
Modelling

and

analysis

of

concurrent

systems
 with

Petri

nets. Performance

evaluation

Javier Campos

 Departamento de Informática e Ingeniería de Sistemas
 Universidad de Zaragoza, Spain

 jcampos@unizar.es

LSI-UPC
Barcelona, June

2007

Javier Campos. Petri nets and performance modelling 2

Course

details
15 lectures of 50 minutes
Topics:

Formal models of concurrent systems, Petri nets
Qualitative and quantitative (performance) analysis
Software performance engineering

Slides available at:
http://webdiis.unizar.es/~jcampos/barcelona07.pdf

Bibliography:
At the end of each lecture

Orientation:
Post-graduate (master/PhD)

http://webdiis.unizar.es/~jcampos/barcelona07.pdf

Javier Campos. Petri nets and performance modelling 3

Contents

Introduction to discrete event systems
Petri nets: definitions, modelling and examples
Functional properties and analysis techniques
Time augmented Petri nets
Performance evaluation with PNs: classic technique
Structure based performance analysis techniques

Bounds
Approximations
Kronecker algebra-based exact solution

Software performance engineering with
UML and PNs

Modelling

and

analysis

of

concurrent

systems
 with

Petri

nets. Performance

evaluation

1. Introduction

to

discrete

event

systems

Javier Campos

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza, Spain

jcampos@unizar.es

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 5

Outline

Basic concepts
Formal models

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 6

Basic concepts

Discrete Event Systems (DES):
Systems whose state variables are
seen/considered discrete
(they take values in N or in a fixed alphabet)

The state space is discrete
Changes of state are due to events

Time is a singular variable
Synchronous systems: a clock −accesible from all
nodes of the system− exists strong
synchronization of clocks total order of events
Asynchronous systems: there is no global time
events are ordered by causal relations partial
order of events

…

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 7

Basic concepts

Discrete Event Systems (cont.):
…

DES appear in several application domains
Integrated manufacturing, Protocol engineering,
Logistics, Computer architecture, Software
engineering…

There exist simulation languages for DES with
constructors valid to represent:

Jobs/activities, resources, duration of activities,
logic validation…

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 8

Basic concepts

Discrete? / continuous?

Predator/prey

problem
Volterra-Lotka

equation

1) Discrete, n ∈

{0, 1, 2}
2) Continuous, n ∈

(0, nmax

)
3) Discrete: molecules
4) ¿…?

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 9

Basic concepts

Models
Abstraction of reality

Physical model
Simulation program
Textual/graphic description
Formal model

DES: many complex/paradoxical situations
⇒ Interest

of

formal models

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 10

Outline

Basic concepts
Formal models

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 11

Formal models

Advantages using formal models
Better comprehension (avoid ambiguities and
contradictions; identify properties; suggest
potential solutions…)
Increase the confidence level on the design
Help in the correct dimensioning
Help in the implementation and documentation
Increase re-usability

Need

of

formal methods

is

well-accepted

in
mature

engineering

domains

(vs. emerging)

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 12

Formal models

Formal models: credibility versus tractability
Reality

Mod 1 Mod 2 Mod 3 Mod 4

Relatively credible
Tractable

Credible
Relatively tractable

Very credible
Intractable

Not very credible
Very tractable

size

complexity

Real system

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 13

Formal models

Maturity of a scientific/technical discipline
Formalisms
Models (paradigmatic)
Analysis/synthesis techniques
Tools (automated) to build/analyse/implement
Standardization: Norms (ISO, CCITT, ...)

First DES problem:
No consensus on a “better formalism”
(it

does

not

exist

a formalism

so concise

and

 tractable

as differential

equations

for
 continuous

systems)

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 14

Formal models
It

does

not

exist

a single formalism…

Life

cycle: family

of

formalisms
 (each

one

adapted

for

a given

phase)

Paradigm:
An entire constellation of beliefs, values and techniques, and so
on, shared by the members of a given community.
A conceptual framework for reducing the chaotic mass to some
form of order.
The total pattern of perceiving, conceptualizing, acting,
validating, and valuing associated with a particular image of
reality that prevails in a science or a branch of sience (T. Kuhn).

Modelling paradigm:
Conceptual framework allowing to obtain formalisms from some
common (few and basic) concepts and principles.

Conceptual and operative economy
Coherence

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 15

Formal models
Formalisms for the modelling of DES

Sequential
Functional (untimed)

Regular expresions, grammars…
Automata, state diagrams, abstract state machines…

+

Probabilistic/possibilistic

extensions…
Timed

Timed automata (deterministic, probabilistic, possibilistic…)
Markov chains…

Concurrent
Functional (untimed)

Product automata
Petri nets
Process algebras (CCS, CSP…)

Timed
Queueing networks
Conjunctive/disjunctive graphs (PERT, GERT…)
Max-plus algebras
Timed Petri nets (deterministic, stochastic, fuzzy…)
Timed process algebras (deterministic, stochastic, fuzzy…)

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 16

Formal models

Examples of problems
Nederland intercity train network

Minimum periods
Used periods, flexibility
Efect of mutual waitings between
trains (synchronizations)
Critical lines
Fleet and distribution to guarantee
minimum period
Optimum lines structure
Dynamics after specific
perturbations
Variability of service under
stochastic hypothesis

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 17

Formal models

Main basic modelling approaches (M. Bunge)
Descriptive / analytic (what is?)
Internal

representation:

System: objects + relations
States, events producing changes
“Process” is

not

a primitive

concept

Automata, Petri

nets, Markov

chains, Queueing

networks
Constructive / processes-based (how is observed?)
External

representation

(I/O)

“Process” is a primitive concept
System: set of processes + synchronization constraints
Structured processes
Regular expressions, Process

algebras

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 18

Formal models

Petri nets (vector addition systems)
Duality states and events

Place: state variable
Transition: state transformer
Marking: value of state

State equation (but…)
Dependency (sequentialization) and independency
(parallelism) of events.
Causal structure
True concurrency (versus interleaved sequential
observations)
Temporal realism (performance, scheduling)
Locality (states and actions) design methodologies
(top-down, bottom-up)

Modelling

and

analysis

of

concurrent

systems
 with

Petri

nets. Performance

evaluation

2. Petri

nets: definitions, modelling

and

examples

Javier Campos

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza, Spain

jcampos@unizar.es

Javier Campos. Petri nets and performance modelling: 2. Petri nets 20

Outline

Basic concepts
Definition
State equation
Modelling features and examples
Bibliography

Javier Campos. Petri nets and performance modelling: 2. Petri nets 21

Basic concepts

Petri nets:

A formal, graphical, executable technique
for the specification and analysis of
concurrent, discrete-event dynamic
systems; a technique undergoing
standardisation.

http://www.petrinets.info/

http://www.petrinets.info/

Javier Campos. Petri nets and performance modelling: 2. Petri nets 22

Basic concepts

Formal:

The

technique

is

mathematically

defined.
Many

static

and

dynamic

properties

of

a

PN (and

hence

a system

specified

using

the
 technique) may be mathematically

proven.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 23

Basic concepts

Graphical:
The technique belongs to a branch of mathematics
called graph theory.

A PN may be represented graphically as well as
mathematically.

The ability to visualise

structure and behaviour

of
a PN promotes understanding of the modelled

 system.

Software tools exist which support graphical
construction and visualisation.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 24

Basic concepts

Executable:

A PN may be executed and the dynamic behaviour
 observed graphically.

PN practitioners regard this as a key strength of
the PN technique, both as a rich feedback
mechanism during model construction and as an aid
in communicating the behaviour

of the model to

other practioners

and lay-persons.

Software tools exist which automate execution.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 25

Basic concepts

Specification:

System

requirements

expressed

and
 verified

(by formal analysis) using

the

 technique

constitute

a formal system
 specification.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 26

Basic concepts
Analysis:
A specification in the form of a PN model may be formally
analysed, to verify that static and dynamic system
requirements are met.

Methods available are based on Occurrence graphs (state
spaces), Invariants and Timed PN. The inclusion of timing
enables performance analysis.

Modelling

is an iterative process. At each iteration analysis
may uncover errors in the model or shortcomings in the
specification. In response the PN is modified and re-

 analysed. Eventually a mathematically correct and consistent
model and specification is achieved.

Software tools exist which support and automate analysis.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 27

Basic concepts

Concurrent:

The representation of multiple independent
dynamic entities within a system is
supported naturally by the technique,
making it highly suitable for capturing
systems which exhibit concurrency, e.g.,
multi-agent systems, distributed
databases, client-server networks and
modern telecommunications systems.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 28

Basic concepts

Discrete-event dynamic system:

A system which may change state over time, based
on current state and state-transition rules, and
where each state is separated from its neighbour

 by a step rather than a continuum of intermediate
infinitesimal states.

Often falling into this classification are
information systems, operating systems,
networking protocols, banking systems, business
processes and telecommunications systems.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 29

Basic concepts

Standardisation:

2004-12-02
Achieved

Published

Standard status:

ISO/IEC 15909-1:2004 Software and

system
 engineering

-

High-level

Petri

nets

-

Part

1: Concepts,

definitions

and

graphical

notation. Available

from

ISO,
SAI Global and

others.

2005-06-23
New

Working

Draft

of

ISO/IEC 15909-2 Software and

 Systems

Engineering

-

High-level

Petri

Nets

Part

2:
Transfer

Format

submitted

for

a combined

ISO/IEC

SC7 WD/CD registration

and

CD ballot. Comments
 welcomed

-

formal or

otherwise. [Editor's

Announcement

 | ISO/IEC 15909-2 WD (Version

0.9.0)]

Javier Campos. Petri nets and performance modelling: 2. Petri nets 30

Outline

Basic concepts
Definition
State equation
Modelling features and examples
Bibliography

Javier Campos. Petri nets and performance modelling: 2. Petri nets 31

Definition

Continuous systems:
Circuits diagrams
Block diagrams
Bond graphs
…

Discrete event systems:
State diagrams
Algorithmic state
machines
PERTs
QNs
…

Graphical representations

Useful

to

inform

about

model

structure

a picture is better than a thousand words

Javier Campos. Petri nets and performance modelling: 2. Petri nets 32

Definition

In Petri Nets: two basic concepts
(→

graphical

objects)

states/data (PLACES)
actions/algorithms (TRANSITIONS)

++

weight (labeling) of the arcs

Javier Campos. Petri nets and performance modelling: 2. Petri nets 33

Definition

Autonomous Petri nets
(place/transition nets or P/T nets)

Petri Nets is a bipartite valued graph
Places: states/data (P)
Transitions: actions/algorithms (T)
Arcs: connecting places and transitions (F)
Weights: labeling the arcs (W) (“ordinary nets” weights = 1)

inscriptions
in the arcs

N = < P, T, F, W >

PRE POST

Javier Campos. Petri nets and performance modelling: 2. Petri nets 34

Definition
Net Static part

Places : State variables (names)
Transitions: Changes in the state
(conditions)

Marking Dynamic part
Marking : State variables (values)

Event/Firing
Enabling: the pre-condition is
verified
Firing: change in the marking

the pre-condition “consumes”
tokens
the post-condition “produces”
tokens

42

3

42

3

⇒

Javier Campos. Petri nets and performance modelling: 2. Petri nets 35

Definition

PN syntactic subclasses
State machines

Subclass of ordinary PN
(arc weights = 1)
Neither synchronizations
nor structural parallelism
allowed
Model systems with a
finite number of states
Their analysis and
synthesis theory is well-
known

1

4

5

d

c e

f

6

a

Javier Campos. Petri nets and performance modelling: 2. Petri nets 36

Definition

PN syntactic subclasses (cont.)
Marked Graphs

Subclass of ordinary PN
(arc weights = 1)
Allow synchronizations and
parallelism but not allow decisions
No conflicts present
Allow the modeling of infinite
number of states
Their analysis and synthesis theory
is well-known

1

2 4

53

d

b c

a

Javier Campos. Petri nets and performance modelling: 2. Petri nets 37

Definition

PN syntactic subclasses (cont.)
Free-Choice nets

Subclass of ordinary PN
(arc weights = 1)
Allow synchronizations, parallelism
and choices
Choices and synchronizations
cannot be present in the same
transition
Their analysis and synthesis
theory is well-known

Every outgoing arc from a place is
either unique or is a unique
incoming arc to a transition.

1

2 4

53

d

b c e

f

6

a

Javier Campos. Petri nets and performance modelling: 2. Petri nets 38

Definition

PN syntactic subclasses (cont.)
Extended free-choice

If two places have some common
output transition, then they have
all their output transitions in
common.

Simple (or asymmetric choice)
If two places have some common
output transition, then one of them
has all the output transitions of
the other (and possibly more).

And other… (modular subclasses)

Javier Campos. Petri nets and performance modelling: 2. Petri nets 39

Outline

Basic concepts
Definition
State equation
Modelling features and examples
Bibliography

Javier Campos. Petri nets and performance modelling: 2. Petri nets 40

State

equation

PN and its algebraic representation based
on state equation

Linear representation of PNs, the structure:

Pre-incidence matrix
({0,1} for ordinary nets)

Post-incidence matrix
({0,1} for ordinary nets)

Incidence matrix, C = Post – Pre
(marked) Petri Net is finally defined by:

>=< PostPre,,,TPN

 : PxT p,t +→ N)(Pre

 : PxT p,t +→ N)(Post

0,mN=Σ

Javier Campos. Petri nets and performance modelling: 2. Petri nets 41

State

equation

1

2 4

5 3

d

b c e

f

6

a

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000
001000
010100
001000
000010
000001

6
5
4
3
2
1

p
p
p
p
p
p

fedcba

Pre

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

010000
000100
100001
000010
000001
001000

6
5
4
3
2
1

p
p
p
p
p
p

fedcba

Post

Incidence matrix

C (= Post –

Pre)

cannot ”see” self loops

Javier Campos. Petri nets and performance modelling: 2. Petri nets 42

State

equation

State equation definition

Integrating

in one

execution

(sequence

of

firing)

where

σ (bold) is

the

firing

counting

vector of

σ

⇔+>)1([)(kmtkm 0)()()(
)()()1(

≥−+=
=+=+
ttkm

tkmkm
PrePost

C

σ⋅+=⇒>σ C00)()([mkmkmm

Javier Campos. Petri nets and performance modelling: 2. Petri nets 43

State

equation

Very

important: unfortunately…

)([)(00 kmmmkm >σ/≥≥⋅+= ⇒ 0σ 0,σC

Javier Campos. Petri nets and performance modelling: 2. Petri nets 44

State

equation

Example (of problems): place marking bound

Problem: spureous

solutions

⇒ semidecision

[]
),(s.t.

max

0mRm
pm

N∈
≤ []

mnm

mm
pm

+∈

⋅+=

N),(

s.t.
max

0

σ

σC

Javier Campos. Petri nets and performance modelling: 2. Petri nets 45

Outline

Basic concepts
Definition
State equation
Modelling features and examples
Bibliography

Javier Campos. Petri nets and performance modelling: 2. Petri nets 46

Modelling

features

and

examples

Modelling expressivity
Sequences
Conflicts (decisions, iterations)
Concurrency and synchronizations

Duality places versus transitions

Javier Campos. Petri nets and performance modelling: 2. Petri nets 47

Modelling

features

and

examples

Design methodologies:
1.

Parallel

composition

by…

synchronization

and

fusion

+ bottom-up methodology

Javier Campos. Petri nets and performance modelling: 2. Petri nets 48

Modelling

features

and

examples

Design methodologies (cont):
2.

Sequential

composition

by refinement

+ top-down

methodology

Javier Campos. Petri nets and performance modelling: 2. Petri nets 49

Modelling

features

and

examples

Design methodologies (cont):
typical synchronization schemes

8. Guarda (condición
 de lectura)

5. Fork-Joint

i

j

6. Sub programa
 (p ,p están en mutex)i j

ℜ

7. Recurso compartido ()ℜ

Π1 Π2

2. Semáforo, S

S

Π1 Π2

3. RV/Semáforo simétrico

S 2S1

4. RV/Semáforo asimétrico
 (master/slave)

Π1 Π2

S 2

S 1

1. Rendezvous, RV

RV

Javier Campos. Petri nets and performance modelling: 2. Petri nets 50

Modelling

features

and

examples

Modelling example 1:
Basic manufacturing

cell

producer/consumer
with

buffer

and

mutual exclusion

Javier Campos. Petri nets and performance modelling: 2. Petri nets 51

Modelling

features

and

examples

Modelling example 2: Shared memory multiprocessor
two

processors

with

similar behaviour

two

local memories

and

one

shared

common

memory

Javier Campos. Petri nets and performance modelling: 2. Petri nets 52

Modelling

features

and

examples

Modelling example 3: Token ring LAN

Javier Campos. Petri nets and performance modelling: 2. Petri nets 53

Outline

Basic concepts
Definition
State equation
Modelling features and examples
Bibliography

Javier Campos. Petri nets and performance modelling: 2. Petri nets 54

Bibliography

E. Teruel, G. Franceschinis, M. Silva: Untimed
Petri nets. In Performance Models for Discrete
Event Systems with Synchronizations: Formalisms
and Analysis Techniques, G. Balbo & M. Silva (ed.),
Chapter 2, pp. 27-75, Zaragoza, Spain, Editorial
KRONOS, September 1998.
Download here.
Website: The Petri Nets World.
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
Website: The Petri Nets Bibliography.
http://www.informatik.uni-hamburg.de/TGI/pnbib/

http://webdiis.unizar.es/asignaturas/SPN/aux/matchbook2.pdf
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.informatik.uni-hamburg.de/TGI/pnbib/

Modelling

and

analysis

of

concurrent

systems
 with

Petri

nets. Performance

evaluation

3. Functional

properties

and

analysis

techniques

Javier Campos

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza, Spain

jcampos@unizar.es

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 56

Outline

Basic properties
Analysis techniques
Reachability graph
Net transformations
Convex geometry and PNs
Bibliography

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 57

Basic properties
Concurrent/parallel
systems are difficult to
understand

It is easy to make
mistakes
Need for easy express
properties and proof
techniques

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 58

Basic properties
Behavioural properties (for m0)

Boundedness: finiteness of the state space, i.e. the marking of
all places is bounded

Safeness = 1-boundedness (binary marking)
Mutual Exclusion: two or more places cannot be marked
simultaneously (problem of shared resources)
Deadlock: situation where there is no transition enabled
Liveness: infinite potential activity of all transitions

Home state: a marking that can be recovered from every
reachable marking
Reversibility: recovering of the initial marking

kpNkPp ≤∈∃∈∀)(such that m

>>∃∀∈∀ [t[σTt ' such that ', reachable, , mmmm'm

0mmm >∃∀ σ[σ such that reachable,

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 59

Basic properties

Boundedness,
deadlock, liveness…

Mutual exclusion
m(p2) + m(p4) + m(p5) = 1

⇒

mutex

(p2, p4, p5)

(i.e., m(p2) .

m(p4) = 0)

p1

p3 p4p2

t2
t4

t1

t3

1

2

5

3

4

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 60

Basic properties

Structural basic properties:
(“there

exists

m0

…”

or

“for

all

m0

…”)
They

are abstractions

of

behavioural

properties

N is structurally bounded if
for all m0, <N, m0> is bounded

N is structurally live if
there exists a m0 for which <N, m0> is live

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 61

Basic properties

Independence of
Liveness
Boundedness
Reversibility

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 62

Outline

Basic properties
Analysis techniques
Reachability graph
Net transformations
Convex geometry and PNs
Bibliography

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 63

Analysis

techniques

Analysis techniques for the computation of
functional properties

Enumerative
Exahustive exploration of the state space, thus based
on reachability graph

Only valid for bounded systems
Conclusions are valid only for a given m0

For unbounded systems: coverability graph
Lost of part of information of state space thus we
cannot conclude about some of the properties

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 64

Analysis

techniques

Analysis techniques for the computation of
functional properties (cont.)

Reduction/transformation of the model
<N i, m0

i> → <N i+1, m0
i+1>

Rules that preserve the property under study and
simplify the model for the analysis of such property

Structural
Based on the structure of the model, considering m0
as a parameter
Make use of relation between structure and behaviour
using

techniques

coming

from…

Convex geometry / linear programming (invariants)
Graph theory (siphons, traps, handles, bridges…)

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 65

Outline

Basic properties
Analysis techniques
Reachability graph
Net transformations
Convex geometry and PNs
Bibliography

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 66

Reachability

graph

Enumerative analysis: exhaustive sequential
enumeration of reachable states

Problem 1: state explosion problem
Problem 2: sequential enumeration ⇒ lost of
information about concurrent behaviour

1

d

2

3

b

4

5

c
6

a

1(6)

24(6)

34(6)

35(6)

25(6)

cb

c b

a

d

Adding

place 6 does

not

modify
 reachability

graph

but

b and

c

 cannot

fire

simultaneously.

reachability

graph

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 67

Reachability

graph

Example of “easy” solution of a conflict
with a regulation net

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 68

Reachability

graph

Bounded system finite reachability
graph

1

t

2t

t t

3 4

t

3

4

2

1

5

0100

0010

1000

0011

1010

0101 0110

M

M
t

t t

t

t t t t

t

0

2
2 3

4

1t1 1 4

4

5

5

1001

M1

M3

M6

M4

M7

M5

unbounded

system

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 69

Reachability

graph

Deadlock exists There exists a terminal
node in the RG

M3

is

a deadlock

1

t

2t
t t

3 4

3

4

2

1

0100

0010

1000

0011

M

M
t

t t

t

0

2

2 3

4

t1

4

1001

M1

M3 M4

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 70

Reachability

graph

Live net in all the strongly connected
components of the RG all transitions can be fired
Reversible net there is only one strongly
connected component in the RG

live

and
 non-reversible

 systemp

p

c

b

d

p
p

p

a

1

2

35
4

10103

01102

01013

10012

10101

01100

01011

10010

a

b

d

c

c

a

Cd

C2

1

M1

M2a

b

c

M0

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 71

Outline

Basic properties
Analysis techniques
Reachability graph
Net transformations
Convex geometry and PNs
Bibliography

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 72

Net transformations

Kit(s) of reduction rules
Rule:

Preconditions on the structure
Preconditions on the marking
Change of structure
Change of marking

Application of the rule:
If preconditions hold then apply changes

Problems:
For a given kit of rules, there exist irreducible systems
Trade-off:

kit

reduction

power

versus kit

application

complexity
Observation:

for

some

net subclasses

(for

instance

live

and

bounded

free
choice

nets) there

exist

complete kits

of

reduction

rules

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 73

Net transformations

A basic kit of reduction rules

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 74

Net transformations

Example: a manufacturing cell

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 75

Net transformations

Implicit places:
A place is implicit in <N,m0> if never is the
unique constraint for the firing of its output
transitions
Therefore: elimination of an implicit place does
not change the set of firable sequences
Then: elimination of implicit places preserves
liveness and synchronic properties (distance,
fairness…)

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 76

Net transformations

Implicit places (cont.):

p1

and

p2

are implicit

for

m0
p2

is

not

structurally

implicit

p1

1

2

3
4

5

6

7

8

9

p2

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 77

Net transformations

Implicit places (cont.):
Place p is structurally implicit in N if
for

all

initial

marking

of

the

other

places,

an

initial

marking

of

p can be defined

such

that
 p is

implicit

An struct. implicit place may be implicit or not

1

2
5

3

4k

k=1

2
5

4

1

2

3

4

k≥2

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 78

Net transformations

Implicit places (cont.):
Property: a place p is structurally implicit if and
only if ∃ y ≥ 0, y(p)=0 such that yTC ≤ C(p).

Property: if p is structurally implicit and
m0(p) ≥ yTm0, then p is implicit.

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 79

Outline

Basic properties
Analysis techniques
Reachability graph
Net transformations
Convex geometry and PNs
Bibliography

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 80

Convex

geometry

and

PNs

Structural analysis:
Based either on convex geometry (linear
algebra and linear programming), or
Based on graph theory
We concentrate on first approach.

Definitions:
P-semiflow: y

≥

0, yT.C

= 0

T-semiflow: x

≥

0, C.x

= 0

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 81

Convex

geometry

and

PNs

Properties:
1.

If y

is a P-semiflow, then the next token conservation

law holds (or P-invariant):

for all m

∈ RS(N, m0

) and for all m0

⇒
⇒

yT. m

= yT. m0

.

Proof: if

m∈RS(N, m0

) then

m

= m0

+ C.σ, and

pre-
 multiplying

by yT:

yT. m = yT. m0

+ yT.C.σ

=

yT.m0

P-semiflows Conservation of tokens

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 82

Convex

geometry

and

PNs

Properties (cont.):
2.

If m

is a reachable marking in N, σ a fireable

sequence

with σ

= x, and x

a T-semiflow, the next property
follows (or T-invariant):

m

[σ > m

Proof: if x

is

a T-semiflow, m = m0

+C.x

= m0

T-semiflows Repetitivity of the marking

P and T-semiflows can be computed using
algorithms based in Convex Geometry (linear
algebra and linear programming)

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 83

Convex

geometry

and

PNs

Definitions:
N is conservative ⇔ ∃ y > 0, yT.C = 0
N is structurally bounded ⇔ ∃ y ≥ 1, yT.C ≤ 0
(computable in polynomial time)

Properties: pre-multiplying by y the state equation
N conservative ⇒ yT. m = yT. m0

(token

conservation)
N structurally bounded ⇒ yT. m ≤ yT. m0

(tokens

limitation)

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 84

Convex

geometry

and

PNs

Definitions:
N is consistent ⇔ ∃ x > 0, C.x = 0
N is structurally repetitive ⇔ ∃ x ≥ 1, C.x ≥ 0

Properties:
<N,m0> repetitive ⇒ N structurally repetitive
N structurally live ⇒ N structurally repetitive
N structurally live and structurally bounded ⇒
structurally repetitive and structurally bounded
⇔ consistent and conservative

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 85

Convex

geometry

and

PNs

Example: Producer/consumer with buffer in mutex
mwait_raw

+

mload

+

mop1

+ mwait_dep

+ mdeposit

= 1

[1]
mdeposit

+ mobject

+ mwithdrawal

+ mempty

= 7

[2]
mop2

+mwait_free

+munload

+mwait_with

+mwithdrawal

= 1 [3]
mR

+mload

+

mdeposit

+ munload

+ mwithdrawal

= 1 [4]

For

instance, from

[1]:
mwait_raw

≤

1

⇔

pwait_raw

is

1-bounded
(mwait_raw

= 0) OR (mload

=

0)
⇒ pwait_raw

and

pload

are in MUTEX

Non-negative invariants ⇒
⇒

provide

a decomposed

view

of

 the

original model

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 86

Convex

geometry

and

PNs

Applications of decomposed view of the model

Partial analysis

Implementation
of the model

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 87

Convex

geometry

and

PNs

Absence of deadlock
if mload + mop1 + mdeposit + mop2 +munload +mwithdrawal ≥ 1
then

(t2

+ t3

+ t5

+ t6

+ t8

+ t10

) is

firable
else

if

mwait_raw

+ mwait_free

≥

1
then

(t1

+ t7

) is

firable
else

(t4

+ t9

) is

firable

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 88

Convex

geometry

and

PNs

Reversibility (with m0(empty)=7 and m0(object)=0):
(Lyapunov-like

proof

technique

potential

function:V(m)

= WT.m

with

W(p)=0

⇔

m0

(p)>0)
if mload + mop1 + mdeposit + mop2 +
+ munload + mwithdrawal ≥ 1
then

V(m) may decrease

else

if

mwait_raw

+ mwait_free

≥

1
then

V(m) may decrease

else

V(m) may decrease OR
t1

is the unique firable
 transition (⇔ m0

)

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 89

Convex

geometry

and

PNs

Liveness
σ = t1,t2,t3,t4,t5,t9,t10,t6,t7,t8 is firable
The net is reversible

Then

it

is

live
Fairness

C has a unique left annuller
x

= (1,1,1,1,1,1,1,1,1,1)T

for

all

scheduling: all

components

work!

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 90

Convex

geometry

and

PNs

Linear programming and PNs
Example: structural marking bound of a place

[LPP]

Polinomial time (on the net struct. size) computation
Other properties can be analyzed: synchronic
properties, dead transitions, mutex, etc.

[]

mnm

mm
pm

+∈

⋅+=

N),(

s.t.
max

0

σ

σC

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 91

Convex

geometry

and

PNs

General comments
Advantages:

Efficient computation
Analysis independent of initial marking
(m0 is only a parameter)

Problems:
Only necessary or sufficient conditions are obtained
(in general)
The heart of the matter is that σ (vector) does not
exactly represent σ (sequence)

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 92

Outline

Basic properties
Analysis techniques
Reachability graph
Net transformations
Convex geometry and PNs
Bibliography

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 93

Bibliography

J.M. Colom, E. Teruel, M. Silva: Logical properties
of P/T systems and their analysis. In
Performance Models for Discrete Event Systems
with Synchronizations: Formalisms and Analysis
Techniques, G. Balbo & M. Silva (ed.), Chapter 6,
pp. 185-232, Zaragoza, Spain, Editorial KRONOS,
September 1998.
Download here.
M. Silva, E. Teruel, J.M. Colom: Linear algebraic
and linear programming techniques for the
analysis of net systems. Lecture Notes in
Computer Science, Lectures in Petri Nets. I: Basic
Models, G. Rozenberg and W. Reisig (ed.), vol.
1491, pp. 309-373, Berlin, Springer-Verlag, 1998.
Download here.

http://webdiis.unizar.es/asignaturas/SPN/aux/matchbook6.pdf
http://webdiis.unizar.es/asignaturas/SPN/aux/LPN98.pdf

Modelling

and

analysis

of

concurrent

systems
 with

Petri

nets. Performance

evaluation

4. Time augmented

Petri

nets

Javier Campos

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza, Spain

jcampos@unizar.es

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 95

Outline

Introduction
Interpreted graphs
Interpreted Petri nets
Bibliography

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 96

Introduction

Formalism: conceptual framework suited
for a given purpose
Life cycle: all phases, from preliminary
design, detailed design, implementation,
tuning…
Different goals in each phase →

→ different formalisms
Family of formalisms: PARADIGM

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 97

Introduction

Why time augmenting the formalism?
Autonomous Petri nets

Non-determinism with respect to
Which enabled transition will fire?
When will it fire?

duration of activities and
routing

Not valid for performance evaluation
(quantitative analysis: throughput,
response time, average marking)

p1

p2

t1

t4 t5

t3t2

p3 p4

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 98

Introduction

Formalism suitable for system life cycle.
Two

characteristics:

Different and
interrelated
abstraction
levels
Different
interpretations

Au
to

n.

St
oc

h.

D
et

.

In
te

rv
.

Fu
zz

y

Ex
t.

 I
/O

In
te

rp
re

ta
ti

on
s

Obj. PN

Pr/T, CPN

P/T

EN

Abstraction
levels

H
LP

N

Timed

Space
Of

formalisms

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 99

Outline

Introduction
Interpreted graphs
Interpreted Petri nets
Bibliography

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 100

Interpreted

graphs

Interpreted graphs as formalisms for
Discrete-Event Dynamic Systems

Basic initial

idea:

Formalism

= graph

(precedence

relations…) +
+ interpretation

(meaning,

control…)

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 101

Interpreted

graphs

Graphs as sequential formalisms
(Valued) binary

relations

over

a finite

set

 (states, locations…) are represented

as (valued)
directed

graphs

Vertices (entities)
Arcs (relations)

Matricial representations
Adjacency (vertex-vertex)
Incidence (vertex-arc)

Graph

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 102

Interpreted

graphs

Interpretation
Just the “meaning” of mathematical entities

Example: locations and connections (static)
typical

problem: traveling

salesman

Wider sense: meaning and external control of
evolution

Meaning of entities
Connection of the model with the outside (the effect
of the “rest of the world”)

events

and

external

conditions
what

happened? When

did

it

happen?

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 103

Interpreted

graphs
Example (interpretation 1): state diagram

Vertices: global states (possible values of unique state variable)
Arcs: transitions between states

Sequentiel

system

(Moore

like)

conditions & input events → transitions
output → states

System

evolution

depends

on

the

outside

world

through

events
 and

conditions

represented

with

the

input

variables.

C

M

A B

D

l r1 1

l r22

T

T

1

2

1

2

3 4

5

MAC

B

6 7
l1l2

r 2 r1

l 1 l 2,

r1 r 2,

D

A C

D B

AC

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 104

Interpreted

graphs
Other example (interpretation 2):

Continuous Time Markov Chain
State

diagrams

+ “speed” of

transitions

Vertices: global states (= state diagrams)
Arcs: transition rates between states

system evolution depends on “outside” time
events depend on time

1

2

3 4

5

6 7

μ

β δ

δ β

α γ

γ αC

M

A B

D

l r1 1

l r22

T

T

1

2

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 105

Interpreted

graphs

Examples of formalisms for parallel behaviour
PERT (Program Evaluation and Review Technique)

Vertices = events
Arcs = activities (labelled with durations)
Special characteristics:

AND/AND logic (different from
state diagrams or Markov chains)
Acyclic
Only one execution each time
Evolution depends on “outside” time (min, max, or average)
Distributed state of the system

Typical

problem: Critical

Path

Method
computation

of

shortest time to complete the project

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 106

Interpreted

graphs

Gordon-Newell queueing networks
Vertices = stations+queues
Arcs = routing of jobs
Special characteristics:

No synchronizations
Parallel evolution of jobs
OR/OR logic
(identity of job is preserved)
Distributed state of the system

Typical

problems: performance

queries

(mean queue

lengths,
throughput, etc)

μ
1

μ
2

μ
3 μ

4

μ
5

μ
6 μ

7

π
2

1−π
2

π
5

1−π
5

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 107

Interpreted

graphs

Fork-Join queueing networks
Vertices = stations
Arcs = queues
Special characteristics:

No decisions
Only forks and joins
AND/AND logic (jobs are created
and destroyed)
Distributed state of the system

Typical

problems: performance

queries

(mean queue

lengths,
throughput, etc)

μ
1

μ
2

μ
3

μ
4

μ
5

μ
6 μ

7

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 108

Outline

Introduction
Interpreted graphs
Interpreted Petri nets
Bibliography

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 109

Interpreted

Petri

nets
Abstract

formalism

↔ Reality

Generic meaning:
Place = state variable
Marking = value of variable
Transition = transformation of state
Firing = event that produces transformation

Particular meanings (annotations):
Place (and marking)

State of subsystem Si
Condition Cj is true
Resource Rk is available
Stock of parts in a store…

Transition (and firing)
Subsystem Si evolves
End of activity Aj
A customer arrives
A fail occurs…

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 110

Interpreted

Petri

nets

Interpretation
(relation

with

the

environment)

⇓
Constraints

over

the

evolution

(imposed

by the

environment)
⇓

Reduction

of

non-determinism
Synchronization with signals (from the environment)
Time constraints

Typical interpretations:
Marking diagrams (and Grafcet)
Timed interpretations (time augmented Petri nets)

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 111

Interpreted

Petri

nets

Timed interpretations
Specification of activities and servers

sensibilization → start of activity
firing → end of activity
transition → service station (# servers)

Specification

of:
delay
servers
(multi-sensibilization:
single, multiple, or
infinite)

delay

…

MEGAFILLING Stations Ltd.

…

p

t

p

t

s

k=
k servers ∞

server

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 112

Interpreted

Petri

nets

Specification of resolution of conflicts
race policy (race between timed
enabled transitions)
preselection (random or
deterministic choice)

Immediate transitions
Modelling of synchronizations or routing
Zero delay ⇒
higher priority
in case of conflict

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

ρ1 ρ2

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

ρ1 ρ2

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

α β

p1

p2

t1

t4 λ1

μ

t5

t3t2

p3 p4

λ2

α β

α

γ

β

1

2

3

4

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 113

Interpreted

Petri

nets

Reduction of the non-determinism
Define duration of activities
(elapsed

time from

enabling

to

firing

of

a transitions)

Constant Timed Petri nets (TPN, Ramchandani, 1974)
Interval Time Petri nets (TPN, Merlin and Faber, 1976)
Random (exponentially distrib.) Stochastic Petri nets
(SPN, Symons, 1978; Natkin, 1980; Molloy, 1981)
Random or immediate Generalized Stochastic Petri nets
(GSPN, Ajmone Marsan, Balbo, Conte, 1984)

Define server semantics
(single/multiple/infinite)

Define routing at conflicts
Race between stochastically timed transitions
Preselection (probabilistic or deterministic choice)

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 114

Interpreted

Petri

nets

Interpretation and logic properties
An interpretation restricts possible behaviour

Some reachable markings are not reachable anymore
Analysis of qualitative properties of the autonomous model
can be non conclusive

In general, a marking does not define a state
In a SPN:

The same reachable makings than autonomous model
(support of r.v. = [0,∞) and race policy gives positive
probabilities to all possible outcomes of conflicts)

A marking does define a state (memoryless property)

unbounded?

t t'
t"

t

t'

2
t t'

total deadlock? live?

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 115

Outline

Introduction
Interpreted graphs
Interpreted Petri nets
Bibliography

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs 116

Bibliography

M. Silva, E. Teruel: A systems theory perspective
of discrete event dynamic systems: the Petri
net paradigm. Procs. of the Symposium on
Discrete Events and Manufacturing Systems,
CESA '96 IMACS Multiconference, P.Borne, J.C.
Gentina, E.Craye, S.El Khattabi (ed.), pp. 1-12, Lille,
France, July 1996.
Download here.
M. Silva, E. Teruel: DEDS along their life-cycle:
interpreted extension of Petri nets. Procs. of
IEEE International Conference on Systems, Man
and Cybernetics (SMC'98), San Diego, USA, 1998.
Download here.

http://webdiis.unizar.es/asignaturas/SPN/aux/CESA96.pdf
http://webdiis.unizar.es/asignaturas/SPN/aux/SMC98.pdf

Modelling

and

analysis

of

concurrent

systems
 with

Petri

nets. Performance

evaluation

5. Performance

evaluation

with

PNs:

classic

technique

Javier Campos

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza, Spain

jcampos@unizar.es

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 118

Outline

Continuous time Markov chains
Stochastic Petri nets
CTMC-based exact analysis
Bibliography

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 119

Continuous

time Markov

chains

Stochastic process
discrete state space
continuous time

qij is the transition rate from state i to state j

i
j

k

qij

qik

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 120

Continuous

time Markov

chains

Formally:
A CTMC is a stochastic process {X(t) | t ≥0, t ∈ lR} s.t.
for

all

t0

,...,tn-1

,tn

,t∈

lR, 0≤t0

<…<tn-1

<tn

<t , for

all

n ∈

lN

Alternative (equivalent) definition:
{X(t) | t ≥0, t ∈ lR} s.t. for all t,s ≥ 0

))(|)((
))(,,)(,)(|)((0011

nn

nnnn

xtXxtXP
xtXxtXxtXxtXP

===
===== −− K

))(|)((
)0),(,)(|)((

t

t

xtXxstXP
tuuXxtXxstXP

==+=
=≤≤==+

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 121

Continuous

time Markov

chains

Homogeneity
We are considering discrete state (sample) space, then
we denote

pij

(t,s) = P(X(t+s)=j | X(t)=i), for

s > 0.

A CTMC is called (time-)homogeneous if

pij

(t,s) = pij

(s) for

all

t ≥

0

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 122

Continuous

time Markov

chains

Time spent in a state:
Markov property and time homogeneity imply that if at
time t the process is in state j, the time remaining in
state j is independent of the time already spent in state
j : memoryless property.

⇒

time spent

in state

j is

exponentially

distributed.

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 123

Continuous

time Markov

chains

Transition rates:
In time-homogeneous CTMC, pij(s) is the probability of
jumping from i to j during an interval time of duration s.
Therefore, we define the instantaneous transition rate
from state i to state j as:

And the exit rate from
state i as – qii

Q = [qij] is called infinitesimal generator matrix
(Q matrix)

t
tp

q ij

tij Δ
Δ

=
→Δ

)(
lim

0

t
tpqq ii

tij
ijii Δ

−Δ
=−=

→Δ
≠
∑ 1)(lim

0

i
j

k

qij

qik

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 124

Continuous

time Markov

chains
Steady-state distribution

Kolmogorov differential equation:
Denote the

distribution

at

instant

t: πi

(t) = P(X(t)=i)
And

denote in matrix

form: P(t) = [pij

(t)]

Then

π(t) = π(u)P(t-u) , for

u < t
(we

omit

vector transposition

to

simplify

notation)

Substituting

u = t–Δt and

substracting

π(t–Δt):

π(t) –

π(t–Δt) = π(t–Δt) [P(Δt) –

I], with

I the

identity

matrix

Dividing

by Δt and

taking

the

limit

Then, by definition

of

Q = [qij

], we

obtain

the
 Kolmogorov

differential

equation

t
ItPtt

dt
d

t Δ
−Δ

=
→Δ

)(lim)()(
0

ππ

Qtt
dt
d)()(ππ =

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 125

Continuous

time Markov

chains
Since also π(t)1T = 1, with 1 = (1,1,…,1)
If

the

following

limit

exists

then

taking

the

limit

of

Kolmogorov

differential

equation
 we

get

the

equations

for

the

steady-state

probabilities:

π Q = 0

(balance equations)

π 1T

= 1

(normalizing equation)

)(lim t
t

π
∞→

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 126

Outline

Continuous time Markov chains
Stochastic Petri nets
CTMC-based exact analysis
Bibliography

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 127

Stochastic

Petri

nets

Time interpretation of Petri nets:
Duration of activities: exponentially distributed
random variables
Single server semantics at each transition
Conflicts resolution: race policy

The

reachability

graph

of

the

SPN is
 isomorphic

to

a Continuous

Time Markov

Chain

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 128

Stochastic

Petri

nets

The

reachability

graph

of

the

SPN is

isomorphic

to

a
Continuous

Time Markov

Chain

32 4

1 3

234

1 2

22 4

γ

α

γ

α

β

β

β

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 129

Stochastic

Petri

nets
The CTMC associated with a (bounded) SPN is obtained:

The state space S = {si} of the CTMC is equal to the
reachability set RS(m0) of the underlying PN (mi ↔ si)
The transition rate from state si (corresponding to marking mi)
to state sj (mj) is obtained as the sum of the service rates of
transitions enabled in mi whose firing leads to marking mj.

If transitions have single-server semantics and marking
independent rates, the components of Q are:

where

⎪⎩

⎪
⎨
⎧

=−

≠
=

∑
∈

jiq

jiw
q

i

k
ij imjekT

 si,

 si,
)(

∑
∈

=
)(imekT
ki wq

})(|{)(j
T

iihhij mmmeTTme h⎯⎯→⎯∧∈=

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 130

Outline

Continuous time Markov chains
Stochastic Petri nets
CTMC-based exact analysis
Bibliography

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 131

CTMC-based

exact

analysis
Let π(mi,τ) be the probability for the SPN to be at the state
mi at instant τ.

The Kolmogorov differential equation for the associated
CTMC is:

in matrix

form:

and

its

solution

can be expressed

as:

where

π(0) is

the

initial

probability

distribution

(usually

πi

(0) = 1 if

mi

= m0 and

πi

(0) = 0 otherwise)

∑
∈

τπ=
τ
τπ

TkT
kkj

i mq
d
md),(),(

Qπ
d

dπ)()(
τ=

τ
τ

τπ=τπ Qe)0()(

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 132

CTMC-based

exact

analysis
The steady-state “solution” of an SPN is based on the study
of the probability distribution of the set of reachable
markings

The limit behaviour of that distribution

is

computed

by solving

the

following

system

of

linear
equations

where

0 and

1Τ

are vectors

of

the

size

of

π

with

all

the
 components

equal

to

0 and

1 respectively

),,(||1 RSππ=π K

)(lím τπ=π
∞→τ

⎩
⎨
⎧

=π
=π

Τ 1

1

0Q

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 133

CTMC-based

exact

analysis

The steady-state distribution π is used for the
computation of performance indices of interest
Performance indices can be expressed from
reward functions defined over the markings of the
SPN, the average reward is computed as average
value of the reward of the steady-state
distribution

where

r(m) represents

a given

reward

function

∑
∈

π=
)0(

)(
mRSim

iimrR

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 134

CTMC-based

exact

analysis

To compute the probability of a given
condition Γ(m) in the SPN

First, we define the reward function:

Then, the desired probability is computed as:

where

⎩
⎨
⎧ =Γ

=
otherwise,0

)(if,1
)(

truem
mr

∑∑
∈∈
π=π=Γ

AimmRSim
iiimrP)(}{

)0(

})(|)({ 0 truemmRSmA ii =Γ∈=

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 135

CTMC-based

exact

analysis

Example: mean number of tokens at place pj
The reward function is

Then the average marking of place:

where

A(j,n) = {mi

∈

RS(m0) : mi

(pj

) = n} and

the
 sum

is

constrained

to

n ≤k if

place is

k-bounded

npmnmr j ==)(ifonly and if)(

∑∑
>∈

=π=μ
0n)0(

)},({)()(njAPnmrp
mRSim

iij

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 136

CTMC-based

exact

analysis

Other example: throughput of transition Tj
(average number

of

firings

per

time unit)

A transition can fire only if it is enabled, thus
the reward function is

Then the throughput of Tj is

where

Aj

= {mi

∈

RS(m0) : Tj

∈

e(mi

)}

⎩
⎨
⎧ ∈

=
caso otroen ,0

)(si,
)(

meTw
mr jj

∑∑
∈∈

π=π=χ
jAimmRSim

ijiij wmr
)0(

)(

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 137

CTMC-based

exact

analysis

Shared memory multiprocessor

Both

processors

behave

in a similar way:
A cyclic sequence of: local activity, then
an access request to the shared memory, and then
accessing the shared memory

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 138

CTMC-based

exact

analysis

All transitions have exponentially
distributed durations, except for t2
and t5,
access request to
the shared memory
(immediate)

GSPN

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 139

CTMC-based

exact

analysis

Reachability graph

It

is

not

isomorphic

to

a Continuous

Time Markov

Chain
 (infinite rates

are not

allowed

in CTMCs)

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 140

CTMC-based

exact

analysis

Tangible reachability graph

It

is

isomorphic

to

a Continuous

Time Markov
 Chain

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 141

CTMC-based

exact

analysis

Infinitesimal generator matrix of the
CTMC

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 142

CTMC-based

exact

analysis

The stationary distribution can be computed
(steady state probability of each state)

And from here, compute, for instance, utilization
rate of shared memory

In this case, it is equal to the steady-state probability of
the unique state with p2 (shared memory is free) marked

12][π=μ p

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 143

CTMC-based

exact

analysis

Other example, processing power
Average number of processors effectively
(locally) working

We define the reward function

Then:

][][)(63 pmpmmrP +=

3212)(
)0(

π+π+π=π= ∑
∈ mRSim

iiP mrP

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 144

Outline

Continuous time Markov chains
Stochastic Petri nets
CTMC-based exact analysis
Bibliography

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation 145

Bibliography

J. Campos: Evaluación de Prestaciones de
Sistemas Concurrentes Modelados con Redes de
Petri. Actas de la XI Escuela de Verano de
Informática de la Universidad de Castilla-La
Mancha, pp. 141-156, Universidad de Castilla-La
Mancha, Albacete, Spain, Departamento de
Informática, In Spanish. July 2001.
Download here.
M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,
G. Franceschinis: Modelling with Generalized
Stochastic Petri Nets. Wiley Series in Parallel
Computing, John Wiley and Sons, 1995 (out of
print).
Download here (a revised version).

http://webdiis.unizar.es/CRPetri/papers/jcampos/01_Cam_EVI.pdf
http://www.di.unito.it/~greatspn/bookdownloadform.html

Modelling

and

analysis

of

concurrent

systems
 with

Petri

nets. Performance

evaluation

6.1. Structure

based

performance

analysis

 techniques: Bounds

Javier Campos

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza, Spain

jcampos@unizar.es

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 147

Outline

Preliminary comments
Introducing the ideas: Marked Graphs case
Generalization: use of visit ratios
Improvements of the bounds
A general linear programming statement
Bibliography

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 148

Preliminary

comments

Interest of bounding techniques
preliminary phases of design

many parameters
are not known
accurately
quick evaluation and
rejection of those
clearly bad

complexity

accuracy

bounds

exact
solution

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 149

Preliminary

comments

Net-driven solution technique
stressing the intimate relationship between
qualitative and quantitative aspects of PN’s
structure theory of net models

efficient

computation

techniques

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 150

Outline

Preliminary comments
Introducing the ideas: Marked Graphs case
Generalization: use of visit ratios
Improvements of the bounds
A general linear programming statement
Bibliography

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 151

generally

distributed

service

times
(random

variables Xi

with

mean)

we

assume

infinite-server

semantics

Introducing

ideas: Marked

Graph

case

p1
p2

p3

p4

p5

t1

t2

t3

t4

exact

cycle

time (random

variable):
average cycle

time:

but

(non-negative

variables):

therefore:

X = X1 + max{X2, X3} + X4
Γ = s [t1] + E[max{X2, X3}]+ s [t4]

X2, X3 ≤ max{X2, X3} ≤ X2 + X3

s [t1] + max{s [t2],s [t3]} + s [t4] ≤ Γ ≤ s [t1] + s [t2] + s [t3]+ s [t4]

s [t j]

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 152

Introducing

ideas: Marked

Graph

case

Thus, the

lower

bound

for

the

average cycle
 time is

computed

looking

for

the

slowest

 circuit

Interpretation:
an

MG may be built

synchronising

 circuits, so we

look

for

the

bottleneck

Γ ≥ max
C∈{circuits
of

the

net}

s [ti]
ti∈C
∑

tokens

in C

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 153

Introducing

ideas: Marked

Graph

case

Computation:

(

is

the

vector of
average service

times)

(the

proof

of

this

comes later

for

a more general case)

solving

a linear programming

problem
(polynomial

complexity

on

the

net size)

Γ ≥ maximum y⋅Pre⋅s
subject

to y⋅C = 0

y⋅m0 = 1
y ≥ 0

s

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 154

Introducing

ideas: Marked

Graph

case

Even if naïf, the bounds are tight!
Lower bound for the average cycle time

it is exact for deterministic timing
it cannot be improved using only mean values of
r.v. (it is reached in a limit case for a family of
random variables with arbitrary means and
variances)

max{s [t2],s [t3]} ≤ E[max{X2, X3}]

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 155

Introducing

ideas: Marked

Graph

case

they

behave

“as deterministic”
for

the

‘max’ and

‘+’ operators
in the

limit

(α→1)

Xμ,σ (α) =
μα with

probability 1−ε

μ α +
1−α

ε
⎛
⎝
⎜ ⎞

⎠
⎟ with

probability ε

⎧
⎨
⎪

⎩ ⎪
ε =

μ2(1−α)2

μ2(1−α)2 +σ2

(0 ≤α ≤1)

E Xμ,σ (α)[]= μ ; Var Xμ,σ (α)[]= σ2

lim
α→1

E max Xμ,σ (α), X ′ μ , ′ σ (α)()[]= max μ, ′ μ ()

E Xμ,σ (α) + X ′ μ , ′ σ (α)[]= μ + ′ μ , ∀ 0≤α <1

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 156

Introducing

ideas: Marked

Graph

case

Upper bound for the average cycle time

it cannot be improved for 1–live MG’s using
only mean values of r.v. (it is reached in a limit
case for a family of random variables with
arbitrary means)

Γ ≤ s [t]
t∈T
∑

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 157

Introducing

ideas: Marked

Graph

case

Xμ
i (ε) =

0 with

probability 1−εi

μ

εi
with

probability εi

⎧

⎨
⎪

⎩ ⎪

(0 < ε <1) E Xμ
i (ε)⎡

⎣
⎤
⎦ = μ ; E Xμ

i (ε)2⎡
⎣

⎤
⎦ =

μ2

εi

If X j = Xs [tj]
j−1 (ε), ∀t j ∈T ,

E[max(Xi, X j)] = s [ti]+ s [t j] +o(ε)

then

for

varying

(decreasing) values

of

ε:

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 158

Outline

Preliminary comments
Introducing the ideas: Marked Graphs case
Generalization: use of visit ratios
Improvements of the bounds
A general linear programming statement
Bibliography

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 159

Generalization: use of

visit

ratios

Visit ratios = relative throughput
(number

of

visits

to

ti

per

each

visit

to

t1

)

average interfiring

time of

t1

v[t] =
χ[t]
χ[t1]

= Γ[t1] χ[t]

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 160

Generalization: use of

visit

ratios

For some net classes v can be computed as:

p3

p 7

p 10

p12

p 9

p 8

p11

t1
t2 t 3 t4

t 5

p 1 p2

p4
p5

t6

p 6

t 7

t 8 t 9

t 10 t 11

C⋅v = 0;
r1v[t2] = r2v[t1];
r3v[t4] = r4v[t3];

v[t1] = 1

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 161

Generalization: use of

visit

ratios

Little’s law (L=λW) applied to a place
p:

Assume

that

timed

transitions

are never

in conflict
 (conflicts

are modelled

with

immediate

transitions), then

 either

all

output transitions

of

p are immediate

or

p has a
unique

output transition, say

t1

, and

t1

is

timed, thus:

μ [p] = (Pre[p,T] ⋅χ) r [p]

μ [p] = (Pre[p,T] ⋅χ) r [p] = Pre[p, t1] χ[t1] r [p]

≥ Pre[p, t1] χ[t1] s [t1] = Pre[p, t j] χ[t j] s [t j]
j=1

m
∑

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 162

Generalization: use of

visit

ratios

Then:

Hence: where

Premultiplying

by a P–semiflow

y

Γ[t1] μ [p] ≥ Pre[p, t j] Γ[t1] χ[t j] s [t j]
j=1

m
∑ = Pre[p, t j] v[t j] s [t j]

j=1

m
∑

Γ[t1] μ ≥ Pre⋅D D [t] = s [t]v[t] is

the

average service
demand

of

t

(y ⋅C = 0, y ≥ 0, thus y⋅μ = y ⋅m0),

Γ[t1] ≥ maximum y ⋅Pre⋅D
y ⋅m0

subject

to y ⋅C = 0
1⋅y > 0
y ≥ 0

Γ[t1] ≥ maximum
y ⋅Pre⋅D

q
subject

to y ⋅C = 0

1⋅y > 0
q = y ⋅m0
y ≥ 0

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 163

Generalization: use of

visit

ratios

Since

y·m0

> 0 (live

system), we

change

y/q to

y

and

we

obtain
(1·y

> 0 is

removed because

y·m0

= 1 implies

1·y

> 0):

again, a linear programming

problem
(polynomial

complexity

on

the

net size)

Γ[t1] ≥ maximum y ⋅Pre⋅D
subject

to y ⋅C = 0

y ⋅m0 =1
y ≥ 0

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 164

Generalization: use of

visit

ratios

Interpretation: slowest

subsystem

generated

by P–semiflows, in isolation

minimal

P–semiflows
y1 = (1,0,1,1,0,0,1,0,1,0,0,0)
y2 = (0,1,0,0,1,1,0,1,0.1,0,0)
y3 = (0,0,0,0,0,0,0,0,1,1,1,0)
y4 = (0,0,0,0,0,0,0,0,0,0,0,1)

p3

p 7

p 9

t1
t2

t 5

p 1

p4

t6

t 8

t 10

p 10

p 8

t 3 t4

p2

p5

t6

p 6

t 7

t 9

t 11

p12 t 5

p 10
p 9 p11

t 8 t 9

t 10 t 11

N4

N1 N2

N3

Γ[t1] ≥ max

{ (s [t5]+ s [t6] + s [t10])/ 3,
(s [t6]+ s [t7] + s [t11])/ 2,
s [t10]+ s [t11],
s [t5] }

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 165

Generalization: use of

visit

ratios

Upper bound for the average interfiring
time

remember

the

marked

graphs

case (v

= 1):

Γ[t1] ≤ v[t] s [t]
t∈T
∑ = D [t]

t∈T
∑

Γ ≤ s [t]
t∈T
∑

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 166

Outline

Preliminary comments
Introducing the ideas: Marked Graphs case
Generalization: use of visit ratios
Improvements of the bounds
A general linear programming statement
Bibliography

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 167

Improvements

of

the

bounds

Structural improvements
bounds

still

based

only

on

the

mean values

(not

 on

higher

moments

of

r.v., insensitive

bounds)
lower bound for the average interfiring time:
use of implicit places to increase the number of
minimal P–semiflows
upper bound for the average interfiring time:
use of liveness bound of transitions to improve the
bound for some net subclasses

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 168

Improvements

of

the

bounds

Use of implicit places

t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p4 p5

q1-q

Γ[t5] = qs [t3]+ (1− q)s [t4]

Γ[t1] ≥ maximum y ⋅Pre⋅D
subject

to y ⋅C = 0

y ⋅m0 =1
y ≥ 0

Γ[t5] ≥ max qs [t3],(1− q)s [t4]{ }

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 169

Improvements

of

the

bounds

t 1 t 2

t 3 t 4

t 5

p1

p2 p3

p4 p5

q1-q
t1 t2

t3 t 4

t 5

p1

p2 p3

p4 p5

q 1-q

p6

in this case, we get the exact value!

Γ[t1] ≥ maximum y ⋅Pre⋅D
subject

to y ⋅C = 0

y ⋅m0 =1
y ≥ 0

Γ[t5] = qs [t3]+ (1− q)s [t4]
Γ[t5] ≥ max qs [t3], (1− q)s [t4], qs [t3]+ (1− q)s [t4]{ }

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 170

Improvements

of

the

bounds

in general…

t1 t2

t3 t4

t5

p1

p2 p3

p4 p5

q 1-q

t7

p6 p7

t6

Γ[t1] ≥ maximum y ⋅Pre⋅D
subject

to y ⋅C = 0

y ⋅m0 =1
y ≥ 0

Γ[t7] ≥ max

{ qs [t3] + s [t6] + s [t7],

(1− q)s [t4]+ s [t5]+ s [t7] }

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 171

Improvements

of

the

bounds

t1 t2

t3 t4

t5

p1

p2 p3

p4 p5

q 1-q

t7

p6 p7

t6
p8

in general, the

bound

is

non-reachable

(deterministic
timing)

Γ[t7] ≥ max

{ qs [t3] + s [t6] + s [t7],

(1− q)s [t4] + s [t5]+ s [t7],

qs [t3] + (1− q)s [t4]+ s [t7] }

Γ[t7] = qmax{s [t5],s [t3] + s [t6]}+ (1− q)max{s [t4] + s [t5],s [t6]}+ s [t7]
= max

{ qs [t3] + s [t6]+ s [t7],

(1− q)s [t4] + s [t5] + s [t7],

qs [t3] + (1−q)s [t4] + (1− q)s [t5] +qs [t6] + s [t7],

qs [t5] + (1−q)s [t6] + s [t7] }

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 172

Improvements

of

the

bounds

Use of liveness bounds

upper bound for the average interfiring time:

reachable

for

1-live

marked

graphs, but…

p1
p2

p3

p4

p5

t1

t2

t3

t4
Γ ≤ s [t]

t∈T
∑

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 173

Improvements

of

the

bounds

p1
p2

p3

p4

p5

t1

t2

t3

t4

it

can be improved

for

k–live

marked

graphs

liveness

bound

of

t2

Γ ≤ s [t1] +
s [t2]

2
+ s [t3] + s [t4]

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 174

Improvements

of

the

bounds

Definitions of enabling degree, enabling bound, structural
enabling bound, and liveness bound

instantaneous enabling degree of a transition at a given marking

e[t](m) = 2
2
t

e[t](m) =sup k ∈Ν : ∀p ∈ •t, m[p] ≥ k Pre[p, t]{ }

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 175

Improvements

of

the

bounds

enabling bound of a transition in a given system:
maximum among the instantaneous enabling degree at all
reachable markings

eb[t2

] = 2
p1

p2

p3

p4

p5

t1

t2

t3

t4

eb[t] = sup k ∈Ν : ∃m0
σ

⎯ → ⎯ m, ∀p∈• t, m[p] ≥ k Pre[p, t]⎧ ⎨
⎩

⎫ ⎬
⎭

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 176

Improvements

of

the

bounds

liveness bound of a transition in a given system:
number of servers available in t in steady state

t

2

p1 1 t 2

t 3

p2

p3
lb[t1

] = 1 < 2 = eb[t1

]

lb[t] = sup k ∈Ν : ∀ ′ m ,m0
σ

⎯ → ⎯ ′ m ,∃m, ′ m ′ σ
⎯ → ⎯ ⎯ m∧∀p∈• t,m[p]≥ k Pre[p, t]⎧ ⎨

⎩
⎫ ⎬
⎭

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 177

Improvements

of

the

bounds

structural enabling bound of a transition in a given
system: structural counterpart of the enabling bound
(substitute reachability condition by

m = m0 + C · σ; m,σ ≥ 0)

Property: For

any

net system

seb[t] ≥

eb[t] ≥

lb[t], t.
Property:

For

live

and

bounded

free choice

systems,

 seb[t] = eb[t] = lb[t], t.

seb [t] = maximum k
subject

to m0[p]+C[p,T] ⋅σ ≥ k Pre[p, t], ∀p∈P

σ ≥ 0

∀

∀

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 178

Improvements

of

the

bounds

improvement of the bound for live and bounded free

choice

systems:

this

bound

cannot

be improved

for

marked

graphs
 (using

only

the

mean values

of

service

times)

Γ[t1] ≤
v[t] s [t]

seb[t]t∈T
∑ =

D [t]
seb[t]t∈T

∑

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 179

Outline

Preliminary comments
Introducing the ideas: Marked Graphs case
Generalization: use of visit ratios
Improvements of the bounds
A general linear programming statement
Bibliography

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 180

A general linear programming

statement

The idea

linear operational

laws

a linear function

maximize

[or

minimize] f (μ , χ)

subject

to any

linear constraint

that

we

are able

to

state
for μ , χ, and

other

needed

additional

variables

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 181

A general linear programming

statement

A set of linear constraints:

… …

(state

equation)

(flow

balance equation)

μ = m0 +C⋅σ

χ[t] Post[p, t]

t∈• p
∑ ≥ χ[t] Pre[p, t],

t∈p•
∑ ∀p∈P

χ[t] Post[p, t]

t∈• p
∑ = χ[t] Pre[p, t],

t∈p•
∑ ∀p∈P bounded

χ[ti]
ri

=
χ[t j]

rj
, ∀ti, t j ∈T : behavioural

free choice

(e.g. Pre[P, ti]= Pre[P, t j])

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 182

A general linear programming

statement

(minimum

throughput

law)

(maximum

throughput

law)χ[t] s [t] ≤
μ [p]

Pre[p, t]
, ∀t ∈T, ∀p∈• t

χ[t] s [t] ≥ μ [p]− Pre[p, t]+1
Pre[p, t]

, ∀t ∈T persistent,age

memory

or

immediate: •t = {p}
… …

μ , χ, σ ≥ 0

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 183

A general linear programming

statement

It can be improved using second order
moments
It can be extended to well-formed
coloured nets
It has been recently extended to Time
Petri Nets (timing based on intervals,
usefull for the modelling and analysis of
real-time systems)

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 184

A general linear programming

statement

It is implemented in GreatSPN
select place (transition) object ()
click right mouse button and select “show”
click again right mouse button and select
“Average M.B.” (“LP Throughput Bounds”)
click left mouse button for upper bound
click middle mouse button for lower bound

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 185

A general linear programming

statement

Example: a shared-memory multiprocessor
set of processing modules (with local memory)
interconnected by a common bus called the “external
bus”
a processor can access its own memory module directly
from its private bus through one port, or it can access
non-local shared-memory modules by means of the
external bus
priority is given to external access through the external
bus with respect to the accesses from the local
processor

M1 P1 M2 P2 M3 P3 M4 P4

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 186

A general linear programming

statement

Timed Well-Formed Coloured Net (TWN) model of
the shared-memory multiprocessor

Average service

time of

timed

transitions

equal

to

0.5

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 187

A general linear programming

statement

The linear constraints for the LPP

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 188

A general linear programming

statement

The “automatic” results:

The

exact

solution

with

exponential

distribution

would

be

Improving

of

lower

bound

with

more “ad hoc” constraints:

The

improved

bound:

2]__[χ
11
8

≤≤ aee

71999.1]__[χ =aee

3][b;0][b;0][=== QueueChoiceChoiceμ

2]__[χ1 ≤≤ aee

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 189

Outline

Preliminary comments
Introducing the ideas: Marked Graphs case
Generalization: use of visit ratios
Improvements of the bounds
A general linear programming statement
Bibliography

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 190

Bibliography
J. Campos, G. Chiola, J. Colom, M. Silva: Properties and Performance Bounds for
Timed Marked Graphs. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 39, no. 5, pp. 386-401, May 1992.
Download here.
J. Campos, G. Chiola, M. Silva: Ergodicity and Throughput Bounds of Petri Nets with
Unique Consistent Firing Count Vector. IEEE Transactions on Software Engineering,
vol. 17, no. 2, pp. 117-125, February 1991.
Download here.
J. Campos, G. Chiola, M. Silva: Properties and Performance Bounds for Closed Free
Choice Synchronized Monoclass Queueing Networks. IEEE Transactions on
Automatic Control, vol. 36, no. 12, pp. 1368-1382, December 1991.
Download here.
J. Campos, M. Silva: Structural Techniques and Performance Bounds of Stochastic
Petri Net Models. Lecture Notes in Computer Science, Advances in Petri Nets 1992,
G. Rozenberg (ed.), vol. 609, pp. 352-391, Berlin, Springer-Verlag, 1992.
Download here.
G. Chiola, C. Anglano, J. Campos, J. Colom, M. Silva: Operational Analysis of Timed
Petri Nets and Application to the Computation of Performance Bounds. Proceedings
of the 5th International Workshop on Petri Nets and Performance Models, pp. 128-
137, Toulouse, France, IEEE-Computer Society Press, October 1993.
Download here.
J. Campos: Performance Bounds. In Performance Models for Discrete Event Systems
with Synchronizations: Formalisms and Analysis Techniques, G. Balbo & M. Silva (ed.),
Chapter 17, pp. 587-635, Zaragoza, Spain, Editorial KRONOS, September 1998.
Download here.

http://webdiis.unizar.es/CRPetri/papers/jcampos/92_CCCS_CAS.ps.gz
http://webdiis.unizar.es/CRPetri/papers/jcampos/91_CCS_TSE.ps.gz
http://webdiis.unizar.es/CRPetri/papers/jcampos/91_CCS_TAC.ps.gz
http://webdiis.unizar.es/CRPetri/papers/jcampos/92_CS_LNCS.ps.gz
http://webdiis.unizar.es/CRPetri/papers/jcampos/93_CACCS_Toulouse.ps.gz
http://webdiis.unizar.es/CRPetri/papers/jcampos/98_C_MATCH17.ps.gz

Modelling

and

analysis

of

concurrent

systems
 with

Petri

nets. Performance

evaluation

6.2. Structure

based

performance

analysis

 techniques: Approximations

Javier Campos

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza, Spain

jcampos@unizar.es

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 192

Outline

Decomposition of models
Flow equivalent aggregation
Iterative algorithm: marked graphs case
Iterative algorithm: general case
Bibliography

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 193

Decomposition

of

models

Interest of approximation techniques

complexity

accuracy

bounds

exact
solution

approx.

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 194

Decomposition

of

models

Basic idea:

reduce the

complexity

of

the

analysis

of

a complex
 system

when

the system is too complex/big to be solved by
any exact analytical technique
a simulation is too long (essentially if many different
configurations must be tested or it must be included in
some optimization procedure)
some insights about the internal behaviour of subsystems
are wanted (writing equations might help)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 195

Decomposition

of

models

Principle:
decompose the system into some subsystems

reduce the analysis of the whole system by those of the
subsystems in isolation

if

the

solution

technique

was, e.g., O(n3) on

the

state

space
 size

n, the

cost

of

solving

the

isolated

subsystems

would

be

O(n3/1000), i.e. three

orders

of

magnitud less…

original system
state

space

size: n

two

subsystems
state

space

size

of

each: n/10
(for

example)
(i.e., one

order

of

magnitud less)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 196

Decomposition

of

models

Advantages:
drastical reduction of complexity and computational
requirements
enables to extend the class of system that can be solved
by analytical techniques

Problems and limitations
Decomposition is not easy!

“net-driven” means to use structural information of the net
model to assure that “good” qualitative properties are
preserved in the isolated subsystems (e.g., liveness,
boundedness…)

Approximation is not exact!
problem of error estimation or at least bounding the error

Accurate techniques are usually very especific to
particular problems need of expertise to select the
adequate technique…

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 197

Decomposition

of

models
Steps in an approximation technique based on decomposition:

Partition of the system into subsystems:
definition of rules for decomposition
consideration of functional properties that must/can be
preserved

Characterization of subsystems in isolation:
definition of unknowns and variables
decisions related with consideration of mean variables or
higher order moments of involved random variables
consideration or not of the “outside world”
need of a skeleton (high level view of the model) and
characteristics considered in it

Estimation of the unknown parameters:
writing equations among unknowns
direct or iterative technique (in this case, definition of
fixed point equations)
considerations on existence and uniqueness of solution
computational algorithm for solving the fixed point equation
(implementation aspects, convergence aspects)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 198

Outline

Decomposition of models
Flow equivalent aggregation
Iterative algorithm: marked graphs case
Iterative algorithm: general case
Bibliography

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 199

Flow

equivalent

aggregation

The system: Partition:

p6 p8

p7

p9

p10

t7

t8

t11

t13

t12

p2

p1

1

p3

p4

p5

p1 t2

t3

t4

t

5

t6

t9 t10

p2

p1

1

p3

p6 p8

p4

p5

p7

p9

p10

p1 t2

t3

t4

t5

t6

t7

t8

t11

t13

t12
t9 t10

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 200

Flow

equivalent

aggregation

Characterization of subsystems.
Behaviour is characterized by:

path a token takes in the PN
(what percetage leave through t5 and t6)
time it takes a token to be discharged

p2

p11

p3

p4

p5

p1 t2

t3

t4

t5

t6

t9 t10

•way-in places: p1

•sink

transitions: t5, t6

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 201

Flow

equivalent

aggregation

Reduction of the subsystem:

ppin td

(n) tout1

(n)

tout2

(n)

•routing

rates

of

tout1

(n) and

tout2

(n)?

•service

rate

of

td

(n)?

(marking

dependent: n=M(pin

)

p2

p11

p3

p4

p5

p1 t2

t3

t4

t5

t6

t9 t10

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 202

Flow

equivalent

aggregation

Aggregated system:

p6 p8

p7

p9

p10

t7

t8

t11

t13

t12

ppin
td

(n)

tout1

(n)

tout2

(n)

p2

p11

p3

p6 p8

p4

p5

p7

p9

p10

p1 t2

t3

t4

t5

t6

t7

t8

t11

t13

t12

t9 t10

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 203

Flow

equivalent

aggregation

Estimation of the unknown parameters:
Analyze the subnet in isolation with
constant number of tokens

delay and routing are dependent on
the number of tokens in the
system
compute delay and routing for all
possible populations

p2

p11

p3

p4

p5

p1

t2

t3

t4

t5

t6

t9 t10

Parameters of the subsystem in isolation
tokens v5 v6 thrput
1 0.500 0.500 0.400
2 0.431 0.569 0.640
3 0.403 0.597 0.780
4 0.389 0.611 0.863
5 0.382 0.618 0.914

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 204

Flow

equivalent

aggregation

When the subnet is substituted back, routing and delay are
going to be state dependent (n=M(pin))

p6 p8

p7

p9

p10

t7

t8

t11

t13

t12

ppin
td

(n)

tout1

(n)

tout2

(n)

Comparison of State Spaces & throughput
#tokens # states throughput %error

aggregat original aggregat original
1 5 9 0.232 0.232 0.00
2 12 41 0.381 0.384 0.78
3 22 131 0.470 0.474 0.84
4 35 336 0.521 0.523 0.38
5 51 742 0.548 0.547 <0.10

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 205

Flow

equivalent

aggregation
Limitations:

Assumption: the service time depends only on the number of
customers which are currently present in the subsystem.

The behaviour of the subsystem is assumed independent of the
arrival process

It is exact for product-form queueing networks.
The error is small if in the original model:

the arrivals to the subsystem are “close” to Poisson arrivals and
the processing times are approximately exponential

On the other hand, the error can be very large if
there exist internal loops
in a subnet, or
there exist trapped
tokens in a fork-join,
or…

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 206

Outline

Decomposition of models
Flow equivalent aggregation
Iterative algorithm: marked graphs case
Iterative algorithm: general case
Bibliography

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 207

Iterative

algorithm: marked

graphs

case

Net-driven solution techniques
stressing the intimate relationship between
qualitative and quantitative aspects of PN’s
structure theory of net models

efficient

computation

techniques

Marked graphs: subclass of ordinary nets
(no choices) (no weights)

...

YES NO
A

B

C

D

E
F

G

H I
J

K

L

M

N

O

P

Q R
S

T

U V

WZ3

Z2

Z1Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19 T14

T6

T5

T10 T9

T13

T11
T12

T7

X

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 208

Iterative

algorithm: marked

graphs

case

A
B

C

D

E
F

G

H I
J

K

L

M

N

O

P

Q R
S

T

U V

WZ3

Z2

Z1Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19 T14

T6

T5

T10 T9

T13

T11
T12

T7

X

cut

A
B

C

D

E
F

G

H I
J

K

L

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X
M

N

O

P

Q R
S

T

U V

WT14

T6

T5

T10 T9

T13

T11
T12

T7

original model

+ definition

of

cut

Z3

Z2

Z1

partition

of

the

model

into
modules

(subnets) connected

through

buffers

(places)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 209

Iterative

algorithm: marked

graphs

case

A
B

C

D

E
F

G

H I
J

K

L

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X the

solution

of

isolated

modules
is

difficult

and

useless:

(in this

case) they

are unbounded!

the

modules must

be complemented
with

an

abstract

view

of

the

rest;

components

are obtained

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 210

Iterative

algorithm: marked

graphs

case

A
B

C

D

E
F

G

H I
J

K

L

M

N

O

P

Q R
S

T

U V

WZ3

Z2

Z1Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19 T14

T6

T5

T10 T9

T13

T11
T12

T7

X

cut

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

original model

(89358 states)

three

components:
aggregated

systems

(low

level

views)
and

basic

skeleton

(high

level

view)

AS1

(8288 states) AS2

(3440 states)

BS (231 states)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 211

Iterative

algorithm: marked

graphs

case

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

iterative

solution: pelota algorithm

(response time approximation

technique)

solution

of

smaller

CTMC’s,
improving

in each

step

the

response time of

the
 abstract

part

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 212

Iterative

algorithm: marked

graphs

case

Substitute a subnet by a set of places

interface transitions (input/ouput of buffers) are
preserved
add one place from each input to each output transition
the set of new places can be superposed in the original
model preserving the behaviour: implicit places

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N

O

P

Q R
S

T

U V

W

T10 T9

T13

T11
T12

T7

beta_1

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 213

Iterative

algorithm: marked

graphs

case

Compute the initial marking of new places
minimum initial marking to make them implicit
computed using Floyd’s all-pairs shortest paths
algorithm:

the MG is considered as a weighted graph
(transitions are vertices and the initial marking of
places are the weigths of the arcs)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 214

Iterative

algorithm: marked

graphs

case

The abstract view has “very good quality”:
the language of firing sequences of the
aggregated system is equal to that of the
original system projected on the preserved
transitions
the reachability graph of the aggregated
system is isomorphous to that of the original
system projected on the preserved places

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 215

Iterative

algorithm: marked

graphs

case

Definition of unknowns:

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3
Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

service

time of

rho_i service

time of

tau_j service

time of
 rho_i and

tau_j

+ throughput

of

each

system
+ response time of

interface

transitions

at

each

system

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 216

Iterative

algorithm: marked

graphs

case

A B

C

D
E FG

H

I

J

K

L

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

Y

T4 T8

T1

T17

T16

T18

T15 T2

T3

T19

X rho_1

rho_2

rho_3

response time approximation

of

the
left

hand

subnet

for

a token

that

exits

through

T2:
(Little’s

law)

exits

through

T3:

thus, solve

the

CTMC and

compute: R2

, R3

and

also

χ

R2 = μ [alph_1]

χ[t2]

R3 = μ [alph_ 2]

χ[t3]

first

aggregated

system

 (χ[t2] = χ[t3] = χ)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 217

Iterative

algorithm: marked

graphs

case

second

aggregated

system

M

N
O

P

Q R S
T

U V

WZ3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

T14

T6

T5

T10 T9

T13

T11 T12

T7

tau_1

tau_2

tau_3

select

tau_1 and

tau_2 as:

where

f is

computed

using

the

skeleton:
linear search

until

the

throughput

of

the

skeleton

is

equal

to

the

throughput
computed

for

the

first

aggregated

system

tau_1= f .R2
tau_2= f .R3

Z3

Z2

Z1

beta_2
beta_1

alph_2
alph_1

tau_1 rho_1

tau_2
rho_2

tau_3 rho_3

tau_1= f .R2
tau_2= f .R3 skeleton

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 218

Iterative

algorithm: marked

graphs

case

The

algorithm:

select a cut Q;
derive aggregated systems AS1,AS2 and skeleton BS;
give initial value µt

(0) for each t∈TI2;
k:=0; {counter for iteration steps}
repeat
k:=k+1;
solve aggregated system AS1 with

input: µt
(k-1) for each t∈TI2,

output: ratios among µt
(k) of t∈TI1, and X1(k);

solve basic skeleton BS with
input: µt

(k-1) for each t∈TI2,
ratios among µt

(k) of t∈TI1, and X1(k),
output: scale factor of µt

(k) of t∈TI1;
solve aggregated system AS2 with

input: µt
(k-1) for each t∈TI1,

output: ratios among µt
(k) of t∈TI2, and X2(k);

solve basic skeleton BS with
input: µt

(k) for each t∈TI1,
ratios among µt

(k) of t∈TI2, and X2(k),
output: scale factor of µt

(k) of t∈TI2;
until convergence of X1(k) and X2(k);

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 219

Iterative

algorithm: marked

graphs

case

On the (theoretical) convergence of the algorithm:
Theorem [D.R. Smart, Fixed Point Theorems, Cambridge Univ. Press,
1974]:
f : D ⊂ Rn → Rn continuous in a compact, convex, non-empty D, f(D) ⊆ D
(i.e. contractive) ⇒ ∃ x ∈ D such that f(x) = x.
The previous algorithm can be written:

input: μ(0)

--

initial

rates

of

interface

transitions

TI.
n := 0 --

loop

counter
repeat

n := n+1
μ(n)

:= G(μ(n - 1))
until

convergence

of

μ(n)

output: X (μ(n)) --

vector of

approximated

throughput
Theorem: for a live strongly connected MG, function G in the algorithm
is continuous and there exists a compact, convex, non-empty set S such
that G(S) ⊆ S.
Corollary: there exists x such that G(x) = x.

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 220

Iterative

algorithm: marked

graphs

case

On

the

practical

convergence:
Service

rates

(arbitrary):

T2=0.2; T4=0.7; T6=0.3; T8=0.8; T9=0.6; T10=0.5;
Ti=1.0, i=1,3,5,7,11,12,13,14,15,16,17,18,19

Throughput

of

the

original system: 0.138341
State

space

of

the

original system: 89358

Results

using

the

approximation

technique:
State

space

AS1: 8288; State

space

AS2: 3440;

State

space

BS: 231
AS1

AS2
X1 tau_1 tau_2 tau_3 X2 rho_1 rho_2 rho_3
0.17352 0.05170 0.16810 0.88873 0.12714 0.89026 0.21861 0.14354
0.14093 0.06265 0.19707 0.91895 0.13795 0.88267 0.21363 0.13509
0.13856 0.06325 0.19821 0.92054 0.13841 0.88239 0.21343 0.13467
0.13844 0.06328 0.19827 0.92062 0.13843 0.88237 0.21342 0.13465
0.13843 0.06328 0.19827 0.92064 0.13843 0.88238 0.21342 0.13465

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 221

Outline

Decomposition of models
Flow equivalent aggregation
Iterative algorithm: marked graphs case
Iterative algorithm: general case
Bibliography

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 222

Iterative

algorithm: general case

The story was:
Marked graphs case
Weighted T-systems

Non-trivial extension!
Definition of new structure concepts (gain, weighted
marking, resistance)
More complex aggregated subsystems
Similar iterative algorithm

DSSP: deterministic systems of sequential
processes

Decomposition problems, partial results…
General case: new decomposition approach

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 223

Iterative

algorithm: general case

Arbitrary P/T system + structured view

partition

into

modules

(functional

units)
connected

through

places (buffers)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 224

Iterative

algorithm: general case

All P/T systems have serveral structured
views, varying between:

a single module (empty set of buffers)

as many modules as transitions (all places are
considered as buffers)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 225

a1

a2

a3

a4

I1

I2

I3

I4I5

I6
t2t1

t3 t4

t5 t6 t7

b1

b2

c1

c2
c3

c4
c5

c6
c7

Iterative

algorithm: general case

module 1
module 2

buffers

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 226

Iterative

algorithm: general case

Substitute a subnet
by a set of
implicit places

derived

from
 minimal

P-semiflows

 of

the

subnet
 (sum

of

the

incidence

 rows

of

places)

a1

a2

a3

a4

I1

I2

I3

I4I5

I6
t2t1

t3 t4

b1

b2

c1

c2
c3

t5 t6 t7

c4
c5

c6
c7

d1

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 227

Iterative

algorithm: general case

a1

a2

a3

a4

I1

I2

I3

I4I5

I6
t2t1

b1

b2

d1

d2

d3

I1

I2

I3

I4I5

I6

t3 t4

t5 t6 t7

b1

b2

c1

c2
c3

c4
c5

c6
c7

d4

I1

I2

I3

I4I5

I6

b1

b2

d1

d2

d3 d4

first

aggregated

system second

aggregated

system

skeleton

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 228

Iterative

algorithm: general case

The quality of the abstract view is “not as
good as” in the MG’s case

the language of firing sequences of the
aggregated system includes that of the
original system projected on the preserved
transitions
the reachability graph of the aggregated
system includes that of the original system
projected on the preserved nodes

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 229

Iterative

algorithm: general case

Problems in the composition:

The

RG of

an

aggregated

system

may include
 spurious markings

and

firing

sequences

that

do

not

correspond

to

actual markings

and

firing
 sequences

of

the

original system

we

can obtain

even

non-ergodic

systems
(CTMC cannot

be solved)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 230

Iterative

algorithm: general case

P1

P2

P3

P4

P5

P6

P7

P8
P9

P10

P11

t1

t2

t3

t4

t6

t5

t7

t8

t9

t10

t11

t12

P1

P2

P3

P4

P5

P9

P10

P11

t1

t2

t3

t4

t6

t5

t9

t10

t11

t12
h2

original system:
limited

and

reversible, thus

ergodic

aggregated

system:
it

has a total deadlock

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 231

Iterative

algorithm: general case

Solution for the problem:
select

only

the

strongly

connected

component

 of

the

RG that

includes

the

projection

of

the
 initial

marking

P1

P2,P10 P3,P11

P7,P10

P4,P10 P5,P10

P9,P10

P6,P11

P4,P11

P9,P11

t1

t6

t7 t8

t3

t11

t4

t2

t5

t9

t3

t12

P6,P10
t9

P8,P10
t10

P1

P2,P10 P3,P11

h2,P10

P4,P10 P5,P10

P9,P10

h2,P11

P4,P11

P9,P11

P5,P11

t1

t6

t9 t10

t3

t11

t4

t2

t5

t9 t10

t3

t12

RG of

the

original system RG of

the

aggregated

system

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 232

Iterative

algorithm: general case

More problems:
Spurious

markings

(and/or

firing

seq.) may still

 be present,
but

the

solution

is

possible!

P1

P2

P3

P4

P5

P6 t1

t2

t3t4

t6

t5 h2

2

22

2

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 233

Iterative

algorithm: general case

It is possible to eliminate all the spurious markings
with additional computational effort

use a Kronecker expression of the infinitesimal
generator of the original system

implement a depth-first search to build the
RS
reduce the infinitesimal generators of the
aggregated systems, using the information
about reachability in the original system

The whole reachability set must be derived but the
CTMC is not solved (throughput is approximated
from the solution of CTMC of subsystems)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 234

Outline

Decomposition of models
Flow equivalent aggregation
Iterative algorithm: marked graphs case
Iterative algorithm: general case
Bibliography

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 235

Bibliography
J. Campos, J. Colom, H. Jungnitz, M. Silva: Approximate
Throughput Computation of Stochastic Marked Graphs. IEEE
Transactions on Software Engineering, vol. 20, no. 7, pp. 526-535,
July 1994.
Download here.
C. Pérez-Jiménez, J. Campos, M. Silva: Approximate Throughput
Computation of Stochastic Weighted T-Systems. IEEE
Transactions on Systems, Man, and Cybernetics. Part A: Systems
and Humans, vol. 37, no. 3, pp. 431-444, May 2007.
Download here.
C. Pérez-Jiménez, J. Campos: On State Space Decomposition for
the Numerical Analysis of Stochastic Petri Nets. Proceedings of
the 8th International Workshop on Petri Nets and Performance
Models, pp. 32-41, Zaragoza, Spain, IEEE Computer Society Press,
September 1999.
Download here.
C. Pérez-Jiménez: Técnicas de aproximación de throughput en
redes de Petri estocásticas. PhD Thesis. Dpto. Informática e
Ingeniería de Sistemas, Universidad de Zaragoza. April 2002.
Download here.

http://webdiis.unizar.es/CRPetri/papers/jcampos/94_CCJS_TSE.ps.gz
http://webdiis.unizar.es/CRPetri/papers/jcampos/05_PJCS_TSMC.pdf
http://webdiis.unizar.es/CRPetri/papers/jcampos/99_PJC_PNPM.pdf
http://webdiis.unizar.es/~jcampos/SPN/aux/tesis_cjperez.pdf

Modelling

and

analysis

of

concurrent

systems

with
 Petri

nets. Performance

evaluation

6.3. Structure

based

performance

analysis

techniques:

 Kronecker

algebra-based

exact

solution

Javier Campos

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza, Spain

jcampos@unizar.es

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 237

Outline

Kronecker product and DTMC
Kronecker sum and CTMC
Structured view of stochastic Petri nets
Reachability set construction
CTMC generation and solution
Bibliography

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 238

Kronecker

product

and

DTMC

Kronecker product

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 239

Kronecker

product

and

DTMC

If we merge two independent Discrete
Time Markov Chains (DTMC) with state
spaces S1 and S2 and transition
probabilities P1 and P2, the resulting state
space and transition probability matrix are:

S = S1

x S2

and

P

= P1

⊗

P2

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 240

Kronecker

product

and

DTMC

Example

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 241

Outline

Kronecker product and DTMC
Kronecker sum and CTMC
Structured view of stochastic Petri nets
Reachability set construction
CTMC generation and solution
Bibliography

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 242

Kronecker

sum

and

CTMC

Kronecker sum

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 243

Kronecker

sum

and

CTMC

If we merge two independent Continuous
Time Markov Chains (CTMC) with state
spaces S1 and S2 and infinitesimal
generators Q1 and Q2, the resulting state
space and infinitesimal generator are:

S = S1

x S2

and

R

= R1

⊕

R2
 (and

Q

= Q1

⊕

Q2

)

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 244

Kronecker

sum

and

CTMC

Example

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 245

Outline

Kronecker product and DTMC
Kronecker sum and CTMC
Structured view of stochastic Petri nets
Reachability set construction
CTMC generation and solution
Bibliography

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 246

Structured

view

of

stochastic

Petri

nets

We come back to structured view of PN’s

partition

of

PN into

modules

(functional

units)
connected

through

places (buffers)

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 247

Structured

view

of

stochastic

Petri

nets

Example: the system, S

module 1

module 2

buffers

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 248

Structured

view

of

stochastic

Petri

nets

Extended system, εS (addition of a set of implicit
places)

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 249

Structured

view

of

stochastic

Petri

nets

Low level (sub)systems, LS

.

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 250

Structured

view

of

stochastic

Petri

nets

Basic skeleton, BS : high level view

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 251

Outline

Kronecker product and DTMC
Kronecker sum and CTMC
Structured view of stochastic Petri nets
Reachability set construction
CTMC generation and solution
Bibliography

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 252

Reachability

set

construction

We define the following subsets of
reachability sets, for each z ∈ RS(BS)
(i.e. z is a high level state)

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 253

Reachability

set

construction

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 254

Reachability

set

construction

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 255

Outline

Kronecker product and DTMC
Kronecker sum and CTMC
Structured view of stochastic Petri nets
Reachability set construction
CTMC generation and solution
Bibliography

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 256

CTMC generation

and

solution

Basic idea: split the behaviour in two:

transitions that change the high level view
transitions that do not change the high level
view

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 257

CTMC generation

and

solution

For

the

system

S

: Q

= R

– rowsum(R)
For

the

components

LSi

: Qi

= Ri

– rowsum(Ri

)

Technique:
1.

Consider

Q

and

R

in blocks

(z,z’), of

size

⏐RSz

(S)⏐⋅⏐RSz’

(S)⏐

2.

Consider

Qi

and

Ri

in blocks

(z,z’), of

size
 ⏐RSz

(LSi

)⏐⋅⏐RSz’

(LSi

)⏐

3.

Describe each

block

of

Q

and

R

as tensor expression

of
 the

blocks

of

Qi

and

Ri

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 258

CTMC generation

and

solution

Blocks R(z,z) have non-null entries that
are due only to non interface transitions

Blocks R(z,z’) with z ≠ z’ have non-null
entries that are due only to the firing of
interface transitions (TI)

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 259

CTMC generation

and

solution

The result:
Transition rates among reachable states are
correctly computed
for

all

z,z’ ∈

RS(BS):

R(z,z’) is

a submatrix

of

G(z,z’)

Unreachable states are never assigned a non-
null probability
for

all

m

∈

RS(S) and

for

all

m’ ∈

PS(S) \

RS(S):

G[m,m’] = 0

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 260

CTMC generation

and

solution

Computational costs
To solve an SPN with classic method

Build and store the RG
Compute the associated CTMC
Solve the characteristic equation π ⋅ Q = 0

To solve an SPN with Kronecker approach
Build and store the K+1 auxiliary models
Compute the RGi of each auxiliary model
Compute matrices Ri(z,z’) and Ki(t)(z,z’)
Solve the characteristic equation π ⋅ Q = 0
Whole system RG and matrix is never stored

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 261

Outline

Kronecker product and DTMC
Kronecker sum and CTMC
Structured view of stochastic Petri nets
Reachability set construction
CTMC generation and solution
Bibliography

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 262

Bibliography

J. Campos, S. Donatelli, M. Silva:
Structured Solution of Asynchronously
Communicating Stochastic Modules. IEEE
Transactions on Software Engineering, vol.
25, no. 2, pp. 147-165, March 1999.
Download here.

http://webdiis.unizar.es/CRPetri/papers/jcampos/99_CDS_TSE.ps.gz

Modelling

and

analysis

of

concurrent

systems
 with

Petri

nets. Performance

evaluation

7. Software performance

engineering

with

 UML and

PNs

Javier Campos

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza, Spain

jcampos@unizar.es

Javier Campos. Petri nets and performance modelling: 7. Software performance 264

Outline

Software Performance Engineering: basics
A Software Performance Process
Annotated UML Diagrams
Integrating with Petri nets: case study
Performance analysis
Automation of the approach
Real example
Conclusions
Bibliography

Javier Campos. Petri nets and performance modelling: 7. Software performance 265

Software Performance

Engineering: basics

Traditional software development
Main focus on software correctness

Functional requirements, capabilities
What the software will do?

Non-functional requirements
quality requirements like accuracy, performance,
security, modifiability, easiness of use...
introduced later in the development process:

“Fix-it-later” approach

Javier Campos. Petri nets and performance modelling: 7. Software performance 266

Software Performance

Engineering: basics

Typical example of fix-it-later approach:
Denver airport story (1994)

Integrated automated baggage handling system
Planned development budget increased by 2 billion US$
Opening of the airport was delayed 16 months
To make it work it was necessary to reduce its
complexity and loads, the concept of “fully automated”
was gone

Conceptually: line balancing problem

Javier Campos. Petri nets and performance modelling: 7. Software performance 267

Software Performance

Engineering: basics

Software Performance Engineering
A systematic, quantitative approach to
construct software systems that meet
performance objectives
Two important dimensions

Responsiveness: ability to meet its objectives for
response time or throughput
Scalability: ability to continue to meet responsiveness
as the demand for the software functions increases

Javier Campos. Petri nets and performance modelling: 7. Software performance 268

Software Performance

Engineering: basics

The objective of the approach
Predicting performance goals at early phases of
the life cycle
Evaluating performance goals at final phases

The way
Use of performance modelling

Formal models coupled with software requirements,
architectures, specifications and design documents
Automation of the approach (CASE tool development)

Javier Campos. Petri nets and performance modelling: 7. Software performance 269

Software Performance

Engineering: basics

Research community
Term “SPE” coined in 1981 by Connie U. Smith
The International Workshop on Software and
Performance (WOSP)

Santa Fe, US, 1998; Ottawa, CA, 2000; Rome, IT,
2002;
Redwood City, US, 2004; Palma de Mallorca, ES,
2005;
Buenos Aires, AR, 2007
An international workshop sponsored by ACM
SIGMETRICS, ACM SIGSOFT, IFIP WG 6.3 and 7.3

About 5000 entries in scholar.google.com

Javier Campos. Petri nets and performance modelling: 7. Software performance 270

Outline

Software Performance Engineering: basics
A Software Performance Process
Annotated UML Diagrams
Integrating with Petri nets: case study
Performance analysis
Automation of the approach
Real example
Conclusions
Bibliography

Javier Campos. Petri nets and performance modelling: 7. Software performance 271

A Software Performance

Process

What, when and how conduct SPE activities
during software development

Integrated method for SPE:
Integration of software models and
performance models
Integration of performance analysis in the
software life cycle
Methodology suitable for automation (tool)

Javier Campos. Petri nets and performance modelling: 7. Software performance 272

A Software Performance

Process

Integration of software models and
performance models

System design: The behaviour and architecture
of the system is described by a set of UML
diagrams
Annotated design: the UML design is annotated
according to a standard OMG profile
Performance model: the annotated design is
translated to a performance modelling
formalism (SPN)

Javier Campos. Petri nets and performance modelling: 7. Software performance 273

A Software Performance

Process

Integration of performance analysis in the
software life cycle

The method applies at software specification
time
The precision of performance predictions
matches the software knowledge available at
each stage
Feedback information is possible

when a direct correspondence exists between
software specification abstraction level and
performance model evaluation results
understanding the quantitative impact of design
alternatives (effect of system changes on
performance)

Javier Campos. Petri nets and performance modelling: 7. Software performance 274

A Software Performance

Process

Methodology suitable for automation (tool)
Following the OMG architectural framework for
SPE tools

Javier Campos. Petri nets and performance modelling: 7. Software performance 275

A Software Performance

Process

The overall picture

Browser

Software Manager Agent Salesman
SOFTWARE PLACE

GATEWAY SUPPORT NODE (GSN)

Alfred

Browser

Salesman

MU PLACE

USER COMPUTER

Static agent

Mobile agent

Creation

Communication
Travel

Browser

Software Manager Agent Salesman
SOFTWARE PLACE

GATEWAY SUPPORT NODE (GSN)

Alfred

Browser

Salesman

MU PLACE

USER COMPUTER

Static agent

Mobile agent

Creation

Communication
Travel

Diagrama de secuencia (DS)

Brow ser Agent

c1:Catalog

select_sw_service(info)

create_browser(c1)

create_catalog (info_plus)

get_catalog(info_plus)

Salesman

show_catalog_GUI(ci)

refine_catalog(refinement)

[info_need] more_information(refinement2, ci)

select_sw(name)

create_salesman(info_sale)

X
request(info_sale)

observe_GUI_catalog(ci)

refine_catalog(refinement_plus)

select_sw(name)

electronic_comerce

1..n

info_sale_plus

ci+1

delete_browser

Sw ManagerAlfred

[not satisfied]

{1K}

{1K}

{1K}

{100K}

{100K}{100K}

{0.9} {1K} {1K}

{1K} {1K}
{1K}

{1K}

{1K}

[satisfied]
{0.1} {1K..100K}

{1K..100K}

Diagrama de secuencia (DS)

Brow ser Agent

c1:Catalog

select_sw_service(info)

create_browser(c1)

create_catalog (info_plus)

get_catalog(info_plus)

Salesman

show_catalog_GUI(ci)

refine_catalog(refinement)

[info_need] more_information(refinement2, ci)

select_sw(name)

create_salesman(info_sale)

X
request(info_sale)

observe_GUI_catalog(ci)

refine_catalog(refinement_plus)

select_sw(name)

electronic_comerce

1..n

info_sale_plus

ci+1

delete_browser

Sw ManagerAlfred

[not satisfied]

{1K}

{1K}

{1K}

{100K}

{100K}{100K}

{0.9} {1K} {1K}

{1K} {1K}
{1K}

{1K}

{1K}

[satisfied]
{0.1} {1K..100K}

{1K..100K}

Brow ser Agent

c1:Catalog

select_sw_service(info)

create_browser(c1)

create_catalog (info_plus)

get_catalog(info_plus)

Salesman

show_catalog_GUI(ci)

refine_catalog(refinement)

[info_need] more_information(refinement2, ci)

select_sw(name)

create_salesman(info_sale)

X
request(info_sale)

observe_GUI_catalog(ci)

refine_catalog(refinement_plus)

select_sw(name)

electronic_comerce

1..n

info_sale_plus

ci+1

delete_browser

Sw ManagerSw ManagerAlfredAlfred

[not satisfied]

{1K}

{1K}

{1K}

{100K}

{100K}{100K}

{0.9} {1K} {1K}

{1K} {1K}
{1K}

{1K}

{1K}

[satisfied]
{0.1} {1K..100K}

{1K..100K}

Javier Campos. Petri nets and performance modelling: 7. Software performance 276

Outline

Software Performance Engineering: basics
A Software Performance Process
Annotated UML Diagrams
Integrating with Petri nets: case study
Performance analysis
Automation of the approach
Real example
Conclusions
Bibliography

Javier Campos. Petri nets and performance modelling: 7. Software performance 277

Annotated

UML Diagrams

Use Cases and actors:
Starting point to describe
system behaviour
Specify the requirements of
a system, subsystem or class
and their functionality
Tag: probability that
an actor executes
a use case
Detailed later
with sequence
diagrams

“Mail client” model

Javier Campos. Petri nets and performance modelling: 7. Software performance 278

Annotated

UML Diagrams

Sequence Diagrams:
Used to detail Use Cases
Specify a set of partially ordered messages
Each message defines a communication
mechanism and the roles to be played by
sender/receiver

Represent

patterns

of

interaction

between
 objects

Javier Campos. Petri nets and performance modelling: 7. Software performance 279

Annotated

UML Diagrams

Sequence Diagrams
(cont):

Tags: message sizes,
messages routing
rates
Will be used to derive
a SPN performance
model of a particular
scenario
(together with a set
of state charts)

Javier Campos. Petri nets and performance modelling: 7. Software performance 280

Annotated

UML Diagrams

Statecharts:
Used to describe the behaviour of a model
element, such as an object
Describe possible state sequences and actions
during the life of the object
Complete view of system behaviour: life of all
the objects involved used to derive a SPN
performance model
Particular scenario: Statecharts together with
a Sequence Diagram used to derive a SPN
performance model of concrete executions

Javier Campos. Petri nets and performance modelling: 7. Software performance 281

Annotated

UML Diagrams

Statecharts (cont):
Elements for integration of performance
information: activities, guards and events

Activities: tasks performed in a given state
annotated computation time

Javier Campos. Petri nets and performance modelling: 7. Software performance 282

Annotated

UML Diagrams

Statecharts (cont):
Elements for integration of performance
information: activities, guards and events

Guards: conditions in a transition that must hold to
fire the event annotated routing rates

Javier Campos. Petri nets and performance modelling: 7. Software performance 283

Annotated

UML Diagrams

Statecharts (cont):
Elements for integration of performance
information: activities, guards and events

Events: messages in the sequence diagram between
server and receiver objects annotated message
size

Javier Campos. Petri nets and performance modelling: 7. Software performance 284

Annotated

UML Diagrams

Activity Diagrams:
Refine doActivities in a Statechart
We use them for detailing internal control flow
of a process
In contrast to Statecharts, driven by external
events

more detailed modelling of Statecharts

Used to derive a SPN performance model

Javier Campos. Petri nets and performance modelling: 7. Software performance 285

Annotated

UML Diagrams

Activity Diagrams (cont):
Performance annotations:

Routing
rates
Activity
durations

Javier Campos. Petri nets and performance modelling: 7. Software performance 286

Annotated

UML Diagrams

Deployment diagram:
Models the distribution of software
components in the hardware platform/network
and O.S. resources
Annotated with transfer bit rate of the
communication network

Javier Campos. Petri nets and performance modelling: 7. Software performance 287

Outline

Software Performance Engineering: basics
A Software Performance Process
Annotated UML Diagrams
Integrating with Petri nets: case study
Performance analysis
Automation of the approach
Real example
Conclusions
Bibliography

Javier Campos. Petri nets and performance modelling: 7. Software performance 288

Integrating

with

Petri

nets: case study

A basic mail client

We focus in the first use case:
check mail from a server using the POP3
protocol

Javier Campos. Petri nets and performance modelling: 7. Software performance 289

Integrating

with

Petri

nets: case study
The client tries to establish a TCP connection with the server via
port 110 (Statechart for the class ClientHost: client behaviour)

Javier Campos. Petri nets and performance modelling: 7. Software performance 290

Integrating

with

Petri

nets: case study

If it succeeds reception of greeting message

Javier Campos. Petri nets and performance modelling: 7. Software performance 291

Integrating

with

Petri

nets: case study

Both client and server begin authentication (authorization)
phase

Javier Campos. Petri nets and performance modelling: 7. Software performance 292

Integrating

with

Petri

nets: case study

The client sends username/password through USER and
PASS command combination

Javier Campos. Petri nets and performance modelling: 7. Software performance 293

Integrating

with

Petri

nets: case study
If server answers “ok” to both messages, the POP3 session enters
the transaction phase, otherwise... “err”...

Javier Campos. Petri nets and performance modelling: 7. Software performance 294

Integrating

with

Petri

nets: case study

The client checks for new mail using LIST command

Javier Campos. Petri nets and performance modelling: 7. Software performance 295

Integrating

with

Petri

nets: case study

If there is any new mail, the client obtains every mail by
means of RETR and DELE commands

Javier Campos. Petri nets and performance modelling: 7. Software performance 296

Integrating

with

Petri

nets: case study

Once all mails have been downloaded, interaction ends with
QUIT command

Javier Campos. Petri nets and performance modelling: 7. Software performance 297

Integrating

with

Petri

nets: case study

The POP3 server enters the update state and releases
acquired resources during transaction phase

Javier Campos. Petri nets and performance modelling: 7. Software performance 298

Integrating

with

Petri

nets: case study

Statechart for the class ServerHost: server behaviour

Javier Campos. Petri nets and performance modelling: 7. Software performance 299

Integrating

with

Petri

nets: case study

Statechart for the actor User: user’s behaviour

Javier Campos. Petri nets and performance modelling: 7. Software performance 300

Integrating

with

Petri

nets: case study

Translation of statecharts to Labelled GSPN’s
Compositional approach
From basic modelling elements of statecharts to LGSPN’s

Initial and final states
Simple states (activities, entry and exit)
Transitions (internal and outgoing)

Translation:
input model (statechart element) output model (LGSPN)

Composition of LGSPN’s
Using a composition operator that fuses nodes with equal
labels

Javier Campos. Petri nets and performance modelling: 7. Software performance 301

Integrating

with

Petri

nets: case study

“Flat” UML statechart

Javier Campos. Petri nets and performance modelling: 7. Software performance 302

Integrating

with

Petri

nets: case study

Each simple state is modelled by a LGSPN representing the
basic elements of states and transitions...
Simple state

with

no activity

and

immediate

outgoing

transition

basic nets (BS)

Javier Campos. Petri nets and performance modelling: 7. Software performance 303

Integrating

with

Petri

nets: case study

Each simple state is modelled by a LGSPN representing the
basic elements of states and transitions...
Simple state

with

no activity

and

no immediate

outgoing

transition

basic nets (BS)

Javier Campos. Petri nets and performance modelling: 7. Software performance 304

Integrating

with

Petri

nets: case study

Each simple state is modelled by a LGSPN representing the
basic elements of states and transitions...
Simple state

with

activity

and

immediate

outgoing

transition

basic nets (BS)

Javier Campos. Petri nets and performance modelling: 7. Software performance 305

Integrating

with

Petri

nets: case study

Each simple state is modelled by a LGSPN representing the
basic elements of states and transitions...
Simple state

with

activity

and

no immediate

outgoing

transition

basic nets (BS)

Javier Campos. Petri nets and performance modelling: 7. Software performance 306

Integrating

with

Petri

nets: case study
Translation of other elements: Deferred events, internal transitions, outgoing transitions

Javier Campos. Petri nets and performance modelling: 7. Software performance 307

Integrating

with

Petri

nets: case study

Composing the simple state...

Javier Campos. Petri nets and performance modelling: 7. Software performance 308

Integrating

with

Petri

nets: case study

Translation of other elements (“non-flat”
SC)

Composite states,
concurrent states,
submachine states,
fork and join,
junction and choice,
synchronous states...

Details in the literature

Javier Campos. Petri nets and performance modelling: 7. Software performance 309

Integrating

with

Petri

nets: case study

The same for the initial pseudo-states and
final states

Javier Campos. Petri nets and performance modelling: 7. Software performance 310

Integrating

with

Petri

nets: case study
The LGSPN model of the Statechart is the composition of
all simple states, and initial and final states

If there are several Statecharts composition of all of
them

Javier Campos. Petri nets and performance modelling: 7. Software performance 311

Integrating

with

Petri

nets: case study

Coming back to the mail example...

Statechart for the class
ClientHost: client behaviour

Javier Campos. Petri nets and performance modelling: 7. Software performance 312

Integrating

with

Petri

nets: case study

In the behaviour of Serverhost
We decide to describe more in detail activity
associated to state Authorization using an
Activity Diagram

Javier Campos. Petri nets and performance modelling: 7. Software performance 313

Integrating

with

Petri

nets: case study

Refinement of Authorization with an AD

Javier Campos. Petri nets and performance modelling: 7. Software performance 314

Integrating

with

Petri

nets: case study
Statecharts and activity diagrams all together (clienthost,
serverhost, user)

clienthost

user

serverhost

Javier Campos. Petri nets and performance modelling: 7. Software performance 315

...: case study
Finally,
Sequence Diagram

Represents a
particular
scenario
of execution
Example of
interaction
between
clienthost and
serverhost

Javier Campos. Petri nets and performance modelling: 7. Software performance 316

Integrating

with

Petri

nets: case study

Superposition of Statecharts, Activity
Diagrams and Sequence Diagram
analysable model of the concrete execution

Javier Campos. Petri nets and performance modelling: 7. Software performance 317

Outline

Software Performance Engineering: basics
A Software Performance Process
Annotated UML Diagrams
Integrating with Petri nets: case study
Performance analysis
Automation of the approach
Real example
Conclusions
Bibliography

Javier Campos. Petri nets and performance modelling: 7. Software performance 318

Performance

analysis

Effect on the downloading time for
different connection speeds of

number of mails
proportion of
them with
attached files

0

100

200

300

400

500

600

700

800

t (sc.)

1 attach,
3 text

3 attach,
4 text

5 attach,
6 text

5 attach,
14 text

9 attach,
10 text

avg. mean of e-mails (from P', P'')28,8 Kbps

56 Kbps

ADSL 256 Kbps

Javier Campos. Petri nets and performance modelling: 7. Software performance 319

Performance

analysis

Effective transfer rate of the client
(connection speed 56 Kbps)

Higher amount
of data
minimizes
the relative
amount of
time spent by
protocol
messages

0,25 0,5 0,75
1

4

7

10

13

44

46

48

50

52

54

56

Effective
transfer rate

(Kbps)

P'' (% attachs)

avg. mean of
e-mails

(from P')

54-56

52-54

50-52

48-50

46-48

44-46

Javier Campos. Petri nets and performance modelling: 7. Software performance 320

Performance

analysis

Execution time of the SD scenario varying
Attach files sizes
Network speed

0

50

100

150

200

250

300

350

100 300 500 700 1000

Attach size

t (
sc

.)

Modem 28,8 Kbps
Modem 56 Kbps
ADSL 256 Kbps

Javier Campos. Petri nets and performance modelling: 7. Software performance 321

Outline

Software Performance Engineering: basics
A Software Performance Process
Annotated UML Diagrams
Integrating with Petri nets: case study
Performance analysis
Automation of the approach
Real example
Conclusions
Bibliography

Javier Campos. Petri nets and performance modelling: 7. Software performance 322

Automation

of

the

approach

“A key factor in the successful application of early
performance analysis is automation.”
“Characterizes the maturity of the approach and
the generality of its applicability.”

ArgoSPE:
A Software Performance

Engineering

Tool

Javier Campos. Petri nets and performance modelling: 7. Software performance 323

Automation

of

the

approach

ArgoSPE
Implements most of the features explained in this talk
and some others
The system is modeled as a set of UML diagrams
Annotated according to the UML Profile on
schedulability, performance and time specification

Activity durations, routing probabilities, message sizes,
network speed, population, initial state, resident classes

Performance queries are defined on UML diagrams
State population, stay time, message delay, network delay,
response time

Translated into GSPN

Javier Campos. Petri nets and performance modelling: 7. Software performance 324

Automation

of

the

approach

Architecture of ArgoSPE:
Follows the architectural framework proposed
in UML-SPT

ArgoUML CASE tool

ArgoSPE modules

Javier Campos. Petri nets and performance modelling: 7. Software performance 325

Automation

of

the

approach

ArgoSPE menu integrated in ArgoUML editor

Javier Campos. Petri nets and performance modelling: 7. Software performance 326

Automation

of

the

approach

Details:
A tool paper presented in PN’06 Conference:

“ArgoSPE: Model-based

software performance

evaluation”
José Merseguer

and

Elena Gómez-Martínez

Tigris.org: Open Source Software Engineering Tools
http://argospe.tigris.org

download

the

tool, tool

description, detailed

user
 documentation, developer

documentation, examples...

free software available

under

GNU General Public

License

http://argospe.tigris.org/

Javier Campos. Petri nets and performance modelling: 7. Software performance 327

Outline

Software Performance Engineering: basics
A Software Performance Process
Annotated UML Diagrams
Integrating with Petri nets: case study
Performance analysis
Automation of the approach
Real example
Conclusions
Bibliography

Javier Campos. Petri nets and performance modelling: 7. Software performance 328

Real example

Retrieving and installing software using internet in
a mobile environment
Usual solution: tucows-like
(Tucows.com = the largest online software
download site)
SPE approach for a new mobile agent-based
solution (Antarctica project of University of
Vasque Country)
Goal: compare performance indices of both
solutions (before implementing Antarctica)

Minimize network connection time
Study the impact on performance of agents intelligence

Javier Campos. Petri nets and performance modelling: 7. Software performance 329

Real example

Steps:
Model both solutions using annotated UML
diagrams
Generate PN performance models for both
solutions
Analyze performance indices under different
scenarios
Recommend the best choices and in which cases
the use of the new mobile agent-based
approach is preferable

Javier Campos. Petri nets and performance modelling: 7. Software performance 330

Real example

Tucows-like approach
Sequence Diagram
with durations and
routing annotations

Javier Campos. Petri nets and performance modelling: 7. Software performance 331

Real example

Tucows-like approach (cont.)
Sequence Diagram + Statecharts

performance
model

Javier Campos. Petri nets and performance modelling: 7. Software performance 332

Real example

Mobile agent-based approach: description

Browser

Software Manager Agent Salesman
SOFTWARE PLACE

GATEWAY SUPPORT NODE (GSN)

Alfred

Browser

Salesman

MU PLACE

USER COMPUTER

Static agent

Mobile agent

Creation
Communication
Travel

Alfred, the butler!

Javier Campos. Petri nets and performance modelling: 7. Software performance 333

Browser Agent

c1 :Catalog

select_sw_service(info)

create_browser(c1)

create_catalog (info_plus)

get_catalog(info_plus)

Salesman

show_catalog_GUI(ci)

refine_catalog(refinement)

[info_need] more_information(refinement2, ci)

select_sw(name)

create_salesman(info_sale)

X
request(info_sale)

observe_GUI_catalog(ci)

refine_catalog(refinement_plus)

select_sw(name)

electronic_comerce

1..n

info_sale_plus

ci+1

delete_browse
r

Sw ManagerAlfred

[not satisfied]

{1K}

{1K}

{1K}

{100K}

{100K}{100K}

{0.9} {1K} {1K}

{1K} {1K}
{1K}

{1K}

{1K}

[satisfied]
{0.1} {1K..100K}

{1K..100K}

Real

example
Mobile agent-based approach:
Annotated Sequence Diagram

Javier Campos. Petri nets and performance modelling: 7. Software performance 334

Real example

Mobile agent-based approach: Alfred class
Statechart

WAIT

Do:add_info1

Do:add_info2Do:add_info3

Do:create_GUI(c)

select_sw_service(info)

<< more_services>>

^SwManager.get_catalog(info_plus)

show_catalog_GUI(ci)

^user.observe_GUI_catalog(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

^browser.select_sw(name)

[^user satisfied]select_sw(name)

{1sec}

{1sec}

{1sec}

{1sec}

{1K}

{1K}

{1K}{1K}

{1K}

{1K}

{100K}

{100K}
{0.1}

{0.9}

WAIT

Do:add_info1

Do:add_info2Do:add_info3

Do:create_GUI(c)

select_sw_service(info)

<< more_services>>

^SwManager.get_catalog(info_plus)

show_catalog_GUI(ci)

^user.observe_GUI_catalog(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

^browser.select_sw(name)

[^user satisfied]select_sw(name)

{1sec}

{1sec}

{1sec}

{1sec}

{1K}

{1K}

{1K}{1K}

{1K}

{1K}

{100K}

{100K}
{0.1}

{0.9}

Javier Campos. Petri nets and performance modelling: 7. Software performance 335

Real example

Simplified version of the LGSPN component
corresponding to Alfred

wait_Alfred
show_GUI_catalog

refine_catalog

create_GUI

add_info2

browser.
refine_catalog

add_info3

add_info1

select_sw_service
select_software

Sw_manager.
get_catalog

user.
observe_GUI_catalog

browser.
select_sw_browser

WAIT

Do:add_info1

Do:add_info2Do:add_info3

Do:create_GUI(c)

select_sw_service(info)

<<more_services>>

^SwManager.get_catalog(info_plus)

show_catalog_GUI(ci)

^user.observe_GUI_catalog(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

^browser.select_sw(name)

[^user satisfied]select_sw(name)

{1sec}

{1sec}

{1sec}

{1sec}
{1K}

{1K}

{1K}{1K}

{1K}

{1K}

{100K}

{100K}
{0.1}

{0.9}

WAIT

Do:add_info1

Do:add_info2Do:add_info3

Do:create_GUI(c)

select_sw_service(info)

<<more_services>>

^SwManager.get_catalog(info_plus)

show_catalog_GUI(ci)

^user.observe_GUI_catalog(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

^browser.select_sw(name)

[^user satisfied]select_sw(name)

{1sec}

{1sec}

{1sec}

{1sec}
{1K}

{1K}

{1K}{1K}

{1K}

{1K}

{100K}

{100K}
{0.1}

{0.9}

WAIT

Do:add_info1

Do:add_info2Do:add_info3

Do:create_GUI(c)

select_sw_service(info)

<<more_services>>

^SwManager.get_catalog(info_plus)

show_catalog_GUI(ci)

^user.observe_GUI_catalog(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

^browser.select_sw(name)

[^user satisfied]select_sw(name)

{1sec}

{1sec}

{1sec}

{1sec}
{1K}

{1K}

{1K}{1K}

{1K}

{1K}

{100K}

{100K}
{0.1}

{0.9}

Alfred agent

Javier Campos. Petri nets and performance modelling: 7. Software performance 336

Real example

Simplified version of the LGSPN component
corresponding to the software manager agent

WAIT

Do:add_info4 {1sec}

^salesman.reply(info_sale_plus) {1K}

request(info_sale)
{1K}

Do:create_catalog
{1min}

Do:create_browser
{1sec}

^catalog.create_catalog(info_plus)
{1K}

^browser.create_browser(ci)
{1K}

Do:get_info
{0.5sec..50sec}

get_catalog(info_plus)
{1K}

more_information(refinement2,ci)
{1K..100K}

^browser.reply(catalog)
{100K}

WAIT

Do:add_info4 {1sec}

^salesman.reply(info_sale_plus) {1K}

request(info_sale)
{1K}

Do:create_catalog
{1min}

Do:create_browser
{1sec}

^catalog.create_catalog(info_plus)
{1K}

^browser.create_browser(ci)
{1K}

Do:get_info
{0.5sec..50sec}

get_catalog(info_plus)
{1K}

more_information(refinement2,ci)
{1K..100K}

^browser.reply(catalog)
{100K}

WAIT

Do:add_info4 {1sec}

^salesman.reply(info_sale_plus) {1K}

request(info_sale)
{1K}

WAITWAIT

Do:add_info4 {1sec}

^salesman.reply(info_sale_plus) {1K}
Do:add_info4 {1sec}

^salesman.reply(info_sale_plus) {1K}

request(info_sale)
{1K}

Do:create_catalog
{1min}

Do:create_browser
{1sec}

^catalog.create_catalog(info_plus)
{1K}

^browser.create_browser(ci)
{1K}

Do:create_catalog
{1min}

Do:create_catalog
{1min}

Do:create_browser
{1sec}

Do:create_browser
{1sec}

^catalog.create_catalog(info_plus)
{1K}

^catalog.create_catalog(info_plus)
{1K}

^browser.create_browser(ci)
{1K}

^browser.create_browser(ci)
{1K}

Do:get_info
{0.5sec..50sec}
Do:get_info
{0.5sec..50sec}

get_catalog(info_plus)
{1K}

get_catalog(info_plus)
{1K}

more_information(refinement2,ci)
{1K..100K}

more_information(refinement2,ci)
{1K..100K}

^browser.reply(catalog)
{100K}

^browser.reply(catalog)
{100K}

wait
request

get_catalog

add_info4

create_catalog

browser.
create_browser

get_info

browser.reply_remote

more_information_remote

browser.reply_local salesman.reply

more_information_local

Software manager agent

Javier Campos. Petri nets and performance modelling: 7. Software performance 337

Real example

The other agents

Browser agent

Salesman

Javier Campos. Petri nets and performance modelling: 7. Software performance 338

Real example

Simplified version of composition between statechart
LGSPN models and sequence diagram model

wait_Alfred
show_GUI_catalog

refine_catalog

create_GUI

add_info2

browser.
refine_catalog

add_info3

add_info1

select_sw_service
select_software

Sw_manager.
get_catalog

user.
observe_GUI_catalog

browser.
select_sw_browser

wait

request

get_catalog

add_info4

create_catalog

browser.
create_browser

get_info

browser.reply_remote

more_information_remote

browser.reply_local salesman.reply

more_information_local

Channel

AlfredSoftware Manager

select_sw_
service(info)

get_catalog
(info_plus)

{1K}
{1K}

Alfred Sw manager

Javier Campos. Petri nets and performance modelling: 7. Software performance 339

Real example

Mobile agent-based approach: performance model

Javier Campos. Petri nets and performance modelling: 7. Software performance 340

Real example

Comparison of both approaches
slowslow networknetwork

fastfast networknetwork

slow
slow

user
user

fa
st

fa
st

us
er

us
er 0

5

10

15

20

25

30

35

40

refinamientos

m
in

ut
os

TUCOWS 4,28779693 7,891414141 15,09661836 22,16312057 29,55082742 37,28560776
ANTARCTICA 5,062778453 7,208765859 11,49425287 15,69365976 20,08032129 24,72799209

5 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

refinamientos

m
in

ut
os

TUCOWS 9,331840239 17,1998624 32,93807642 48,30917874 64,35006435 81,30081301
ANTARCTICA 10,10713564 16,51800463 29,29115407 41,8760469 55,00550055 68,87052342

5 10 20 30 40 50

m
in

ut
os

0

2

4

6

8

10

12

14

16

18

refinamientos

TUCOWS 1,782912566 3,242542153 6,191183754 9,082652134 12,10360687 16,35590448
ANTARCTICA 1,868041545 3,06710833 5,462689828 7,813720894 10,26904909 12,85016705

5 10 20 30 40 50

0

10

20

30

40

50

60

refinamientos

m
in

ut
os

TUCOWS 6,811061163 12,5502008 24,01536984 35,23608175 49,75124378 56,88282139
ANTARCTICA 8,304268394 12,37317496 23,24500232 39,40110323 52,24660397 59,31198102

5 10 20 30 40 50

TUCOWS
ANTARCTICA

TUCOWS
ANTARCTICA

TUCOWS
ANTARCTICA

TUCOWS
ANTARCTICA

0

5

10

15

20

25

30

35

40

refinamientos

m
in

ut
os

TUCOWS 4,28779693 7,891414141 15,09661836 22,16312057 29,55082742 37,28560776
ANTARCTICA 5,062778453 7,208765859 11,49425287 15,69365976 20,08032129 24,72799209

5 10 20 30 40 50
0

5

10

15

20

25

30

35

40

refinamientos

m
in

ut
os

TUCOWS 4,28779693 7,891414141 15,09661836 22,16312057 29,55082742 37,28560776
ANTARCTICA 5,062778453 7,208765859 11,49425287 15,69365976 20,08032129 24,72799209

5 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

refinamientos

m
in

ut
os

TUCOWS 9,331840239 17,1998624 32,93807642 48,30917874 64,35006435 81,30081301
ANTARCTICA 10,10713564 16,51800463 29,29115407 41,8760469 55,00550055 68,87052342

5 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

refinamientos

m
in

ut
os

TUCOWS 9,331840239 17,1998624 32,93807642 48,30917874 64,35006435 81,30081301
ANTARCTICA 10,10713564 16,51800463 29,29115407 41,8760469 55,00550055 68,87052342

5 10 20 30 40 50

m
in

ut
os

0

2

4

6

8

10

12

14

16

18

refinamientos

TUCOWS 1,782912566 3,242542153 6,191183754 9,082652134 12,10360687 16,35590448
ANTARCTICA 1,868041545 3,06710833 5,462689828 7,813720894 10,26904909 12,85016705

5 10 20 30 40 50

m
in

ut
os

0

2

4

6

8

10

12

14

16

18

refinamientos

TUCOWS 1,782912566 3,242542153 6,191183754 9,082652134 12,10360687 16,35590448
ANTARCTICA 1,868041545 3,06710833 5,462689828 7,813720894 10,26904909 12,85016705

5 10 20 30 40 50

0

10

20

30

40

50

60

refinamientos

m
in

ut
os

TUCOWS 6,811061163 12,5502008 24,01536984 35,23608175 49,75124378 56,88282139
ANTARCTICA 8,304268394 12,37317496 23,24500232 39,40110323 52,24660397 59,31198102

5 10 20 30 40 50
0

10

20

30

40

50

60

refinamientos

m
in

ut
os

TUCOWS 6,811061163 12,5502008 24,01536984 35,23608175 49,75124378 56,88282139
ANTARCTICA 8,304268394 12,37317496 23,24500232 39,40110323 52,24660397 59,31198102

5 10 20 30 40 50

TUCOWS
ANTARCTICA
TUCOWSTUCOWS
ANTARCTICAANTARCTICA

TUCOWS
ANTARCTICA
TUCOWSTUCOWS
ANTARCTICAANTARCTICA

TUCOWS
ANTARCTICA
TUCOWSTUCOWS
ANTARCTICAANTARCTICA

TUCOWS
ANTARCTICA
TUCOWSTUCOWS
ANTARCTICAANTARCTICA

Javier Campos. Petri nets and performance modelling: 7. Software performance 341

Outline

Software Performance Engineering: basics
A Software Performance Process
Annotated UML Diagrams
Integrating with Petri nets: case study
Performance analysis
Automation of the approach
Real example
Conclusions
Bibliography

Javier Campos. Petri nets and performance modelling: 7. Software performance 342

Conclusions

Importance of integrated approach for
SPE

Integration of
(pragmatic) software models and
(formal) performance models

Integration of performance analysis in the
software life cycle
Methodology suitable for automation (tool)

Javier Campos. Petri nets and performance modelling: 7. Software performance 343

Conclusions

In usual software industry practice we are still close to the
“fix-it-later” approach concerning non-functional
requirements

“make

it

run, make

it

run

right, make

it

run

fast”

Important research effort on the SPE field
The role of the WOSP conference series
Sit together software engineers, performance modellers and
analysts, and software developers

So, we are in the good direction...

Javier Campos. Petri nets and performance modelling: 7. Software performance 344

Outline

Software Performance Engineering: basics
A Software Performance Process
Annotated UML Diagrams
Integrating with Petri nets: case study
Performance analysis
Automation of the approach
Real example
Conclusions
Bibliography

Javier Campos. Petri nets and performance modelling: 7. Software performance 345

Bibliography

J. Campos, J. Merseguer: On the integration of
UML and Petri nets in software development.
Lecture Notes in Computer Science, vol. 4024, pp.
19-36, 2006. (Invited talk in 27th International
Conference on Applications and Theory of Petri
Nets and Other Models of Concurrency, ICATPN
2006.)
Download here.
J. Merseguer: Software Performance Engineering
based on UML and Petri nets. PhD Thesis. Dpto.
Informática e Ingeniería de Sistemas, Universidad
de Zaragoza. March 2003.
Download here.

http://webdiis.unizar.es/CRPetri/papers/jcampos/06_CM_LNCS.pdf
http://webdiis.unizar.es/~jcampos/SPN/aux/thesis_jmerseguer.pdf

	0.Presentation
	Modelling and analysis of concurrent systems with Petri nets. Performance evaluation�� 	Javier Campos�	Departamento de Informática e Ingeniería de Sistemas�	Universidad de Zaragoza, Spain�	jcampos@unizar.es
	Course details
	Contents

	1.Introduction DES
	Modelling and analysis of concurrent systems with Petri nets. Performance evaluation ��1. Introduction to discrete event systems��
	Outline
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Outline
	Formal models
	Formal models
	Formal models
	Formal models
	Formal models
	Formal models
	Formal models
	Formal models

	2.Petri nets
	Modelling and analysis of concurrent systems with Petri nets. Performance evaluation ��2. Petri nets: definitions, modelling and examples��
	Outline
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Outline
	Definition
	Definition
	Definition
	Definition
	Definition
	Definition
	Definition
	Definition
	Outline
	State equation
	State equation
	State equation
	State equation
	State equation
	Outline
	Modelling features and examples
	Modelling features and examples
	Modelling features and examples
	Modelling features and examples
	Modelling features and examples
	Modelling features and examples
	Modelling features and examples
	Outline
	Bibliography

	3.Functional analysis
	Modelling and analysis of concurrent systems with Petri nets. Performance evaluation ��3. Functional properties and analysis techniques��
	Outline
	Basic properties
	Basic properties
	Basic properties
	Basic properties
	Basic properties
	Outline
	Analysis techniques
	Analysis techniques
	Outline
	Reachability graph
	Reachability graph
	Reachability graph
	Reachability graph
	Reachability graph
	Outline
	Net transformations
	Net transformations
	Net transformations
	Net transformations
	Net transformations
	Net transformations
	Net transformations
	Outline
	Convex geometry and PNs
	Convex geometry and PNs
	Convex geometry and PNs
	Convex geometry and PNs
	Convex geometry and PNs
	Convex geometry and PNs
	Convex geometry and PNs
	Convex geometry and PNs
	Convex geometry and PNs
	Convex geometry and PNs
	Convex geometry and PNs
	Convex geometry and PNs
	Outline
	Bibliography

	4.Time augmented PN
	Modelling and analysis of concurrent systems with Petri nets. Performance evaluation ��4. Time augmented Petri nets��
	Outline
	Introduction
	Introduction
	Introduction
	Outline
	Interpreted graphs
	Interpreted graphs
	Interpreted graphs
	Interpreted graphs
	Interpreted graphs
	Interpreted graphs
	Interpreted graphs
	Interpreted graphs
	Outline
	Interpreted Petri nets
	Interpreted Petri nets
	Interpreted Petri nets
	Interpreted Petri nets
	Interpreted Petri nets
	Interpreted Petri nets
	Outline
	Bibliography

	5.Performance analysis
	Modelling and analysis of concurrent systems with Petri nets. Performance evaluation ��5. Performance evaluation with PNs: � classic technique�
	Outline
	Continuous time Markov chains
	Continuous time Markov chains
	Continuous time Markov chains
	Continuous time Markov chains
	Continuous time Markov chains
	Continuous time Markov chains
	Continuous time Markov chains
	Outline
	Stochastic Petri nets
	Stochastic Petri nets
	Stochastic Petri nets
	Outline
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	CTMC-based exact analysis
	Outline
	Bibliography

	6.1.Structure based techniques-Bounds
	Modelling and analysis of concurrent systems with Petri nets. Performance evaluation ��6.1. Structure based performance analysis � techniques: Bounds �
	Outline
	Preliminary comments
	Preliminary comments
	Outline
	Introducing ideas: Marked Graph case
	Introducing ideas: Marked Graph case
	Introducing ideas: Marked Graph case
	Introducing ideas: Marked Graph case
	Introducing ideas: Marked Graph case
	Introducing ideas: Marked Graph case
	Introducing ideas: Marked Graph case
	Outline
	Generalization: use of visit ratios
	Generalization: use of visit ratios
	Generalization: use of visit ratios
	Generalization: use of visit ratios
	Generalization: use of visit ratios
	Generalization: use of visit ratios
	Generalization: use of visit ratios
	Outline
	Improvements of the bounds
	Improvements of the bounds
	Improvements of the bounds
	Improvements of the bounds
	Improvements of the bounds
	Improvements of the bounds
	Improvements of the bounds
	Improvements of the bounds
	Improvements of the bounds
	Improvements of the bounds
	Improvements of the bounds
	Improvements of the bounds
	Outline
	A general linear programming statement
	A general linear programming statement
	A general linear programming statement
	A general linear programming statement
	A general linear programming statement
	A general linear programming statement
	A general linear programming statement
	A general linear programming statement
	A general linear programming statement
	Outline
	Bibliography

	6.2.Structure based techniques-Approximations
	Modelling and analysis of concurrent systems with Petri nets. Performance evaluation ��6.2. Structure based performance analysis� techniques: Approximations
	Outline
	Decomposition of models
	Decomposition of models
	Decomposition of models
	Decomposition of models
	Decomposition of models
	Outline
	Flow equivalent aggregation
	Flow equivalent aggregation
	Flow equivalent aggregation
	Flow equivalent aggregation
	Flow equivalent aggregation
	Flow equivalent aggregation
	Flow equivalent aggregation
	Outline
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Iterative algorithm: marked graphs case
	Outline
	Iterative algorithm: general case
	Iterative algorithm: general case
	Iterative algorithm: general case
	Iterative algorithm: general case
	Iterative algorithm: general case
	Iterative algorithm: general case
	Iterative algorithm: general case
	Iterative algorithm: general case
	Iterative algorithm: general case
	Iterative algorithm: general case
	Iterative algorithm: general case
	Iterative algorithm: general case
	Outline
	Bibliography

	6.3.Structure based techniques-Kronecker
	Modelling and analysis of concurrent systems with Petri nets. Performance evaluation� �6.3. Structure based performance analysis techniques:� Kronecker algebra-based exact solution
	Outline
	Kronecker product and DTMC
	Kronecker product and DTMC
	Kronecker product and DTMC
	Outline
	Kronecker sum and CTMC
	Kronecker sum and CTMC
	Kronecker sum and CTMC
	Outline
	Structured view of stochastic Petri nets
	Structured view of stochastic Petri nets
	Structured view of stochastic Petri nets
	Structured view of stochastic Petri nets
	Structured view of stochastic Petri nets
	Outline
	Reachability set construction
	Reachability set construction
	Reachability set construction
	Outline
	CTMC generation and solution
	CTMC generation and solution
	CTMC generation and solution
	CTMC generation and solution
	CTMC generation and solution
	Outline
	Bibliography

	7.Software performance
	Modelling and analysis of concurrent systems with Petri nets. Performance evaluation ��7. Software performance engineering with � UML and PNs �
	Outline
	Software Performance Engineering: basics
	Software Performance Engineering: basics
	Software Performance Engineering: basics
	Software Performance Engineering: basics
	Software Performance Engineering: basics
	Outline
	A Software Performance Process
	A Software Performance Process
	A Software Performance Process
	A Software Performance Process
	A Software Performance Process
	Outline
	Annotated UML Diagrams
	Annotated UML Diagrams
	Annotated UML Diagrams
	Annotated UML Diagrams
	Annotated UML Diagrams
	Annotated UML Diagrams
	Annotated UML Diagrams
	Annotated UML Diagrams
	Annotated UML Diagrams
	Annotated UML Diagrams
	Outline
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	Integrating with Petri nets: case study
	...: case study
	Integrating with Petri nets: case study
	Outline
	Performance analysis
	Performance analysis
	Performance analysis
	Outline
	Automation of the approach
	Automation of the approach
	Automation of the approach
	Automation of the approach
	Automation of the approach
	Outline
	Real example
	Real example
	Real example
	Real example
	Real example
	Número de diapositiva 71
	Real example
	Real example
	Real example
	Real example
	Real example
	Real example
	Real example
	Outline
	Conclusions
	Conclusions
	Outline
	Bibliography

