.create_catalog(info_plus)
{1K}

^catalog.create_catalog(info_plus)
{1K}

^browser.create_browser(ci)
{1K}

^browser.create_browser(ci)
{1K}

Do:get_info
{0.5sec..50sec}
Do:get_info
{0.5sec..50sec}

get_catalog(info_plus)
{1K}

get_catalog(info_plus)
{1K}

more_information(refinement2,ci)
{1K..100K}

more_information(refinement2,ci)
{1K..100K}

^browser.reply(catalog)
{100K}

^browser.reply(catalog)
{100K}

wait
request

get_catalog

add_info4

create_catalog

browser.
create_browser

get_info

browser.reply_remote

more_information_remote

browser.reply_local salesman.reply

more_information_local

Software manager agent
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Real example

The other agents

Browser agent

Salesman
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Real example

Simplified version of composition between statechart
LGSPN models and sequence diagram model

wait_Alfred
show_GUI_catalog

refine_catalog

create_GUI

add_info2

browser.
refine_catalog

add_info3

add_info1

select_sw_service
select_software

Sw_manager.
get_catalog

user.
observe_GUI_catalog

browser.
select_sw_browser

wait

request

get_catalog

add_info4

create_catalog

browser.
create_browser

get_info

browser.reply_remote

more_information_remote

browser.reply_local salesman.reply

more_information_local

Channel

AlfredSoftware Manager

select_sw_
service(info)

get_catalog
(info_plus)

{1K}
{1K}

Alfred Sw manager
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Real example

Mobile agent-based approach: performance model
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Real example

Comparison of both approaches
slowslow networknetwork

fastfast networknetwork

slow
slow

user
user

fa
st

fa
st

us
er

us
er 0

5

10

15

20

25

30

35

40

refinamientos

m
in

ut
os

TUCOWS 4,28779693 7,891414141 15,09661836 22,16312057 29,55082742 37,28560776
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Conclusions

Importance of integrated approach for
SPE

Integration of
(pragmatic) software models and
(formal) performance models

Integration of performance analysis in the
software life cycle
Methodology suitable for automation (tool)
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Conclusions

In usual software industry practice we are still close to the
“fix-it-later” approach concerning non-functional
requirements

“make
 

it
 

run, make
 

it
 

run
 

right, make
 

it
 

run
 

fast”

Important research effort on the SPE field
The role of the WOSP conference series
Sit together software engineers, performance modellers and
analysts, and software developers

So, we are in the good direction...
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