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Abstract. The structure theory of Place/Transition net systems is sur-
veyed — incorporating new contributions — in a tutorial style, mainly
from a linear algebraic perspective. Topics included are: state equation
based analysis of safety properties (e.g., boundedness, mutual exclusion,
deadlock-freeness, etc.), linear invariants, siphons and traps, implicit
places and their application to improve the accuracy of the state equa-
tion, and rank theorems (structural conditions for liveness and bound-
edness based on the rank of the incidence matrix).
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1 Introduction

A Petri net (PN) model of a dynamic system, i.e., a net system, consists of two
parts: A net structure, comprising the state variables (places) and their trans-
formers (transitions) and a marking, that represents a distributed overall state
on the structure. The system dynamics or behaviour is given by the evolution
rules for the marking. This separation allows one to reason on net based models
at two different levels: structural and behavioural. From the former we may de-
rive some “fast” conclusions on the possible behaviours of the modelled system.
Purely behavioural reasonings can be more conclusive, but they may require
costly computations, or even they may not be feasible. The structural reasoning
can be regarded as an abstraction of the behavioural one: for instance, instead
of studying whether a given system, i.e., a net structure with an initial marking,
has a finite state space, we might investigate whether the state space is finite for
every possible initial marking; or we could study whether there ezists an initial
marking that guarantees infinite activity rather than deciding this for a given
one, etc.

Two intimately related families of techniques have extensively been used for
structural reasoning: graph theory and linear algebra. In this work we deal with
both kinds of techniques from a linear algebraic viewpoint, often expressing or
interpreting in linear algebraic terms some classical graph theory based notions
(such as those related to siphons and traps). We are interested in giving a general
framework, conceptually simple and reasonably efficient, rather than presenting
the most efficient algorithm for each particular property (as an example, liveness
and boundedness of a free choice system can be decided in polynomial time after
Corollary 50, but a graph based algorithm [46] performs more efficiently).

The material is presented mainly in a tutorial style, covering the main devel-
opments in the field from the seventies and also introducing some new perspec-
tives or revisiting previous works. In order to improve readability, most proofs
are given as previous explanations of the results, concepts and results are il-
lustrated by several examples, additional information is contained in separated
remarks, and bibliographical remarks have been collected in a final section.

The basic notions are recalled in Section 2, where also the main notations
are introduced. (A brief recall to notions and results in linear programming and
duality theory that are used throughout the paper is included as an appendix.)

The starting point for structure theory is the description of the behaviour
of the system in structural terms, based on the net state equation and other
structural objects. The presentation and comparison of these concepts forms
Section 3.

Section 4 covers the analysis of important safety properties of net systems
(e.g., boundedness, mutual exclusion, deadlock-freeness, etc.) through the state
equation. This method is at the same time more efficient and accurate than the
classical invariant method, which on the other hand has salient merits for the
understanding. Special emphasis is given to show the bridge between results in
the fields of structure theory and linear algebra/convex geometry. For instance,



classical results from the invariant method are derived applying duality theory
to the linear programming formulations based on the state equation.

A major limitation of the state equation method to analyse net systems is the
fact that structural descriptions of the behaviour, particularly those derived from
the net state equation, are, in general, relazations. Owing to this, the analysis
allows only to semidecide the corresponding properties, i.e., find only necessary
or sufficient conditions. Section 5 presents several techniques to improve the
accuracy of structural descriptions, hence the resolution of structural methods.

Another limitation of the state equation method is that it is best suited to
analyse safety properties, i.e., existence or non-existence of markings (and firing
vectors). Other properties, particularly transition’s liveness, cannot be dealt with
directly. Nevertheless, some structural results based on the incidence matrix and
the conflict structure of the net are helpful for this analysis, specially in the case
of some net subclasses, as it is shown in Section 6.

The paper is concluded with bibliographical remarks in Section 7, to give an
impression on the development of the field and to point at related topics that
have not been exhaustively covered.

2 Nets and Net Systems: Basic Concepts and Notation

2.1 Vector and Matrix Notations

We denote vectors as v = [v;]; v; is the i-th component of v, alternatively
written v[i]. For matrices, we have C = [¢;;] and CJi, j] = ¢;;. Most often in
net theory, vectors and matrices are indexed by the (arbitrarily) ordered sets
of places and transitions. For instance, if p € P and t € T, C|p, t] denotes the
entry of C corresponding to row p and column ¢; if P C P and 7' C T we can
write C[P',T"] to refer to the submatrix of C corresponding to rows from P’
and columns from 7’; the column of C corresponding to transition ¢ € T would
be C[P,t]. We often describe markings and other rather sparse vectors using a
bag/formal sum notation. For instance, a marking that puts two tokens in p;
and one in ps is denoted 2p; + p3 instead of [2010 --- 0].

The transpose of a matrix is denoted by C*. (The transpose of a vector is
not defined, i.e., vectors are not considered one-row or one-column matrices.)
Operations are denoted as usual. For instance, k- C = [k-c¢;;], v-V' =), v; - vj,
v-C = [v-C[,i]], and C-v = [C[i,-] - v]. Relational operators applied on
vectors or matrices are interpreted componentwise. For instance, v > v’ means
that v; > v; for every i. The following will be used too: vX v’ means that v; > v;
for every i and some i exists such that v; > v} (not to be confused with v 2 v/
meaning that v > v’ is false). The support of a vector v — the set of indices of
non-null elements — is denoted by ||v]].

We denote 0 and 1 the vectors/matrices with every entry equal to zero and
one, respectively, I the identity matrix, 1; the vector whose only non null entry
is 4, which takes value one (a characteristic vector), and 15 = > ;.5 1; (the
characteristic vector of S).



2.2 Place/Transition Net Systems

We concentrate here on the formalism of Place/Transition (P/T) net systems.
We denote a P/T net as N' = (P, T,Pre,Post), where P and T are the sets of
places and transitions, and Pre and Post are the |P| x |T'| sized, natural valued,
incidence matrices. Post[p,t] = w means that there is an arc from t to p with
weight (or multiplicity) w, and Pre[p,t] = 0 indicates no arc from p to t. (We
assume without loss of generality that nets are connected.)

A marking is a |P| sized, natural valued, vector. A P/T system is a pair
S = (N, myg), where mgq is the initial marking. A transition ¢ is enabled at m
iff m > Pre[P,t]; its occurrence or firing, denoted by m—‘ym’, yields a new
marking m’ = m + C[P,t], where C = Post — Pre is called the token flow
matriz. (In pure nets, i.e., without self-loops, positive and negative entries in C
completely represent the post- and pre- incidence functions, and then C can be
properly called the incidence matriz of the pure net.)

An occurrence sequence from m is a sequence of transitions o = tq -ty -« -
such that m-%smj - - mk_lt—’“> ---. The set of all the occurrence sequences, or
language, from mg is denoted by L(N,myg), and the set of all the reachable
markings, or reachability set, from myg, is denoted by RS(N,mg). The reacha-
bility relation is conventionally represented by a reachability graph RG (N, my)
where the nodes are the reachable markings and there is an arc labeled ¢ from
node m to m’ iff m—tsm’.

For pre- and postsets we use the conventional dot notation, e.g., *t = {p €
P | Pre[p,t] # 0}. A transition ¢ such that |¢*| > 1 (resp. |*¢] > 1) is called
a fork (resp. a join). A place p such that |*p| > 1 (resp. |p®| > 1) is called an
collector (resp. a distributor). Distributor places are required to model conflicts.
The output transitions of a distributor place are said to be in structural conflict
relation. The coupled conflict relation is defined as the transitive closure of the
structural conflict relation. The equivalence class (or coupled conflict set) of
transition ¢ is denoted by CCS(¢) and the quotient set is SCCS. When Pre[P, t] =
Pre[P,t'] # 0, t and t' are in equal conflict (EQ) relation, meaning that they
are both enabled whenever one is. This is also an equivalence relation on the
set of transitions. The equivalence class (or equal conflict set) of transition ¢ is
denoted by EQS(t) and the quotient set is SEQS.

Weighted (or multiple) arcs permit the abstract modelling of bulk services
and arrivals. For instance, they appear naturally when the presence of symme-
tries allows to “decolour” a high level model. If Pre[p, p®] = w1 we say that the
weighting is homogeneous on p (e.g., the weighting of the input places of an equal
conflict set). If this holds for every place, the weighting of the net is homogeneous.
A historically and conceptually interesting subclass of P/T nets with homoge-
neous weighting are ordinary nets, where every arc weight is one, which lead to
a straightforward but important generalisation of automata models. Although
it is possible to simulate/implement weighted P/T systems by ordinary ones
preserving the (projected) language (with transformations like the one shown in
Figure 12 later in the paper), several reasons justify dealing with weighted P/T
systems directly rather than with their ordinary implementations: the models



are more concise, the transformations do not preserve concurrent semantics ap-
propriately in general, and the ordinary implementations fall typically out of the
subclasses which enjoy strong analytical results, even in the simplest cases.

A subset of places @ C P such that ©® C *O is called a trap because once it
becomes marked it remains marked (tokens are “trapped”). A subset of places
Y C P such that *X C X* is called a siphon because once it becomes unmarked
it remains unmarked (it cannot be “refilled” with tokens).

By reversing arcs or interchanging places and transitions we get the reverse
net, N7, or the dual net, N'%, of N'. Both transformations together lead to the
reverse-dual net, N"¢. Sometimes in net theory relations are established between
a net and its reverse, dual, or reverse-dual, e.g., siphons and traps are reverse
objects: a siphon of A is a trap of N, etc.

IV ] (P,T,Pre,Post) | C]|
N7 | (P, T,Post,Pre) | -C
N4 (T, P,Post*, Pre™)|-Ct
N7T(T, P,Pre*, Post™)| C-

A net N is subnet of N (written N/ C ) when P! C P, T’ C T and its pre-
and post-incidence matrices are Pre’ = Pre[P’,T'] and Post’ = Post[P', T"].
(In what follows, for the sake of readability, whenever a net or system is defined
it “inherits” the definition of all the characteristic sets, functions, parameters,. . .
with names conveniently marked.) Subnets are generated by subsets of places
and transitions. When a subnet is generated by a subset V' of nodes of a single
kind, it is assumed that it is generated by V U *V U V*. Subnets generated by a
subset of places (transitions) are called P- (T-) subnets.

2.3 Analysis of Logical Properties

A major goal of the mathematical modelling of systems is to allow their auto-
matic analysis. In general, verification consists in checking that a system model
satisfies its logic specification (e.g., some temporal logic formulae). Here we are
interested in the verification of some selected properties of “good behaviour”
that are often part of the specification of systems (specially reactive ones), or
appear as precondition for the temporal analysis or performance evaluation of
the interpreted model.

A P/T system is bounded when every place is bounded, i.e., its token content
is less than some bound at every reachable marking (when the bound is one,
then it is said to be safe). It is live when every transition is live, i.e., it can ulti-
mately occur from every reachable marking, and it is deadlock-free when every
reachable marking enables some transition. A marking is a home state when it
is reachable from every reachable marking, and a net system is reversible when
the initial marking (hence every marking) is a home state. Two places are in
mutual exclusion when they are never marked simultaneously. Boundedness pre-
cludes overflows, liveness ensures that no single action in the system can become
unattainable, existence of home states informs on the possibility to return to



certain states, and mutual exclusion is required between places that represent
the use of a common resource or the presence in a critical section.
Conventionally, analysis methods of PN models are classified as follows:

— Enumeration Techniques: If the system is bounded, the reachability graph
can be used as the computational model for a proof system or for decision
procedures and tools for automatic verification. Two major problems of this
approach are the size of the state space of a concurrent system, that can
be palliated in some cases where not every state needs to be computed,
and the necessity to repeat the analysis for each initial marking of interest.
Unbounded systems can be partially analysed using a similar approach.

— Transformation Techniques: To facilitate the analysis of a large and complex
system it can be transformed (typically reduced) preserving the properties
to be analysed. Transformation rules somehow preserve the behaviour while
they are often supported by structural arguments as simple, and efficient,
sufficient conditions.

— Structural Techniques: The basic idea is to obtain useful information about
the behaviour reasoning on the structure of the net and the initial mark-
ing. Two crucial advantages of this approach are the deep understanding
of the system behaviour that is gained, and the possible efficiency of the
algorithms. Two intimately related families of techniques have extensively
been used: graph theory and linear algebra/convex geometry. The rest of the
paper is devoted to describe these techniques in some detail from a linear
algebraic viewpoint (over the non-negative integers or reals).

The above groups of techniques are not to be understood as mutually exclu-
sive, but they should be effectively combined for the analysis in practice.

General net systems are difficult to analyse. As in all theories, it is a common
trend in net theory to consider particular subclasses of models by introducing
appropriate restrictions, either on the behaviour or the structure (or syntax) of
the model. A possible way of obtaining syntactical subclasses is restricting the in-
scriptions (e.g., nets with every weight equal to one are ordinary) or the topology,
usually aiming at limiting the interplay between conflicts and synchronisations.
The latter can be achieved either by giving a general restriction, typically on
distributor places and/or join transitions (e.g., there are no distributors), or by
giving rules to construct models (e.g., sequential functional entities are synchro-
nised by some restricted message passing). These restrictions are intended to
facilitate the analysis (we shall give some examples through the paper) at the
price of losing some modelling capabilities. The designer must find a compromise
between modelling power and availability of powerful analysis tools, while one
of the theoretician’s goals is obtaining better results for increasingly larger —
and more practical — subclasses.

3 Linear Descriptions and Structural Objects

The starting point for the structural analysis of P/T systems by linear algebraic
techniques is the description of the state space by some system of linear equa-



tions. In fact, as we shall see, these descriptions are often relazations with a
different degree of accuracy. In principle, there is a trade-off between the accu-
racy of the description and the efficiency of verification algorithms, but this is
not necessarily the case: in some net subclasses, relaxations that — in general
— are less accurate than others describe exactly the state space; it is also worth
noticing that some linear descriptions that are extensively used are less accurate
and less efficient than others (although they may have salient merits for the
understanding).

3.1 The State Equation

Recall that when a transition ¢ is enabled at m (m > Pre[P, t]), the new marking
reached by its firing (m—‘sm’) is m’' = m+ C[P, t]. Analogously, a step s (where
s[t] is the number of times ¢ occurs in that step) is enabled when m > Pre - s,
and its firing leads to:

m=m+C-s (1)

This equation resembles the state equation of a discrete-time linear system,
where m is the current state (vector), m' is the next state, and s is the inputs
vector (there is one input per transition). Differently from general linear systems,
here the dynamic matriz is identity (all the eigenvalues are one, what corresponds
to integrators or counters: the state is memorised in the absence of inputs) and
not every action is possible in a given state because inputs and state variables
are defined to be non-negative integers.

Assume that it is known that every marking m is reachable in (at most) k
steps from myg (this is true for bounded systems, even it is possible to structurally
compute a finite such k when the net is structurally bounded). Then we could
describe ezactly the set of reachable markings by the following system of linear
inequalities (m; € NPl s; € IN/7):

Pre - sg
m0+C'SU

mg
m;

v

(2)
Pre-s;_q
my_1 +C sy

mg—q
m

v -

Although we can easily eliminate the m; variables by substitution, this linear
description is of course highly impractical due to the size of k, that moreover
depends on the initial marking. In what follows, we look for more concise linear
descriptions — although we expect that they are not exact descriptions but only
more or less accurate approximations.

If we integrate Equation (1) over a sequence o of inputs (transitions or steps)
from the initial state mg and yielding m, denoting by o the firing count vector
of sequence o (o[t] = #(t,0) is the number of times ¢ occurs in the sequence)
we obtain:

m=mg+C- 0o (3)



Since every reachable marking is obtained by the occurrence of some sequence
from the initial marking, it is clear that, for every reachable marking (state) there
exists some o € IN/?! such that Equation (3) holds. This is why (3) is referred
to as the net state equation.

It is straightforward to derive the following linear description of the set of
reachable markings (notice that integrality of o ensures integrality of m):

Definition 1. Let S be a P/T system. Its linearised reachability set (using the
state equation) is defined as:

LRS*E(S) = {m e NI | 30 € NI"! such that m = mg + C - o}

This description is suitable for the incorporation of the state equation into
a set of linear constraints, e.g., in the restrictions of an integer programming
problem, for analysis purposes (see Section 4).

Remark 2. Although integer programming is NP-complete, some analysis prob-
lems can be solved efficiently using the state equation over the integers. For
instance, a sufficient condition for non reachability of a given marking m in S
is non existence of o' € Z!T! such that C - ¢/ = m — myg, which is polynomial
time [45,76]. Actually, if N is consistent, i.e., an x > 0 exists such that C-x = 0,
this is equivalent to m ¢ LRSS"(S), because from a o’ € 7" a0 e N7l can
be obtained as o = o’ + kx. O

The inclusion RS(S) € LRS®E(S) may well be proper, since Equation (3)
does not check whether there is a sequence of intermediate markings such that
some o € L(S) with firing count vector o is actually fireable. (In other words, we
have removed from (2) the inequalities requiring the fireability of the steps, i.e.,
the non-negativity of the intermediate m; variables, and then we have eliminated
these variables.) The markings in LRS®(S) —RS(S) will be called spurious (with
respect to the state equation).

Similarly to the reachability graph, we can represent a linearised reachability
graph (using the state equation), LRGSF(S), where the nodes are the markings in
LRS®E(S) and there is na arc labeled ¢ from node m to m'’ iff m—*ym’. Figure 1
shows a P/T system together with its LRGSE, where the spurious markings are
shaded. As another example, the marking p» is spurious in the system shown in
Figure 2 top-left; it is reached by the “occurrence” of t; + t5 + t3 (notice that
in every possible “sequence” with this firing count vector some intermediate
marking variable becomes negative).

We can further relax the description by dropping integrality constraints, as
it is typical in the mathematical modelling of systems with large state spaces
(e.g., population models). This further relaxation introduces more spurious solu-
tions. For instance, the marking 2p, is spurious in the system shown in Figure 2
bottom-left; it is reached by the “occurrence” of 0.5t + t2 + t3. On the other
hand, this relaxation allows to use linear programming instead of integer pro-
gramming in the verification, leading to polynomial time algorithms. Sometimes



Fig.1. A P/T system and its LRGSE,

only the integrality of firing variables is disregarded, either because other restric-
tions guarantee the integrality of the marking or because mixed integer linear
programming is used. As an example, the following linear programming problem
can be used to analyse reachability of a given marking m (if the problem is
infeasible, then m is proven unreachable):

max{0-0| C-c=m—-mgAo >0} (4)

In summary, we define a second linear description of the set of reachable
markings:

Definition 3. Let S be a P/T system. Its linearised reachability set (using the
state equation over the reals) is defined as:

LRS™(S) = {fm e N/ | 30 > 0 such that m = mo + C- 0}

Remark 4. We have relaxed the description of the state space applying two prin-
ciples: path integration and continuisation (or fluidisation). These principles can
also be applied in the reverse order, first continuisation and then path integra-
tion, leading again to LRSSER, By disregarding first the integrality of variables,
we get continuous P/T net systems [27]. In these models, “fluid tokens” are con-
tained in “deposits” (the places), the “level” of which (the marking) captures
the state of the system (as in Forrester diagrams [26]). Transitions are regarded
as “mixing valves” whose firing (opening) consumes fluid from the input places
and produces fluid onto the output places in a given proportion, according to
the following firing rule: t is enabled in some amount A > 0 at marking m when
m > APre[P,t], and its occurrence leads to the marking m’ = m + AC[P, t].
The set of reachable markings of system S is denoted by CRS(S), standing for
continuous reachability set. These nets are interesting in the modelling of certain
continuous systems, and also as an approximation of systems where there are
large amounts of (discrete) tokens. When used as an approximation, they nat-
urally suffer from the presence of spurious solutions. For instance, the marking
2p- is spurious in the system shown in Figure 2 top-right; it is reached by the
“occurrence” of 0.5t>. O
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Fig. 2. Diverse relaxations of the state space applying path integration and continui-
sation.

Figure 2 illustrates the relaxations we have discussed so far. Notice that
the spurious markings induced by the use of LRS®F or CRS are not necessarily
disjoint: the marking p, is spurious in the system shown in Figure 2 bottom-right;
it is reached by the “occurrence” of either t1 + to or 0.5¢s.

Clearly, the presence of spurious solutions may prevent reaching conclusions
using analysis techniques based on a relaxed description of the state space. We
shall give later techniques to remove spurious solutions by adding more infor-
mation to the state equation after carefully considering the net structure. It is
also worth noticing that some net subclasses enjoy special properties on their
spurious solutions that palliate the problem, as we shall illustrate (e.g., see Sub-
section 3.4)

3.2 Linear Invariants from the State Equation

Since every reachable marking must satisfy the state equation, it can be regarded
as a set of linear invariant laws, one per place, containing marking and firing
variables. The firing variables can be eliminated, by multiplying the equation
by a suitable vector, in order to obtain linear invariant laws involving marking
variables only. For instance, if y is such that y - C = 0 — vector y is called
a P-flow — then, for every initial marking mg, every reachable marking m
satisfies:

ym=y my+y-C-0=y -mg==k

This provides a “token balance law”: if the positive and negative parts of
y are separated: y = y4 —y_ , where y;,y_ > 0, then for every reachable
marking y; -m = y_ -m+ k, that is, the tokens in ||y || and ||y_|| are somehow
“balanced”. Conversely, in net systems where all transitions can fire at least
once, every linear token conservation law is associated with a P-flow. This can

10



be deduced as follows: Assume y -m = y-mg holds for every reachable marking.
It must be shown that y - C = 0. Consider an arbitrary ¢ and m;—%sm}. Then
m; = m; + C[P,t], hencey -m} =y -m; +y - C[P,t]. Since y - m} = y - my, it
follows that y - C[P,¢] = 0. In summary:

Theorem 5. Let N be a P/T net.

1. Ify - C =0 then for every mg:y -m =y - mg for every m € RS(N, myp).
2. Let S = (N, mg). Assume that for every t € T some my; € RS(S) exists such
that m; > Pre[P,t]. If y -m =y -mg for every m € RS(S), theny -C = 0.

The P-flows of a net A form a vector space. Using B, a matrix whose rows
form a basis of P-flows, we obtain a new linear description of the set of reachable
markings where only marking variables appear:

Definition 6. Let S be a P/T system. Its linearised reachability set (using a
basis B of P-flows) is defined as:

LRSYH(S) = {m e N¥! | B-m=B-mg}

Token balance laws become specially useful when y > 0 — in such case,
y is called a P-semiflow — because, taking into account that m > 0, from
y - m = k we can deduce, for instance, that all the places in ||y|| are bounded.
The invariants that we obtain are “token conservation laws”: for every reachable
marking the weighted sum of tokens in ||y|| remains constant.

Besides the actual invariant law, a major interest of P-semiflows is the de-
composed view of the model that they provide. The P-subnet generated by the
support of a P-semiflow is called a conservative component of the net, meaning
that it is a part of the net that conserves its weighted token content. In the case
that y > 0 such that y - C = 0 exists, the whole net is a conservative compo-
nent, and it is said that the net is conservative, what obviously implies that it
is bounded for every (finite) initial marking.

The token conservation laws induced by P-semiflows are by far the most
popular invariant laws, to the point that the classical invariant method considers
P-semiflows only, which, historically, are very often called P-invariants in the
literature. Anyhow, it is important to realise that there are three notions that
should be differentiated:

— The P-semiflow (a vector).
— The token conservation law or marking invariant (an equation).
— The conservative component (a net).

Actually, apart from those derived from P-semiflows, there are other invariant
laws and components, as it shall be shown.

A P-semiflow y is said to be minimal when the positive y; are relatively
prime and no P-semiflow y’ exists such that ||y’|| C |ly||- In order to prove
properties, only minimal P-semiflows need to be considered because every P-
semiflow can be obtained as a non-negative linear combination — possibly with
rational coefficients — of minimal P-semiflows. In a net A/, the set of all the
minimal P-semiflows, called the fundamental set of P-semiflows, is unique.

11



Remark 7. The supports of two minimal P-semiflows are non comparable, since
otherwise we would be able to obtain by difference another P-semiflow whose
support would be contained in one of the former. Therefore, a bound for the
cardinality of the fundamental set of P-semiflows — which is reached in some
cases although it is generally quite high — is the number of possible combinations

of [|P|/2] out of |P| elements:
1P|
(HPI/ﬂ)

Algorithm 8 gives a simple procedure to compute the fundamental set of
P-semiflows from the incidence matrix of the net. A row ®[i] memorises the
coefficients of the positive linear combination of rows of matrix C which generate
Ali]. In Step 3 of the algorithm, all the rows of A have been made null, so each
row ®[i] is a P-semiflow: ®[i] - C = 0.

O

Algorithm 8 (Computation of P-semiflows)

Input - The incidence matrix C.
Output - A matrix ® whose rows are the fundamental set of P-semiflow.

1. Let A=C and ® =1 { I is the identity matrix of dimension |P| }
2. fori=1to|T| do
2.1 Add to the matrix [®|A] all rows which are natural linear combinations
of pairs of rows of [®|A] and which annul the i-th column of A
2.2 Eliminate from [®|A] the rows in which the i-th column of A is non-null
3. Remove from @ all rows whose support is not minimal, and
divide each other by the g.c.d. of its non-null elements

During execution of Algorithm 8, the number of rows in [®|A] typically
grows beyond the cardinality of the fundamental set of P-semiflows. To improve
the efficiency of the algorithm, instead of annulling the columns of A in their
order, some heuristics for the selection of the column to annul next drastically
reduce the growth of [®|A]. Moreover, introducing some tests of non minimality
during the execution of the algorithm — including the application of certain
rank properties, combining net theory with linear algebraic techniques — it is
also possible to discard many rows that cannot lead to a minimal P-semiflow
before completing the computations (see [57,22]).

The fundamental set of P-semiflows provides another linear description of
the set of reachable markings where only marking variables appear. Let & be a
matrix whose rows are the fundamental set of P-semiflows of N:
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Definition 9. Let S be a P/T system. Its linearised reachability set (using the
fundamental set of P-semiflows) is defined as:

LRS! (S)={me N* | &.m =% mg}

The dual notion of P-flows are T-flows (in the sense that the P-flows of N
or N7 are the T-flows of N). If x is such that C-x = 0:

m=mg+C-x=mg

T-flows become specially useful when x > 0 — in such case, x is called a
T-semiflow — because, in that case they correspond to cyclic sequences. (Note
that the firing count vector of a cyclic sequence is a T-semiflow, but possibly for
a given initial marking it is not possible to fire a sequence whose firing count
vector is a given T-semiflow.) The fundamental set of T-semiflows can be readily
computed applying Algorithm 8 to C*t. Similarly to P-semiflows, T-semiflows
provide an interesting decomposed view of the model. The T-subnet generated
by the support of a T-semiflow is called a consistent component of the net. With
an appropriate initial marking, a consistent component is able to exhibit a cyclic
or repetitive behaviour. In the case that x > 0 such that C-x = 0 exists, the
whole net is a consistent component, and it is said that the net is consistent.
When a net is not consistent it cannot be lively and boundedly marked (see
Proposition 10 and Theorem 45). In fact, historically the name consistent is due
to the fact that in a live and bounded system, the equation system C-x = 0
must be (algebraically) consistent.

Generalising flows and semiflows, other multipliers of C may provide useful
information. For instance, a vector y > 0 such that y - C < 0 indicates that
the weighted token content of the places in ||y|| cannot be increased (it can be
decreased if y - C% 0). If y > 0 it follows that the net is bounded for whichever
initial marking, or structurally bounded. Similarly, a vector x > 0 such that
C - x > 0 indicates that the occurrence of a sequence with firing count vector x
(if some such sequence was fireable) would not decrease the marking, so it could
be repeated once and again (the marking would be increased at each execution if
C-xX 0). If x > 0 the net is said to be structurally repetitive. A net that can be
lively marked is structurally repetitive, because there must be sequences leading
from a marking to a greater or equal one (equal in case of boundedness) involving
every transition, the firing count vector of which proves structural repetitiveness:

Proposition 10. If S is a live P/T system then N is structurally repetitive. If
S is also bounded then N is consistent.

3.3 Proving Properties Through Linear Invariants

Let us illustrate with an example the usability of (minimal) P-semiflows to prove
properties, and the decomposed view that they provide.

A production cell and a P/T description of its local controller are shown in
Figure 3 (taken from [82]). The places “wait_raw”, “load”, “op;”, “wait_dep.”,
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MACH 2

(a) deposit

ed

(b)

Fig. 3. A production cell with two machines, one robot, and a store, and a P/T de-
scription of its behaviour.

and “deposit” represent the possible states of MACH 1. The place “R” is marked
when the robot is available. The places “empty” and “object” contain as many
tokens as empty slots or parts are available in the temporary buffer, etc. In
this model actions are associated with places, and transitions represent atomic
instantaneous changes of state, e.g., MACH 2 performs its operations while place
“ops” is marked, and the event of finishing is modelled by the firing of “eop_2”.

The marking linear invariants induced by the minimal P-semiflows of the net
in Figure 3 are the following:

)
6
7
8

m[wait_raw] + m[load] + m[op, ] + m[wait_dep.] + m[deposit

m(op,] + m[wait_free] + m[unload] + m[wait_with.] + m[withdrawal

m[empty] + m[deposit] + m[object] + m[withdrawal
m[R] + m[load] + m[unload] + m[deposit] + m[withdrawal

1(5)
1 (6)
8 (7)
1(8)

Since markings are non-negative, the following can be easily stated from the
previous equations:

— The marking bound of every place is one, except for “empty” and “object”,
that is seven.
— The places in each of the following sets are in (pairwise) marking mutual
exclusion:
e {wait_raw, load, op,, wait_dep., deposit}
e {op,, wait_free, unload, wait_with., withdrawal}
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¢ {R, load, unload, deposit, withdrawal}

Using the invariants in (5-8), it is also possible to prove that the net system
in Figure 3 is deadlock-free. We proceed by contradiction, more precisely we
try to construct a marking m that satisfies (5-8) and in which no transition is
fireable. In such a marking, the places “load”, “op;”, “deposit”, “ops”, “unload”,
and “withdrawal” should be unmarked, because these are the only input places
of their corresponding transitions, so the token conservation laws in (5-8) reduce
to:

m[wait_raw] + m[wait_dep.] =1 (9)
m[wait_free] + m[wait_with.] =1 (10)
mlempty] + m[object] = 8 (11)

m[R] =1 (12)

Since the above implies that “R” should be marked, to prevent the firing of
t1 and t7, the places “wait_raw” and “wait_free” should be unmarked too. The
token conservation laws are reduced once more, leading to:

mwait_dep.] =1 (13)
m[wait_with.] = 1 (14)
mlempty] + mlobject] = 8 (15)
m[R] =1 (16)

Since the above implies that “wait dep.” and “wait with.” should be marked,
to prevent the firing of ¢4 and t9, both “empty” and “object” should be un-
marked, against (15), so the net system is proven deadlock-free. The above “ad
hoc” proof is generalised and fully automatised in Subsection 4.6.

As an example of the loss of information when non minimal P-semiflows
are used instead of minimal ones, observe that summing up (5-8) we obtain a
P-invariant involving all the places which does not allow to prove any of the prop-
erties we have deduced from the minimal ones (it allows to prove 10-boundedness
of the net, though).

In the example of Figure 3, the only minimal T-semiflow is 1, meaning that
every cyclic sequence fires all the transitions in the same proportion, so, due to
boundedness, in the “long run” all the transitions occur the same number of
times per time unit. Therefore, under boundedness, the existence of a unique
minimal T-semiflow ensures that deadlock-freeness implies liveness, because ev-
ery infinite behaviour must contain all the transitions, so from our previous proof
of deadlock-freeness we deduce liveness.

Finally, in Figure 4, the decomposed view induced by the minimal P-semiflows
is graphically presented. This view is even useful to derive an implementation.
For instance, it shows that the net system in Figure 3 could be made up with
two sequential processes (for MACH 1 and MACH 2) and three semaphores:
“object”, “empty”, and “R” — where “R” is a mutual exclusion semaphore.
(Having a unique minimal T-semiflow, no T-decomposition exists in this case.)
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Fig. 4. A decomposed view of the net system in Figure 3.

3.4 Comparison of Linear Descriptions

We announced that the diverse linear descriptions have different degrees of ac-
curacy. With respect to those presented so far, it can easily be established that:

Theorem 11. Let S be a P/T system.

RS(S) € LRS®™(S) C LRS®™™(S) € LRS™(S) C LRS™(S)

All the above inclusions may well be proper. We have already shown some
examples for the first and second in Subsection 3.1. The P/T systems in Figure 5
give examples for the others.

The vector p; + p2 + ps forms a basis of P-flows of the net of Figure 5 (a),
so every marking aps + ps, with a > 0, is in LRSPf(S). On the other hand,
since C[ps,T] > Clps,T| and mg[ps] = me[ps], m[ps] > m[ps] in every m €
LRSF(S), what is false in the case of aps + ps.

For the net of Figure 5 (b), p1 + po is the only minimal P-semiflow, so ev-
ery marking p; + aps + Op4, with a,8 > 0, is in LRSPSf(S). Nevertheless, the
dimension of the space of P-flows is two; the P-flow ps — p4, that together with
the minimal P-semiflow forms a basis, shows that markings p; + aps + 8p4 with
« # B are not in LRSF!(S).
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(a) (b)

(a) ()
Fig. 5. Two P/T systems showing that LRSSER C LRSP! ¢ LRSP*.

In some cases, the above inclusions reduce to equalities. The interest of the
following result is that it allows to use only the “more convenient” P-semiflows,
instead of general P-flows, in the case of conservativeness, and that it guarantees
that P-flows are as accurate as the state equation over the reals in the case of
consistency:

Proposition 12. Let S be a P/T system.

1. If N is conservative, then LRST'(S) = LRST(S).
2. If N is consistent, then LRS®™(S) = LRSY(S).

Proof. For Part 1, consider a y > 0 such that y - C = 0. A basis formed by
P-semiflows only can easily be obtained from a basis of P-flows by adding a
multiple of y to each P-flow.

For Part 2, if m € LRSY!(S), then o’ (possibly o’ # 0) exists such that
C:-0’' = m—myg. Using a x > 0 such that C-x=0,a 0 =o' + kx > 0 can be
obtained so that the state equation is satisfied. O

In some net subclasses, stronger relations have been found. For instance, in
live state machines (ordinary nets where every transition has one input and one
output place; they are always conservative, and the only minimal P-semiflow
is 1; liveness is equivalent to strong connectedness and non empty marking)
RS = LRS™*. In live marked graphs (ordinary nets where every place has one
input and one output place; they are always consistent, and the only minimal T-
semiflow is 1; liveness is equivalent to every directed circuit being marked) RS =
LRSSER [25,36,62]. In live consistent weighted T-systems (every place has one
input and one output transition: marked graphs with weights; when consistent,
they have only one minimal T-semiflow, x, and then liveness is equivalent to
x being fireable) RS = LRS®" [88], although the inclusion LRS®* C LRSSFR
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can be proper because C is not unimodular as in marked graphs. Even in the
case of weighted T-systems, these relations allow to prove properties more easily.
For example, the reachability problem (i.e., is m reachable?) in a live consistent
weighted T-system can be solved in polynomial time proceeding as indicated in
Remark 2.

Other subclasses enjoy weaker but still useful properties. We give some ex-
amples. Structurally persistent systems are those with no distributor places, i.e.,
|p*| < 1 for every place p. (These systems, when strongly connected and consis-
tent, are conservative and have only one minimal T-semiflow, x. In such case,
liveness and reversibility is equivalent to x being fireable.) In live, bounded, and
reversible structurally persistent systems the reachable markings are the vec-
tors in LRS®® from which x is fireable [90]. In live, bounded, and reversible
(extended) free choice systems (ordinary nets where CCS(t) = EQS(t) for ev-
ery t; in the sequel, by free choice we always mean extended free choice) the
reachable markings are the vectors in LRS™®' that mark every trap [30]. In live
equal conflict systems (for every t, CCS(t) = EQS(t): free choice with weights)
every two solutions of the state equation have a common successor [92]. This
implies existence of home states in live and bounded equal conflict systems, and
the property that no spurious solution with respect to the state equation is a
deadlock marking, what allows to analyse liveness using the state equation (see
Subsection 4.6).

To conclude, an important consequence of the comparison is that the state
equation, even over the reals, provides more information than the P-semiflows,
even though the state equation leads to more efficient verification techniques
(remember that the cardinality of the fundamental set of P-semiflows may grow
exponentially with |P|). Therefore, in what follows, the state equation is used
as the basic linear description of the state space.

3.5 Traps and Siphons

Besides the marking invariants that can be obtained from the net state equation,
that were described in Subsection 3.2, other marking invariants can be formu-
lated for net systems. In particular, traps and siphons, which are also structural
objects, lead to new kinds of invariants. Differently from those associated with
flows, possibly the invariant laws associated with traps and siphons do not hold
in every marking, but once they become true they remain true for whichever
future evolution (i.e., they are stable predicates): traps remain marked once they
become marked, and siphons remain unmarked once they become unmarked. The
same as in the case of semiflows, invariants, and components, we can distinguish
three notions (idem for siphons):

— The trap (a set of places).
— A trap invariant (a stable predicate).
— The trap subnet (the P-subnet generated by the trap).

When a set of places is both a siphon and a trap, e.g., the support of a P-semiflow,
the P-subnet that it generates is called a siphon-trap component. Notice, though,
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that in the case of P-semiflows the P-invariant (token conservation law) is more
informative than the siphon and trap invariants that are deduced from the cor-
responding siphon-trap component.

Traps and siphons have been extensively used for the structural analysis of
(mainly ordinary) net systems (see Bibliographical Remarks). As a mere exam-
ple, we state the following properties:

— In an ordinary deadlocked system, the subset of unmarked places is a siphon,
because otherwise one of its input transitions would be enabled. Owing to
this property of siphons, they are often called deadlocks, what is somehow
misleading.

— Taking into account that traps remain marked, if every siphon of an ordinary
net contains an initially marked trap, then the system is deadlock-free. In
the case of asymmetric choice or simple systems (at most one of the input
places to a join transition is a distributor place) the condition that every
siphon contains a marked trap is sufficient for liveness, and in the case of
free choice nets it is also necessary [41].

— If m is a home state of a live system, then every trap must be marked,
because otherwise once the trap becomes marked — and it will eventually
do by liveness — m cannot be reached any more. In the case of live and
bounded free choice systems the converse is also true [7].

To our discussion, it is specially relevant to point out that some traps and
siphons may contain information about the reachable markings that is not con-
tained in the state equation. Therefore, they are potentially useful to improve the
linear description of the state space provided by the state equation, as we shall
discuss in Section 5. Consider the net in Figure 1. Clearly, © = {p1,p2, ps} is an
initially marked trap, so it must remain marked (m[p:] + m[ps] + m[ps] > 1),
what allows to conclude that 2ps, 2p4, and p3 + ps were spurious solutions to
the state equation. Regarding siphons, for instance, in every spurious solution
of the system of Figure 6 the (initially unmarked) siphon X = {py, p2, s, ps, 7}
is marked, so taking the siphon invariant into account all the spurious solutions
are proven non reachable. (Pragmatically, siphon invariants are less useful, since
the existence of unmarked siphons in the initial marking is often considered
undesirable: it implies that all its output transitions are dead.)

Next we describe a linear algebraic method to obtain a generating family of
traps, i.e., a set such that every trap of the net is a union of traps in this set
(observe that the union of two traps is a trap, they are stable under union).
Notice that a generating family includes all the minimal traps, i.e., those which
do not contain any other, but the set of minimal traps may not be generating.
(The same approach can be applied to compute siphons, using that a siphon is
a trap of the reverse net, or siphon-trap components.)

The method is based on the following property, which characterises traps in
terms of non-negative solutions to a linear system of inequalities:

Theorem 13. Let N = (P,T,Pre,Post) be a P/T net. Define
No = (P, T,Pre,Postg)
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Fig. 6. A non live net system and its LRG®, where every spurious solution marks an
initially unmarked siphon.

such that Poste[p,t] = 0 iff Post[p,t] = 0, and Poste[p,t] > > .., Pre[p',1]
otherwise.
A set @ C P is atrap of N iff y > O exists such that ||y|| = © andy-Co > 0.

Proof. The inequality y - Cg > 0 means that in (Ng, mg) the weighted (accord-
ing to y) token content would never be decreased by the firing of transitions.
If ||y|| was not a trap, then the firing of a transition in |ly||® but not in *||y||
would decrease the token content. On the other hand, by the definition of Mg,
the firing of any transition puts at least as many tokens in each output place as
it removes from the input places, so it is clear that when © is a trap the vector
1o is a suitable y. O

Steps 1 and 2 of Algorithm 8 can be used to compute the y vectors, hence
the sought traps, by simply changing Step 2.2 so that only rows in which the
i-th column of A is negative are eliminated. In order to provide a link to the
well-known notion of P-semiflows, observe that the non-negative solutions to
y - Co > 0 are the non-negative solutions to

Co

"7l =0 (17)

[y z] -

where z are slack variables. Therefore, the vectors [y z] are P-semiflows of a net
j\\f_@/ that is obtained from Ng by adding a source input place to every transition.
As an example, consider the net in Figure 1. A corresponding Ng is shown
in Figure 7. The support of the P-semiflow of Mg that corresponds to the trap
{p1,p2, ps} is shaded.
The above characterisation of traps allows to express some trap properties
in linear algebraic terms. For instance:

— Initially marked traps remain marked: If m is reachable then the following
system must be infeasible:

¥y Co>0ANy>0Ay mg>0Ay - m=20 (18)
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Fig.7. A No corresponding to the net in Figure 1. The support of the P-semiflow
associated with the trap {p1, p2, ps} is shaded.

where |ly|| is a trap (according to Theorem 13), that is initially marked
(y - mg > 0) but not marked under m (y - m = 0)

— In every home state of a live system every trap is marked: If m is a home
state then the following system must be infeasible:

y Co>0ANy>0Ay-m=20 (19)

Notice that not every trap (or siphon) property can be expressed as a single
system of linear inequalities. For instance, we cannot express that when a trap
becomes marked it remains marked.

4 Analysis of Properties Using the State Equation

4.1 Overview

As we indicated in Subsection 3.1 the linear description — more precisely, re-
laxation — of the state space (and fireable sequences) provided by the state
equation can be readily used for the analysis: the state equation is incorporated
in the set of (linear) constraints of a linear (or integer) programming problem,
where the property to analyse is either part of the linear constraints or appears
in the cost function. We gave in (4) a straightforward application of this method
to analyse reachability of a given marking. Owing to the possible presence of
spurious solutions, in general this kind of analysis allows to semidecide only; in
the case of reachability, for instance, the structural condition is only necessary.
For other properties, only sufficient conditions are obtained.

Using this method we can analyse properties stated as existence or non exis-
tence of markings and/or firing sequences that satisfy some restrictions expressed
in terms of linear inequalities. For existence we obtain necessary conditions, and
sufficient for non-existence. Also we can compute (bounds for) the maximum of a
linear function, or semidecide whether it exists. Some examples are submarking
reachability, boundedness, repetitiveness, implicitness of a place, mutual exclu-
sion, or deadlock-freeness:
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— Is m > m, reachable? Existence of m such that m > m,.

— Is p k-bounded? Non-existence of m such that m[p] > k.

— Bound of p? Maximise m][p].

— Is ¢ repetitive? Unbounded maximisation of o[t].

— Is p implicit? Non-existence of m and ¢ where m[p] is the only marking
variable that prevents the firing of ¢, i.e., non-existence of m and ¢ such that
m[P — {p}] > Pre[P — {p},t] and m[p] < Prelp, t].

— Are the places in IT C P in pairwise mutual exclusion? Non-existence of m
that marks a pair of them.

— Deadlock-freeness? Non-existence of m where no transition is enabled.

In the following subsections we discuss the analysis of some of these properties
in more detail, and we show how several classical results in structure theory of
net systems are a rather direct consequence of this analysis, typically by making
use of basic results on linear programming and duality theory.

It is quite apparent from the few examples of properties listed above that
their expression can be more or less complicated. Formally, they are logic propo-
sitions where atoms are linear inequalities on marking and firing count variables.
When these propositions are atomic or linked conjunctively, as it is the case
of boundedness, repetitiveness, implicitness, or mutual exclusion between two
places (Subsections 4.2 to 4.5) their inclusion in the set of linear constraints
poses no particular problem.

When they are linked disjunctively, the verification requires checking a num-
ber of systems of linear inequalities for existence of solutions. The case of mutual
exclusion is illustrative: For the mutual exclusion between two places, p and p’,
we check non-existence of m such that m[p] > 0 and m[p'] > 0; for the pairwise
mutual exclusion between three places, p, p’, and p”, we must check, in princi-
ple, non-existence of m such that m[p] > 0 and m[p’] > 0, non-existence of m
such that m[p] > 0 and m[p”] > 0, and non-existence of m such that m[p'] > 0
and m[p"] > 0 (in general, for n places, non-existence of solution to n(n —1)/2
systems of linear inequalities). If the places were known to be safe, for instance,
it would suffice to check just one system, because we could express the property
as non-existence of m such that m{p]+m[p']+m[p”] > 1. Subsection 4.6 studies
the case of deadlock-freeness, and illustrates how this problem with disjunctions
can be palliated, even overcome in most practical cases.

Properties discussed so far are safety properties expressed as first order logic
predicates where the domain is defined by only one type of quantifier (either ex-
istential or universal). One may conceive the analysis of other properties where
the domain is defined by a combination of quantifiers of both types. However,
since we can only obtain necessary conditions for existentially quantified predi-
cates, and sufficient conditions for universally quantified ones, due to the possible
presence of spurious solutions, as a result we would not even semidecide on such
properties — leaving apart the case where one of the quantifications can be
unrolled because the elements of the definition domain are finite and known a
priori. Consider reversibility: mg reachable from every reachable marking, i.e.,
for all m reachable from mg there exists a sequence o leading from m to mg.
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If we used the state equation relaxation, we would analyse:
(Vm)(3o) m=mg+C-0' >0Amg=m+C-0d>0A0,0' >0) (20)

Validity of the above predicate is neither sufficient for reversibility, because the
o’s may not be fireable, nor necessary, because an m invalidating it may be spu-
rious. Liveness (of a transition) suffers from the very same problem. Of course,
in net subclasses where these “difficult” properties are equivalent to others that
can be analysed using the state equation method, the problem is solved. For
instance, liveness of bounded strongly connected equal conflict systems is equiv-
alent to deadlock-freeness [92], and live equal conflict systems do not have spu-
rious deadlocks, so absence of deadlock markings which are solution to the state
equation proves liveness (see Remark 35).

As a last comment, many of the properties that we consider here are par-
ticular — but specially relevant — cases of general synchronic properties. For
instance, the synchronic lead of a subset of transitions with respect to another
accounts for the maximum difference between the (possibly weighted) number
of firings of the former and the latter. Boundedness of a place is a matter of
boundedness of the synchronic lead of its input transitions with respect to its
output transitions, and mutual exclusion between two safe places is equivalent
to the synchronic lead of their input transitions with respect to their output
transitions taking value one. The structural analysis of synchronic properties,
which is presented in [83], is a more compact or abstract view of the analysis of
many safety properties that we describe here.

4.2 Place Marking Bounds and Structural Boundedness
The marking bound of a place p in a net system S is defined as:
b[p] = max{m[p] | m € RS(5)} (21)

When this bound is finite, the place is said to be bounded. Using the state
equation, and writing m[p] as 1, - m, we define the structural bound of a place
p as:

sblp] =max{l, m| m-C.-0 =mgAm,o >0} (22)

In principle, Equation (22) is an integer programming problem. If integrality
constraints (on m and o) are disregarded then (22) is a linear programming
problem, that can be solved in polynomial time.

According to Theorem 11, the marking for which the structural bound is
reached could be spurious, so clearly, in general, we have sb[p] > b[p]. There-
fore, if we were investigating the k-boundedness of p (i.e., is m[p] < k?), an
efficient sufficient condition is sb[p] < k. We insist that the condition is only
sufficient, and even it is possible that the structural bound for a bounded place
does not exist (i.e., the programming problem is unbounded; we note at this
point that, although the structural bound using integer programming can be
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more accurate than using linear programming, when this particular linear pro-
gramming problem is unbounded so it is the integer version — see Appendix).
For instance, place p in the live and safe system of Figure 8 is bounded, but the
linear programming problem (22) is unbounded.

Fig. 8. Place p is bounded but not structurally bounded.

In the sequel we apply results from duality theory of linear programming.
Although duality results are available for integer programming, we concentrate
on linear programming, partly owing to the objective of re-encountering some
classical results in net theory, and also to the pragmatic reason that the de-
rived algorithms are more efficient, actually polynomial time. The dual linear
programming problem of (22) is:

sb[p]’ =min{y -mg | y-C<0Ay >1,} (23)

Since (22) has always a feasible solution (m = mg, o = 0), both problems
(22) and (23) are bounded iff a feasible solution for (23) exists, according to the
duality and unboundedness theorems. In other words, if y > 1, exists such that
y:C < 0, then p is structurally bounded, i.e., bounded for every initial marking.
(Moreover, in such case sb[p] = sb[p]'.)

Remark 14. The linear programming problem (23) performs in polynomial time
a search for the vector y that allows to obtain the best structural bound for p
among all the P-semiflows and other vectors y > 0 such that y - C < 0. Clearly,
it gives a more accurate bound than considering the P-semiflows only (besides
being more efficient!) O

By the alternatives theorem, existence of y > 1, such that y - C < 0 is
equivalent to non existence of x > 0 such that C-x > 1,. Observe that, if such
x exists, then we can find a sufficiently large initial marking mg allowing to
fire once and again a sequence with firing count vector x, what shows that p is
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unbounded. Therefore, non existence of x > 0 such that C-x > 1, is necessary
for structural boundedness of p. In the example of Figure 8, x = t; + t3 + t5
disproves structural boundedness of p. Notice that no sequence with such firing
count vector is fireable under the marking shown in the figure; nevertheless,
t1 t3 t5 becomes fireable with mg = p; + ps + pe + pg, and p becomes unbounded.
(Interpreting boundedness as stability of the dynamic system, it can be said
that non structurally bounded systems which are bounded are only conditionally
stable, in the sense that an increment of the initial marking may lead to unstable
behaviour.)
In summary:

Theorem 15. Let N be a P/T net, and p one of its places. The following three
statements are equivalent:

1. p is structurally bounded, i.e., bounded for every my.
2. There exists y > 1, such thaty - C < 0.
3. There does not exist x > 0 such that C -x > 1,,.

The above statement, the same as several others in the sequel, contains two
dual perspectives of a property, one place-based (item 2) and the other transition-
based (item 3). We remark that the duality in this kind of net properties is rooted
on duality theory in linear programming.

Applying the above characterisation of structural boundedness of p to every
place of N:

Corollary 16. Let N be a P/T net. The following three statements are equiv-
alent:

1. N is structurally bounded, i.e., every place is bounded for every mg.
2. There exists'y > 0 such thaty - C < 0.
3. There does not exist x > 0 such that C -xx 0.

Remark 17. Tt is well known that nets with inhibitor arcs — which is a widely
used extension of P/T systems — can be simulated with plain P/T systems using
the complementary place construction in the case that the inhibiting places are
bounded. This is particularly true for structurally bounded places, with the
additional advantage that the transformation can be done for whichever initial
marking. In the sequel, it goes without saying that all the results can be extended
to nets with inhibitor arcs in the case of structural boundedness. O

4.3 Transition Fireability Bounds and Structural Repetitiveness

The fireability or repetitiveness bound of a transition ¢ in a net system S is
defined as:
r[t] = max{o[t] | o € L(S)} (24)

If this bound is zero, then the transition is dead (or 0-live). If the bound
takes a finite positive value, the transition can only be fired a finite number of
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times (it is I-live). When the bound does not exist, transition ¢ is said to be
repetitive (or 2-live), and this is necessary for liveness of ¢.

Using the state equation, we define the structural repetitiveness bound of a
transition ¢ as:

srft] =max{l;-0 | m—C-0 =mgAm,o >0} (25)

Clearly, if the transition is repetitive, then (25) is unbounded, since sr[t] >
r[t]. (The converse is not true because the o’s that make the problem unbounded
may not correspond to actually fireable sequences: all the transitions in the nets
of Figure 2 are structurally repetitive and none of them is repetitive.)

The dual linear programming problem of (25) is:

sr[t] =min{y -mg | y-C< -1, Ay >0} (26)

Since (25) has always a feasible solution (m = mg, o = 0), it is unbounded
iff (26) is infeasible, according to the duality and unboundedness theorems. In
other words, if some y > 0 exists such that y-C < —14, then ¢ is not structurally
repetitive, i.e., not repetitive for any initial marking.

By the alternatives theorem, non existence of y > 0 such that y - C < —1;
is equivalent to existence of x > 1; such that C - x > 0. Observe that, if such
x exists, then we can find a sufficiently large initial marking mg allowing to
fire once and again a sequence with firing count vector x, what shows that ¢ is
repetitive. Therefore, existence of x > 1; such that C - x > 0 is sufficient for
structural repetitiveness of ¢. In summary:

Theorem 18. Let N be a P/T net, and t one of its transitions. The following
three statements are equivalent:

1. t is structurally repetitive, i.e., repetitive for some myg.
2. There does not exist'y > 0 such thaty - C < —1;.
3. There exists x > 1; such that C-x > 0.

Applying the above characterisation of structural repetitiveness of ¢ to every
transition of N:

Corollary 19. Let N be a P/T net. The following three statements are equiv-
alent:

1. N is structurally repetitive, i.e., every transition is repetitive for some mg.
2. There does not existy > 0 such that'y - C% 0.
3. There exists x > 0 such that C -x > 0.

Comparing Corollaries 16 and 19 (or Theorems 15 and 18) it is quite apparent
that structural boundedness and structural repetitiveness are dual notions: a
net with incidence matrix C is structurally repetitive iff the reverse dual, with
incidence matrix —C+, is structurally bounded. Both properties together are
equivalent to conservativeness and consistency: Let x > 0 and y > 0 be the
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vectors such that C-x > 0 and y-C < 0, respectively. By C-x > 0, y-(C-x) > 0,
while by y - C <0, (y-C)-x < 0. Therefore y - C-x =0, hence C-x = 0 and
y - C = 0. Since (structural) repetitiveness is necessary for (structural) liveness,
i.e., liveness for some initial marking, see Proposition 10, we can state:

Theorem 20. Let N be a P/T net. If N is structurally live and structurally
bounded, then (equivalently):

1. N is structurally repetitive and structurally bounded.
2. N is conservative and consistent.

Taking into account Proposition 12:

Corollary 21. Let N be a P/T net. If N is structurally live and structurally
bounded, then for every mg:

LRSS*F (N, mg) = LRSTH (W, mg) = LRS™* (V, my)

4.4 Implicit Places and Structurally Implicit Places

In general, places impose constraints on the firing of their output transitions.
When they never do, they could be removed without affecting the behaviour
of the rest of the system. (However, even being redundant, they might still be
useful — one such application is developed in Section 5.)

A place whose removal does not affect the behaviour of the system is called
an implicit place. Here, by behaviour we understand the interleaving semantics,
i.e., the sequential observations or language, although the notion of implicit place
can be directly extended to cope with a step semantics (see Remark 27).

Definition 22. Let S = (P U {p},T,Pre, Post,mg) be a P/T system. The
place p is implicit iff L(S) = L((P, T, Pre[P,T], Post[P,T], mo[P])).

In other words, p is never the unique place that prevents the firing of a
transition, i.e., m > Pre[P,t] = m(p] > Prep,t] for all £ € p®, so it produces
fictitious synchronisations in its output transitions. For instance, in Figure 9 (a),
t4 seems to represent a synchronisation, but whenever ps is marked so it is p,
so p is implicit. It is worth noticing at this point that, in general, m[p] may
not be computable from the marking of other places. For instance, the marking
of p in Figure 9 (a) cannot be deduced from the marking of the other places,
it depends also on the number of occurrences of t;. When the marking of an
implicit place can be computed from the marking of other places, we say that
it is marking implicit. In Figure 9 (b), both p; and ps are marking implicit:
m(p;] = m[p]+m[ps] and m[ps] = m[p]+m[p,]. Therefore, they can be removed
without affecting the behaviour of the system. The net in Figure 9 (b) shows
also that, naturally, being implicit or not is sometimes a matter of the initial
marking. With p; + ps + 2p as initial marking, p is marking implicit instead of
p1 and py, and m[p] = m[p1] + m[p4]: the behaviour of the system is that of
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(b)

Fig. 9. Implicit and marking implicit places. Place p is implicit but not marking implicit
in (a). Places p1 and p4 are marking implicit in (b). If we add a token to p in (b), then
it becomes marking implicit instead.

two cyclic processes, (t1t2)* and (t3t4)* that evolve in parallel independently,
in spite of the apparent synchronisation introduced by p.

Notice that once the initial marking of the rest of the system is fixed, im-
plicitness of a place is monotonic with respect to its initial marking (i.e., if the
place is implicit for some initial marking, it is also implicit with a greater one).

To decide whether a given p is implicit, in principle, we should check that
no reachable marking exists such that for some ¢ we have m[P] > Pre[P, t] and
m[p] < Pre[p,t]. Of course, it is necessary that p is not the only input place of
its output transitions. This syntactical check rapidly tells that, for instance, ps
and ps cannot be implicit in the net of Figure 9 (b).

The condition that no reachable marking exists such that for some ¢ (actually,
t € p*) we have m[P] > Pre[P,t] and m[p] < Pre[p,t] can be expressed conve-
niently using a “transition selector” s, i.e., the characteristic vector of one transi-
tion (s > 0 and 1-s = 1): Place p is implicit in S = (P U {p}, T, Pre, Post, mg)
iff there are no m and s which are solution to:

m € RS(S)
m[P] — Pre[P,p*]-s >0
m[p] — Pre[p,p*] - s <0 (27)
1-s=1
s>0

where m[P] > Pre[P,p*] - s states that ||s|| is enabled by P, and m[p] <
Pre[p, p*] - s states that it is not enabled by p.

Replacing for the first condition the state equation, as usual, we obtain a
structural sufficient condition for p implicit, in terms of non existence of solution
m, o, and s to:
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m—-—C-0c=mg
m[P] — Pre[P,p*] s >0
m[p] — Pre[p,p*] -s <0 (28)
1-s=1
m,o,s >0

Since m[p] = mg[p] + C[p,T] - o, the above is equivalent to mg[p] being
greater than or equal to the optimal value of the following linear programming
problem:

max{Prelp,p*] s — Clp,T] o | m[P] - C[P,T] & = mo[P]
" [P] Pre[P p*l-s>0 (29)
m, o, Z 0}

The initial marking does not appear in the constraints of the dual problem
of (29), which is:

min{y -mo+u | y-C[P,T]<C|p,T]
j - Pre[P,p*] + ul > Pre[p, p°] (30)
y >j>0}

Considering j = y does not affect the solution, leading to the following suffi-
cient condition for p implicit:

Theorem 23. Let S = (P U {p},T,Pre, Post,mg) be a P/T system. If mg[p)
is greater than or equal to the optimal value of the following linear programming
problem:

min{y -mo[P] +p | y-C[P,T] < Clp,T]
y - Pre[P,p*] + 1 > Pre[p, p°] (31)
y >0}

then p is implicit.

Let us consider the places which can be made implicit for every initial mark-
ing of the rest of the system (i.e., we are abstracting from the initial marking,
as for other structural versions of properties). We call such places structurtally
implicit:

Definition 24. Let A" = (P U {p},T,Pre, Post) be a P/T net. The place p is
structurally implicit iff for every mg[P], a mg[p] exists such that p is implicit in
S = (P U{p},T,Pre, Post, mg).

The linear programming problem in Theorem 23 is feasible iff a y > 0 exists

such that C[p,T] >y - C[P,T], because the constraint containing p can always
be satisfied taking a sufficiently large u. When a place fulfills such condition (or
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its alternative formulation), it becomes implicit with a sufficiently large initial
marking, at least with that given by the linear programming problem, so it is
structurally implicit. (Notice that it may become implicit also with a smaller
marking in some cases, see later Remark 39.)

On the other hand, consider a net A/ and a place p for which no y > 0 exists
such that C[p,T] > y - C[P,T]. By the alternatives theorem, a x > 0 exists
such that C[P,T]-x > 0 and C[p,T]-x < 0. With a sufficiently large initial
marking mg[P], a sequence with firing count vector x can be fired repeatedly in
(N, mg[P]), and this would empty p for whichever mg[p], so p is not structurally
implicit.

In summary, a characterisation of structurally implicit places is given by the
following result:

Theorem 25. Let N'= (P U {p}, T, Pre,Post). The place p is structurally im-
plicit iff (equivalently):

1. Ay > 0 ezists such that Clp,T| >y - C[P,T]
2. No x > 0 exists such that C[P,T]-x > 0 and C[p,T]-x <0

Remark 26. Similarly as structural boundedness and structural repetitiveness
are dual notions, the dual notion of a structural implicit place can be defined.
The resulting objects are called structural bypass transitions, which have also a
behavioural interpretation (see [73]). O

When Clp,T] = y - C[P,T] in Theorem 25.1, the place p is marking struc-
turally implicit and its marking can be computed from the marking of other
places:

m(p| = mo[p] + C[p,T] - o
mg[p] +y-C[P,T]- o
= mo[p] +y - (m[P] — mo[P]) (32)

As an example of (marking) structurally implicit place, consider p with
Clp,T] = t3 — t5 added to the net system in Figure 1. The optimal solution
to the linear programming problem in Theorem 23 is zero, and it is obtained for
Y = p1 +p2 + ps and u = —1. Therefore, p is (marking) structurally implicit
(Clp,T) =y - C[P,T]), and with mg[p] = 0 it is (marking) implicit — as can
be easily checked. It is interesting to observe in this case that, once p is added,
the places pq, p3, ps4, and p are the support of a new P-semiflow, which induces
the new marking invariant m[p;] + m[ps] + m[ps] + m[p] = 1. This invariant
reveals, in particular, that ps and ps are safe and in mutual exclusion, what
could not be proven using the state equation of the original net, where 2p3, 2p4,
and p3 + p4 were spurious marking. The addition of an implicit place, which does
not affect the behaviour, may be useful to allow proving properties by structural
techniques!

An example of implicit place which is not structurally implicit, effectively
showing that the structural condition is only sufficient, is p in Figure 8. (In
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practice, though, specially under liveness and boundedness, implicit places are
most often structurally implicit.)

Remark 27. A place is concurrent implicit when it preserves not only the transi-
tion firing sequences but also the step firing sequences. Any concurrent implicit
place is of course (sequential) implicit, and (sequential) implicit places without
self-loops are also concurrent implicit — notice that they differ only when a
transition is enabled several times by the marking of the other places while it is
merely enabled by the implicit place.

The sufficient condition for a place p to be implicit given by Theorem 23
can be generalised to cope with concurrent implicit places by substituting the
cost function in (31) by y - mg[P] + « - , where « is a positive integer, not
necessarily one. A sensible choice for a must be greater than or equal to the
maximum enabling bound of the transitions in p®, where the enabling bound of
a transition is the maximum number of times that it can occur in a step. A
structural enabling bound for a transition ¢, possibly greater than the actual
enabling bound, can be computed as:

seb[t] = max{k | m > kPre[P,t{] A\m—-C-0 =moAm,o > 0} (33)

O

4.5 Mutual Exclusion and Concurrency Relations

We consider now the verification of mutual exclusion between two places, which is
the basic property to analyse in order to investigate pairwise mutual exclusions,
as was discussed in Subsection 4.1.

The problem of pairwise concurrency of transitions is closely related. Even
it can be transformed into non mutual exclusion between places by splitting the
analysed transitions into paths transition — place — transition. More directly,
for transitions that are in pairwise concurrency relation we can find, for each
pair ¢ and ¢, a marking m such that m > Pre[P,t] + Pre[P, t'].

We concentrate on the mutual exclusion of two places, p and p':

Theorem 28. Let S be a P/T system.
If there is no solution to

m-C-0=mgAm2>>1g,1 A0 >0 (34)
or (equivalently) there exists solution to
y C<O0Ay- -1, —y-mg>0Ay>0 (35)
then p and p' are in mutual exclusion.

Remark 29. As usual, the alternative formulation given by (35) is only equiva-
lent when considering (34) over the reals. For instance, consider the net on the
right and top in Figure 2 initially marked with 2p, instead of p; + po (which
now becomes a spurious solution). While (35) does not allow to prove mutual
exclusion of p; and po, (34) does if it is interpreted over the integers. O

31



The interpretation of (35) is the following: From y - mg < y - 1y, and
y - C <0 it follows that in every reachable marking y -m <y -1y, ., so m >
14} is impossible, what proves mutual exclusion. (In structurally repetitive
nets, the condition y - C < 0 can be replaced by y - C = 0, because, according
to Proposition 19, it is never the case that y - C< 0.)

The dual formulation of the mutual exclusion problem given by (35) proceeds
in the same way as the dual formulation of the boundedness problem, efficiently
searching for a suitable vector y to prove the property (see Remark 14). An
additional advantage of this formulation compared to (34) is that the obtained
y provides an ezxplanation of the property and may be useful to derive other
mutual exclusion relations by the way. As an example, consider again the net
system in Figure 1 after adding the place p with C[p, T| = t3 — t5, and suppose
that we are trying to prove the mutual exclusion between p; and p, applying
(35). A solution y = p; + p2 + ps + p is obtained. The corresponding marking
invariant, m[p;] + m[ps] + m[p4] + m[p] = 1, proves not only mutual exclusion
of p; and p4, but also mutual exclusion of any other pair, i.e., it proves at once
the pairwise mutual exclusion of pi, ps3, ps, and p.

4.6 Deadlock-freeness and Termination Properties

Proving that a concurrent system cannot reach a deadlock condition (i.e., no
activity because every process is waiting for some other to continue) may be dif-
ficult when the size of the system becomes large and its structure intricate due to
complex and perhaps subtle interactions. For instance, (flexible) manufacturing
systems are indeed a characteristic domain where the study of deadlocks is spe-
cially relevant [3,34,94,95]. The tasking behaviour of Ada programs is another
example [64].

We apply here the state equation method to analyse the absence of deadlocks
in P/T models. The approach is conceptually simple but, since the condition for
a marking to be a deadlock is relatively complex, it still requires a consider-
able computational effort. We present here several techniques to improve the
performance, often reducing the problem to checking a single system of linear
inequalities for existence of solutions.

In net terms, a deadlock corresponds to a marking from which no transition
is fireable. That ¢t is disabled at m can be expressed:

\/ mp] < Pre[p, t] (36)

pest
Clearly, every reachable deadlock is a solution to the state equation where

every transition is disabled, what leads to the following basic general sufficient
condition for deadlock-freeness:

Theorem 30. Let S be a P/T system.
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If there is no (integer) solution to

m—-—C-0c=mg
m,o >0 (37)
V, ey m[p] < Pre[p,t] VteT

then S is deadlock-free.

In general, the disabledness conditions are not linear, because they consist
of linear inequalities linked disjunctively. Anyway we can rewrite (37) as a set of
systems of linear inequalities/equations, i.e., as a logic sum of products, applying
the distributive property to the actual product of sums: If for every mapping
a: T — P that assigns to each transition one of its input places there is no
solution to:

m-—C-0c=mg
m,o >0 (38)
mla(t)] < Pre[a(t),t] VteT

then S is deadlock-free.

The problem now is that we have to check (38) for every mapping a, so we
have to check ], . |*t| linear systems. In general this number might be large
if there are many synchronisations (join transitions). We aim at reducing this
number as much as we can, preserving the decision power, that is, the set of
integer solutions to (37).

Firstly, we can obviously remove from (37) a disabledness condition if there
is another disabledness condition that is “weaker”. In other words, if Pre[P,t] <
Pre[P,t'] for some ¢t and ¢, the disabledness condition for ¢' can be removed
without affecting the set of solutions to (37), even over the reals.

It is also quite obvious that we can remove from (37) the disabledness condi-
tions of transitions that are known to be dead (or 0-live, they do not appear in
any sequence from mg) because whenever all the other transitions are disabled,
we are certainly in a deadlock situation. This does not affect either the set of
real solutions to (37).

Clearly, a sufficient condition for ¢ dead is non-existence of solution to:

m—-C-0=mgA0 >0Am > Pre[P,{] (39)

Considering (39) over the reals, and applying the alternatives theorem, we
obtain an alternative sufficient condition for ¢ dead, in terms of ezistence of
solution to:

y-C<O0Ay>0Ay-(Pre[P,t] —mg) >0 (40)

If there were a solution y, it would induce the marking invariant y-m < y-mg.
If some m enabled ¢, then m > Pre[P,t], soy -m >y - Pre[P,{] > y - mo,
contradiction.
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A simpler (and weaker) sufficient condition for ¢ dead is that there exists
p € *t such that sb[p] < Pre[p,t]. For the application of the following results,
the knowledge of sb is assumed, so this weaker condition can be applied with
no extra computational effort.

Remark 31. Termination properties can often be rephrased in terms of fireability
(or quasi-liveness) of an artificial transition that removes the tokens from the
desired final state and restores the initial marking (e.g., see [10]). Proving that
such transition is dead, e.g., using (39) or (40), is sufficient — of course not
necessary — to disprove termination. O

Although disregarding some transitions applying the above arguments may
be helpful, typically the more drastic reduction in the number of systems to
check is produced by the results that we present in the sequel. They provide
rules to rewrite the disabledness condition of a transition in a less complex way
while preserving the set of integer solutions to (37). (Notice that if the systems
were finally checked disregarding the integrality of variables, these rules might
diminish the decision power.)

Proposition 32. Let t be a transition such that for every p € @ C *t the fol-
lowing holds: sb[p] < Pre[p,t]. Replacing in (37) for the disabledness condition
corresponding to transition t the following (less complex) condition:

<Z mfp] < ZPre[p, t]) v \/ m[p] < Pre[p, t]

pET pET pE*t\ T
the set of integer solutions is preserved.

Proof. From m[p] < sb[p] for every p € P and m € LRS®®(S), and sb[p] <
Pre[p, ] for every p € m, it follows that >  (m[p] — Pre[p,t]) < 0 for every

m € LRS®F(S). Since all the addends are non-positive, the “<” holds for the
sum iff it holds for one of them. O

By the application of this result to a transition ¢, the number of linear systems
to be solved is divided by \'t\‘—.ﬁ’ what is deduced from the ratio between the
number of input places to the transition and the actual number of them that
need being considered separately.

In the particular case where m = °¢, the disabledness condition is reduced
to a linear inequality. Therefore a single system of linear inequalities is needed
for structurally safe systems (i.e., those having all places with structural bound
equal to one), for instance.

Also when all but one of the input places of a transition are such that their
structural bound equals to the weight of the arc, the disabledness condition of
the transition can be reduced to a linear inequality, applying the following result,
which generalises Proposition 32:
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Proposition 33. Lett be a transition such that *t = 7 U {p'}, where sb[p'] > 0
and sb[p] < Pre[p,t] for every p € w. Replacing in (37) for the disabledness
condition corresponding to transition t the following (less complex) condition:

sb[p']- > m[p] + m[p'] < sbp']- > Pre[p,t] + Pre[p,1] (41)

peE™ pET

the set of integer solutions is preserved.

Proof. Let us rewrite first the condition in (37) for ¢ disabled:

(\/ m[p] < Pre[p, t]) V (m[p'] < Pre[p', 1)) (42)

pET

It must be shown that (42) < (41).
For “=7, we distinguish two cases for ¢ disabled:

1. Some p" € w is such that m[p"] < Pre[p”,t], so m[p"”] < Pre[p”,t] — 1.
Using also that m[p] < sb[p] for every p € P, and that sb[p] < Pre[p, t] for
every p € m, we get:

sb[p'] - 3 ,c, m[p] + m[p']

Sb[p] - 5 e ey lp] + slp] - mp] + m[p]

sb[p'] - Zpeﬂ\{p”} Pre[p,t] + sb[p'] - (Pre[p”,t] — 1) + m[p/]
sb[p'] - 3 ,c, Pre[p,t] — (sb[p'] — m[p'])

sb[p'] - EPETI' Pre[p, t]

sb[p'] - EPETI' Pre[p,t] + Pre[p’, ]

2. Now p' is such that m[p'] < Pre[p’,¢]. Using that m[p] < sb[p] for every
p € P, and that sb[p] < Pre[p, t] for every p € m, the result follows.

AN I IN

For “<”, let us rewrite first (41):

S (mlp] - Prefp, f]) < x>t~ mlp] (43)

e sb[p']

Assume contrary: (43) holds and ¢ is enabled. In particular, m[p'] > Pre[p’, ],
hence ) . (m[p] — Pre[p,t]) < 0. Since m[p] — Pre[p,t] < 0 for every p € T,
it follows that there exists p € 7 such that m[p] — Pre[p,t] < 0. Thus, ¢ is not
enabled, against the hypothesis. O

By the application of this result to a transition ¢, the number of linear systems
to be solved is obviously divided by |*¢|.

Let us illustrate this latter rule. The idea is to describe the set of solutions
to the state equation for which ¢ is disabled by means of a linear inequality. In
the case of Figure 10, the markings for which ¢ is disabled are those for which
m[p] < 3 and those for which m[p'] < 1. Observe that, taking into account that
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Fig. 10. Illustration of Proposition 33.

the solutions to the state equation respect, in particular, the structural bounds,
all the solutions for which ¢ is disabled are among the integer points in the
region described by 5 - m[p] + m[p'] < 5-3 + 1. Notice that the slope of the
boundary of such region could be greater than that given by sb[p'], provided
it is not vertical. (Therefore, in case we finally check non-existence of solutions
using integer programming, it makes no difference to use any greater value.)

In summary, up to now, apart from disregarding transitions with a stronger
or equal precondition than others and dead transitions, we are able to write as
a linear inequality the disabledness condition for all transitions ¢ € T that have
at most one input place p such that sb[p] > Pre[p, t].

Proposition 32 can also be applied to reduce the number of terms when
|m —*t| > 1, and |x| > 1, although in this case the disabledness condition is not
reduced to a single term.

We can still further reduce the number of systems to solve by preapplying
a transformation to the system that preserves deadlock-freeness (actually, it
preserves the projected language). The transformation, illustrated in Figure 11,
can be applied as needed to every place p with homogeneous weighting. After the
transformation, we have one more transition (¢*) in the figure), the disabledness
condition of which can be written as a linear inequality because the structural
bound of p(*) is one. On the other hand, the structural bound of p*) is also one,
thus we have in each transition in p® one input place less with structural bound
greater than the weight (perhaps only one, or even none, remains, and then the
disabledness condition for such transition can be written as a linear inequality
t00).

After the presented results, clearly the state equation based verification of
deadlock-freeness reduces to checking non-existence of (integer) solution to a
single linear system of inequalities in the case of structurally bounded P/T sys-
tems with homogeneous weighting — in particular ordinary and equal conflict
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Fig. 11. A transformation preserving the projected language (in particular, preserving
deadlock-freeness).

systems — because the transformation in Figure 11 can be applied as neces-
sary to enable Propositions 32 or 33. Moreover, since every P/T system can
be simulated by another with homogeneous weighting preserving the projected
language (see Figure 12 for an illustrative example of the kind of transforma-

Fig. 12. Simulating weights with ordinary nets preserving the projected language.

tion used; more compact transformations exist for particular cases), it follows
that every structurally bounded P /T system (or merely known to be k-bounded,
because these can always be made structurally bounded using the complemen-
tary place construction) can be transformed to require a single linear system of
inequalities:

Theorem 34. Let S be a structurally bounded P/T system. Then (37) in the
sufficient condition for deadlock-freeness given by Theorem 30 can be rewritten
as a single system of linear inequalities.

Remark 35. Since live equal conflict systems do not have “killing” spurious so-
lutions (i.e., spurious deadlocks), existence of a solution guarantees non liveness.
If no deadlock solution is found the system is proven deadlock-free, what in
bounded strongly connected equal conflict systems implies liveness. Observe that
applying the transformation illustrated in Figure 11 to an equal conflict system

37



leads to another equal conflict system. This allows in this class to characterise
liveness, in the presence of boundedness, through non-existence of integer solu-
tion to a single system of linear inequalities [92]. O

Let us illustrate the application of some of the above techniques to a simple
example. Consider the system in Figure 13 (a), where all the structural marking

(a) (b)

Fig. 13. Example of deadlock-freeness analysis.

bounds are three. The disabledness condition for ¢ can be disregarded. Transi-
tion t; has only one input place, so its disabledness condition is linear. Transition
t4 has only one input place (p3) with structural bound greater than the weight, so
its disabledness condition can be written linearly applying Proposition 33. The
structural bounds of both input places of t3 are greater than the corresponding
weights, but we can apply the transformation in Figure 11 to one of them, e.g.,
to pa, see Figure 13 (b). Now the disabledness conditions of ¢3 and ¢5 can both
be written linearly.

Therefore, finally, the analysis can be done using a single linear system. That
is, if m is a deadlock then the following linear system has a solution:

m—C-0 =mgAm,o > 0 (state eq.)
mfp] <0 (t1)

3-m[ps] + mlps] <9 (ta)
3-mlp7] + mpy] <3 (t3)
3-mlpg] + mlps] <3 (t5)

Solving (with the simplex algorithm) we obtain, for instance, the following so-
lution: m = 3ps + 3p4 + pg, o0 = 3t2, which in this case is actually reachable.

Remark 36. Notice that Proposition 33 and transformations like that illustrated
in Figure 11 are intended to express the disabledness of a transition linearly.
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Therefore, they are not only useful for deadlock-freeness analysis but for every
analysis that requires checking the disabledness of some transitions. In particular,
they can be applied to analyse the non fireability of facts [37]. O

5 Improving the State Equation

A major limitation of the analysis methods based on the state equation that
we have described in the previous sections stems from the existence of spurious
solutions: only necessary or sufficient conditions for the analysed properties are
obtained. As an example, for the net system in Figure 1, due to the spurious
solutions, the state equation based analysis does not allow to prove safeness,
deadlock-freeness, or pairwise mutual exclusion between ps, p3, and ps. This
limitation motivates the interest of the techniques that we present in this section
to remove some, ideally all, of the spurious solutions (with respect to LRSSE]R).

In Subsection 3.5 we observed that traps and siphons induce new invariant
laws that add information to the state equation. We concentrate here on traps.
Asgsume O is an initially marked trap of S. To fix ideas, consider © = {p1, p2, ps}
of the net in Figure 1. An initially marked trap induces a trap invariant as an
inequality, which in the example is:

m[p;] + m(ps] + m[ps] > 1 (44)

Now assume that we have a P-semiflow y whose support includes @, which
induces another marking invariant concerning the places of @. The P-semiflow
Y = 2p1 + p2 + p3 + ps + ps in the example, induces the marking invariant:

2m(p;] + m[p,] + m[ps] + m[p4] + m[ps] = 2 (45)
By subtracting (44) from (45) we obtain another inequality invariant:
m[p;] + mp3] + m[p,] <1 (46)

By introducing a slack variable, we can transform the latter inequality into an
equality. The non-negative slack variable can be interpreted as the marking of a
new place, po:

m(p;] + m[ps] + m[ps] + mlpe] = 1 (47)

Observe that the new place is marking (structurally) implicit. In the example,
and taking into account (45):

mpo] = 1 — (m[p,] + m[ps] + m[p4])
=1—(2 = (m[p1] + m[po] + mps]))
=m(pi] + m[ps] + m[ps] — 1 (48)
The place pg coincides with the place p that we considered in Subsection 4.4 after

Theorem 25. Remember that, when marked initially with the optimum value of
(31), which is zero in this case, the addition of this place, which is (marking)
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implicit, removes some spurious solutions. Actually, from (48) it is not difficult to
see that the removed solutions are precisely those that violate the trap invariant
(44): both perspectives, in terms of trap invariants and marking (structurally)
implicit places, are “dual” ways of interpreting the same removal of spurious
solutions from the state equation.

The above reasoning shows that basic trap invariants, i.e., the information
that a set of places must remain marked, can be coded in a marking structurally
implicit place that is added to the original net system. The converse is also
true: when a marking structurally implicit place removes, or cuts, spurious so-
lutions, the cut can be interpreted in terms of trap invariants, as we show in
Subsection 5.1. Although not complete, this leads to a procedure to add cut-
ting implicit places to improve the accuracy of a given state equation, that we
describe in Subsection 5.2. Making use of the linear algebraic formulation of
the property that initially marked traps remain marked given in (18), it is also
possible to improve the state equation by directly adding a generator of trap
invariants in order to require this property, what is presented in Subsection 5.3.

5.1 Cutting Implicit Places

After realising that structural implicit places can improve the state equation by
cutting spurious solutions, several questions naturally arise:

— Which structural implicit places do cut?
— Which spurious solutions are cut?
— Is it possible to eliminate in this way any spurious solution?

We devote this subsection to answering them.
Let p be a structurally implicit place with mg[p] equal to the optimal value
of (31), and let y and u be a corresponding optimal solution. If y > 0, then

m(p] = mo[p] + C[p, T]- 0 2 y - (mo[P] + C[P,T] - 0) =y -m[P] >0 (49)

so the inequality m[p] > 0 becomes redundant in the state equation (m[p] is a
non-extremal variable in the terminology of convex geometry), hence its addition
or removal does not affect LRSSER, (In the particular case of live marked graphs,
where RS = LRS™® every implicit place is of this kind.) On the contrary, when
i < 0 in every optimal solution, the constraint on non-negativity of m[p] is not
redundant, so the state equation with p has less solutions that the state equation
without it; since p is implicit, the difference are spurious solutions, precisely those
where m[p] would have been negative. Taking into account that

mlp] =y -mo[P]+ pn+ Clp,T]- &
=y - (m[P]-C[PT]-0)+p+CpT] o (50)

we can state that:
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Theorem 37. Let S be a P/T system. Let p be a structurally implicit place,
and let mg[p] be the optimal value of (31) corresponding to the optimal solution
y > 0 and u < 0. The addition of p to S cuts at least one spurious solution (with
respect to LRSSE]R), i.e., p is a cutting implicit place, iff there is no solution to

y' - CIP,T] < C[p,T]
y' - Pre[P,p*] + u'1 > Pre[p, p°]

51
y' - molP] + i = mo[p) &1
y.u >0
The spurious solutions that are cut are those that fulfill:
y -m[P]+ (C[p,T] -y -C[P,T])- 0 < —p (52)

In other words, the addition of the cutting implicit place p expresses the
additional restriction that in every reachable marking the following holds:

y-mP]> —u—(C[p,T -y -C[PT))- -0 (33)

Observe that (C[p,T|—y-C[P,T])-o > 0 and that it depends on &. For the case
of a marking structurally implicit place, C[p,T| = y-C[P,T], and y-m[P] > —pu.
This reminds us a trap invariant, where ||y|| is the trap and —u is the minimal
(weighted) token content. To demonstrate this fact, rewriting C as Post — Pre
we get:

y - Post[P,T] —y - Pre[P,T| = Post[p,T] — Pre[p, T (54)

Assume without loss of generality that p is pure, i.e., p* N*p = 0. (If p was
not pure, the same place cancelling the self-loops would be also marking struc-
turally implicit, possibly with a lesser value of u, i.e., with a “more negative”
u.) Considering separately p®, *p, and T — (p® U *p), we have:

y - Post[P,p®] —y - Pre[P,p*] = —Pre|p,p*] < 0 (55)
y - Post[P, *p| — y - Pre[P, *p] = Post[p,*p] > 0 (56)
v Post[P,T — (;* U*p)] —y -Pre[P,T— (" U] =0 (57)

Since y -Pre[P, p*]+ul > Pre[p, p*], because y, u is a solution to (31), Equation
(55) becomes:
y - Post[P,p®] > —ul >0 (58)

From (56-58), for every transition ¢ we have y - (Post[P,t] — Pre[P,t]) > 0. It
follows that if y - Pre[P,t] # 0, then y - Post[P,t] # 0, i.e., if ¢t € ||y||* then
t € *|lyll, so ||ly|l is effectively a trap. In summary:

Theorem 38. Let S be a P/T system. Let p be a marking structurally implicit
place, and let mg[p] be the optimal value of (31) corresponding to the optimal
solution'y > 0 and pu < 0. If p is a cutting implicit place (according to Theo-
rem 87) then ||yl is a trap of N such that its weighted token content, defined by
y - m[P], is never less than —pu.
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In order to further illustrate the “dual” interpretation of the cut in terms of
implicit places and traps, and also to introduce the limitations of this approach,
consider the example shown in Figure 14, which is a most spare PN represen-
tation of a prototype distributed mutual exclusion algorithm. Let ¢ = r = 1, to

t ty

Cprtpa203 ) (2p1#p3tpy )

e

b
C 2p,+2p; ) @1+P2+P3+PD C 2p;+2p, )

0 ) 4
(2p2+p3+p4 ) CP1+P2+2P4 )

ty t

2p,+2p4 (©)

Fig. 14. A family of P/T systems where ps> and p4 are in mutual exclusion, and the
LRGSE for (a) g=r=1,(b)g=1,r=2,and (c) g=r = 2.

start with. The marking ps + p4 is a (spurious) solution to the state equation,
which prevents proving mutual exclusion of p, and ps using the state equa-
tion (notice that the same happens in the net where the self-looped transi-
tions are splitted, which is merely more cumbersome). The place p: Clp,T] =
to + t4 — t1 — t3, initially marked with one token, is marking implicit; an optimal
solution to (31) is y = p1 + p3, u = —1. Its addition cuts the markings where
y-m = m[p] + m[ps] < 1 = —p, that is, the markings where the initially
marked trap {p;,ps} is unmarked. In this case the only spurious marking is cut,
so mutual exclusion can be proven using the state equation method in the net
with the implicit place.

Let ¢ = 1 and r = 2. Now the markings ps + ps + ps and ps + 2ps are
spurious (and prevent us from proving mutual exclusion the same as before).
The place p used above, marked with two tokens, is marking implicit, but does
not allow to prove mutual exclusion because it does not cut the spurious marking
P2 + p3 + psa. Fortunately, a different choice of the weights of the arcs helps. The
place p': C[p', T = 2to+t4—2t1 —t3, initially marked with two tokens, is marking
implicit; an optimal solution to (31) is y = 2p; +ps, p = —2. Its addition cuts the
markings where 2m[p;] + m[ps] < 2, that is, the markings where the weighted
token content of the initially marked trap {p1, ps} is less than two. (Again in this
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case all the spurious markings are cut.) What is remarkable in this case is the
fact that we are removing even spurious markings, namely ps + p3 + ps, in which
the trap is marked (with a weighted token content below a minimum, though).
We shall come back to this case in Subsection 5.2.

Finally, let ¢ = r = 2. Although the addition of the place p: Clp,T] =
to+t4—1t1 —t3, initially marked with two tokens, cuts the markings where m[p;]+
m(p3] < 2, the spurious marking p1 + p2 + p3 + pa is not cut. Notice that this
spurious marking cannot be cut by any other place because it is a positive linear
combination of two reachable markings: 2p, +2p3 and 2p; +2p,4 (the reachability
set is not convez in this case). This example manifests the incompleteness of the
addition of cutting implicit places in order to remove spurious solutions: they
improve the linear description, but not always completely.

Remark 39. The incompleteness of the addition of cutting implicit places refers
to applying this method alone. It is conceivable that the net to be analysed can be
transformed in such a way that the properties under study are preserved and in
the transformed net spurious solutions can be removed by cutting implicit places,
e.g., with the transformation rule shown in Figure 11. For instance, mutual
exclusion of py and py4 of the net system in Figure 14 with ¢ = r = 2 is equivalent
to mutual exclusion of p}, and py4 in the net system in Figure 15 (a). Place p shown
in (b) with mg[p] = 2 is marking (structurally) implicit and removes the spurious
solutions where p, and ps are simultaneously marked, what allows to conclude
through state equation analysis that p, and p; were in mutual exclusion in the
original system.

It is remarkable that in this case the initial marking of p computed from (31)
is four instead of two, so it is not the minimal marking that makes p implicit,
showing that Theorem 23 is only sufficient for p implicit. O

z/‘/

2

%)

(@) (b)

Fig. 15. Mutual exclusion of p» and p4 of the net system in Figure 14 with g =r =2 is
equivalent to mutual exclusion of p5 and p4 in the net system (a). Adding the implicit
place p shown in (b) allows to prove mutual exclusion.
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5.2 Improving the State Equation with Implicit Places

When faced to a net system the state equation of which is to be improved by
adding cutting implicit places, a question arises: how can we select the candidate
places? We outline here some indications to answer this question.

From the association of cutting implicit places and initially marked traps
that are insufficiently marked in some spurious solutions, the following procedure
naturally comes to mind:

1. Compute (minimal) initially marked traps.

2. For each trap © a marking structurally implicit place is obtained as Clpg,T] =
1o - C[P,T], that is, taking y = 1o in Theorem 25.

3. Let the initial marking for pg be the optimal value of (31) fixing y = 1o. If
i < 0 in the optimal solution, then apply Theorem 37 to verify that it cuts
and to obtain the expression of the achieved cut, and add the place if it cuts.

The above procedure removes all the spurious solutions that can be proven
non reachable observing that the non weighted token content of an initially
marked trap is less than a minimum value, particularly those where the trap
is unmarked. For instance, to improve the state equation of the net system
in Figure 1, we would consider the initially marked traps @1 = {p1,po2,ps},
O = {p1,p3,p5}, and O3 = {p1, p2, p3, pa}, that lead to the corresponding mark-
ing structurally implicit places shown in Figure 16 (a). Their initial markings,

(a) (b)

Fig.16. Adding implicit places to the net system in Figure 1 cuts every spurious
solution. Some original places become implicit when the cutting implicit places are
added.

obtained from (31), are all zero, and all of them cut spurious solutions (we have
already discussed in detail the case of pg, ). Actually, in this case, the reader can
easily check that every spurious solution is cut. It can also be checked that places
D2, p3, and ps are implicit in the net system of Figure 16 (a). Their removal leads
to the system in Figure 16 (b), which is a live and safe state machine isomorphic
to the reachability graph.

44



Remark 40. If a different y is taken in the above procedure to compute cutting
implicit places from given traps, different solutions appear. For the example in
Figure 1 and 16, an alternative set of cutting implicit places is shown in [23]. O

Let us come back to the example of Figure 14 with ¢ = 1 and r = 2. If
we apply the above procedure, from the initially marked trap @; = {p1,p3} we
obtain the marking structurally implicit place pe,: Clpe,] = t2 + t4 — t1 — 3.
The initial marking, obtained from (31), is two, corresponding to p = —1, so the
addition of pe, introduces the new P-invariant m[ps]+m[ps]+m[pe,] = 2, which
cuts the spurious solution ps + 2ps but not ps + ps + ps. In principle, it seems
that the latter spurious solution cannot be cut because, as we discussed, the
matter is the weighted token content of the trap, not merely the token content.
It may be surprising at first sight that it is cut if the above procedure is applied
iteratively. A little thought reveals that this is quite natural, since the addition of
new places originates new traps, so new chances for improving. (Of course, only
traps including newly added places are useful now.) Effectively, besides other
traps, after the addition of pe,, @2 = {p1,pe, } is an initially marked trap, that
leads to pe,: C[pe,] = 2ta +t4 — 2t; —t3. As we saw, when initially marked with
two tokens, this place removes all the spurious solutions. (In fact, once pg, is
added, pe, becomes redundant and can be removed.)

We can proceed until no spurious solution is removed, i.e., no cutting implicit
place is added, in an iteration. (Naturally, the procedure stops after a finite num-
ber of iterations in structurally bounded nets, because the number of possible
spurious solutions is finite.) We insist that this does not guarantee that every
spurious solution has been removed.

Remark 41. An alternative way of finding a cutting implicit place, in the case
that we are trying to disprove reachability of some (sub)markings that we suspect
are spurious, is postulating a monitor place that forbids reaching them, and then
analysing whether it is implicit or not. Consider again the example of Figure 14
with ¢ = 1 and » = 2. As we want to prove that p, and ps are in mutual
exclusion, but the state equation does not allow us to conclude, we introduce a
place that forces the mutual exclusion of po and p4, that is a place p such that
2mps] + m[ps] + m[p] = 2 becomes a (new) P-invariant. As we know, the place
is p: Clp,T] = 2ts + t4 — 2t; — t3, initially marked with two tokens, which is
effectively implicit, so we are done.

This approach is specially suitable for structurally safe systems, where the
place that forbids a given (sub)marking m = 1 is simply p: C[p,T] = —m -
C[P,T], initially marked with |m| — 1 — m - mg[P] tokens (this is the kind
of constraints introduced by Patil, see [67]). Actually, since doing so we can
remove any one precise marking, if the spurious solutions were known, all of them
could be removed. This implies that for any given structurally repetitive and
structurally safe system a “place completed” version with the same behaviour
exists such that RS = LRSP*'. O
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5.3 Improving the State Equation with a Generator of Trap
Invariants

Equation (18) expresses linearly that initially marked traps remain marked. In
order to add this condition to the state equation, it must be stated in terms of
existence of solution, what can be done using the alternatives theorem. Doing so,
we obtain that initially marked traps are marked under m iff there is a solution
to:

Co - X' +2mg—am<O0AX >0A2'>0Aa>0 (59)

If a solution with a = 0 exists, then so does a solution with a > 0. Dividing (59)
by a we get:
Co x+axzmg—-m<O0Ax>0Az>0 (60)

This condition can be interpreted as a generator of trap invariants. It can be
added to the state equation leading to the following improved state equation
(integrality of o can be required for better accuracy, while x and z are rational
because they originate in the transformation of (18) by the alternatives theorem):

Theorem 42. Let S be a P/T system. If m € RS(S) then it is a solution to:

m—-—C-o0=mg
m-—zmg—Cg-x>0
m,o,x >0

x>0

(61)

where Cg is as defined in Theorem 13.

Remark 43. Since in live, bounded, and reversible free choice systems the reach-
able markings are the vectors in LRS"®! that mark every trap [30], Theorem 42
characterises reachability. O

This method has the advantage that no previous computation of traps is
required. (It can be said that the method based on implicit places is “compiled”,
in the sense that trap invariants obtained in some previous or off-line computa-
tion are incorporated or coded as part of the — transformed — net. Following
the same analogy, the method based on a generator of trap invariants is “inter-
preted”, in the sense that markings that are solution to the state equation but
violate the trap condition are eliminated on-line.)

Nevertheless, the gain in efficiency of this method is paid by the loss in
accuracy compared to the method based on implicit places: only markings where
an initially marked trap is unmarked are cut. For instance, the marking ps +
p3 + P4 in the net system of Figure 14 with ¢ = 1 and r = 2 is still spurious with
respect to the improved state equation because no trap is unmarked.

The advantages of both methods can be combined by (iteratively) adding
cutting implicit places to a given net up to a certain point, and then using the
improved state equation (i.e., incorporating the generator of trap invariants)
instead of the plain state equation for the analysis of properties.
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6 Structural Liveness and the Rank Theorems

We have encountered that the state equation method is best suited to the analysis
of properties formulated in terms of existence or non-existence of markings (and
firing vectors), such as marking bounds, mutual exclusion, or even deadlock-
freeness, for which it provides at least necessary or sufficient conditions. For other
properties the statement of which combines existential and universal quantifiers,
e.g., liveness: for every reachable marking there ezists a reachable successor that
enables t, the direct application of the state equation method does not allow to
reach any conclusion.

Of course, the sufficient condition for deadlock-freeness is useful for liveness
analysis (deadlock-freeness is necessary for liveness; even in some cases, e.g.,
bounded strongly connected equal conflict systems, it is sufficient). But this is not
the only way in which the incidence matrix of a net can be exploited to facilitate
the analysis of liveness. In this section we describe in some detail efficient tests —
polynomial time — that give necessary conditions for the existence of an initial
marking that makes a given net live (and bounded). Such necessary conditions
are also sufficient in some net subclasses.

6.1 The Rank Theorem: A General Necessary Condition for
Liveness and Boundedness

A well-known polynomial time necessary condition for liveness and boundedness
of a net system, based solely on purely structural properties, is strong connected-
ness [77] and consistency (Proposition 10) of the net. (As stated by Theorem 20,
for structural boundedness and structural liveness, conservativeness and consis-
tency are necessary.)

These conditions are very useful to discard models that are not correct before
undertaking a more costly analysis. Unfortunately they are only necessary: there
are strongly connected and consistent nets that cannot be lively and boundedly
marked (see Figure 17).

We present here an improved — and still polynomial time — necessary con-
dition, that incorporates an upper bound for the rank of the incidence matrix,
namely that it must be less than the number of equal conflict sets of the net. We
make use of circuit arbiters, which are a particular class of the regulation nets
of [47] that we use to regulate non-trivial equal conflicts. For an equal conflict
set e € SEQS, its circuit arbiter is defined as follows:

Definition 44. Let A" be a P/T net, and let e € SEQS such that |e| > 1. A net
A. = (P.,e,Pre.,Post.) is an (ordinary) circuit arbiter for the equal conflict
set e iff A, is an ordinary net such that P, N P = () and its underlying graph is
an elementary circuit.

Some straightforward properties of these arbiters are: being circuits, they
have the same number of places and transitions, i.e., |e|; the set of places of a
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Fig. 17. Three conservative and consistent nets with rank(C) = 3. Their (non-trivial)
equal conflict sets are shaded. The nets (a) and (b) cannot be lively and boundedly
marked, while (c) is live and bounded with the marking shown.

circuit arbiter in a net is the support of a minimal P-semiflow; with every non-
empty initial marking, a circuit arbiter is live, bounded, and reversible. Figure 18
represents a circuit arbiter (shaded places) merged on an equal conflict set.

Fig. 18. A circuit arbiter (shaded places) merged on an equal conflict set.

Theorem 45 (The rank theorem). If S is a live and bounded P/T system,
then N is strongly connected, consistent, and rank(C) < |SEQS].
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A weaker but more “symmetric” statement, that clearly shows the extension
of Theorem 20, is:

Corollary 46. If N is a structurally live and structurally bounded P/T net,
then N is conservative, consistent, and rank(C) < |[SEQS].

Lemma 47. Let S be a P/T net, and let e € SEQS such that |e| > 1. Let A, be
a circuit arbiter for e, and let N' be the net N' merged with the circuit arbiter
Ae sharing the transitions in e. If S is live and bounded then

1. A marking mg' with mg'[P] = mg such that 8' = (N',mg’) is live and
bounded exists.
2. rank(C') = rank(C) + |e| — 1

Proof (of Lemma 47). For Part 1, boundedness of S and conservativeness of A,
guarantee boundedness of S’ for every mgo’ with mg’[P] = myg. Since S is live
and bounded, then the number r, = max{min{#(e,o) | ot € L(N,m)} | t €
T Am € RS(S)} is well-defined. This is a bound for the number of firings of
transitions in e that are required to enable an arbitrary transition from an arbi-
trary reachable marking. We put r. tokens in each place in P, what completes
the definition of mg’ and now we prove that S’ is live. Let m’ € RS(S’) and
t € T. We shall prove that ¢ can ultimately be enabled from m’. We claim that
there exists a marking m"” € RS(N',m’) such that m"[P.] = mg'[P]. In that
case, since (1) S is live, (2) m"[P] € RS(S), and (3) mq'[P.] has been defined in
a way that it does not interfere when firing a sequence to enable an arbitrary ¢
from an arbitrary reachable marking, then we can fire in (N, m") the same se-
quence that we could fire in (N, m"[P]) in order to enable ¢. To prove the claim,
let o, = e;,€4, - €, € L(Ae,m'[P.]) be such that m'[P.] Z&smg'[P,], i.e., a
sequence in the circuit arbiter returning to the initial marking. It is easy to see
that a sequence such that its projection on e is o, can be fired in (N’, m’). The
idea is firing transitions not in e, which does not affect the marking of places in
P,, until e are P-enabled (their input places in P have enough tokens, no matter
how many tokens are there in other places), which will eventually happen thanks
to liveness of (N, m'[P]), then firing e;, which is also P.-enabled according to
our definition of o, then firing more transitions not in e until e are P-enabled
again, then firing e;, which is also P.-enabled, etc.

To prove Part 2, for rank(C’) = rank(C) + |e| — 1, we shall prove that |e| — 1
out of the |e|] rows corresponding to the places of the circuit arbiter are linearly
independent. Let us fix a notation for the equal conflict set and the circuit arbiter
(see Figure 18):

— €= {60,61,...,ek,...,em,l}

— Pe={co,c1,- - Chy -, Cle|—1

— Pre.[c;,e;] = 1 and Post,[cig1, e;] = 1 (otherwise zeros), where @ represents
the sum modulo |e|.

It is clear that there is one row being a linear combination of the rest, for
instance Cleo, T] = =3 cp.\{coy Clp, T], s0 we remove it and then we prove
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that the rows corresponding to places in P.\{co} are all linearly independent.
Assume, on the contrary, that ¢, where 1 < k < |e] — 1, is a linear combination
of the other places (let the other places be denoted by OP = P U P.\{co, cx}):

Clex,TI= Y Alp]- Clp,T] = A - C[OP, T] (62)

pEOP

Thus, the marking increment produced by a sequence o should also be a
linear combination of the marking increment of the other places:

Amley] = Cle, T] -0 ¥ X ClOP,T]- 0 = A - Am[OP]  (63)

Clearly, it is possible to fire in S a sequence o such that #(e;,0) = if i <
k then w else 0, where w is arbitrarily large. In that case Amj|cy] = Cleg, T -
o = w is arbitrarily large, while all the entries in Am[OP] are finite, what
contradicts (63). O

Proof (of Theorem 45). Only the rank condition needs to be proven. Let N be
the net NV together with circuit arbiters merged to every non-trivial equal conflict
set. Applying Lemma 47.2 repeatedly after each circuit arbiter is merged, what
can be done thanks to Lemma 47.1, it follows that:

|T| - 1> rank(C') =rank(C) + > (le| - 1)
e€SEQS

Rearranging the above inequality we obtain a bound for the rank:

rank(C) < [T]— 3 (lef—1) 1
¢€SEQS

Since ) cspqs €l = |T|, this bound is [SEQS| — 1, so the result follows. O

In the example of Figure 17 (a), Theorem 45 allows to decide that the net can-
not be lively and boundedly marked. Both nets in Figure 17 (b) and (c) “pass”
the test of Theorem 45, although only the latter can be lively and boundedly
marked, e.g., with the marking shown. In summary, the rank condition in The-
orem 45 allows indeed to discriminate some cases but, unfortunately, not all of
them, that is, it is not sufficient.

In the next subsection we seek for cases where the sufficiency holds, but
before let us briefly discuss on the kind of situations leading to non structural
liveness that the rank theorem detects. Intuitively, from the proof of Theorem 45,
it becomes apparent that the rank condition fails when some individual “choices
between alternatives” are not independent from the rest of the system (syn-
chronisations, other choices, etc.). Apart from “flow problems” (i.e., absence of
consistency), absence of such independence indicates that a wrong decision taken
in an individual choice may affect the rest of the system (to the point of “killing”
it).
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(a) (b)

Fig.19. Two conservative and consistent nets where the rank theorem detects non
structural liveness. The (non-trivial) equal conflicts are shaded.

Let us illustrate these ideas with a couple of simple examples where the rank
theorem detects non structural liveness. In the net of Figure 19 (a), the only
minimal T-semiflow is 1, and it is also a basis of T-flows, so rank(C) = 2 =
[SEQS]|. Notice that the fact that ¢; and ¢, are together in every T-semiflow —
what is due to the synchronisation or join transition 3 — means that in every
infinite sequence they should be fired in a fixed proportion (one to one in this
case). Nevertheless, since the choice between ¢; and ¢- is free, the net does not
prevent that this proportion is violated. This mismatch between conflicts and
synchronisations is what the rank theorem detects. Observe that if we merge
a circuit arbiter on t; and t5, say ¢o from 5 to t; and ¢; from t; to to, the
rank is not increased: one place is clearly a linear combination of the other, say
Clco, T] = —CJeq, T]; but also ¢; is a linear combination of other places, namely
Cle1,T] = C[p1,T] + 2CJp2, T], what reveals the problem. In terms of implicit
places, both places of the circuit arbiter are structurally implicit, so they can
be made implicit with a large enough initial marking. Implicitness of the arbiter
reveals that the choice is not free. (Remarkably, for mg = 2p;, when the arbiter
is marked with only one token the system with the arbiter is live. Notice that in
such case the arbiter places are not implicit, actually they affect the behaviour
avoiding the deadlocks. Increasing the marking of the arbiter places eventually
makes them implicit, while it destroys liveness — liveness is not monotonic.)

In the net of Figure 19 (b), the minimal T-semiflows are t; + t2 + t3 and
ty + t5 + ts, and they are also a basis of T-flows, so rank(C) = 4 = |SEQS|.
Now the synchronisations (¢2 and t5) do not impose a given resolution of each
conflict to allow infinite activity (the outcomes of each conflict are in different
minimal T-semiflows), but they impose that each conflict is solved according to
the other, what is again not guaranteed by the net structure where the choices
are free. The rank theorem detects also this mismatch. If we merge a circuit
arbiter, say on t; and t4, it increases the rank. Now the net with the arbiter has
a unique minimal T-semiflow, 1, and the second circuit arbiter does not increase
the rank, in the same way as in the previous example (after merging an arbiter
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on one conflict, a proportion between the outcomes of the other conflict has been
fixed).

6.2 The Rank Theorem for Some Subclasses

For certain subclasses, the general necessary condition for structural liveness
(Theorem 45) has been proven to be sufficient too. Loosely speaking, these sub-
classes have in common that their syntactical constraints leave only conflicts that
are essentially “choices between alternatives” (equal conflicts), so representing
competition or resource sharing is very limited when not forbidden. This is par-
ticularly the case of equal conflict systems (it is also trivially the case of state
machines or marked graphs):

Theorem 48. Let N be an equal conflict net.
A marking mq such that S is live and bounded exists iff N is strongly con-
nected, consistent, and rank(C) = |SEQS| — 1.

Proof (Sketch). The necessity part is the general rank theorem, where rank(C) <
SEQS]| reduces to rank(C) = |SEQS| — 1 because a live and bounded equal
conflict net where circuit arbiters have been merged to every equal conflict set
has a unique minimal T-semiflow. For existence of this T-semiflow, notice that
the “arbitered” net must be consistent. For unicity, it suffices to show that the
support of every T-semiflow is the whole T'. Let x be a T-semiflow of the arbitered
net, and let ¢ € ||x||. All the transitions in CCS(¢) are also in ||x|| because the
places in the circuit arbiters have only one output transition. Every output place
of the transitions in CCS(¢) must have at least one output transition in ||x]|, so
we can apply repeatedly the same argument and, by strong connectedness, all
the transitions are shown to be in ||x]|.

The sufficiency part requires a closer investigation of the structural proper-
ties of the net that is out of the scope of this work, but we outline here the proof,
referring to [92]. Consistency and rank(C) = |SEQS| — 1 imply P-allocatability
(see [92, Theorem 20]). Strong connectedness and P-allocatability imply conser-
vativeness (see [92, Theorem 24]), hence boundedness for every initial marking.
Moreover, strong connectedness and P-allocatability imply that liveness of the
whole net is guaranteed by liveness of every P-component (see [92, Theorem
27.2]). A marking mg such that mg[p] = Pre[p, t] for every p, where ¢ € p°®, is
sufficient to make every P-component live. O

From the proof of the sufficiency part, it follows in particular that live and
bounded equal conflict systems are structurally bounded, thus conservative tak-
ing consistency into account:

Corollary 49. If S = (N, my) is a live equal conflict system, then S is bounded
iff N is conservative (hence structurally bounded).

In the case of free choice nets [39], the P-components are strongly connected
state machine P-subnets. Strongly connected state machines are live iff they
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are marked, so in the ordinary case the above statement can be made stronger,
particularly showing the polynomial complexity of the liveness and boundedness
problem for free choice systems:

Corollary 50. A free choice system S is live and bounded iff N is strongly
connected, consistent, and rank(C) = |[SEQS| — 1, and no P-semiflow y such
that y -mg = 0 exists.

Remark 51. Some results from the classical free choice theory can be deduced
easily from the above rank theorem, particularly the duality theorem [39], which
states that a free choice net is structurally live and structurally bounded iff its
reverse-dual net (which is also free choice) is. O

The rank based characterisation of structural liveness and boundedness has
been extended to larger subclasses of nets. In particular, for the class of deter-
ministically synchronised sequential processes (DSSP) [71,74], that is intended
for the modular modelling of sequential agents that cooperate through buffers,
the corresponding result is proven in [71].

A DSSP is a net system formed by a collection of sequential agents intercon-
nected in a restricted way through buffers. The sequential agents are live and
safe state machines. The buffers are places whose outputs are in one sequential
agent (i.e., buffers are destination private) and that do not condition the reso-
lution of the conflicts of their destination (i.e., all the outcomes of a conflict in
a sequential agent have the same precondition). Under interleaving semantics,
DSSP are a strict generalisation of equal conflict systems. In other words, pro-
vided that only sequential observations are relevant, equal conflict systems can
be simulated by DSSP. The construction is simple (see Figure 20): add self-loop

Fig. 20. Simulation of equal conflict systems by DSSP.

places marked with one token around each equal conflict set of a given equal
conflict system. These self-loop places (with their adjacent transitions) are the
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sequential agents, and the original places of the equal conflict system play the
role of buffers.

Other results for equal conflict systems have been extended to DSSP (see
[74]), including the equivalence of liveness and deadlock-freeness (under bound-
edness and strong connectedness), the existence of home states (under liveness
and boundedness), or the absence of spurious deadlocks (under liveness and con-
sistency). Therefore, in particular, it is possible to verify liveness using integer
programming, the same as in equal conflict systems (the deadlock-freeness con-
dition can be written as a single system of linear inequalities preserving the class
membership also in this case using a particular transformation rule).

Extending the DSSP definition recursively, the class of {SC}*EQS is defined,
for which also a rank based characterisation of structural liveness and bounded-
ness holds [72].

6.3 Application of the Rank Theorems for Subclasses to General
Nets

Given a P/T net for which the available rank theorems do not allow to decide
on its structural liveness, e.g., the nets in Figure 17 (b,c), it is sometimes pos-
sible, using certain net transformation rules (e.g., removal of bypass transitions
or implicit places, other classical reduction rules, equalisation, release, etc.) to
obtain another net where the corresponding property preservation of the rules
together with the available results allow to decide. This topic deserves a closer
investigation that is out of the scope of this work (see [73]), but we illustrate it
with some examples.

In the net of Figure 17 (b), transition ¢z is a linear combination of ¢; and #4:
C[P,t5] = C[P,t2] + C[P,t4], so the effect of firing t3 is the same as the effect
of firing ¢, and t;. Moreover, *{ts,t4} N {t2,t4}* = 0, so t3 can only be fired
when both ¢» and t4 can be fired in one step (¢3 is a particular case of bypass
transition, its occurrence “bypasses” the occurrence of the step t2 + t4 or any of
its interleavings). Clearly, by removing t3 from Figure 17 (b) we could not destroy
liveness, i.e., liveness with ¢3 ensures liveness without it. But in the net that we
obtain after removing t3, rank(C) = 3 and SEQS = {{t1}, {t2,t5}, {t4,t6}}, s0
Theorem 45 shows that it cannot be lively and boundedly marked, hence the net
of Figure 17 (b) is proven not to be structurally live.

In the net of Figure 17 (c), the path ps — t5 — ps can be substituted by
a (macro)place p3s. This place is implicit, hence it can be removed. Since the
resulting net can be proven (structurally) live, so it is the original one — actually,
in this case we need not apply the rank theorem, since the net is simply a state
machine.

Similarly, in the conservative and consistent net of Figure 3, where rank(C) =
9 = |SEQS| — 1 (i.e., the necessary condition for structural liveness holds), place
R is structurally implicit. Since the removal of R leads to a net where structural
liveness can be proven, we are done — again in this case we need not apply the
rank theorem, since the net without R is simply a marked graph.
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A particular transformation, called equalisation, allows to obtain a general
sufficient condition for structural liveness and boundedness. Total equalisation
of a net consists in adding arcs or increasing weights as needed to make every
coupled conflict set equal without changing C (if we add an arc from p to ¢
we must add another from ¢ to p). Figure 21 shows a net and the net obtained

Fig. 21. Total equalisation of a net.

by total equalisation. The resulting net is equal conflict; if it can be proven
structurally live and bounded (using Theorem 48), then the original net is proven
structurally live and bounded too:

Theorem 52. Let N be a P/T net.
If N is strongly connected, consistent, and rank(C) = |SCCS| — 1, then mg
such that S is live and bounded exists.

Proof. After total equalisation we obtain an equal conflict net A" such that
C’ = C and SEQS' = SCCS' = SCCS. It follows that N is strongly connected,
consistent, and rank(C') = [SEQS’| — 1, so, by Theorem 48, a marking mgq exists
such that (N’,myg) is live and bounded. Since live and bounded equal conflict
systems are conservative (see Corollary 49), A is conservative too, hence so
it is N, and then S is bounded. Assume S non live. Then ¢t € T and m; €
RS(S) exist such that ¢ cannot be fired from any m € RS(N,m;). Clearly,
m; € LRS®E(NV’, myg), thus a marking m; exists such that m; € RS(AN’, my) N
RS(N’, mg) (see Subsection 3.4). Since (N, mg) is live, my € RS(N’, m;) exists
such that ¢ is enabled. Contradiction, since ms € RS(N, my). O

In the case of ordinary nets, basically the same argument allows to make use
of Corollary 50, leading to:

Corollary 53. Let S be an ordinary P/T system.

If N is strongly connected, consistent, and rank(C) = |SCCS| — 1, and no
P-semiflow y such thaty - mqg = 0 exists, then S is live and bounded.
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The above result(s) allow, for instance, to prove (structural) liveness and
boundedness of the system (net) in Figure 21.

In summary, given an arbitrary P/T net A" that is strongly connected and
consistent (otherwise it cannot be lively and boundedly marked), only when
[SEQS| — 1 > rank(C) > |SCCS| — 1 a marking mg such that S is live and
bounded exists, what is guaranteed in case rank(C) = |SCCS| — 1. (The inequal-
ity rank(C) > |SCCS| —1 can be deduced as follows: given N strongly connected
and consistent, by total equalisation we obtain an equal conflict net N’ that is
strongly connected and consistent too. Merging arbiters in every equal conflict
set as in the proof of Theorem 48, the resulting net N/ may have either one
minimal T-semiflow or none. Being consistent, a basis of T-flows can be made
up of T-semiflows only — dual of Proposition 12.1 — so the dimension of the
space of right annullers of C” is at most one.)

7 Bibliographical Remarks

Linear algebra has been used in net theory at different net levels (e.g., P/T,
or high level) and with different purposes (e.g., logical analysis, performance
evaluation, controller design, or net synthesis). In logical/correctness analysis —
which is the topic of this paper — other properties not considered here have also
been studied (e.g., home states [44], or fairness [84]). For performance evaluation
and optimization, linear techniques have been applied for the computation of
performance bounds [78,69,17], for approximation techniques [14], or for initial
marking optimization [15]. For the design of logic controllers for a plant modelled
with P /T, linear techniques have been applied within the so called supervisory
control theory [68] (e.g., [38,53,54,40]). The synthesis of P/T systems from an
automata using the theory of regions applies also linear algebraic techniques [2].
In the case of high level PN, linear algebraic techniques have been developed
mainly for the computation of P- (and T-) invariants (most relevant works are
collected in [43]).

The use of integer linear algebra for the correctness analysis of PN dates
back to the seventies [52], where the invariant method is introduced. Other pi-
oneering works, using linear algebra in the real domain, introduce the notions
of consistency and conservativeness [70,55]. The alternatives theorem (or Farkas
lemma) is applied in [59,79] to provide dual perspectives of structural bound-
edness and repetitiveness, laying a first bridge between net theory and convex
geometry. Taking into account that in live marked graphs reachability is linearly
characterised, and that the incidence matrix of a marked graph is unimodular,
linear programming can be used for the analysis, as it was firstly done in [36].
After realising that the evolution equation of a net system is a state equation in
control theory sense, [63] tries to lay a bridge between nets and classical linear
control theories. Despite the great conceptual interest of this bridge, integrality
and non-negativity constraints, and the existence of spurious solutions, limit its
strength.
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The topic was surveyed in both previous Advanced Courses on PN: In [60]
emphasis is given to boundedness, repetitiveness, and duality, [51] is an intro-
ductory tutorial on linear algebraic techniques for P/T nets, and [61] mainly
overviews the invariant method for high level nets.

The basic idea in early works was the intensive exploitation of the P- (and
T-) invariants — the so called invariant method — focusing on minimality, de-
composition, and applicability to prove properties. In essence, the idea is to find
the appropriate invariants to (dis)prove the interesting properties, for what the
computation of the fundamental set is important. A need for this kind of com-
putations has been encountered — and solutions re-discovered — quite often
in several disciplines (dating back to Fourier! see [22] for more details). Within
the PN field, [57] gives a first algorithm to compute the fundamental set of
semiflows, taking advantage from a rank based property to remove non min-
imal semiflows before their computation is completed. In order to reduce the
computational complexity of the algorithm, some heuristics have been proposed
(e.g., [57.1]). In [22] the interpretation of semiflows as directions of a cone is
explicited, and the existing algorithms are reviewed, improved, and their per-
formance is analysed. Taking into account integrality constraints reveals that
y - C = 0 is an homogeneous linear Diophantine system, and different solu-
tions are investigated in [48]. Actually, in principle, the state equation comprises
integrality constraints. If only integer solutions are to be considered to prove
non-reachability of a given marking, then we should solve it using integer linear
algebraic methods, e.g., by means of the Smith normal form [45,76]. Integrality
constraints in linear equation systems can be treated from a modulo-arithmetic
perspective. By applying this approach to the state equation, modulo-invariants
are obtained in [32], generalising the notion of P-flows.

Traps and siphons, which lead to different marking invariants, have been ex-
tensively used in the structure theory of (mainly ordinary) P /T, particularly in
the case of some net subclasses (e.g., [39,41,10,4,31,5]). Regarding the computa-
tion of traps and siphons using linear algebraic techniques, the initial attempts
try to translate the logic conditions defining the corresponding objects into a
set of linear inequalities (e.g. [1,81]). A new line of thinking was opened in [50],
where the computation of traps and siphons is carried out through the compu-
tation of semiflows in a transformed net. This approach was used with slight
improvements in [33]. A similar approach, where only the weighting of the prob-
lem net is possibly transformed, was introduced in [35]. (A particular instance
of this method has been presented here.)

In summary, the classical method consists in computing some structural ob-
jects (semiflows, traps, etc.) and then using the corresponding invariants in or-
der to prove properties. The point of view adopted here considers directly the
state equation, possibly improved, e.g., by taking into account the information
provided by traps. This method was introduced in [83], where the analysis of
several synchronic properties of general P/T systems is carried out through lin-
ear programming problems based on the state equation, and it was developed
in detail in [19]. The idea of using implicit places to cut spurious solutions and
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their relation with trap invariants was presented in [23]. In [87] the method is
implemented, and it is observed that the iterative application can remove more
spurious solutions because the added implicit places lead to new traps. The im-
provement of the linear description is not only helpful for correctness analysis,
but also for performance evaluation [16]. Monitor places have been used in order
to forbid reaching some markings within supervisory control theory [38,93]. The
observation that they could be used also to remove given spurious solutions, and
that this method allows to remove all of them in structurally safe systems appears
in [21]. The idea of incorporating a generator of trap invariants into the state
equation appears in [58]. Also in [23] a totally different improvement method
is introduced, consisting in removing spurious solutions without predecessors,
for what partial enumeration is required (by the way, this method removes the
spurious solutions of the example system in Figure 14 with ¢ = r = 2).

Implicit places were introduced in [6]. Actually, in this seminal work, only
implicit places the marking equation of which is redundant were considered,
i.e,, p > 0, and they were called redundant places. It was observed in [81] that
redundancy (in a convex geometry sense) is not necessary for the place to be
implicit (in the sense that it does not affect the behaviour), i.e., allowing u < 0.
Implicit places were revisited in [23], where the structural ones were derived,
using duality theory, from the linear inequalities expressing the condition that
the behaviour is not affected. Moreover, a sufficient condition for a place to be
implicit in terms of a linear programming problem was introduced. Besides their
interest for reduction techniques and improvement of the state equation, implicit
places play an important role in implementation techniques. On one hand, the
addition of implicit places increases the Hamming distance of the code defined
by marking vectors, what is interesting for fault-tolerant (error detecting and
correcting) implementations [80,85,86]. On the other hand, since new semiflows
appear after the addition of implicit places, the possibilities for decomposition
are increased, what is useful for distributed implementations [81,24]. The new
possibilities for decomposition are also interesting for approximate performance
evaluation techniques [14,66] and exact performance evaluation [18].

Non-existence of solution to the |T'| linear systems of equations for ¢ dead
of the form (40) is essentially the necessary condition for liveness presented in
[60,49]. In this sense, non-existence of solution to (37) is a greatly more accurate
necessary condition for liveness. Some techniques to improve the performance of
verifying non-existence of solution to (37) were presented in [89], and they have
been recalled and improved here.

It was early realised that the state equation (or the invariants that can be
deduced from it) is in general insufficient to analyse liveness or similar prop-
erties. Quoting from [51]: “Token counting in P-semiflows is by far not subtle
enough to solve general liveness problems.” One way of approaching the prob-
lem from structure theory is to investigate the conditions under which the net
structure allows a live marking, i.e., structural liveness. Presently, the best linear
conditions are given by the so called rank theorems. The rank theorem for free
choice systems was conceived from the problem of computability of visit ratios
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in stochastic free choice nets in [13]. A proof, based on the Commoner’s theorem
[39], so limited to the free choice case, was published in [28]. In order to extend
the applicability of the result, the necessity part was developed for general P/T
nets [20], and the sufficiency part was developed for equal conflict systems [91],
independently of the classical free choice theory. (Both results, that have been
recalled here with minor modifications, can be found in [92].) This allowed to
obtain rank based characterisations of structural liveness and boundedness in
larger subclasses, namely DSSP [71] and {SC}*EQS [72]. The idea of using the
rank theorem for free choice — applying equalisation — to obtain a general
sufficient condition for liveness and boundedness in ordinary P/T systems (ac-
tually, to define a subclass, the reqular marked nets, that are always live and
bounded) appears in [29]. The extension to general P/T systems is contained in
[71]. Generalising this approach by means of other transformation rules increases
the decision power of rank theorems [73].
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Elements of Linear Programming and Duality Theory

Many text books cover linear programming (see, for instance, [56,65]). Here we
recall a few definitions and results that are used in the paper.

Any linear programming problem can be written in standard form (possi-
bly requiring the incorporation of slack variables to transform inequalities into
equations) as:

z=max{c-x| A-x=bAx>0} (64)

where x are the (real valued) variables, ¢ - x is the cost function to optimise,
and A -x = b Ax > 0 are the linear constraints. The computational complex-
ity of linear programming problems is polynomial time. They are usually solved
using the simplex algorithm, which, among other advantages compared to poly-
nomial algorithms, performs most often in linear time in spite of its worst case
exponential complexity.

Depending on the existence of solutions to the linear constraints and the
value of the objective function, a linear programming problem can be:

— Non feasible: No solution to the linear constraints.

— Unbounded: The value of the cost function can be increased arbitrarily.

— Bounded: There are optimal solutions x that maximise the value of the cost
function.

The dual of the primal problem (64) is:
Z=min{b-y| y-A>c} (65)

Note that the dual of the primal problem (65) is (64).

The weak duality theorem states that, if x and y are feasible solutions to
(64) and (65), respectively, then ¢c-x < b -y.

The duality theorem states that, if both (64) and (65) are feasible, then both
are bounded and z = 2’

The unboundedness theorem states that, if only one of (64) or (65) is feasible,
then it is unbounded.

These theorems allow to prove the alternatives theorem (for homogeneous or
non-homogeneous systems). Two out of the many formulations of this theorem
are the following:

— One and only one of the following systems is feasible:
A-x>b (66)

y>0Ay-b>0Ay-A=0 (67)
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— One and only one of the following systems is feasible:
A-x>0Ax>0 (68)

y-A$0Ay >0 (69)

If x is restricted to be integer in (64), then it is an integer programming
problem, which is NP-complete. (A typical algorithm is branch and bound based
on linear programming.) In the particular case that A = [I A'], a property that
we use is that boundedness of the integer programming problem is equivalent to
boundedness of the corresponding linear programming problem where integrality
is disregarded, although the optimal value may not coincide.
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