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[ 15 lectures of 50 minutes
d Topics:
A Formal models of concurrent systems, Petri nets
O Qualitative and quantitative (performance) analysis
0 Software performance engineering
[ Slides available at:
Q http://webdiis.unizar.es/~jcampos/barcelona07.pdf
 Bibliography:
O At the end of each lecture
' Orientation:
O Post-graduate (master/PhD)
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Basic concepts
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Discrete Event Systems (DES):

L Systems whose state variables are
seen/considered discrete
(they take values in N or in a fixed alphabet)
The state space is discrete
dChanges of state are due to events

dTime is a singular variable

dSynchronous systems: a clock —accesible from all
nodes of the system- exists = strong
synchronization of clocks = total order of events

JAsynchronous systems: there is no global time =
events are ordered by causal relations = partial
order of events
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Basic concepts
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1 Discrete Event Systems (cont.):

DES appear in several application domains

dIntegrated manufacturing, Protocol engineering,
Logistics, Computer architecture, Software
engineering...
dThere exist simulation languages for DES with
constructors valid to represent:

dJobs/activities, resources, duration of activities,
logic validation...
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Basic concepts
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JModels

L Abstraction of reality
JPhysical model
Simulation program
dTextual/graphic description
JFormal model

DES: many complex/paradoxical situations
= Interest of formal models
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Formal models
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 Advantages using formal models

(Better comprehension (avoid ambiguities and
contradictions; identify properties; suggest
potential solutions...)

TIncrease the confidence level on the design
dHelp in the correct dimensioning

dHelp in the implementation and documentation
dTIncrease re-usability

Need of formal methods is well-accepted in
mature engineering domains (vs. emerging)

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES
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 Formal models: credibility versus tractability

— v ~

Mod 1 Mod 2 Mod 3

Not very credible
Very tractable

A Relatively credible
Tractable
Credible
Relatively tractable
size ®
Real system
complexity
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Formal models
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Maturity of a scientific/technical discipline
dFormalisms
L Models (paradigmatic)
d Analysis/synthesis techniques
dTools (automated) to build/analyse/implement
QA Standardization: Norms (ISO, CCITT, ..)

dFirst DES problem:

dNo consensus on a "better formalism"”

(it does not exist a formalism so concise and
tractable as differential equations for
continuous systems)

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 13



Formal models
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It does not exist a single formalism...

Life cycle: family of formalisms
(each one adapted for a given phase)
3 Paradigm:

O An entire constellation of beliefs, values and techniques, and so
on, shared by the members of a given community.

O A conceptual framework for reducing the chaotic mass to some
form of order.

O The total pattern of perceiving, conceptualizing, acting,
validating, and valuing associated with a particular image of

reality that prevails in a science or a branch of sience (T. Kuhn).

3 Modelling paradigm:

O Conceptual framework allowing to obtain formalisms from some
common (few and basic) concepts and principles.
[ Conceptual and operative economy
[ Coherence

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES
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Formal models
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O Formalisms for the modelling of DES

O Sequential

3 Functional (untimed)
O Regular expresions, grammars...
O Automata, state diagrams, abstract state machines...
+ Probabilistic/possibilistic extensions...

A Timed

O Timed automata (deterministic, probabilistic, possibilistic...)
O Markov chains...

O Concurrent

O Functional (untimed)
O Product automata
d Petri nets
O Process algebras (CCS, CSP...)
d Timed
0 Queueing networks
Q Conjunctive/disjunctive graphs (PERT, GERT...)
0 Max-plus algebras
O Timed Petri nets (deterministic, stochastic, fuzzy...)
O Timed process algebras (deterministic, stochastic, fuzzy...)

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 15



Formal models
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[ Examples of problems

0 Nederland intercity train network
[ Minimum periods
[ Used periods, flexibility

O Efect of mutual waitings between
trains (synchronizations)

d Critical lines

[ Fleet and distribution to guarantee
minimum period

[ Optimum lines structure

[ Dynamics after specific
perturbations

[ Variability of service under
stochastic hypothesis

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 16



Formal models
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[ Main basic modelling approaches (M. Bunge)
[ Descriptive / analytic (what is?)
Internal representation:

[ System: objects + relations

 States, events producing changes
"Process" is not a primitive concept
Automata, Petri nets, Markov chains, Queueing networks
O Constructive / processes-based (how is observed?)

External representation (I/0)
[ "Process" is a primitive concept
[ System: set of processes + synchronization constraints
[ Structured processes

Regular expressions, Process algebras

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES 17



Formal models
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[ Petri nets (vector addition systems)

{ Dudlity states and events
O Place: state variable
d Transition: state transformer
d Marking: value of state

O State equation (but...)

( Dependency (sequentialization) and independency
(parallelism) of events.
Causal structure

[ True concurrency (versus interleaved sequential
observations)

0 Temporal realism (performance, scheduling)

O Locality (states and actions) - design methodologies
(top-down, bottom-up)

Javier Campos. Petri nets and performance modelling: 1. Introduction to DES
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Basic concepts
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JPetri nets:

A formal, graphical, executable technique
for the specification and analysis of
concurrent, discrete-event dynamic
systems; a technique undergoing
standardisation.

http://www.petrinets.info/

Javier Campos. Petfri nets and performance modelling: 2. Petri nets
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JFormal:

The technique is mathematically defined.
Many static and dynamic properties of a
PN (and hence a system specified using the
technique) may be mathematically proven.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 22



Basic concepts
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 Graphical:

The technique belongs to a branch of mathematics
called graph theory.

A PN may be represented graphically as well as
mathematically.

The ability to visualise structure and behaviour of
a PN promotes understanding of the modelled
system.

Software tools exist which support graphical
construction and visualisation.

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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Basic concepts

] Executable:

N

A PN may be executed and the dynamic behaviour
observed graphically.

PN practitioners regard this as a key strength of
the PN technique, both as a rich feedback
mechanism during model construction and as an aid
in communicating the behaviour of the model to
other practioners and lay-persons.

Software tools exist which automate execution.

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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Basic concepts
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1 Specification:

System requirements expressed and
verified (by formal analysis) using the
technique constitute a formal system
specification.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 25



Basic concepts
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 Analysis:
A specification in the form of a PN model may be formally
analysed, to verify that static and dynamic system
requirements are met.

Methods available are based on Occurrence graphs (state
spaces), Invariants and Timed PN. The inclusion of timing
enables performance analysis.

Modelling is an iterative process. At each iteration analysis
may uncover errors in the model or shortcomings in the
specification. In response the PN is modified and re-
analysed. Eventually a mathematically correct and consistent
model and specification is achieved.

Software tools exist which support and automate analysis.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 26



Basic concepts
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1 Concurrent:

The representation of multiple independent
dynamic entities within a system is
supported naturally by the technique,
making it highly suitable for capturing
systems which exhibit concurrency, e.g.,
multi-agent systems, distributed
databases, client-server networks and
modern telecommunications systems.

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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Basic concepts
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 Discrete-event dynamic system:

A system which may change state over time, based
onh current state and state-transition rules, and
where each state is separated from its neighbour
by a step rather than a continuum of intermediate
infinitesimal states.

Often falling into this classification are
information systems, operating systems,
networking protocols, banking systems, business
processes and telecommunications systems.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 28



Basic concepts
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] Standardisation:

d 2004-12-02
Achieved Published Standard status:

ISO/IEC 15909-1:2004 Software and system
engineering - High-level Petri nets - Part 1: Concepts,
definitions and graphical notation. Available from ISO,
SAI Global and others.

d 2005-06-23
New Working Draft of ISO/IEC 15909-2 Software and
Systems Engineering - High-level Petri Nets Part 2:
Transfer Format submitted for a combined ISO/IEC
SC7 WD/CD registration and CD ballot. Comments
welcomed - formal or otherwise. [ Editor's Announcement
| ISO/IEC 15909-2 WD (Version 0.9.0) ]

Javier Campos. Petri nets and performance modelling: 2. Petri nets 29
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Definition
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[ Graphical representations

Useful to inform about model structure

a picture is better than a thousand words

[ Continuous systems: [ Discrete event systems:

[ Circuits diagrams d State diagrams
d Block diagrams d Algorithmic state
O Bond graphs machines
Q [ PERTs

d QNs

d..

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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JIn Petri Nets: two basic concepts
(— graphical objects)

Qdstates/data (PLACES)
Qactions/algorithms (TRANSITIONS)

+ weight (labeling) of the arcs

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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] Autonomous Petri nets
(place/transition nets or P/T nets)

O Petri Nets is a bipartite valued graph
O Places: states/data (P
d Transitions: actions/algorithms ( 7)
[ Arcs: connecting places and transitions (F)
[ Weights: labeling the arcs (W) (“ordinary nets" > weights = 1)

—<PT F, W>

ST

inscriptions
PRE POST

in the arcs
Javier Campos. Petri nets and performance modelling: 2. Petri nets 33
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 Net =» Static part
A Places : State variables (names)

O Transitions: Changes in the state
(conditions)

d Marking = Dynamic part
O Marking : State variables (values)

O Event/Firing
a Enabling: the pre-condition is
verifie
Q Firing: change in the marking

O the pre-condition "consumes” )
tokens

[ the post-condition "produces”
tokens

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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PN syntactic subclasses

1 State machines
[ Subclass of ordinary PN
(arc weights = 1)
[ Neither synchronizations

nor structural parallelism
allowed

d Model systems with a
finite number of states

[ Their analysis and
synthesis theory is well-
known

Javier Campos. Petri nets and performance modelling: 2. Petri nets 35
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PN syntactic subclasses (cont.)

0 Marked Graphs

[ Subclass of ordinary PN
(arc weights = 1)

[ Allow synchronizations and
parallelism but not allow decisions

O No conflicts present

O Allow the modeling of infinite
number of states

[ Their analysis and synthesis theory
is well-known

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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PN syntactic subclasses (cont.)

3 Free-Choice nets
[ Subclass of ordinary PN
(arc weights = 1)
 Allow synchronizations, parallelism
and choices

[ Choices and synchronizations
cannot be present in the same
transition

A Their analysis and synthesis
theory is well-known

Every outgoing arc from a place is
either unique or is a unique
Incoming arc to a transition.

Javier Campos. Petri nets and performance modelling: 2. Petri nets 37
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[ PN syntactic subclasses (cont.)

O Extended free-choice

If two places have some common
output transition, then they have

all their output transitions in %
common.

[ Simple (or asymmetric choice)

If two places have some common
output transition, then one of them

has all the output transitions of
the other (and possibly more). §>\S>

And other... (modular subclasses)

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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State equation
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PN and its algebraic representation based

oh state equation
d Linear representation of PNs, the structure:

N =<P,T,Pre,Post >

O Pre-incidence matrix

—>{0,1} for ordinary nets
Pre(pt): PXT - N* Y nets)

d Post-incidence matrix

(=>{0,1} for ordinary nets)
Post(p,t): PXT — N~

A Incidence matrix, C = Post - Pre
(marked) Petri Net is finally defined by: = =(N ,m,]

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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State equation
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State equation
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m(k) [t > m(k +1) <

] State equation definition

m(k +1) = m(k) + C(t) =
=m(k) + Post(t) — Pre(t) >0

Integrating in one execution (sequence of firing)

m, [c > m(k) =

m(k)=m, +C-c

where o (bold) is the

Javier Campos. Petri nets and performance modelling:
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State equation

N

L

Very important: unfortunately...

m(k)=m, +C-620, 6>0=m, [c>m(k)

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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State equation
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LExample (of problems): place marking bound

max m[p] < max m[p]
st. meR(N,m,) st m=m,+C-c
(m,c) e N"™

Problem: spureous solutions = semidecision

Javier Campos. Petri nets and performance modelling: 2. Petri nets 44
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Modelling features and examples
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[ Modelling expressivity
J Sequences
Q Conflicts (decisions, iterations)
Q Concurrency and synchronizations

Q Duality places versus transitions

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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Modelling features and examples
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] Design methodologies:
1. Parallel composition by...

synchronization and fusion

+ bottom-up methodology

Javier Campos. Petri nets and performance modelling: 2. Petri nets 47



Modelling features and examples
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1 Design methodologies (cont):
2. Sequential composition by refinement

+ fop-down methodology

Javier Campos. Petri nets and performance modelling: 2. Petri nets 48



Modelling features and examples
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1 Designh methodologies (cont):
typical synchronization schemes

e, | 1ty ?f'\? i
: Vs

5. Fork-Joint

LT

) 6. Sub programa
1. Rendezvous, RV 2. Seméforo, S (p; ,pj estan en mutex)

bt

. N 8. Guarda (condicion
3. RV/Seméforo simétrico 4. RV/Semaforo asimétrico de lectura)
(master/slave)

I1; | 1T,

Sy

7. Recurso compartido (R)
Javier Campos. Petri nets and performance modelling: 2. Petri nets
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Modelling features and examples
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[ Modelling example 1:
Basic manufacturing cell

producer/consumer
with buffer
and mutual exclusion

Javier Campos. Petri nets and performance modelling: 2.

MACH 2
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Temporary buffer
for partially
produced (op,) parts
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>
iy
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Petri nets

50



Modelling features and examples
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[ Modelling example 2: Shared memory multiprocessor
two processors with similar behaviour
two local memories and one shared common memory

P

./ /_,@1:'3 ﬂ"\

MLL C?"—" ML2 Tll:ﬁ

MC 2

Javier Campos. Petri nets and performance modelling: 2. Petri nets
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Modelling features and examples
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d Modelling example 3: Token ring LAN

Pifge_1 Pidie_2

(o )= § (o )=
| { Ny \ N/ \

arrival _1 J Larrival_2 ‘

(l tstart_t:r_l end_t (L Start_t.r_Q tend_t.r}
—l = )ﬁl s

DPaitd ptraﬂsmzt 1 Puwait2 ptransmat-Z
Ppolll ppofi_‘z fmot,e 2-3
O " o
A\ ™
2—

N\,
3

proceedl Pmove_ 1 2 tmove_1— 2 proceed_,? Priove_

\ tmot:e_B— 1Pmove3—1 3proceed_3
|- = |= - ;

. o S
b Ppoll 3
ptrgﬂ\&m—it-ﬁ. pu.a.t't_:?.
\\-\_ _ =2
/If—"—-- o —
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I\ armt,aj]\
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Basic properties
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understand

mistakes

techniques

MACH 2

MACH [
a)

[ Concurrent/parallel
systems are difficult to

O It is easy to make

[ Need for easy express
properties and proof

b)

o wait_caw

Javier Campos. Petri nets and performance modelling: 3. Functional analysis




Basic properties
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 Behavioural properties (for mg)

0 Boundedness: finiteness of the state space, i.e. the marking of
all places is bounded

Vpe P 3dke N suchthat m(p)<k

[ Safeness = 1-boundedness (binary marking)

O Mutual Exclusion: fwo or more places cannot be marked
simultaneously (problem of shared resources)

O Deadlock: situation where there is no transition enabled
O Liveness: infinite potential activity of all transitions

VteT ,Vmreachable, 3m’',m /o >m' such that m'/z >

O Home state: a marking that can be recovered from every
reachable marking

O Reversibility: recovering of the initial marking
vm reachable, 3¢ suchthat m /o >m,

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Basic properties
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J Boundedness, - Mutual exclusion
deadlock, liveness... m(p2) + m(p4) + m(p5) = 1

= mutex (p2, p4, pb)

(i.,e., m(p2) . m(p4) = 0)

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Basic properties
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d Structural basic properties:
("there exists my ..." or "for all mg ...")
They are abstractions of behavioural properties

AN is structurally bounded if
for all mg, <N, my> is bounded

AN is structurally live if
there exists a mg for which <N, my> is live

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 60
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Analysis techniques
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d Analysis techniques for the computation of
functional properties

dEnumerative

(JExahustive exploration of the state space, thus based
on reachability graph

Only valid for bounded systems
Conclusions are valid only for a given m,

JFor unbounded systems: coverability graph

dLost of part of information of state space thus we
cannot conclude about some of the properties

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 63



Analysis techniques
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 Analysis techniques for the computation of
functional properties (cont.)

QdReduction/transformation of the model
D(N /', mo/> SR <N /:"1’ mOI:l-I>
JRules that preserve the property under study and
simplify the model for the analysis of such property

dStructural

(JBased on the structure of the model, considering m,
as a parameter

Make use of relation between structure and behaviour

using techniques coming from...
0 Convex geometry / linear programming (invariants)
[ Graph theory (siphons, traps, handles, bridges...)

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 64
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Reachability graph
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O Enumerative analysis: exhaustive sequential
enumeration of reachable states
Problem 1: state explosion problem

dProblem 2: sequential enumeration = lost of
information about concurrent behaviour

Adding place 6 does not modify
reachability graph but 6 and ¢
cannot fire simultaneously.

reachability graph

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 66
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dExample of "easy” solution of a conflict
with a requlation net

12

STORE ¥

il
IA+CHE @+F+'zr.:
STORE 2 STORE 3
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O Bounded system < finite reachability
graph

unbounded system

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Reachability graph
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dDeadlock exists <& There exists a terminal
node in the RG

M; is a deadlock

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Reachability graph
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d Live net < inall the strongly connected

components of the RG all transitions can be fired
] Reversible net < there is only one strongly

connected component in the RG

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Net transformations
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2 Kit(s) of reduction rules
O Rule:
dPreconditions on the structure
dPreconditions on the marking
[ Change of structure
[ Change of marking
[ Application of the rule:
JIf preconditions hold then apply changes
{d Problems:

dFor a given kit of rules, there exist irreducible systems

O Trade-of f:
kit reduction power versus kit application complexity

O Observation:

for some net subclasses (for instance live and bounded free
choice nets) there exist complete kits of reduction rules

Javier Campos. Petri nets and performance modelling: 3. Functional analysis 72



A basic kit of reduction rules

=¥

§ o
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RCL. Ehmnaton of self-loop place
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B2, Ehmnaton of self-loop transition
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Net transformations
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JExample: a manufacturing cell

bl
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Net transformations

L

N

dImplicit places:
dA place is implicit in <Nmy> if never is the
unique constraint for the firing of its output
transitions

dTherefore: elimination of an implicit place does
not change the set of firable sequences

dThen: elimination of implicit places preserves
liveness and synchronic properties (distance,
fairness...)
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Net transformations

L

N

dImplicit places (cont.):

£

N

P1

Je

p; and p, are implicit for m,
p, is not structurally implicit

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Net transformations

L

N

dImplicit places (cont.):
dPlace p is structurally implicit in N if
for all initial marking of the other places,
an initial marking of p can be defined such that
pis implicit
L An struct. implicit place may be implicit or not

GRYIGY
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Net transformations

L

N

dImplicit places (cont.):

Property: a place p is structurally implicit if and
only if 3y>0,y(p)=0 such that yT'C < C(p).

dProperty: if pis structurally implicit and
mo(p) > y'mg, then pis implicit.
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dConvex geometry and PNs
d
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Convex geometry and PNs

L

N

 Structural analysis:

Based either on convex geometry (linear
algebra and linear programming), or

Based on graph theory
—>We concentrate on first approach.

2 Definitions:
P-semiflow: y >0, y'.C=0
T-semiflow: x>0, Cx=0

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Convex geometry and PNs

L

N

d Properties:

1. Ifyisa P-semiflow, then the next token conservation
law holds (or P-invariant):

for allm € RS(N, my) and for all mg =
=y.m=y". m,

Proof: if me RS(N, my) thenm = my + C.c, and pre-
multiplying by yT:

YT. m = YT. Mo + YT.C.O' - YT.mO

P-semiflows = Conservation of tokens

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Convex geometry and PNs

L

N

 Properties (cont.):

2. If mis areachable marking in N, o a fireable sequence
with 6 = x, and x a T-semiflow, the next property
follows (or T-invariant):

m[oc>m

Proof: if x is a 7T-semiflow, m = my+*C.x = m,

T-semiflows = Repetitivity of the marking

d  Pand T-semiflows can be computed using
algorithms based in Convex Geometry (linear
algebra and linear programming)

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Convex geometry and PNs

L

N

 Definitions:
AN is conservative < 3y >0, yT.C=0
QAN is structurally bounded < Fy>1,y".C <O
(computable in polynomial time)

 Properties: pre-multiplying by y the state equation
O N conservative = y". m=y'. m,
(token conservation)
AN structurally bounded = y™. m <y'. m,
(tokens limitation)

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Convex geometry and PNs

L

N

 Definitions:
AN is consistent <@ 3Ix>0, Cx=0
AN is structurally repetitive < 3x>1,Cx>0
d Properties:
<N my> repetitive = N structurally repetitive
QAN structurally live = N structurally repetitive

QN structurally live and structurally bounded =
structurally repetitive and structurally bounded
& consistent and conservative
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Convex geometry and PNs
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N

 Example: Producer/consumer with buffer in mutex

Muait_raw ¥ Mioad ¥ Mop1 + Myqit_dep ¥ Mdeposit = 1 [1]
mdeposiT + mobjecT+ Myithdrawal * memp’ry =7 [2]
|'ﬂopZ *Myait_free *Munload *Mwait_with *Mwithdrawal = 1 [3]
MR *Mjpeq * mdeposiT * Mynioad ¥ Myithdrawal = 1 [4]

For instance, from [1]:
mwaif_raw <le pwai‘r_r'aw IS l'bounded
(mwai'r_r'aw = O) OR (mload = O)

= ,Uwaif_mw and Pload GQre in MUTEX

0 Non-negative invariants =
— provide a decomposed view of
the original model

b
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Convex geometry and PNs
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L

 Applications of decomposed view of the model

wrait_rawr

O Partial analysis

d Implementation
of the model

ty
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Convex geometry and PNs

L

N

) Absence of deadlock
d 'f mload + r“opl + r“deposi’r + mop2 +munload +mwi’rhdr'awal > 1
then (f, + 15+ t5 + T, + 14 + t,, ) is firable
else
'f mwah‘_mw+ mwaiT_fr'ee > 1
then (t; + t; ) is firable
else (t, + t5 ) is firable

bl
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Convex geometry and PNs

N

 Reversibility (with mg(empty)=7 and my(object)=0):
(Lyapunov-like proof technique
potential function: m) = WT.m with W(p)=0 < mq(p)>0 )
Qif Migad * mopl §i r“deposh‘ * mopZ *
+ Mynioad ¥ Myithdrawal > 1
then Vfm) may decrease
6'56 'f rnwc1i’r_rc1w+ mwai‘r_fr'ee > 1
then V(m) may decrease
else V{m)may decrease OR

1, is the unigue firable
transition (< mg)

bl

88
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Convex geometry and PNs

L

N

dLiveness
DO': 1'1,1'2,1'3,T4,T5,T9,T10,T6,T7,T8 |S fir'able
dThe net is reversible
Then it is live

JFairness
LdC has a unique left annuller
x-(1111111110)7
for all scheduling: all components work!

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Convex geometry and PNs

L

N

Linear programming and PNs
LExample: structural marking bound of a place

[LPP]  max m[p]
st. m=m,+C-c

(m,0) e N"™

Polinomial time (on the net struct. size) computation

JOther properties can be analyzed: synchronic
properties, dead transitions, mutex, etc.

Javier Campos. Petri nets and performance modelling: 3. Functional analysis
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Convex geometry and PNs

L

N

JGeneral comments

L Advantages:
dEfficient computation
Analysis independent of initial marking
(my is only a parameter)
dProblems:
dOnly necessary or sufficient conditions are obtained
(in general)
A The heart of the matter is that ¢ (vector) does not
exactly represent o (sequence)
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Introduction

L

N

dFormalism: conceptual framework suited
for a given purpose

Life cycle: all phases, from preliminary
design, detailed design, implementation,
Tuning...

Different goals in each phase —
— different formalisms

dFamily of formalisms: PARADIGM

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs
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Introduction

L

dWhy time augmenting the formalism?

JAutonomous Petri nets

(Non-determinism with respect to
QdWhich enabled transition will fire?
QWhen will it fire?

dduration of activities and
drouting

INot valid for performance evaluation
(quantitative analysis: throughput,
response time, average marking)

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs
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Introduction

N

L

Two characteristics:

AdDifferent and levels
interrelated ~ [ Obj. PN
abstraction 2 { Pr/T, CPN
levels P/T

AdDifferent EN

interpretations

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs
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Interpreted graphs

L

N

O Interpreted graphs as formalisms for
Discrete-Event Dynamic Systems

Basic initial idea:

Formalism = graph (precedence relations...) +

+ interpretation (meaning,
control...)

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs
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Interpreted graphs

L

N

dGraphs as sequential formalisms

(Valued) binary relations over a finite set
(states, locations...) are represented as (valued)
directed graphs

Vertices (entities)

dArcs (relations)

Matricial representations
JAdjacency (vertex-vertex)
dIncidence (vertex-arc)

Graph
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Interpreted graphs
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N

JInterpretation

dJust the "meaning” of mathematical entities
JExample: locations and connections (static)
typical problem: traveling salesman

O Wider sense: meaning and external control of
evolution
(dMeaning of entities

Connection of the model with the outside (the effect
of the "rest of the world")

events and external conditions
what happened? When did it happen?
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Interpreted graphs

L

N

 Example (interpretation 1): state diagram
[ Vertices: global states (possible values of unique state variable)
[ Arcs: transitions between states
Sequentiel system (Moore like)

» >

P o

dconditions & input events — transitions
Joutput — states

System evolution depends on the outside world through events
and conditions represented with the input variables.
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Interpreted graphs

L

N

[ Other example (interpretation 2):
Continuous Time Markov Chain

State diagrams + "speed” of transitions
d Vertices: global states (= state diagrams)
d Arcs: transition rates between states

—oo—>
A T1 B
A A
M I, r
_bjjt_
C T D
A A

[ system evolution depends on "outside” time
[ events depend on time
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Interpreted graphs

L

N

- Examples of formalisms for parallel behaviour

O PERT (Program Evaluation and Review Technique)
dVertices = events
O Arcs = activities (labelled with durations)

[ Special characteristics:

0 AND/AND logic (different from @9
state diagrams or Markov chains)

O Acyclic

O Only one execution each time
O Evolution depends on "outside” time (min, max, or average)
O Distributed state of the system

Typical problem: Critical Path Method
computation of shortest time to complete the project
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Interpreted graphs

L

N

L Gordon-Newell queueing networks
dVertices = stations+queues
JArcs = routing of jobs
[ Special characteristics:

0 No synchronizations

O Parallel evolution of jobs

0 OR/OR logic
(identity of job is preserved)
M Distributed state of the system

Typical problems: performance queries (mean queue lengths,
throughput, etc)
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Interpreted graphs

L

N

L Fork-Join queueing networks
dVertices = stations

JArcs = queues

[ Special characteristics:
O No decisions
O Only forks and joins

0 AND/AND logic (jobs are created
and destroyed)

O Distributed state of the system

Typical problems: performance queries (mean queue lengths,
throughput, etc)
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Interpreted Petri nets

N

L

Abstract formalism <> Reality

 Generic meaning:
O Place = state variable
O Marking = value of variable
Q Transition = transformation of state
d Firing = event that produces transformation

[ Particular meanings (annotations):

A Place (and marking)

] State of subsystem S;

1 Condition Cjis true

[ Resource R, is available

[ Stock of parts in a store...
O Transition (and firing)

[ Subsystem S, evolves

[ End of activity Aj

J A customer arrives

A fail occurs...

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs
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Interpreted Petri nets

L

N

Interpretation
(relation with the environment)
U
Constraints over the evolution
(imposed by the environment)

U

Reduction of non-determinism
[ Synchronization with signals (from the environment)
[ Time constraints

[ Typical interpretations:
O Marking diagrams (and Grafcet)
0 Timed interpretations (time augmented Petri nets)
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Interpreted Petri nets

L

N

 Timed interpretations

O Specification of activities and servers
dsensibilization — start of activity }
elay

Qfiring — end of activity

dtransition — service station (# servers)

Specification of: MEGAFILLING Stations Ltd. b ?
- delay = = | S
J# servers

(multi-sensibilization:

. | m : S
single, multiple, or
t L]
N

infinite)
?k servers ?;og server
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Interpreted Petri nets

L

N

Hrace policy (race between timed
enabled transitions)

preselection (random or
deterministic choice)

LdImmediate transitions

dModelling of synchronizations or routing

dZero delay =
higher priority P
in case of conflict WOk

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs

dSpecification of resolution of conflicts
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Interpreted Petri nets

L

N

J Reduction of the non-determinism
a Define duration of activities
(elapsed time from enabling to firing of a transitions)
dConstant > Timed Petri nets (TPN, Ramchandani, 1974)
dInterval > TimePetri nets (TPN, Merlin and Faber, 1976)

[ Random (exponentially distrib.) > Stochastic Petri nets
(SPN, Symons, 1978; Natkin, 1980; Molloy, 1981)

dRandom or immediate = Generalized Stochastic Petri nets
(6SPN, Ajmone Marsan, Balbo, Conte, 1984)

A Define server semantics
(single/multiple/infinite)

O Define routing at conflicts
JRace between stochastically timed transitions
dPreselection (probabilistic or deterministic choice)
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Interpreted Petri nets

L

N

[ Interpretation and logic properties

O An interpretation restricts possible behaviour
[ Some reachable markings are not reachable anymore

[ Analysis of qualitative properties of the autonomous model
can be non conclusive

t

t' T

unbounded? total deadlock? live?

[ In general, a marking does not define a state

JIna SPN:

O The same reachable makings than autonomous model
(support of r.v. = HO,oo) and race policy gives positive
probabilities to all possible outcomes of conflicts)

0 A marking does define a state (memoryless property)

Javier Campos. Petri nets and performance modelling: 4. Time augmented PNs
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Continuous time Markov chains

L

N

1 Stochastic process
Qdiscrete state space
dcontinuous time

Qg is the transition rate from state /to state j
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Continuous time Markov chains

N

L

 Formally:

forall #,,..., 71,7, 7€ IR, O<fyx. <t <t<t forall nelN

PX(0)=x|X(t,)=x,,X(,_)=x_4,...X() =X,) =
=P(X(8)=x|X(,)=x,)

O Alternative (equivalent) definition:
{(X(H | 20, IR} s.t. forall ts=0

P(X(t+s)=x|X({)=x,X(u)0<u<s)=
=P(X(t+s)=x|X(t)=x,)

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation

O A CTMC is a stochastic process {X(#) | #20, 1< IR} s.t.
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Continuous time Markov chains

L

N

J Homogeneity

0 We are considering discrete state (sample) space, then
we denote

pL1.5) = AX(#+s)=j | X(9)=1), for s> 0.

d A CTMC is called (time-)homogeneous if

p(1.5) = pfs) forall 20
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Continuous time Markov chains

N

L

P(S>t+s/§>t) =

 Time spent in a state:

[ Markov property and time homogeneity imply that if at
time 7 the process is in state j, the fime remaining in
state jis independent of the time already spent in state
J : memoryless property.

P(X;lu.=750<u<s|Xy=4,0<u<t
where S = time spent in state j

state j entered at time 0

P(Xity = J,0 <u < 5| Xy = j) by MP
P(Xy = 3,0 €£u<3|Xo=7) by T.H.
P(S > s)

= time spent in state j is exponentially distributed.

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation
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Continuous time Markov chains

L

N

J Transition rates:

0 In time-homogeneous CTMC, p,(s) is the probability of
jumping from /to j during an interval time of duration s.

O Therefore, we define the instantaneous transition rate
from state /to state jas:

O And the exit rate from
state 7 as - g;

- L pii(
q; = _Z%j —i!rj)

J#i

At) -1
At

0 @=[g,] is called infinitesimal generator matrix
(Q matrix)
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Continuous time Markov chains

L

 Steady-state distribution
A Kolmogorov differential equation:
Denote the distribution at instant £ z(#) = AX(1H)=/)
And denote in matrix form: A7) = [p,-J( ]

Then (#) = WP(t-u), for u<t
(we omit vector transposition to simplify notation)

Substituting v= At and substracting #(#-Af7):
(1) - (A1) = «(+-A1) [AAT) - I], with Ithe identity matrix

Dividing by A+ and taking the limit ; P(AY) -1

— (1) = 7 () lim
” (1) = z(2) lim v

Then, by definition of @ =[g;], we obtain the

Kolmogorov differential equétion
< () =7(1) 0
dt
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Continuous time Markov chains

N

L

7@=0

r11-=1

d Since also n(HA17=1, with1=(11,..1)
If the following limit exists
lim 7z (7)

{—>o©0

then taking the limit of Kolmogorov differential equation
we get the equations for the steady-state probabilities:

(balance equations)

(normalizing equation)

Javier Campos. Petri nets and performance modelling: 5. Performance evaluation
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Stochastic Petri nets

L

N

dTime interpretation of Petri nets:

Duration of activities: exponentially distributed
random variables

[ Single server semantics at each transition
L Conflicts resolution: race policy

The reachability graph of the SPN is
isomorphic to a Continuous Time Markov Chain
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Stochastic Petri nets
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L

The reachability graph of the SPN is isomorphic to a
Continuous Time Markov Chain
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Stochastic Petri nets

L

N

) The CTMC associated with a (bounded) SPN is obtained:

d The state space S = {s;} of the CTMC is equal o the
reachability set RS5(m,) of the underlying PN (m, <> s,)

O The transition rate from state s; (corresponding to marking m,)
to state s, (m) is obtained as the sum of the service rates of
transitions enabled in m, whose firing leads to marking m..

d If transitions have smgle server semantics and mar'kmg
independent rates, the components of QO are:

[ Y owyg, Sii#j
qU :<Tkeej(mi)
—dqj, SI i=j

where gi= Sw

Ty ce(m;)

T
e (m;))={Ty | Ty € e(m;) nm;—"—>m ;}
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CTMC-based exact analysis

L

d Let n(m,,t) be the probability for the SPN to be at the state
m; at instant t.

N

[ The Kolmogorov differential equation for the associated
CTMC is:
dn(m;, ) _

= X qpnlmg,1)
dt Toer

in matrix form: dr(t)

=(1)Q

and its solution can be expressed as:  7(7) = n(O)eQT
where 1(0) is the initial probability distribution

(usually (0) = 1 if m;, = my and =,(0) = O otherwise)
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CTMC-based exact analysis
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[ The steady-state "solution” of an SPN is based on the study
of the probability distribution of the set of reachable
markings

n=(n1,..., TRS|)
- The limit behaviour of that distribution

n= lim n(7)
T

is computed by solving the following system of linear
equations

t0=0

n1l =1

where 0 and 1T are vectors of the size of = with all the
components equal to O and 1 respectively
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CTMC-based exact analysis
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[ The steady-state distribution = is used for the
computation of performance indices of interest

 Performance indices can be expressed from
reward functions defined over the markings of the
SPN, the average reward is computed as average
value of the reward of the steady-state
distribution

R= X r(m)m;
m; RS (m()

where r(m) represents a given reward function
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CTMC-based exact analysis
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1 To compute the probability of a given
condition I'(m) in the SPN

dFirst, we define the reward function:

Hm) = {1, Iif I'(m) =true

0, otherwise

L Then, the desired probability is computed as:
PIy= X r(m)n= X w

m; €RS(mq) m; €A
where

A={m, € RS(m,) |['(m,) =true}
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CTMC-based exact analysis

L

N

[ Example: mean number of tokens at place p,
dThe reward function is

r(m)=n ifandonlyif m(p;)=n

[ Then the average marking of place:

wWpj)= X r(m)m; = ZnP{A(j,n)}
m; RS (m() n>0

where A(j,n) = {m; € RS(m) : m(p;) = n} and the
sum is constrained to n<kif place is A~-bounded
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CTMC-based exact analysis
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N

dOther example: throughput of transition T;
(average number of firings per ftime unit)

A transition can fire only if it is enabled, thus
the reward function is

_Jw; SI T;e e(m)
r(m)
0, en otro caso

dThen the throughput of T is

= X rim)m= T wim
m; RS (mq) mieAj

where 4, = {m, € RS(my) : T, € e(m,)}
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CTMC-based exact analysis
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1 Shared memory multiprocessor

T PR Gy S G B o
S T S

Both processors behave in a similar way:
[ A cyclic sequence of: local activity, then
U an access request to the shared memory, and then
{ accessing the shared memory
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CTMC-based exact analysis
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dAll transitions have exponentially
distributed durations, except for 12
and 15, 2!
access request to (o PO,
the shared memory T}
(immediate) ”

- GSPN T T
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CTMC-based exact analysis
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1 Reachability graph

A3

-

Al

(11010100

[a)

L(0000

1100)

M

(0000

1010

11100100

11100010)

o0

A

(00100001)J
Al
00010001)

It is not isomorphic to a Continuous Time Markov Chain
(infinite rates are not allowed in CTMCs)
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CTMC-based exact analysis
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 Tangible reachability graph

A3
r —(11100100
1
AL 4

LQ:)l:)l:)l:)ul:)l:) A %3 (00100001)

2 JM 3

(00001010 00010001)

4 5

It is isomorphic to a Continuous Time Markov
Chain
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CTMC-based exact analysis

dInfinitesimal generator matrix of the
CTMC

(11100100

00001010

[ — (A1 4+ M) A1 Ad 0 0 ]
AH '—(A3'+'A4) 0 Ag 0
A 0 —(Ar4+X) 0 N\
0 0 A3 ~A3 O
0 Y 0 0 =g
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CTMC-based exact analysis

N

L

[ The stationary distribution can be computed
(steady state probability of each state)

[ — (A1 + Ay) A A4 0 0 ]
Az —(Az + A4) 0 Ag O
(701,702, T3, Ty, TM5) - A6 0 —(Ai+Xx) 0 A [ =0
0 0 A3 —Az 0O
0 ¢ 0 0 —Xs |

MW+ Mo+ T3+ My +T5=1

 And from here, compute, for instance, utilization
rate of shared memory
O In this case, it is equal to the steady-state probability of

the unique state with p, (shared memory is free) marked
ulp2l=m
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CTMC-based exact analysis

L

N

dOther example, processing power

 Average number of processors effectively
(locally) working

dWe define the reward function

rp(m)=m[p3]+m[pg]l

dThen:

P= Y rp(m;)n; =211+ 1y + 13
m; €RS(mq)
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Preliminary comments
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N

dInterest of bounding techniques

dpreliminary phases of design

dmany parameters
are not known

accurately
quick evaluation and R
. . exact
rejection of those accuracy solution
clearly bad
bounds
comi)lexity
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Preliminary comments
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dNet-driven solution technique

dstressing the intimate relationship between
qualitative and quantitative aspects of PN's

dstructure theory of net models

- efficient computation techniques
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Introducing ideas: Marked Graph case

L

N

P2 (O—{}—0O
Py t4  generally distributed service times
43 (random variables X with mean 's[tj] )

C = CP5 we assume infinite-server semantics

p3

exact cycle time (random variable): X = X, + max{X,, X3} + X,

average cycle time: T :-S[tl] +E[max{X2,X3}]+'S[t4]
but (non-negative variables):

(non-negative variables) Xy, X3 <max{X,, X3} < X, + X,
therefore:

S[4]+max{s[5],S[K]} +S[14,] <T <s[f]+S[5]+S[5]+5[24]
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Introducing ideas: Marked Graph case
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Thus, the lower bound for the average cycle
time is computed looking for the slowest

circuit
e
t.eC
-3 Ce?g?éuitsk #tokens in C]

of the net }

Interpretation:

an MG may be built synchronising
circuits, so we look for the bottleneck
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Introducing ideas: Marked Graph case

N

L

JComputation:

(&

[' > maximumy-Pre-S
subjectto y-C=0
y-mg=1
y>0

b

v

(s is the vector of
average service times)

(the proof of this comes later for a more general case)

solving a linear programming problem
(polynomial complexity on the net size)
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Introducing ideas: Marked Graph case
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dEven if naif, the bounds are tight!
Lower bound for the average cycle time

max{s[4],5[5]} <E[max{X,, X;}]

it is exact for deterministic timing

it cannot be improved using only mean values of
r.v. (it is reached in a limit case for a family of
random variables with arbitrary means and
variances)
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Introducing ideas: Marked Graph case

N

L

~
limE[ma X, o(), Xy o (a))]: max(,u, ,u’)

a—l

j Lo with probability 1-¢&
Xpold = [ /_{a+1_—aj with probability &
g
0<a<l])
E[X,u,a(a)]:ﬂ ; Va X,u,a(a)]: o
~

E[Xﬂ,(,(a) + X o (a)]: u+ o, ¥V 0<a<l
_ Y

2 2
__u (-
,uz(l—a)2+0'2

2

they behave "as deterministic”
for the 'max’ and '+' operators
in the limit (a—1)
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Introducing ideas: Marked Graph case
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dUpper bound for the average cycle time

{ r< Z'S[t]J
tel

it cannot be improved for 1-live MG's using
only mean values of r.v. (it is reached in a limit
case for a family of random variables with
arbitrary means)

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds 156



Introducing ideas: Marked Graph case
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| 0  with probability 1-¢
Xl (o) -
WOZVL i probability &
\gl
O<e<1) ' 2 M
e B Xiue) |= 5 B e |25
E

IfX j :ng [_t 1](5), Vit ; eT, then for varying (decreasing) values of &:
J

[ E[max(Xi,Xj)]:é[ti]+'s[tj]+0(5) ]
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Generalization: use of visit ratios

L

N

dVisit ratios = relative throughput
(number of visits to 7, per each visit o 1)

average interfiring time of #,

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds
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Generalization: use of visit ratios
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dFor some net classes v can be computed as:

Cv=0
nvinl=nviyl;
nV[t4] =Vl ];

vig]=1
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Generalization: use of visit ratios
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JLittle's law (L=AW) applied to a place
p.

U pl=(Pre[p,T]- x) Y[p]

Assume that timed transitions are never in conflict
(conflicts are modelled with immediate transitions), then

either all output transitions of p are immediate or p has a
unique output transition, say #;, and 7, is timed, thus:

HLpl=(Pre[p,T]- x) T[pl=Prefp,q] xu] T(p]

2 Prelp.i] 21n] Sla)= 2 Pre(pj] 21t7] Sl
j=
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Generalization: use of visit ratios
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Thent Tl alpl> X Prelp.t) Tln] tj] Sitj)= X Prelp,/] vit;] 3]
J= J=

Hence: Iyl ©=> Pre.D where D[f]=3[¢]v[f] is the average service
demand of ¢

Premultiplying by a ~semiflow y
(y-C=0, y=0, thusy-z=y-mq),

I[#]> maximum y-Pre:D I[4]> maximum y-Pre:D
y-mg q

subjectto Y-C=0 —o-—»p subjectto y-C=0
1.y>0 1.y>0

y=0 g=y-mq
y>0
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Generalization: use of visit ratios
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Since y'my> 0 (live system), we change y/q toy and we obtain
(1y >0 isremoved because y'my=1 implies 1-y > O):

% )
[T#4]> maximum y-Pre-D

subjectto y-C=0
y-mp =1
y>0

- /

again, a linear programming problem
(polynomial complexity on the net size)

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds
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Generalization: use of visit ratios
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Interpretation: slowest subsystem generated by A-semiflows, in isolation

minimal P—-semiflows

y, =(1,0,1,1,0,0,1,0,1,0,0,0)
y,=(0,1,0,0,1,1,0,1,0.1,0,0)
Y, =(0,0,0,0,0,0,0,0,1,1,1,0)
y, = (0,0,0,0,0,0,0,0,0,0,0,1)

[T#]> max { (S[t5]+S[46]+S[#10])/3
(Slte]1+S[t7]+5[711])/2,
s[4 0] +3[4 1],
S[zs] }
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Generalization: use of visit ratios
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dUpper bound for the average interfiring
Time

wnl

{ Tal< v 3[f= zﬁ[t]}
tel’ tel’

remember the marked graphs case (v=1): T'< Y5[¢]
tel
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Improvements of the bounds

L

N

[ Structural improvements

bounds still based only on the mean values (hot
on higher moments of r.v., insensitive bounds)

dlower bound for the average interfiring time:
use of implicit places to increase the number of
minimal ~semiflows

dupper bound for the average interfiring time:
use of liveness bound of transitions to improve the
bound for some net subclasses
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Improvements of the bounds
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dUse of implicit places

[t5] = gS[t3]1+(1-g)S[14]

P
ql-q
[T#]> maximum Yy-Pre-D
1) Py

subjectto y-C=0

L3 £ y-mg=1
gg ” y>0

[{ts]> max{gs[t31,(1- g)sl14]}
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Improvements of the bounds

N

IT4]> maximum y-Pre-D
subjectto y-C=0
y-mg=1

y>0

[lis]=gsli3 ]+ (1= g)sl 4] [(5]>max{ g5[53], (1-@)3[14], ¢8[131+(1-@)3[14] }

in this case, we get the exact valuel
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Improvements of the bounds
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in general...

[T#4]> maximum y-Pre-D
subjectto y-C=0
y-mozl

y>0

[Mt7]2max { ¢S[3]+8[46]+S[¢7],

(1-q)s[t4]+5[t5]1+3[17] }
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Improvements of the bounds
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N

in general, the bound is non-reachable

It7]2max { ¢S[r3]+S[16]+3[17],
¢ (1-g)s[14]+5[t5]+5[17],

qs[3]+(1-q)s[t4]+9[17] }

Q ['t7] = gmax §[t5],5[43]+S[t6]} +(1— g)max {§[14] +S[5]1,5[26 ]} +S[27]
= max { ¢S[#3]+5[tg]+3[#7],

(1-q)3[14]+35[t5]+3[17],

(deterministic  g3[t3]+(1—q)3[t4]+(1—q)3[t5]1+q3[ts] +3[27],
timing)

qS[t5]+(1-q)S[tg] +5[27] }
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Improvements of the bounds
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JUse of liveness bounds

P2 O-"0—0

pl t4
?‘K . >[ r< 31

p3

reachable for 1-live marked graphs, but...

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds
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Improvements of the bounds
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it can be improved for A-live marked graphs

t4 -
2 >|:F F£§[t1]+—2+s[t3]+s[t4]

liveness bound of 7,
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Improvements of the bounds
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O Definitions of enabling degree, enabling bound, structural
enabling bound, and liveness bound

[ instantaneous enabling degree of a transition at a given marking

e[t](m)zsup{k eN: Vp e m[p]zk Pre[p,t]}

)
\gt [](m) =2
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Improvements of the bounds
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O enabling bound of a transition in a given system:
maximum among the instantaneous enabling degree at all
reachable markings

eb[t]:sup{k eN: ElmoL>m, Vpe't, m[p]>k Pre[p,t]}

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds
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Improvements of the bounds
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Q liveness bound of a transition in a given system:
number of servers available in #in steady state

Ib[7] =Sup{k eN: Vm',moém’,ﬂm,m’ém/\wye’ t,m[pl=k Pre[p, t]}

A\ Ib[#,]=1<2=ebJ[t,]
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Improvements of the bounds
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[ structural enabling bound of a ftransition in a given
system: structural counterpart of the enabling bound
(substitute reachability condition by

m=myg+C- o moc>0)

seb[f]= maximum k
subject to mq[p]+C[p,T]-c>k Pre[p,t], Vp eP
>0

Property: For any net system seb[7#] >eb[#] > Ib[#], V 1.

Property: For live and bounded free choice systems,
seb[f]=eb[#]=1Ib[#], VTt
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Improvements of the bounds
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improvement of the bound for live and bounded free
choice systems:

v[t] 3[t] D[¢]
I—‘ < —_— i
4] ET sel 7] ETseb[t]

this bound cannot be improved for marked graphs
(using only the mean values of service times)
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A general linear programming statement
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A general linear programming statement

L

N

1 The idea

a linear function

(- S )

maximize [or minimize] f'(u, y)

subject to any linear constraint that we are able to state

/ for 4, y, and other needed additional variables
/

\_

linear operational laws
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A general linear programming statement
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JA set of linear constraints:

i=mp+C-c (state equation)

Z;([t] Post p, ] > Z A1] Pre[p,d], VpeP

te’p tep

" A0 Postip,A="> 71l Prdp], VpeP bounded

(flow balance equation)

te’p tep
4] 1] Vt;,1; €T : behavioural free choice
i T (c.g.Pre[P,1;1=Pre[P,¢])
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A general linear programming statement
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1] é[t]S#[p]t], vVt eT, Vpe't (maximum throughput law)
re p,
11 3> plpl-Prep i +1 Vt €T persistent,age memory or
Pre[p,f]

immediate * = {p} (minimum ‘rhr‘oughpu‘r law)

u, y, 6=0
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A general linear programming statement
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Tt can be improved using second order
moments

1Tt can be extended to well-formed
coloured nets

It has been recently extended to Time
Petri Nets (timing based on intervals,
usefull for the modelling and analysis of
real-time systems)
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A general linear programming statement
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select place (transition) object

ATt is implemented in GreatSPN

O

(

Hclick right mouse button and select "show"

Qclick again right mouse button and select
"Average M.B." ("LP Throughput Bounds")

dclick left mouse button for upper bound

dclick middle mouse button for lower bound

Javier Campos. Petri nets and performance modelling: 6.1. Structure based techniques: Bounds
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A general linear programming statement

L

N

[ Example: a shared-memory multiprocessor

O set of processing modules (with local memory)
interconnected by a common bus called the "external
bus”

[ a processor can access its own memory module directly
from its private bus through one port, or it can access
non-local shared-memory modules by means of the
external bus

O priority is given to external access through the external
bus with respect to the accesses from the local
processor

v @ b @ M3 M4 @
< >
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A general linear programming statement
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d Timed Well-Formed Coloured Net (TWN) model of
the shared-memory multiprocessor

X

Ownl\/g:mAcc

1

b own a
g Queue r C1, Cy
S 1 X |_| X i X I) <z, y
P Active req-ext acely’ chl

ose m E

\ ExtBus

Average service time of tfimed transitions equal to 0.5
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A general linear programming statement
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 The linear constraints for the LPP

[Active] = 4 4+ ale_e_a] + ole_o_a] — a[re_a] — alb_o_a];
[Memory] =4+ olee_a] — abe_al;
[OwnMemAcc] = obo_a] — ole_o_al;
[Queue] = alr_e_a| — albe_al;
[C'hoice] = olb_e_a] — o |coml;
|[ExtMemAcc] = olc.m] — ale_e_al;
|[ExtBus) = 1 + ole_e_a] — albe_al;
le_e_a] + x[e-0_a] = x[r_e_a] + x[b-0-qa];
F} _e_a] = x[com] = x[e-e_a] = x[r-e_a];
|
[
|
[
[
[

x|[r_e_al;
b_o_a] = T[Active]/2;

bo_a
re.a

——t

[Active]/2;
[ExtM f'mAcc} :
OwnMemAccl;
Memory);

OwnMemAce] + % [Memory)

—b[Memory]:
<0

S|

[

le_e_al
e_o_a| Sle_o_al
[e_o_a]
le-0-d]

€_0_a

< NHXRRRHX’QI‘:IKI‘EI?IEI?I

| =
]
]
eea]
]
]
]

v wl Cﬁl UJl

e e

€_0_a €_0_a

i

Memor
AlEstBus) — b{EstBus] (1- o

T
b
- F[Queue]

+Bus| — rtBus _ < 0:
4 | @[ExtBus) — b[ExtBus] | 1 biQuend ) ) = 0;

Memory]
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A general linear programming statement
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d The "automatic” results:

8
—<vyle e alL2
. xle_e_a]

The exact solution with exponential distribution would be

vle e a]l=1.71999
Improving of lower bound with more "ad hoc" constraints:

u[Choice] = 0; b[Choice] = 0; b[Queue] =3

b|ExtBus
4 (ﬁ[E.rz‘Bus] + i m}_[@ueue] — b[EIz‘Bus]) <0

b[Queue] H

The improved bound:
1<yle e a]<2
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Decomposition of models

N

L

accuracy

y

dInterest of approximation techniques

exact
solution
approx.

bounds

com'plexity
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Decomposition of models

L

N

) Basic idea:

reduce the complexity of the analysis of a complex
system

] when

[ the system is oo complex/big to be solved by
any exact analytical technique

O a simulation is too long (essentially if mang different
configurations must be tested or it must be included in
some optimization procedure)

[ some insights about the internal behaviour of subsystems
are wanted (writing equations might help)
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Decomposition of models

L

N

d Principle:
[ decompose the system into some subsystems

original system
state space size: n

Two subsystems

state space size of each: n/10
(for example)

(i.e., one order of magnitud less)

d reduce the analysis of the whole system by those of the
subsystems in isolation

if the solution technique was, e.g., O(/®) on the state space
size n, the cost of solving the isolated subsystems would be
An/1000), i.e. three orders of magnitud less...
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Decomposition of models

L

N

1 Advantages:
O drastical reduction of complexity and computational
requirements

[ enables to extend the class of system that can be solved
by analytical techniques

] Problems and limitations

0 Decomposition is not easy!

d"net-driven” means to use structural information of the net
model to assure that "good" qualitative properties are
Er'eserved in the isolated subsystems (e.qg., liveness,
oundedness...)

O Approximation is not exact!
dproblem of error estimation or at least bounding the error

[ Accurate techniques are usually very especific to
particular problems = need of expertise to select the
adequate technique...
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Decomposition of models

L/
J Steps in an approximation technique based on decomposition:
O Partition of the system into subsystems:
ddefinition of rules for decomposition

d consideration of functional properties that must/can be
preserved

0 Characterization of subsystems in isolation:
ddefinition of unknowns and variables

decisions related with consideration of mean variables or
higher order moments of involved random variables

 consideration or not of the “"outside world"

O need of a skeleton (high level view of the model) and
characteristics considered in it

 Estimation of the unknown parameters:
dwriting equations among unknowns

ddirect or iterative technique (in this case, definition of
fixed point equations)

O considerations on existence and uniqueness of solution

d computational algorithm for solving the fixed point equation
(implementation aspects, convergence aspec‘rss)

N
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Flow equivalent aggregation

N

L

d The system:

 Partition:

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 199



Flow equivalent aggregation

L

N

dCharacterization of subsystems.
Behaviour is characterized by:

Upath a token takes in the PN
(what percetage leave through 5 and 16)

Qdtime it takes a token to be discharged
(o) pll

Yooy

-way-in places: pl Pl o e

-sink transitions: 15, 16 Q_’D_@
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Flow equivalent aggregation

N

L

JReduction of the subsystem:

pll

0 0/ [4@\‘] : P: n 4y P<:!ouﬂ<n>
\Dﬁ;ﬂﬁ |

t4

t9 == 110
\ ,/ ‘routing rates of t ,,,(n) and T ,,(n)?

Op5

-service rate of 1 (n)?

(marking dependent: n=M(p,,)
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Flow equivalent aggregation

N

L

JAggregated system:

t12
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Flow equivalent aggregation

L

N

[ Estimation of the unknown parameters:

0 Analyze the subnet in isolation with
constant number of tokens
[ delay and routing are dependent on

the number of tokens in the
system

[ compute delay and routing for all
possible populations

Parameters of the subsystem in isolation

# tokens v Ve thrput
1 0.500 0.500 0.400
2 0.431 0.569 0.640
3 0.403 0.597 0.780
- 0.389 0.611 0.863
5 0.382 0.618 0.914

—
y 2 P2/ p3
tpl \ p4 t6
t4 \
t9 / ' t10
E p>
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Flow equivalent aggregation

L

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations

O When the subnet is substituted back, routing and delay are

going to be state dependent (n=M(p;,))

A

C

 Pin ty(n) ?

A

N

l

tout2 (I'l) p 7

t13

toun () 58 t7 53 tl1

p9

t8 pl0 tl

Comparison of State Spaces & throughput
throughput
aggregat = original

#tokens # states
aggregat original
1 5 9
2 12 41
3 22 131
4 35 336
5 51 742

0.232
0.381
0.470
0.521
0.548

0.232
0.384
0.474
0.523
0.547

%error

0.00
0.78
0.84
0.38
<0.10
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Flow equivalent aggregation

L

N

d Limitations:
O Assumption: the service time depends only on the number of
customers which are currently present in the subsystem.

[ The behaviour of the subsystem is assumed independent of the
arrival process

Q It is exact for product-form queueing networks.

0 The error is small if in the original model:
d the arrivals to the subsystem are "close” to Poisson arrivals and
[ the processing times are approximately exponential

0 On the other hand, the error can be very large if

 there exist internal loops
in a subnet, or

d there exist trapped
tokens in a fork-join,
or...
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dTterative algorithm: marked graphs case
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Iterative algorithm: marked graphs case

N

L

I Net-driven solution techniques

[ stressing the intimate relationship between
qualitative and quantitative aspects of PN's

O structure theory of net models

| > efficient computation techniques

JMarked graphs: subclass of ordinary nets
Pt T € (no choices) (no weights)

t Qo G Q?
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Iterative algorithm: marked graphs case

N

>0
partition of the model into
modules (subnets) connected T
through buffers (places)

Qe
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Iterative algorithm: marked graphs case

N

C

the solution of isolated modules
is difficult and useless:
SRS (in this case) they are unbounded!

the modules must be complemented _
with an abstract view of the rest; . TS 22
components are obtained
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Iterative algorithm: marked graphs case

N

BS (231 states)

alph_1

Afl (8288 STGTQS) tau_3 Z3 rho_3 ASZ (3440 STGTQS)

taul »1 T5 M

three components:
aggregated systems,

o> rho_1
rho_2
(IOW level ViCWS) 170" | AV 71g e l\x 3 0 TILD T12
and basic skeleton J beta-f ot U8 Ov
(high level view) nﬁ)@ O n<—@<—|‘hfl' w b O T W T3
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Iterative algorithm: marked graphs case

N

L

iterative solution: pefota algorithm (response time approximation technique)

solution of smaller CTMC's,
improving in each step the
response time of the
abstract part
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Iterative algorithm: marked graphs case

N

L

 Substitute a subnet by a set of places

T4 L T8 C

Qinterface transitions (input/ouput of buffers) are
preserved

L add one place from each input to each output transition

dthe set of new places can be superposed in the original
model preserving the behaviour: implicit places
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Iterative algorithm: marked graphs case

N

L

dCompute the initial marking of new places
dminimum initial marking to make them implicit
dcomputed using Floyd's a//-pairs shortest paths
algorithm.
dthe MG is considered as a weighted graph

(transitions are vertices and the initial marking of
places are the weigths of the arcs)
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Iterative algorithm: marked graphs case

N

L

1 The abstract view has "very good quality":

Othe language of firing sequences of the
aggregated system is equal to that of the
original system projected on the preserved
transitions

dthe reachability graph of the aggregated
system is isomorphous to that of the original
system projected on the preserved places
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Iterative algorithm: marked graphs case

N

L

dDefinition of unknowns:

rho_2
T3 72 T
T17
beta— B Tllca cAaTi12
beta_. alph_1 x
U@ (v
116 K T19 23 M08

tau3 73 Ti4 W T13

service time of rho_r service time of fay_j

+ throughput of each system

taul 71 rho_1

>

alph_1

tau_3 Z3 rho_3
service time of
rho_rand fay_j

+ response time of interface transitions at each system
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Iterative algorithm: marked graphs case

N

L

first aggregated system

response time approximation of the
left hand subnet for a tfoken that

exits through T2: Ry :Zz[alph_y[t |
(Little's law) 4t

exits through T3: R3 = Zz[alph_%[ts]

(xlt2] = x[ta]l = ) O le®«,

thus, solve the CTMC and compute: R,, R; and also y
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Iterative algorithm: marked graphs case

N

L

select fay_1 and tauy_2 as: second aggregated system
tau 1=f.Ry

taul 71 T5 M /
tau 2= f .R3 ?

where fis computed using the skeleton:
linear search until the throughput of ae
the skeleton is equal to the throughput
computed for the first aggregated system

tau3 73 T14 W T13

tau_l 71 rho 1

tau 1=f.Ry

tau_2=fRy .n§ T skeleton

tau3 Z3 rho 3
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Iterative algorithm: marked graphs case

N

L

The algorithm:

select a cut Q;
derive aggregated systems AS;,AS, and skeleton BS;
give initial value p® for each teT,,;
k:=0; {counter for i1teration steps}
repeat
k:=k+1;
solve aggregated system AS; with
input: p & for each teT,,,
output: ratios among P of teT,;, and X, *;
solve basic skeleton BS with
input: p kD for each teT,,,
ratios among K. of teT,;, and X;(O,
output: scale factor of p O of teT,;
solve aggregated system AS, with
input: p & for each teT,,,
output: ratios among K of teT,,, and X,(;
solve basic skeleton BS with
input: p O for each teT,,,
ratios among K. of teT,,, and X,(O,
output: scale factor of p O of teT,,;
until convergence of X, and X,(;
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Iterative algorithm: marked graphs case

N

L

[ On the (theoretical) convergence of the algorithm:

O Theorem [D.R. Smart, Fixed Point Theorems, Cambridge Univ. Press,
19747
f: D R”— R”continuous in a compact, convex, non-empty D, AD) < D
(i.e. contractive) = 3 x € D such that AX) = x.
O The previous algorithm can be written:
input: 1O -- initial rates of interface transitions TI.

n:=0 --loop counter
repeat

n:i= nl

4 3= G- D)

until convergence of ()
output: X (1”) -- vector of approximated throughput

0 Theorem: for a live strongly connected MG, function &in the algorithm

is continuous and there exists a compact, convex, non-empty set Ssuch
that &45) < S.

O Corollary: there exists x such that &(x) = x.
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Iterative algorithm: marked graphs case

N

L

On the practical convergence:
Service rates (arbitrary):
12=0.2;:74=0,7;-16:0.3;-18=0.8;-190.6;-110=0.5;
Ti=1.0, i=1,35,7,11,12,13,14,15,16,17,18,19

Throughput of the original system: 0.138341
State space of the original system: 89358

Results using the approximation technique:
State space AS1: 8288; State space AS2: 3440;
State space BS: 231

AS1

AS2

X1

tau 1

tau 2

tau 3

X2

rho 1

rho 2

rho 3

0.17352
0.14093
0.13856
0.13844
0.13843

0.05170
0.06265
0.06325
0.06328
0.06328

0.16810
0.19707
0.19821
0.19827
0.19827

0.88873
0.91895
0.92054
0.92062
0.92064

0.12714
0.13795
0.13841
0.13843
0.13843

0.89026
0.88267
0.88239
0.88237
0.88238

0.21861
0.21363
0.21343
0.21342
0.21342

0.14354
0.13509
0.13467
0.13465
0.13465
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dTterative algorithm: general case
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Iterative algorithm: general case

L

N

1 The story was:
L Marked graphs case
dWeighted T7-systems

Non-trivial extension!

O Definition of new structure concepts (gain, weighted
marking, resistance)

L More complex aggregated subsystems
A Similar iterative algorithm
L DSSP: deterministic systems of sequential
processes
(Decomposition problems, partial results...

General case: new decomposition approach
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Iterative algorithm: general case

L

N

dArbitrary P/ T system + structured view

/

partition into modules (functional units)
connected through places (buffers)

Javier Campos. Petri nets and performance modelling: 6.2. Structure based techniques: Approximations 223



Iterative algorithm: general case

L

N

dAIl A/ Tsystems have serveral structured
views, varying between:

da single module (empty set of buffers)

das many modules as transitions (all places are
considered as buffers)
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Iterative algorithm: general case

L

N

module 1

/ module 2

buffers
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Iterative algorithm: general case

L

N

- Substitute a subnet
by a set of
implicit places
derived from
minimal P-semiflows
of the subnet

(sum of the incidence
rows of places)
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Iterative algorithm: general case

N

second aggregated system

skeleton
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Iterative algorithm: general case

L

N

1 The quality of the abstract view is "not as
good as” in the MG's case

Othe language of firing sequences of the
aggregated system includes that of the
original system projected on the preserved
transitions

Qdthe reachability graph of the aggregated
system includes that of the original system
projected on the preserved nodes
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Iterative algorithm: general case

N

L

dProblems in the composition:

The RG of an aggregated system may include
spurious markings and firing sequences that do
not correspond to actual markings and firing
sequences of the original system

we cah obtain even non-ergodic systems
(CTMC cannot be solved)
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Iterative algorithm: general case

N

L

(P2 t6

p3 ©

P4 h2
H O—r
t9

P5

g —t10

original system: aggregated system:
limited and reversible, thus ergodic it has a total deadlock

Javier Campos. Petri nets and performance modelling: 6.2. Structure based ftechniques: Approximations 230



Iterative algorithm: general case

L

N

1 Solution for the problem:

select only the strongly connected component
of the RG that includes the projection of the
initial marking

‘ 2
6
7 8 9
9 y {0 3 (P5,P1)
P5,P10
3 t t12
t11

RG of the original system e aggregated system
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Iterative algorithm: general case

L

N

dMore problems:

Spurious markings (and/or firing seq.) may still
be present,
but the solution is possiblel

P1 J
-==" \
> )@—):f-)OPZ\
P6 t6 tl \‘
2 VZ y
t5 I:K'I Catw (Qh2
2 2 ,"
O<—|:|<—9( - g
P4 e
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Iterative algorithm: general case

L

N

It is possible to eliminate all the spurious markings
with additional computational effort

Luse a Kronecker expression of the infinitesimal
generator of the original system

dimplement a depth-first search to build the
RS

dreduce the infinitesimal generators of the
aggregated systems, using the information
about reachability in the original system

1 The whole reachability set must be derived but the
CTMC is not solved (throughput is approximated
from the solution of CTMC of subsystems)
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Kronecker product and DTMC

L

N

JKronecker product

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker

. ap,0 Aag.1 boo bg1 bgo
Given A = ., B= ,
ajo ap bio b1 bip
a( {]B a( 1B
C = A ® B = i ! —
alng a1?1B
ap,0bo,0 ap,0bo,1 ag,0bo2 | a0, 1boo ag1bo,1  ag1bo2
ap,ob1,0 agobi1,1 agobi2 | ag1b1o ag1bi1 agibi
aioboo aiobo1 aioboz2 | ai,1boo aiiboi  aiiboe
ajobio aiobir ajebi2 | aiibio ajibir a;ibip




Kronecker product and DTMC

L

N

If we merge two independent Discrete
Time Markov Chains (DTMC) with state
spaces S; and S, and transition
probabilities P; and P,, the resulting state
space and transition probability matrix are:

S=5x5 and P=P,®P,
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Kronecker product and DTMC

N

L

J Example

L (l-ay(1-pw) - (1-B)(1-p)
St=1{0,1} 8*={0,1} S={0=00, 1=01, 2=10, 3=11}
P1:'1—a a | [ (1-a)(1=))  (1—a)\ | a(1=A) aX ]

| B 6] 5 (I—a)p  (1-a)(1-u) L a(1l-p)

iy ] B(1-N) BA (I-6)(1-A)  (1-B)A
P?= i B B(1—u) (1B (1-0)(1—p)
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JKronecker sum and CTMC
u
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Kronecker sum and CTMC

E
N
o a boo bo1 by
. 0,0 1
Given A = , B=1| bip bi1 bia |,
a0 41,1
b2y bai1 bapg
i ag a1 ] i bg,0bg,1 b2 ]
ag,0 ag,1 biogbi1bi2
ag,0 0.1 | bs gbz 1 bs 2 _
a g ar; bg,obg,1 b2
aio a1 bioby1bis
i aio aiy | i boobaibzs |
_ao,o +boo  bg b2 ag,1 ]
bio agpo+bii  bip ag,1
bz o ba1  agg+bas a1
aig a;;+boo  bos bg 2
a g big aj1+bii by
i aip b2 o bai  apy+bas|
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Kronecker sum and CTMC

L

N

If we merge two independent Continuous
Time Markov Chains (CTMC) with state
spaces S; and S, and infinitesimal
generators Q; and Q,, the resulting state
space and infinitesimal generator are:

S=5x5 and R=R,®R,
(and Q = Q; ® Qy)

Q = R — rowsum(R)
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Kronecker sum and CTMC
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L

 Example

@O0
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Structured view of stochastic Petri nets

L

N

dWe come back to structured view of PN's

partition of PN into modules (functional units)
connected through places (buffers)
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Structured view of stochastic Petri nets

N

L

0 Example: the system, S /mOdL”e E

module 1

N T

/
buffers
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Structured view of stochastic Petri nets

 Extended system, &S (addition of a set of implicit

places)
bl
0
N Al4
al
mm) §|
a2
2 coTal QA
(Hal
=gV
b2
®

- N
TIZ
. C56
NI - S
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Structured view of stochastic Petri nets

L

N

J Low level (sub)systems, LS
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Structured view of stochastic Petri nets

N

L

[ Basic skeleton, BS': high level view
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JReachability set construction
J
J
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Reachability set construction

L

N

dWe define the following subsets of
reachability sets, for each z € RS(BS)
(i.,e. z is a high level state)

RSZ(ES) = {m c RS(ES) . m|H1U"_UHKug = Z}

RS,(S) = {m € RS(S) such that
Elm' - RSZ(ES) . m’|P1U“_UPKUB = m}

RSZ(‘CSE) = {mz' - RS(;CS%) . mi|H1U---UHKUE = Z}

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker 252



Reachability set construction

N

L

RS of BS

A14, C56, bl
A14, C34
A14, C56, b2
A23, C56

RS of £81

a4, bl, C56, Al4
al, C34, Al4
a4, C34, Al4
|a1,b2,C56,A14
a4, b2, C56, Al4
a3, C56, A23
a2, C56, A23

al bl, C56, Ald |

RS of LS>
y1 | Al4, bl, c1, C56 |z,
yo | Al4, b1, c6, C56 |z,
ys | Al4, bl, 5, C56 |z,
yy | Al4, c7, C34 Zo
y; | Al4, c2, C34 Zo
ye | Al4, c4, C34 Z5
y7 | Al4, c3, C34 Zo
ys | Al4, b2, c1, C56 |z
Yo | Al4, b2, c6, C56 | z3
yio | Al4, b2, c5, C56 |z
y11 | A23, c1, C56 Z4
yi2 | A23, c6, C56 Z4
y13 | A23, cb, C56 Z4
253
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N

L

PSZ(S) — {Z|B}XRSz(£Sl)|P1X' ’ XRSZ([':SKNPK

Javier Campos. Petri nets and performance modelling: 6.3. Structure based techniques: Kronecker

PS(S) =

v

PS,(S)

z€RS(BS)

RS(S) C PS(S) =

V)
z€RS(BS)

RS,(S) C PS,(S)

PS,(S)

Reachability set construction

RS of & RS of &
vy |al, bl, cl vis|al, cl, b2
vy |al, bl, cb Vs | a4, ¢3
vy |al, bl, cb vig | a4, cl, b2
vy | a4, bl, cl vi7|al, b2, cb
vs|al, c7 vig | al, b2, b
vi | a4, bl, cb Vg | a4, b2, c6
vy |ad, bl, cb Vo | a4, b2, c5
vg|al, c2 vap a3, cl
vg|al, c4 Voo | a3, cb
Vi | a4, c7 Vog | a3, ¢b
vy | a4, c2 voyu | a2, cl
vis|al, €3 Vo5 | a2, cb
vi3 | a4, c4 Vog | a2, cb
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Outline

L

N

J
.
:I
.
JCTMC generation and solution
J
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CTMC generation and solution

L

N

Basic idea: split the behaviour in two:

U+transitions that change the high level view

dtransitions that do not change the high level
view
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CTMC generation and solution

L

N

For the system §: Q = R - rowsum(R)
For the components LS;: Q; = R; - rowsum(R;)

Technique:
1. Consider Q and R in blocks (z,Z'), of size |RS,(S)|-|RS(S)]

2. Consider Q; and R, in blocks (z,z'), of size
IRS,(LS,)|-IRS(LS,)]

3. Describe each block of Q and R as tensor expression of
the blocks of Q; and R;
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CTMC generation and solution

L

N

dBlocks R(z,z) have non-null entries that
are due only to non interface transitions

G(za Z) — é Ri(za Z)

dBlocks R(z,z') with z # z' have non-null
entries that are due only to the firing of
interface transitions (TI)

1 ifm-tym’
K (t)(z2)mm]|={
0 otherwise

G(z,z)= >~ w(t) é() K;(t)(z,z)

tETIZ o 1=1
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CTMC generation and solution

L

N

1 The result:

L Transition rates among reachable states are
correctly computed

for all z,z' € RS(BY):
R(z,z') is a submatrix of 6(z,2")

LdUnreachable states are never assighed a non-
null probability

for all m € RS(S) and for all m' € PS(S) \ RS(9):
Gmm]=0
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CTMC generation and solution

L

N

dComputational costs

L To solve an SPN with classic method
Build and store the RG
dCompute the associated CTMC
Solve the characteristic equation 7- Q=0

To solve an SPN with Kronecker approach
Build and store the K+1 auxiliary models
dCompute the RG; of each auxiliary model
dCompute matrices R(z,z') and K.(7H(z,z')
Solve the characteristic equation 7- Q=0
> Whole system RG and matrix is never stored
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dConclusions

Bibliography

Javier Campos. Petri nets and performance modelling: 7. Software performance 264



Software Performance Engineering: basics

L

N

d Traditional software development

dMain focus on software correctness
dFunctional requirements, capabilities
dWhat the software will do?

L Non-functional requirements

quality requirements like accuracy, performance,
security, modifiability, easiness of use...

dintroduced later in the development process:

"Fix-it-later" approach
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Software Performance Engineering: basics

L

N

dTypical example of fix-it-later approach:

L Denver airport story (1994)

dIntegrated automated baggage handling system
QPlanned development budget increased by 2 billion US$
[ Opening of the airport was delayed 16 months

0 To make it work it was necessary to reduce its
complexity and loads, the concept of “fully automated"”
was gone

[ Conceptually: line balancing problem
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Software Performance Engineering: basics

L

N

[ Software Performance Engineering

A systematic, quantitative approach to
construct software systems that meet
performance objectives

L Two important dimensions

(Responsiveness: ability o meet its objectives for
response time or throughput

Scalability: ability fo continue to meet responsiveness
as the demand for the software functions increases
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Software Performance Engineering: basics

L

N

1 The objective of the approach

dPredicting performance goals at early phases of
the life cycle

L Evaluating performance goals at final phases

1 The way

dUse of performance modelling

dFormal models coupled with software requirements,
architectures, specifications and design documents

dAutomation of the approach (CASE tool development)
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Software Performance Engineering: basics

L

N

dResearch community
O Term "SPE" coined in 1981 by Connie U. Smith

dThe International Workshop on Software and
Performance (WOSP)

dSanta Fe, US, 1998; Ottawa, CA, 2000; Rome, IT,
2002;
Redwood City, US, 2004; Palma de Mallorca, ES,
2005;
Buenos Aires, AR, 2007

JAn international workshop sponsored by ACM
SIGMETRICS, ACM SIGSOFT, IFIP WG 6.3 and 7.3

L About 5000 entries in scholar.google.com
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A Software Performance Process

L

N

dWhat, when and how conduct SPE activities
during software development

dIntegrated method for SPE:

LdTIntegration of software models and
performance models

OIntegration of performance analysis in the
software life cycle

U Methodology suitable for automation (tool)

Javier Campos. Petri nets and performance modelling: 7. Software performance 271



A Software Performance Process

L

N

dIntegration of software models and
performance models

L System design: The behaviour and architecture
of the system is described by a set of UML
diagrams

L Annotated design: the UML design is annotated
according to a standard OMG profile

dPerformance model: the annotated design is
translated to a performance modelling
formalism (SPN)
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A Software Performance Process

L

N

dIntegration of performance analysis in the
software life cycle

L The method applies at software specification
time

dThe precision of performance predictions
matches the software knowledge available at
each stage

dFeedback information is possible

dwhen a direct correspondence exists between
software specification abstraction level and
performance model evaluation results

Hdunderstanding the quantitative impact of design
alternatives (effect of system changes on
performance)
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A Software Performance Process

L

N

dMethodology suitable for automation (tool)

dFollowing the OMG architectural framework for
SPE tools

Configuration
[0 = == | g ————

i Model Processor

|
)
|
5
|
Model © Sonngured © Model /’_Domain\
Configurer (XMI) I"| Convertor Model
I \- 4

Z v ®
Parametrized Model Processing
UML Model Control
Specification

\@_f_/ @? l """"" v v @

8
Model Ulﬁfsr\:gzel Results Processing
Editor (XMI) Convertor Results

L oo o o o o o o e e e e o |
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L

dThe overall picture

GATEWAY SUPPORT NODE (GSN)
OFTWARE PLACE
Salesman

% ¢
>
v
\\
.
.
.

Software Manager Agent

V\ABS;-VSH

Salesmay -

Browser\

Fo=======------—-a o mmm s s s s —m——m—my
: '}v Static agent 3 i » Creation i
i . Alfred o e 1 — Communication |
! é:' Mobile agent MU PLACE ' '
! = = [ > Travel 1

_________________________________________

USER COMPUTER

A Software Performance Process

Lt ] Conapeer]

1K
sokes St Shvesan

{1K} i
get_catalog(info_plus) |

Diagrama de secuencia (DS)

1|

{1k}
create_catalog (no_plus)]
[ create.catalog (o_phelf o
{100K}
create_browser(c,)

El

how_catalog_GUI(e) {100K}

{100K}
abserve_GUL catalog(c)

0.9} 1K}

not satisfied) refine ¢

{1K}
refine_catalog(refinement_plus)

0.1}
[satisfied)

| dinfo_need] ﬁn’é‘j%ﬂ

6 (LK. 100K}
select_s 1K] 1K]
i i €. S N € Ky
cmale_wesmu\ﬁme_smg-s.a.lesman
iﬂmhlejmwsev B
{1K}
request(info_sale)

electronic_comerce

o
info_sale_plus__JIK}

) 1 o | o | 3 | T
e e e e ]
B iR e b e e b e o=

i

Javier Campos. Petri nets and performance modelling: 7. Software performance




Outline

L

N

.
.
JAnnotated UML Diagrams
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Annotated UML Diagrams

L

N

JUse Cases and actors: “Mail client” model
L Starting point to describe '
system behaviour % $

O Specify the requirements of 7 »

a system, subsystem or class
and their functionality

QTag: probability that paeps - 1
an actor executes (p1)
a use case 1/ (p3
QdDetailed later .
with sequence (P
d iagr'ams actoril actor2

frequency of usage of actorl = 0.4
frequency of usage of actor2 = 0.6
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Annotated UML Diagrams

L

N

1 Sequence Diagrams:
Used to detail Use Cases
O Specify a set of partially ordered messages

OEach message defines a communication
mechanism and the roles to be played by
sender/receiver

Represent patterns of interaction between
objects
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Annotated UML Diagrams

N

L

1 Sequence Diagrams
(cont):

d Tags: message sizes,
messages routing
rates

QWi ll be used to derive
a SPN performance
model of a particular
scenario
(together with a set
of state charts)

x

4 ml(pl)

classl remote class

Ll |

m2(p2) {sizel} i

l.n
m6(obj3)
[x==0] m7 [0.9} o
9 [IK
[x<0] md9 {IK}
______________
\ m8
279
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Annotated UML Diagrams

L

N

1 Statecharts:

dUsed to describe the behaviour of a model
element, such as an object

[ Describe possible state sequences and actions
during the life of the object

HdComplete view of system behaviour: life of all
the objects involved - used to derive a SPN
performance model

QParticular scenario: Statecharts together with
a Sequence Diagram > used to derive a SPN
performance model of concrete executions
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Annotated UML Diagrams

L

N

 Statecharts (cont):

LElements for integration of performance
information: activities, guards and events

JActivities: tasks performed in a given state >
- annotated computation time

7 ™
State3
evd {0.5sec..50sec}
Do: activityB
evl {1K}
Statel =
.—" . ev3 {IK}
J Y
A ..
{IK.. 100K} (1K} ( Do agtiv iy }
ev2 /classl.evl
Y {prob} [x>0]| ev4 {IK}
( State2 W

-

& Do:activityA {Isec} 5
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Annotated UML Diagrams

L

N

 Statecharts (cont):

LElements for integration of performance
information: activities, guards and events

Guards: conditions in a transition that must hold to
fire the event - annotated routing rates

Ps ™
State3
evs {0.5sec..50sec}
Do: activityB
evl {1K}
Statel b=
.—" » ev3 {IK}
J Y
A .
{IK.. 100K} (1K} ( Do agtiv iy }
ev2 /classl.evl
Y <{pmb} [x>0]])ev4 {1K}
( State2 W
LDozactivityA {1sec} J

-
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Annotated UML Diagrams

L

N

 Statecharts (cont):

LElements for integration of performance
information: activities, guards and events

Events: messages in the sequence diagram between
server and receiver objects > annotated message
size

-

Ps ™
State3
evd {0.5sec..50sec}
@ Do: activityB
State] [ ——
.—" » ev3 {IK}
; J Y
{IK.. 100K} (1K} ( Do agtiv iy }
ev2 /classl.evl
Y {prob} [x>0]| ev4 {IK}
( State2 W
LDozactivityA {1sec} J
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Annotated UML Diagrams

L

N

JActivity Diagrams:
dRefine doActivities in a Statechart

O We use them for detailing internal control flow
of a process

dIn contrast to Statecharts, driven by external
events

-~ more detailed modelling of Statecharts

dUsed to derive a SPN performance model
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Annotated UML Diagrams

N

L

d Activity Diagrams (cont):
QdPerformance annotations:
dRouting o [ waner ] ﬁw

rates izm e menrenerans]

- ACTION DURATION
JActivity mvmn W )

r----b == [<<PAstep>> B

d u r‘GT ions ) {PArespTime="req’.max,(5,’s’)}

4

L @i
e i |

S 3 S /
[user not found] -\ [user fornd] " |
L . £y

E e

: o ; U [<<PAstep> [
- / P {PArespTime="req’,max,(2,’s")}

/ Wait4Password ' ! : P 4

Password <=

) ROUTING RATES

\ [doesn’t match] -~ A [matches] ] : :

. ! } <<PAstep>> <<PAstep>>

\ e 1 {PAprob=0.2} {PAprob=0.8}
ERR > LockMaildrop t:‘ . !

[already locked]

CheckPassword
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Annotated UML Diagrams

N

1 Deployment diagram:

LdModels the distribution of software
components in the hardware platform/network
and O.S. resources

dAnnotated with transfer bit rate of the
communication network

PAspeed = ¥ N
:clientHost (‘assm'’ @ KBps') :serverHost

— s:ServerHost
m:mailClient <<PAresource>> g
E@ :Internet
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dIntegrating with Petri nets: case study
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Integrating with Petri nets: case study

L

N

A basic mail client

%

JdWe focus in the first use case:

Ocheck mail from a server using the POP3
protocol
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Integrating with Petri nets: case study

L

N

O The client tries to establish a TCP connection with the server via
port 110 (Statechart for the class ClientHost: client behaviour)

psMClient Greeting w
’ send _open_tcp_ connectlonJ%
Waltmq4Entry w Authentication

L k f Qiiitiig w Lsend_usemame J
o o

send_quit err

exit_exec l ok T err

\_

ok[not new]
(DeleteMessage w {1-P’} {1-P"} (CheckPassword w
send dele k[not messages_left] send_password
fsMCllent
ok[messages_left]
text messaceA\ P’}
/_
RetueveMessaGe w CheckMessages W ok

ok[new]|
send_retr JT send_list
attach_message - %
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Integrating with Petri nets: case study

L

N

O If it succeeds - reception of greeting message

psMClient Greeting w
check_mail .
/tend _open_tcp_connection NG greeting

( Waiting4Entry w Authentication W
L ok f Quitting w Lsend_usemame J
send_quit err
exit_exec l ok T err
\_
ok[not new]
(DeleteMessage w {1-P’} {1-P"} (CheckPassword w
send dele k[not messages_left] send_password
fsMCllent -
ok[messages_left]
text messaceA\ P’}
/_
RetueveMessaGe w CheckMessages W ok

ok[new]|
send_retr JT send_list
attach_message - %
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Integrating with Petri nets: case study

L

N

[ Both client and server begin authentication (authorization)
phase

psMClient Greeting

check mail
/tend _open_tcp_connection greeting
( WollingtEnty w Authentlcatlovw
L k [ Quitting LSM J
o

send_quit

exit_exec

\_

t
(DeleteMessage w {1-P’} eklno {Ille‘;;],} (CheckPassword w
send dele k[not messages_left] send_password
fsMCllent
ok[messages_left]
text messaceA\ P’}
RetueveMessaGe w /CheckMessageS W ok

ok[new]|
send_retr JT send_list
attach_message - %
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Integrating with Petri nets: case study

L

N

[ The client sends username/password through USER and
PASS command combination

psMClient Greeting w
check mail ecting
/tend _open_ tcp_connectlonJ%

( Waiting4Entry w Authentication
: J P e M J
o =)
_ send_quit
exit_exec

[ DeleteMessage ) (1-P’] OK[mt{Izlev;]r} [ CheckPassword )

send_dele ok[not messages_left] _ !
e, "-’ (Gend-passwrd)
ok[messages_left]
text_messageA\ P’}
( RetrieveMessage w ( CheckMessages W sk

ok[new]|
send_retr JT send_list
attach_message - %
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Integrating with Petri nets: case study

L

N

 If server answers "ok" to both messages, the POP3 session enters
the transaction phase, otherwise... “err”..

psMClient Greeting w
check_mail -eetine
/tend _open_tcp_ connectlonJ%
( Waiting4Entry w Authentication W
L e w Lsend_usemame J
o
send_quit err
exit_exec = l T err
ok[not new]
(DeleteMessage {1-P’} {1-P’} (CheckPassword w
e ttserld_dele [not messages_left| send_password
BN k[messages _left]

text_ messa {P’}
/_
RetueveMessaGe CheckMessages
= w ok[new]| = W
send_retr , send_list
{P’}

ssage L9

ing: 7. Software performance
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Integrating with Petri nets: case study

L

N

[ The client checks for new mail using LIST command

psMClient Greeting w
check_mail ecting
/tend _open_tcp_ connectlonJ%
( WaltlngA Py w Authentication W
L ok f Quitting w Lsend_usemame J
send_quit err
exit_exec L l ok T err
(DeleteMessa e w ok[not new]
g {1-P’} {1-P’} (CheckPassword w
I t send dele k[not messages_left] Lsen d_password J
S en

ok[messages_left]
text messaceA\ P’}

—
Retl ieveMessage w | (VChﬁCkM@SSﬂgﬁ\w ok

ok[new
send_retr JTW
attach_message - %
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Integrating with Petri nets: case study

N

L

O If there is any new mail, the client obtains every mail by
means of RETR and DELE commands

psMClient

Greeting w

check_mail ( .
send_open_tcp_connectionJ%

( Waiting4Entry w

:

exit_exec

(DeleteMessage w

send_dele
fsMClienft

text_message

Authentication

W

Quitting

-
ok

R

L send_username J

send_quit

1-P’}

ok[no

k[m

N

err
l ok T err
(CheckPassword w
send_password J

ok[not new]
{1-P’}

essages_left]

sages_left]
{P

; i 4
RetrieveMessage CheckMessages
= fok[new]? = W ok
send_retr ) send_list
attach— age o ,)J L
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Integrating with Petri nets: case study

L

N

- Once all mails have been downloaded, interaction ends with
QUIT command

psMClient ( Greeting w
check mail ecting

send_open_tcp_connectionJ%

( Waumlngy w Authentication W
[ o d

L M @ulttm@ w Lsen _username J

send_quit err
exit_exec L l ok T err

(DeleteMessage w

send_dele

ok[not new]
(CheckPassword w
t]

P’ (1-P’)
send_password
ok[messages_left]
text_messageA\ P’}

( RetrieveMessage w ( CheckMessages W sk

ok[new]|
send_retr JT send_list
attach_message - %
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Integrating with Petri nets: case study

L

N

[ The POP3 server enters the update state and releases
acquired resources dur'ing transaction phase

psMClient Greeting w
check_mail ecting
/tend _open_tcp_ connectlonJ%
( WaltlngA Py w Authentication W
L f Qiitting w Lsend_usemame J
o
~— | send_quit err
exit_exec L l ok T err
(DeleteMessa e w ok[not new]
g {1-P’} {1-P’} (CheckPassword w
I t send dele k[not messages_left] send_password J
S en

ok[messages_left]
text messaceA\ P’}
RetueveMessaGe w /CheckMessages W
ok[new] ok
send_retr h send_list
attach_message - 7 %
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N

Integrating with Petri nets: case study

L

O Statechart for the class ServerHost: server behaviour

POP3S e i
ps erver ( Aafiopization list / send_ok
open_tcp_connection N Anthodyat
/ send_greeting S REECRREAR
# |
Listening on Transaction
TCP port 110 dele

L J / send_ok L

g
Update

/ send_ok _ quit
unlock_maildrop

ks / send_text— |/ send_attach+
_message _message
{1-P”’} {P’}

:
~

retr

Sending

[ )
L il esige J
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Integrating with Petri nets: case study

L

N

- Statechart for the actor User: user's behaviour

psClient

/ send_chéck mail

( UserMainState

L DO: Thinking J

/ send_jfxit_exec

{0}
®

fsClient
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Integrating with Petri nets: case study

L

N

 Translation of statecharts to Labelled GSPN's

d Compositional approach

0 From basic modelling elements of statecharts to L6SPN's
dInitial and final states
O Simple states (activities, entry and exit)
d Transitions (internal and outgoing)
d Translation:
dinput model (statechart element) 2> output model (LGSPN)

d Composition of LGSPN's

[ Using a composition operator that fuses nodes with equal
labels
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Integrating with Petri nets: case study

N

L

d"Flat" UML statechart

ev2/act2
/—\A
2 Y (5 )
<<create>>/actl
.—, act_en o
DO:activity DO:activityB
act en = A.entry ps act_ex ;
e A INT:evb/acth
activity = A.doActivity
act ex = A.exit N 4) ‘r/act4
{tr5} = A.internal (’ C ‘\
tr5.trigger = evh
ExS.effect = aeth DO:activitycC
{ev6} = A.deferrableEvent ev3/act3

{trl} ps.outgoing
{trda} = B.outgoing
trd4.trigger = 0
trd4.effect = act4
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mance

ev7/act’
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Integrating with Petri nets: case study

L

N

[ Each simple state is modelled by a LGSPN representing the
basic elements of states and fransitions...

Simple state with no activity and immediate outgoing transition

( A \ A
= N\
T=2

t loop | loop_A
tsend[sendl P, |ini A
/ oo

ton|act _en

basic nets (BS)

]
Q\\,~‘ ) p,|compl A
]

— t ce [ OUt_k

memmlp interface transitions
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Integrating with Petri nets: case study

L

N

[ Each simple state is modelled by a LGSPN representing the
basic elements of states and fransitions...

Simple state with no activity and no immediate outgoing ftransition

tloop' loop A
pylini_A

taonlact_en

basic nets (BS)

==y interface transitions
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Integrating with Petri nets: case study

L

N

[ Each simple state is modelled by a LGSPN representing the
basic elements of states and transitions...

Simple state with activity and immediate outgoing ftransition

( IN \ A
act_en
DO:activity
=22

& . = loopl loop A
intel =nd_Int . Py | ini A

tenlact en

o.|end entry A

toutl | out
taolactivity
":p3|compl_A

£ee|out A

basic nets (BS)

mmmmlp interface transitions
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Integrating with Petri nets: case study

L

N

[ Each simple state is modelled by a LGSPN representing the
basic elements of states and transitions...

Simple state with activity and no immediate outgoing transition

act_en
DO:activity

basic nets (BS)

toutz[OU-t
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Integrating with Petri nets: case study

N

%

Translation of other elements: Deferred events, internal transitions, outgoing transitions

p2|mbox _evé tl]|send

pl|e evs

fo

h
=2

Deferred events

t2|def

pl|e_evs
tl|int

P3|A accept evs

p2|ack evs
t2|act5s

p4 |end act5 A evx5
t3|end int

Internal transitions

t1|out lle_ev2

p3 |2 _accept ev2

p2|ack ev2
t2|act2
pé|end act2 A ev2
t3|act ex
p7|t
t4|loop A

Outgoing self-loop
transitions

tl|out
p3|A accept ev2
t2|act2
pélend act2 A ev2
t3|act ex

p7|ini B g

Outgoing

transitions

plle ev2

p2|ack ev2

£l out_?\.-l-

p3|A_accept A

t2|act2 T

pé|end act2 A A

t3|act ex
p7|ini_B;E
Outgoing immediate
transitions

t3|act ex

p7|t
td|loop Awm

tl|out A

p3|A accept A
t2|act2

pé|end act2 A A

Outgoing immediate
self-loop transitions
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Integrating with Petri nets: case study

L

N

dComposing the simple state...

A )

act _en
DO:activity
act _ex
INT:ev5/acts

\ PEF;eve ack evs e evs

out

end int

LS, =(((INT || DEF) || oUT_S) || oUT) || BN

LevP Lev? Lev? LevP LtrT
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Integrating with Petri nets: case study

L

N

d Translation of other elements (“non-flat"
SC)
dComposite states,
dconcurrent states,
Osubmachine states,
dfork and join,
d junction and choice,
dsynchronous states...

- Details in the literature
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Integrating with Petri nets: case study

L

N

dThe same for the initial pseudo-states and
final states

pl|ini ps p2 |create

tl|out

p3]ps_accept_create p2\ini_f ()
t2|actl
p4|ini A

(a) Initial pseudo-states (b) Final states
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Integrating with Petri nets: case study

L

N

d The LGSPN model of the Statechart is the composition of
all simple states, and initial and final states

LSsm = ((LSps | [L£LSA) [ [LSB) || LSc) || LSy
A I;“ there are several Statecharts - composition of all of
Them
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Integrating with Petri nets: case study

L

N

dComing back to the mail example...

psMClient ( Greeting \l

check_mail

Waiting4Entry

send_open_tep_connection

_ Statechart for the class
C;T_":ZLZZT;’: ClientHost: client behaviour

ok err

exit_exec

DeleteMessage

send_dele

ok[not new]
{1-P’} {1-P

ok[not messages_left]

(" CheckPassword

send_password

fsMClient okl left]
text_message ’
RetrieveMessage CheckMessages ok
” ok[new] TS ini_checkpa lJ
send_retr send_list — - e
P O I —
attach_message \_ J El ©—1 ini_check-
ini_psMClient l megaqes

send_{1i

send_open_tep
_connection
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Integrating with Petri nets: case study

L

1In the behaviour of Serverhost

dWe decide to describe more in detail activity

associated to state Authorization using an

Activity Diagram

psPOP3Server

open_tcp_connection
/ send_greeting

Listening on
TCP port 110

/ send_ok

([ sunorisuiion,_

DO: Authorization

4 Update

unlock_maildrop

L _/

Javier Campos. Petri nets and performance modelling: 7. Software performance

/ send_text— |/ send_attach+

list / send_ok

7S

Transaction ]

B}

retr

_message _message

{1-P%} {r}

Sending

L read_message J
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Integrating with Petri nets: case study

N

L

JRefinement of Authorization with an AD

.—— Wait4User \_ﬁ\
H
Username <a-------------4 ClientHost |

B

= Action states

Initial state

Look4Lser ] — : ‘
i |

/ 1
/ /Tuser not fouudj \usel found

f‘f‘ ERR

fere?
T
f | Wait4Password |
. I |

)
‘ Password _<a- -+

‘ CheckPassword

| [doesn’t match] tches)

!
LockMaildrop | (.-\

K ERR Mai
-~ .
= ,_,J [already locked] [not locked} .

Subactivity states

Call states

— Signal sending

= Signal receipt
= Decisions

Forks and Joins

Javier Campos. Petri nets and performance modelling: 7. Software performance
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Integrating with Petri nets: case study

L

N

 Statecharts and activity diagrams all together (clienthost,

serverhost, user)

K clienthost

*=0.800000 Texto=1.171875

TOT-P'=0.200000 Attach=0.011719

*'=0.200000

"OT-P''=0.800000

i
] L« 1
s P20 a4 }:ﬁn\ i
I<_O<_I<_O‘—I P14
17 P2t PV
118
—O—J—0O"—1

116 send_attach_message

serverhost

Javier Campos. Petri nets and performance modelling: 7. Software performance




... case study

N

L

Javier Campos. Petri nets and performance modelling: 7. Software performﬁnce

d Finally,
Sequence Diagram
O Represents a

particular
scenario
of execution

Example of
interaction
between
clienthost and
serverhost

A

m_check mail

: ClientHost

{0.1K}
m_open_tcp_connection

—
m_grecting 01K}

{0.1K}  m username

vy

{0' IK} m_username

(0.1 m_ok

i mok

{0.1K}  m password

{0.1K} m_ok

g mok

01K} m st
{0.1K} m_ok

{0.1K3 m_retr

{300K}
m_attach_message

{0.1K; m_dele

01K o o
m_text_message {3K}
{0.1K} m_dele
{0.1K} m ok

g mok

018 quy

ok

g mok

: POP3ServerHost

startsn(e)

S_check-
_mail

OO~

-

E_check-

=
n:
-
—

ml_m2

send_open_
tcp_connec
tion

OO0~

-

e_open_tcp-
connection

m2_m3

send_-—
greeting

e_greeting

m3_m4

send_-
username

=]

O A= OO - OO0~

—l

e

send_—
password

send_ok

3
Lo}
3
~1

e_user-—
name

send_-
username

m5_mé

e_err

send_err

F’O*F’O*H—*O»H%F’O*DAO*I—*O*F’O*%%I—*C}'I—@—;

|

OA=—Om O OO+ O OO+ OO 1O

_password

gend_retrmm

username
m4_m5

m8_m9

gsend_ret

=}

inal®ns RaOing RACn i dOng RiCGny RAGnliniOng EiCngy R OF

send_ok

ml5_mlé

gend_ok

send_list

e_list ml4_ml5

m10_m11 e_dele

gsend_dels

send_ok

ml3_ml4

e_attach-
_message

send_—
attach-
‘ _message

=O~F=0—

ﬁi’ifretr

1 %5013



Integrating with Petri nets: case study

L

N

[ Superposition of Statecharts, Activity
Diagrams and Sequence Diagram -
analysable model of the concrete execution

_..O
......... P ; YO I
MIEB‘_.l o na; Lt
e L\ ;G\ W 5 =
A I ™ N QN S
----- L [
LS = [-"Ssc | | ESsdi
Levy,0
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Outline

L

N

.
.
u
u
dPerformance analysis

DO 0O O
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Performance analysis

L

N

dEffect on the downloading time for
different connection speeds of

dnumber of mails o0

dproportion of 700

them with 600-

attached files 500

t (sc.) 400

300+

200

100

0

o 28,8 Kbps
| 56 Kbps
0O ADSL 256 Kbps

1 attach, 3 attach, 5 attach, 5 attach, 9 attach,
3 text 4 text 6 text 14 text 10 text

avg. mean of e-mails (from P', P")
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Performance analysis

L

N

dEffective transfer rate of the client
(connection speed 56 Kbps)

dHigher amount
of data -
minimizes - oo
the relative 541 22322
amoun.r Of 52 O 48-50
. Effecti 0O 46-48
Tlme Spen'l' by trans?‘Zrl\::\te 0O 44-46
protocol (Kops) 48 1
46 -
messages m 10 avg. mean of
7 e-mails
0.25 0,5 0.75 4 (from P")
P" (% attachs) .
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Performance analysis

N

L

dAttach files sizes
[ Network speed

dExecution time of the SD scenario varying

350
300
250
~ 200
o
N2
~ 150
100
50
0
100 300 500 700 1000
Attach size
— - & - — Modem 28,8 Kbps
——m@—— Modem 56 Kbps
---A--- ADSL 256 Kbps
320
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Outline

L

N

Automation of the approach

D O0000O0O OO
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Automation of the approach

L

N

1 "A key factor in the successful application of early
performance analysis is automation.”

[ "Characterizes the maturity of the approach and
the generality of its applicability.”

ArgoSPE:
A Software Performance Engineering Tool
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Automation of the approach

L

N

- ArgoSPE
1 Implements most of the features explained in this talk
and some others
O The system is modeled as a set of UML diagrams

0 Annotated according to the UML Profile on
schedulability, performance and time specification

[ Activity durations, routing probabilities, message sizes,
network speed, population, initial state, resident classes

O Performance queries are defined on UML diagrams

[ State population, stay time, message delay, network delay,

response time
A Translated into GSPN

Javier Campos. Petri nets and performance modelling: 7. Software performance
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Automation of the approach

L

N

dArchitecture of ArgoSPE:

dFollows the architectural framework proposed
in UML-SPT

ArgoSPE modules

Conﬂguration

Dataset |/ —a—-a——eean e e eeoceoceocoso;sose-s-
| Model Processor
I

.
n (8 N
Model @ Smﬁ%‘gggl @ Model I Domain

Configurer (XMI) | Convertor l Model
' T
' i (&

|
|
|
|
|
|
> |
| E :
| ]
Parametrized ] E MOdEI 1 PTOCESSIHQ
UML Model I Control
I
XM ) ; Analyzer |I'| | specification
' |
1 | T— @ I
| . i
1
Model Urafsl‘:gzel @ ' Results I e Processing I
Editor (XMI) i | Sonvertor l Results [
| 1
L _____ (

ArgoUML CASE tool
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Automation of the approach

L

N

 ArgoSPE menu integrated in ArgoUML editor

¥ ProduceConsumer.zargo - Consumer 1 - ArgoUML |Z||EIEI
(Bl Edit _g_ew Qr_ea:cew Arrangs  Generstion Cglt.rque Help - e mmm ol
. R R A ¢ oeson E
- Process Modeal

? |'Package-cer¢ric y| k " = . = " ﬁ % State Population ‘ Hr

| Order By Type, Hame w» | | Stay Time ' g

@ CommunicationMode Message Delay
@ ConsumerNode
@ E consumer

@ &g (anon StateMachine)

Ei:] Consumer 1

@ = Consuming 1|

& = WaitingForFroducer i

@ ProducerNade : 'I
&% PAclozedload

Corsumer) Options..

Showlog

— | .
& int alff ! Response Time
A
o waid i | Hetwoark Delzy )
et | — i
|
il 2
A :
{

L
By Priority
(= Hiah
(og |j tdedium
|j Lows
Walue
Performance
annotation
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Automation of the approach

L

N

] Details:

[ A tool paper presented in PN'O6 Conference:
"ArgoSPE: Model-based software performance evaluation”
José Merseguer and Elena Gémez-Martinez

O Tigris.org: Open Source Software Engineering Tools
http://argospe.tigris.org

download the tool, tool description, detailed user
documentation, developer documentation, examples...

free software available under GNU General Public License

Javier Campos. Petri nets and performance modelling: 7. Software performance
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Outline

L

N

Real example

D O0000O0O OO
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Real example

L

N

 Retrieving and installing software using internet in
a mobile environment

[ Usual solution: tucows-like
(Tucows.com = the largest online software
download site)

[ SPE approach for a new mobile agent-based
solution (Antarctica project of University of
Vasque Country)

d Goal: compare performance indices of both
solutions (before implementing Antarctica)

3 Minimize network connection time
d Study the impact on performance of agents intelligence
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Real example

L

N

1 Steps:
U Model both solutions using annotated UML
diagrams
L Generate PN performance models for both
solutions

O Analyze performance indices under different
scenarios

LRecommend the best choices and in which cases
the use of the new mobile agent-based
approach is preferable
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Real example

L
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 Tucows-like approach

1 Sequence Diagram
with durations and [ 1. o
routing annotations

% Browser WebServer

1 select_category(url) '

{1K}
select_URL(uil)

{20K..30K}
getthtml_page)

{20K..30K}
observe(html_page)

[satisfied] {0.1}
1K} select_sw(url) [1K}
download(url)

{file_size}

suc{:l_lgstall()

L L
| — 1
| 1 1
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Real example

N

L

 Tucows-like approach (cont.)

1 Sequence Diagram + Statecharts >
- performance

N a a
{IK}
*Blowsel.scatchlhane |
!
; | i
! i
LU Ky I i
o scled_calegoiy(utl) 0
1
K |
select_ URL{utl) M
(K}
lobsevel i shioc_install[)
[20K..30K} {1K}
get(hlanl_page]
(K}
obsetvelhtol_page] 7
o,
DCzexamineg|
\ saisict) (0.1
o R
select_sw{utl] K (=
w wobdoesbuselect_URL(a) ':?m e el cangany P2 meaURL w2 find_hml_pge &1 baer_gs srl_browmer
dowtlood(utl) siéat_caiegorytincl) ml:m L3
{20K..30K} S <
{fite size} S‘W nol_patis
7777777777777777 17
R
e ] R \—’G i
[Pusersatisfied]select_swiw)) ~uset-observe(hml_page) samine _ obeerve
ax B25] o o
5 L N ¥l
I | i =3
i i h
yomit_BL
{1k} (K} ) it Browmer .
download{uly select_ URL{wl) 0 = w““-wrf\h&”“
- ¥ {:
Do:i{nf_ toul_page N
ABrowseveply(file) oifer_gelectlow
{fite_size} . {2""'-3“‘3 ]
rowser.get{him e
gellhienl_page) et sw_Bpwaer
=3
botbes_dow nload =ply
s 2 - <)
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Real example

L
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JMobile agent-based approach: description

GATEWAY SUPPORT NODE (GSN)

-

OFTWARE PLACE\

Software Manager Agent Salesman

J &\
\frowser A

| =——p Creation

. :—> Communicationi
\_ MUPLACE e /it Travel
USER COMPUTER

Alfred, the butler!
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'
—

11K}

select_sw_service(info)

{1K}

get_catalog(info_plus)

Sw Manager

Real example

+ Mobile agent-based approach:
Annotated Sequence Diagram

{1K}
create_catalog (info_plus) c,:Catalog
{100K}

create_browser(c,)

Browser Agent

show_catalog_GUI(c) {100K}

refinement)

{1K}

refine_catalog(refinement_plus)

{100K}
observe_GUI_catalog(c;)
{0.9} {1K}
[not satisfied] 'efine_catalog
{0.1}
[satisfied]

. iﬂl K..100 K}_ :
info_need] more_information(refinement2,| G,
G {1K..100K} S

select_smame){l K}

{1K}

select_sw(name)

{1K}

electronic_comerce

creple_salesman(info_sale) Salesman

L
'

X

delete_browse

{1K}

request(info_sale)




Real example

L

N

[ Mobile agent-based approach: Alfred class
Statechart
[ Do:zitljzejnfol]

{1K} {1k}
select_sw_service(info ASwManager.get_catalog(info_plus)
{100K}
. show_catalog_GUI(ci)
<< more_services>> >(
F

{1sec}
: Do:create_GUI(c)
~user.observe_GUI_catalog(ci) L
{100K}

{o.9p - {1K} _
[not  ~user.satisfied]refine_catalog(refinement)

{1sec}
Do:add_info2

~browser.refine_catalog(refinement_plus)

[ Do:add_info%
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Real example

N

L

 Simplified version of the L6SPN component
corresponding to Alfred

{1sec}
Do:add_infol

{1K} g
select_sw_service(info) SwManager.get_catalog(info_plus)

{100K}
<<more_services>> S GriElorl EUIE) —> {1sec}
WAIT Auser.observe_GUI_catalog(ci) agzeet EUIE
{100K}

add_infol create_GUI

0.1} {1y
[fuser satisfied]sefect_sw(name)

{0.9} . {1K1 :
[not ~user.satisfied]refine_catalog(refinement)

{1sec}
Do:add_info2

}
"browser.refine_catalog(refinement_plus)

“browser.select$w(name)
}

{1sec}
Do:add_info3

Sw_manager.
get_catalog

obserire_GUI_catalog

how_GUI_catalog

select_sw_service
select_software

S
o wait_Alfred

Alfred agent

fine_catalog

r

browser.
refine_catalog

select_sw_hrbwser

add_info3 add_info2
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Real example

N

L

 Simplified version of the LGSPN component
corresponding to the software manager agent

{0.5sec..50sec}
Do:get_info

{100K}
“browser.reply(catalog)

. {1K_.100K}
moreNnformation(refinement2,ci)

{|1 KZ_
get_catalog(info_plus)

WAIT I<—

K /Y
request(info_sale)

Y
Do:add_info4 {1sec}
Asalesman.reply(info_sale_plus) {1K

1min
Do:create_catalog

"catalog.crgate_c atalog(info_plus)

{1sec}
Do:create_browse|

{1K} -
"browser.create_browser(ci)

=
B S
2

Software manager agent

browser.
create_browser

request

et catalog

add_info4

create_catalog
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Real example

L
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[ The other agents

refine_catabg browser F? info_nesd_tmvel
S . = -

finfo_need_tavell (poocro g o
" go/;h‘;éfp o saksmancraale_saksman
{1008} 1K)

(100K} 1K}
cueate_browsestc) Aalfued.show_cstalog GUIGi) whine_catalog(iefinement_plus)
@ | Dorgeto_MU_Place WAIT

(K}
select_swiname)

o= G sesan o stsaniot, e @
Browser agent

[\Mu,nxd,lm

& «eply (IK..100K}
N

[info_need_tavel]

<)

(100
Aalfied.show_catalog GUI(ci+1)

ot info_need]

ffo_nced_local]

ASS

inf_nesd_tmavell
Teply_lacal

(1K} (1K}

cueale_salesman(info)

{isg}

"Swhanager.request(info_sale) mer slectioni_commerce nserend_ec

®=| Tio: add_1info_sale
Bs R
—
AUserbegin_clectionic_commeice Y e
¥ V mer begin_s Em O creak_mlesman
mlm
AUser.end_electrome_commeoe ( L
- L Do electionic_commelce
end_add_info_mle _‘){2
Salesman .
add_intin_sake é Ewllanage.request

begin_add_info_mle
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Real example

L

/
Y

LGSPN models and sequence diagram model

Blfreg

1
—L

Sw manager

{1K}

get_catalog

 Simplified version of composition between statechart

select_sw __

(info_plus) {1K}_
service(info) ‘

nfo4

add_info

rowser.reply_local salesman.reply

() C
reques (J

Channel -
select_sw_service

select_software

browser.reply_remote

(@) wait

T get_info

| get_catalog
morg” information_rempote

browser.
create_browser

more_informa#on_local

create_catalog add_info3

Software Managr

Sw_manggfer.
get gfitalog

broyiser.
select_sw_brpwser

create_ GUI

|
user.
obsefve_GUI_catalog .

(O wait Alfred O"'-CY1-catalog
refine_catalog

browser.
refine_catalog

N\

add_info2
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eal example

N

- Mobile

Pl0ie_oCx

! Pﬁiibﬁﬁg P

P5llim_mfod- P32jau_infe2

P54

T48add_mfel
P36 compl_mfof

agent-based approach: performance model

P196im_EC

172
P197

F173ilec_commercs

é PI58
1174)ouz_compl

#Elout_ce
5
4151555 i et
= S0Ch a7t
260 &
H1TE =S ol : P20
521 11761
k P
1| T )
E5 Zss)fb/ ngrrﬂs/ ‘I\
- ik -
= L
<7y P10 ES 123 E7
1108
PI24 113
F205
T108zsto MU,
P125/compl E7 P12%/conpl_E2
need_or_local
eetoL | t110jout_ce thldout ce |
PLIOES, accept o3 Fll6 ‘ 2150
-l 1
e ;;g;‘lmi - an 11550
P120jend 1 E651 Zlend 16 ¢ P127end_|_E7 213 Land FC_ES ot
05t I 1071 i | 1161
P173in E3 PI7%s E
i, 154
PI74 A piso
‘%!ggﬁ' te_catalo
115 out_ce FIBL
PI76 o
P170hwait_sccept L 1528
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Real example

L

N

1 Comparison of both approaches
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Conclusions

L

N

dImportance of integrated approach for
SPE

OIntegration of
d(pragmatic) software models and
d(formal) performance models

dIntegration of performance analysis in the
software life cycle

L Methodology suitable for automation (tool)
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Conclusions

L

N

[ In usual software industry practice we are still close to the
“fix-it-later” approach concerning non-functional
requirements

“make it run, make it run right, make it run fast"

O Important research effort on the SPE field
O The role of the WOSP conference series

Q Sit together software engineers, performance modellers and
analysts, and software developers

[ So, we are in the good direction...
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