A Systems Theory Perspective of Discrete Event Dynamic Systems:
The Petri Net Paradigm

Manuel SILVA and Enrique TERUEL
Departamento de Informatica e Ingenieria de Sistemas
Centro Politécnico Superior, Universidad de Zaragoza

Maria de Luna 3, E-50015 Zaragoza, Spain.
e-mail: {msilva,eteruel}@mcps.unizar.es

Abstract— The intention of this invited paper is to offer
a view of Petri net (PN) based formalisms as a conceptual
framework for the modeling of discrete event dynamic sys-
tems (DEDS), rather than to survey the topic. The intro-
duction of autonomous and interpreted PNs is presented
in a way that is close to systems/control engineers. The
diversity of interpreted PN formalisms, suited to deal with
diverse purposes but sharing basic common principles, turns
PNs into a conceptual framework or paradigm for the mod-
eling of DEDS. The paper is concluded by reflecting on a
few characteristics of formalisms in general and PN ones in
particular.

I. INTRODUCTION

A great number of systems can be naturally viewed as
discrete event dynamic systems (DEDS). We emphasize
that this is a view rather than an inherent characteristic of
such systems. For instance, we can view a water tank as
a continuous system, containing some amount of water, or
we can be simply interested on whether it contains more or
less than a certain quantity. In what follows, by a DEDS
we mean either the DEDS view of the system or the sys-
tem which is viewed in this way. Compared to continuous
systems, either in continuous or discrete time:

e The state space of a DEDS is discrete, that is, there
is a countable (perhaps infinite) number of distinct
states.

e« The DEDS evolution is not directly seen as due to
time passing; instead, the state changes are driven by
events. Of course, events happen in time, so time
drives the evolution, although indirectly, through these
events. Depending on whether state changes can oc-
cur at any time or only in precise instants, a DEDS is
said to be asynchronous or synchronous.

The DEDS view of systems has been present in systems
theory for a long time. It is gaining growing importance as
far as the number and complexity of DEDS are ever increas-
ing by the development of computer-based technologies,
e.g., in automation, communications, etc. Their complex-
ity and required flexibility to cope with rapid technological
and market changes make for the importance of good de-
sign and easy operation. Formal methods may be helpful
in this respect. Some expected benefits of the use of formal
methods are:

o A better understanding of the system, which is gained
by the obligation imposed by formal methods to think
hard on the problem. This better understanding helps
in removing incompleteness and contradictions, iden-
tifying properties, or discovering potential solutions.

o A sound basis for the development. This is paid off
in terms of increased confidence in a design (errors
can be detected in early stages, limiting their appear-
ance during operation), correct dimensioning, guided
implementation and documentation, re-usability, etc.

The necessity of formal methods is beyond question in
many mature engineering disciplines (electrical, mechani-
cal, control, etc.) although it is still in question in emerg-
ing disciplines such as software engineering [Hal90], [BH95].
Different formalisms for DEDS are being proposed and ex-
perienced, and their links and relative merits are being in-
vestigated. DEDS have so many facets that it is expected
that they are approached from different angles, providing
complementary views of systems serving diverse purposes.

A first step in the application of formal methods is to
obtain a formal model of the system of interest. While
in a colloquial or artistic sense a model is a reference or
standard to be imitated (e.g., in a sculpture or in one’s
behavior), in the domain of systems theory it is rather a
representation of some aspects of a system (either exist-
ing or being conceived) for the purpose of understanding
(analysis) or creation (design). In this latter sense, a model
aspires to represent a part of the real world to the degree
needed in the application for which it is intended. Some
models are formal, typically based or rooted on mathe-
matical representations. For instance, a set of differential
equations may be a formal model of a given continuous sys-
tem, suitable for the purpose of analyzing its time response
or designing a feedback controller for it.

A formalism is a conceptual framework that allows to
obtain a kind of formal models of systems. For instance,
ordinary differential equations are a formalism for the mod-
eling of the dynamic behavior of continuous systems with
lumped parameters. Some examples of formalisms for
DEDS with diverse purposes are sequential/state machines
or state diagrams [Boo67], [Lew85] (for functional de-
scription), Markov chains and queueing networks [Kan92],
[VN92] (for performance evaluation), PERT graphs and
conjunctive/disjunctive graphs [Fre82], [CC88] (for schedul-
ing), etc.

In view of the long life cycle of a given system (along
which it is conceived, analyzed from different perspectives,
implemented, and operated) and the diversity of applica-
tion domains, it seems desirable to have a family of for-
malisms rather than a collection of unrelated or weakly re-
lated formalisms. Following Kuhn’s definition, a paradigm

is “the total pattern of perceiving, conceptualizing, act-
ing, validating, and valuing associated with a particular
image of reality that prevails in a science or a branch of
science”. In particular, for us a modeling paradigm is a con-
ceptual framework that allows to obtain formalisms from
some common concepts and principles, with the consequent
economy and coherence, among other benefits. In this pa-
per Petri nets (PN) are seen as a modeling paradigm for
DEDS.

The structure of the paper is as follows: In Section II,
autonomous PNs are introduced in a way that is close to
systems/control engineers. We make emphasis on some fea-
tures of PN models of DEDS such as the internal represen-
tation in terms of local/distributed states, the even-handed
treatment of states and transitions, the clear separation
of concurrency and non-determinism, or the complemen-
tary algebraic-oriented and graph-oriented representations.
Then we show in Section III how to incorporate informa-
tion from the environment to the abstract PN formalism
by way of interpretations, leading to a family of related
formalisms. Finally, a reflection on some general require-
ments and judgment of qualities of formalisms for DEDS
is made in Section IV, specially looking at PNs.

II. AutonoMOUS PNS AS A FORMALISM FOR DEDS

In this section we concentrate on the logic behavior of
a DEDS, that is, the possible states and evolutions of the
system disregarding time. Abstracting from time can be
done in the case of DEDS where the evolutions are driven
by the occurrence of events, in contrast with continuous
systems where the system may evolve simply due to time
passing.

A. Encountering Place/Transition Net Systems

Models for continuous systems are based on differential
or difference equations (corresponding to whether the time
is seen as continuous or discrete). Two basic approaches to
the modeling are:

e Ezternal description: The system is regarded as a black
box, and the direct explicit relation between inputs and
outputs is described. For instance, transfer functions
or impulse responses are external descriptions of linear
time-invariant continuous systems.

o Internal description: Some (minimal number of) vari-
ables are identified to describe the state of the system,
summarizing its dynamic history. Given the initial
state and the inputs from then on, the state evolution
and the outputs can be computed. Therefore there is
an indirect explicit relation between inputs and out-
puts.

In the case of DEDS, a regular expression can be consid-
ered as an external description (the output of the system is
this whenever the input pattern is that). Although this is
adequate in some applications, such as specifying the be-
havior of an electronic lock, in most cases it is interesting if
not necessary to capture the notion of state and somehow
describe the internal structure of the system.

Let us have a look at the internal description of contin-
uous systems. The state variables are a (minimal) repre-
sentation of the past dynamic history of the system, possi-
bly corresponding to magnitudes of the real world system
(e.g., the voltage of a node in an electric circuit, the popu-
lation of a species in an ecosystem, etc.). The selection of
the appropriate state variables in each case is part of the
modeling process and usually requires knowledge of the do-
main, ingenuity, and methodology. Since magnitudes are
continuous they are coded as real numbers. For notational
convenience the state variables are collected in a state vec-
tor, x. Similarly for the inputs or excitation, u. Now the
change of the state variables needs to be described. When
time is regarded as continuous (and represented by a real
variable t), this means describing the time derivatives of
the state variables:

x(t) = (x(1),u(t),).

When time is regarded as discrete (and represented by an
integer variable k, that is, t = k - § where 6 is the sampling
period), the next state is described:

x(k+ 1) = ¢(x(k),u(k), k).

These equations are known as state equations of the sys-
tem. (Another vector equation is used to describe the out-
puts — measurable real world signals — as a function of
the state, inputs, and time, but this is not relevant here.)
Some advantages of this state representation are that it is
more adequate to cope with complex systems (multivari-
able, non linear, time varying), has a convenient mathe-
matical representation, and allows to cope with optimiza-
tion problems. In the case of time-invariant systems, i.e.,
those whose structure/parameters are constant over time,
the state equation is reduced to:

x(k+1) = ¢(x(k), u(k)),
and when the dependence can be assumed to be linear:
x(k+1)=F-x(k) + G -u(k).

We turn now our attention to DEDS. These are systems
with non-numerically-valued states, inputs, and outputs.
The discrete nature of the states makes their number count-
able (often finite). The state can be represented symboli-
cally, or it can be coded as a number (typically for imple-
mentation purposes). A global representation of the state
is useful in some applications, especially when the system
is a single entity (e.g., a single queue, a machine that can
be idle, working, blocked, or out of service, etc.). The
state is represented globally in formalisms such as state
machines or Markov chains. Nevertheless when the sys-
tem is composed by several entities that interact, a global
representation of the state does not reflect the structure of
the modeled system and is usually cumbersome due to the
large number of combinations of local states that lead to
different global states. In such cases it is better to select
a collection of local state variables forming a state vector

that we denote here by m. Without loss of generality, we
assume that the local state variables are coded, and range
over the naturals. (When the number of states is finite even
binary state variables can be taken.) Again we note that
the selection of variables is a crucial modeling task usually
requiring knowledge of the domain, ingenuity, and method-
ology. For instance, if a sequential component is identified
in the system we can take a variable for each possible state
so that when the component is in a given state the value of
the corresponding variable is one, and zero otherwise. Or
if we find a component of the system that holds items (e.g.,
a store) it can be represented by a variable whose value is
the number of present items, etc. (In general, differently
from continuous systems, minimality in the number of state
variables is not required; actually, from the understanding
and implementation points of view, non-minimality — even
obvious redundancies — may be interesting.)

In a DEDS state changes at discrete points in time,
driven by the occurrence of events. In other words, the
state does not change simply because time passes, unless
this is an event for our system (e.g., a clock). Abstracting
from the particular events that drive state changes or state
transitions, we assume now that there are a finite number
of atomic state transition patterns, that we call (individ-
ual) transitions. Depending on whether these transitions
can occur at any time or only in precise instants, a DEDS
is said to be asynchronous or synchronous, and the time is
seen as continuous or discrete, respectively. If we abstract
from time (i.e., we are only interested in the evolution of
the state irrespective of the instant when it happens) we
can assume that the “time variable” is discrete, correspond-
ing to the ordering of “instants” at which transitions have
occurred. Several individual transitions may occur at the
same “instant”, e.g., if they are independent of each other
and it is not known the precise order in which they occurred
(in a distributed environment it is not always possible to
order events totally). Therefore:

m(k+ 1) = 5(m(k), s(k)),

where in the k-th “instant” the individual transition ¢ has
occurred s;(k) times.

Between two state transitions the state is memorized.
Thus, without loss of generality, the function of state
change can be broken up in two parts, the memory and
the innovation:

m(k+ 1) =m(k) @ ['(m(k),s(k)),

where @ is some operator and I'(m(k), 0) must be the neu-
tral element with respect to ®. We assume now that the
extent of change produced by a transition is fized, that it
does not depend on the state at which it occurs. Then:

m(k+ 1) = m(k) @ T'(s(k)).

Since the state is a vector of natural numbers, the inno-
vation produced by a given transition can be represented
without loss of generality by a vector of integers, account-
ing for the difference between the next and the current state

when such transition occurs, the displacement of the state
produced by the transition. The negative entries account
for state variables whose value decreases, the positive ac-
count for those whose value increases, and the null ones
for those whose value is not affected. Let us write the
innovations corresponding to the individual transitions as
columns of a matrix C: the i-th column, C;, contains the
state change associated to individual transition i. The state
change produced by the occurrence of s (several individual
transitions at the same “instant”) is the corresponding lin-
ear combination of columns of C:

m(k+1) =m(k) + C-s(k).

The above equation imposes a limitation to the transitions
that can occur at a given state, because the state variables
were assumed to range over the naturals: the fixed extent
of change associated with the transition must be possible
at that state. We assume now that a transition is enabled
to occur at a state if and only if the fized extent of change
associated with the transition is possible at that state; that
is, possibility of the state change is not only necessary but
also sufficient for the enablement.

A DEDS under the above assumptions (i.e., finite num-
ber of atomic individual transitions which are enabled at a
state if and only if the fixed extent of change they produce
is possible at that state) can be represented by a wvector
addition system [KM69], defined by the initial state and
the displacement vectors (in the above notation, m(0) and
the columns of C).

Let us further illustrate the above logic of enablement.
The natural valued state variables can be considered as
stores/counters (the actual value is the number of items).
The occurrence of a transition consumes items from some
state variables (those corresponding to the negative entries)
and produces items in others (for the positive entries). A
transition is enabled if and only if there are enough items
to remove. If we want to adhere to this interpretation in
terms of consumption/production, we realize that a zero
entry in the innovation vector of a transition may be due
to the fact that such transition removes as many items as
it produces in some state variable. More generally, the
innovation or displacement vectors represent only the net
effect of the consumption and production. To account for
this kind of situations we can separate the positive and
negative parts of the innovations: C = Post — Pre, and
require that m > Pre - s for s to be enabled at m. (When
there are no self-loops, i.e., transitions that remove items
from and put items in the same state variable, C contains
all the information.)

This is known in the literature as a place/transition
(Petri) net system [HCT0], [Hac75], [Pet81], [BRAS&3],
[Rei85], [Sil85], [Mur89]. A place/transition net is the fixed
or static structure:

N = (P,T,Pre, Post),

where P is the set of state variables, T is the set of atomic
individual transitions, and Pre and Post are |P| x |T'| di-

mensional matrices whose columns describe the consump-
tion and production associated to the corresponding tran-
sitions, respectively; a net together with the initial state
myg is called a place/transition net system.

There are diverse alternative forms for defining net sys-
tems, often computer science oriented. Historical remarks
can be found in [Pet81], [Mur89]. The seminal work is
Petri’s dissertation [Pet62]. His axiomatic view, based on
the fundamental notion of causal independence, is exposed
in [Pet87].

B. Viewing DEDS through Place/Transition Systems

In systems theory, it is habitual to define a system as a
collection of objects and their relations. Objects are char-
acterized by their attributes, some of which are fixed while
others are variable. The value of the variable attributes
defines, perhaps in a not minimal way, the state of the
system. We can identify the state variables, P, and the
individual transitions, 7', as the objects in our system. It
can be said that state variables are passive objects and
transitions are active, in the sense that the value of state
variables is changed by the occurrence of transitions. The
consumption/production interrelation can be defined by a
relation FF C (P x T) U (T x P) and a valuation of this re-
lation, W : F — IN", leading to an alternative definition
of a net:

N =(P,T,F,W).

Let us illustrate the semantics of this weighted flow rela-
tion: (p,t) € F and (p',t) € F means that ¢t consumes
W (p,t) items from p and W (p', t) from p’. As another ex-
ample, (t,p) € F and (¢',p) € F means that the value of p
can be increased by t or ¢/, etc.

A current, often convenient, technique to represent inter-
relations is by use of diagrams. The various components of
a system are represented by some kind of nodes and con-
necting lines represent relations between the corresponding
components. Diagrams may inform on the physical struc-
ture of a system, its computational structure, or both.
Diagrammatic representations of continuous systems are,
for instance, circuit diagrams, block diagrams, and bond
graphs. A DEDS can also be represented by a diagram.
For instance, a state diagram represents a state machine
by depicting the possible states as nodes connected by ar-
rows accounting for the transitions between states; a PERT
graph represents the precedence relations (arcs) between
tasks (nodes); a queueing network represents queues and
stations as nodes and the routing of customers by arcs.
Notice that some diagrams represent states as nodes (state
diagram), events as nodes (PERT graphs), or both (queue-
ing networks — queues are local state variables and stations
are state transformers).

The standard representation of place/transition net sys-
tems uses two kinds of nodes: circles for the local state
variables or places, and bars or boxes for the individual
transitions. Adhering to the interpretation of items inside
stores/counters, the value of a variable is depicted as a
number of marks or tokens inside the corresponding place.
Therefore the global state of the system is represented by

the marking of the places. The extent of change produced
by a transition is indicated by arrows connecting the places
and the transition in the direction of token flow, labeled by
the number of tokens consumed/produced at the occur-
rence of a transition (this is a straightforward graphical
representation of the flow relation F' by means of directed
arcs and the weighting W by means of the labels). Fig-
ure 1 shows a sample place/transition system before and

Fig. 1. A place/transition system. Illustration of the evolution of
the state by the occurrence of the step 2t1 + t4.

after the occurrence (or firing) of the step 2t; + t4 (two
occurrences of t; and one of t4). The evolution of the state
can be seen as a sort of game, the “token game”. Each
“move” corresponds to a legal state change (produced by
the occurrence of one or more individual transitions) and
consists on removing tokens from some places and plac-
ing tokens on others (the total number of tokens may be
changed in a “move”, although usually some token conser-
vation laws can be found).

It is remarkable that with so few objects and rules diverse
fundamental phenomena appearing in (concurrent) DEDS
can be succinctly captured. The possibility of indepen-
dent (or “simultaneous”) occurrence of several individual
transitions in a step accounts for the concurrency between
transitions in a very natural way. In particular it implies
that every ordering of the concurrent transitions is possi-
ble, while the reverse is not always true. (As an example,
in Figure 4, ¢t and t3 can occur in any order, but they are
of course not concurrent or independent since they both
require the token in place R.) In fact, it is said that “true
concurrency” is represented, compared to defining concur-
rency as the possibility of all interleaved sequential obser-
vations. For instance, in the example of Figure 1, ¢; and ¢4
occurred concurrently, even t; occurred self-concurrently.
In a system with transitions only, they would all be con-
current. Places constraint this concurrency establishing
synchronic dependencies between transitions according to
the global structure and initial marking. When it is not
possible that everything that is enabled occurs in a step
we speak of conflict. For instance, in Figure 1 (right) #;
and to compete for the tokens in ps. It may not be ob-
vious whether conflicts will arise; sometimes this depends
on the order of occurrence of some independent/concurrent
transitions. This is known as confusion. For instance, in
Figure 1 (left) both #; and ¢4 can occur independently. If
tq fires first then a conflict between t3 and t4 appears, that

may or may not be solved in favor of ¢4, while if ¢4 is fired
first such conflict does not appear. From the possibility
of representing fundamental phenomena we obtain the po-
tentiality to model virtually every schema in parallel and
distributed systems: sequence, alternative, iteration, fork-
join, rendez-vous, message-passing, (mutex) semaphores,
etc. Subtle or paradoxical behaviors of concurrent systems
are reflected in simple net models; for instance, we shall
illustrate later when time is incorporated (with Figure 4),
the possibility of slowing down a system by speeding up
a part of it. In this sense, it is not unusual that PNs are
found to clarify subtleties in distributed algorithms or com-
munication protocols, or that they are used to express the
semantics of other formalisms.

Place/transition net systems are an operational formal-
ism for DEDS, i.e., they state how the system works, dif-
ferently from denotational formalisms (e.g., logic-based)
that state what the system is intended to do. In fact,
place/transition diagrams clearly show the computational
structure of the modeled system. The locality of the state
variables and transitions makes possible to respect also the
physical structure of the modeled system. Figure 2 shows a
net model for a two-machines manufacturing flow line with

=== |MACH1 MACH 2|~
B
I @ /D @]
N
= =~ =
)
gy o B ta T
@
set up
k
(b)

Fig. 2. A producer-buffer-consumer system: (a) Net model. (b)
Model of machine accepting batches.

an intermediate store acting as a buffer against the possible
disruptions due to failures at machines. It is not difficult
to recognize the sub-models describing the machines (op-
eration dependent failures) and the buffer. The firing of
transition t;; represents the arrival of a part to the first
machine while parts exit through ¢2o (merging these tran-
sitions with others from models of other subsystems could
be done to analyze this flow line embedded in its environ-
ment). The buffer is modeled by places B (parts processed
by MACH 1 waiting for MACH 2) and B’ (unused loca-
tions in the buffer), and transitions 15 and t2; (deposit and
withdrawal, respectively). Assume now machines accept
batches of k parts (e.g., due to the pallet size), although
they process parts one by one, and that there is a set-up
time between two successive batches. Clearly we can sub-
stitute the models of the machines by the subnet shown in

Figure 2 (b), while the buffer places now contain pallets
instead of parts.

C. Abbreviation: High-Level PNs

Assume we find a sort of box structure in matrix C
(strictly speaking we should consider Pre and Post, but
to simplify the discussion we consider that C contains all
the information), for instance:

—-|+]0]o0
BRI
C=loTo[x =

NN

where a “+” box contains positive (and null) entries, a “—”
box contains negative (and null) entries, and a “0” box
contains only null entries. Then we can group or fold all
the places and transitions according to this box structure,
leading to a (smaller) number of (folded) places and transi-
tions. The new places still play the role of state variables,
but their values are somehow structured (e.g., represented
by a vector with as many components as there were original
places). The folded transitions still play the role of state
transformers, and the change in the place values produced
by its occurrence is described by the function that is rep-
resented by the corresponding box; each column represents
an occurrence mode of the folded transition.

By doing this folding we have introduced a second level
in the structure of the model: in addition to the structure
of state variables and transitions, these are now also struc-
tured in the form of data types and functions, which are
depicted by labeling places, transitions, and arcs.

Of course the folding process should not be done arbi-
trarily, but guided by the nature of the modeled system.
Actually, one directly obtains the folded model by firstly
identifying the relevant data structures in the system to
be modeled. A modeling trade-off appears when deciding
what to put in the net structure and what to put in the
data/functions structure. As an extreme example, it is al-
ways possible to obtain a completely folded model with
one place and one transition in a self-loop, and with all the
information captured by the data structure and functions.

PN systems that incorporate the possibility of typed
state variables are called in the literature high level Petri
nets, and different ways of specifying the data structures
and the corresponding functions have been proposed. The
above line of reasoning leads to colored PNs [Jen91], al-
though the breakthrough from low to high level PNs was
the proposal of predicate/transition nets [GL81], which
adds predicate logic inscriptions to net objects and rela-
tions.

A possible definition of a colored PN represents the data
types as a finite set of finite color classes, C, and the cor-
responding color domains of each place and transition,
cd : PUT — C, and the functions in each element of
the matrices Pre and Post:

N = (P, T,Pre,Post,C,cd).

As an extremely simple example, in Figure 3 a colored
PN model of a modulo maxz counter is represented. In

N={0,1, ..., max}

X N\ X

dec | count | inc
[N] —>@/])< [N]
xel X@ 1
Fig. 3. A colored PN model of a counter.
this case C is a single color class N = {0,1,...,maz},

and all the color domains are IN; the functions are de-
scribed by the labels, e.g., when transition inc occurs in
mode x € N it removes a token valued x and puts a token
valued z ® 1 (functionally, Pre[cont,inc] = identity and
Post[cont, inc] = successor). A possible initial marking is
a token with value 0. If we put several tokens in the initial
marking we are modeling several (independent) counters.

It is clear that to produce concise models of real world
systems, the ability to deal with data types in order to
group similar objects is essential. In particular, this dra-
matically improves the understanding, specially when there
are symmetries in the system (e.g., customer classes in a
customer/server system). But it is important to note also
that this is only an abbreviation of the model, crucial as
it may be. In fact, it is possible to obtain an equivalent
place/transition net system from a high level model by un-
folding it, not to be confused with decoloring. Decoloring
is abstracting from the identity of tokens, and can be done
whenever the precise identities are not relevant, e.g., they
represent individuals of a customer class. It results in a
more abstract model than unfolding, which is as detailed
as the original high level model (but possibly much more
cumbersome).

D. Eztensions of the Basic Formalism

Let us come back to the assumptions we made to arrive
at place/transition net systems as models for DEDS (the
same holds for high level PNs, but we shall mainly phrase
the discussion in terms of place/transition for the sake of
clarity). We assumed that:

1. The number of state variables and individual transi-

tions is finite,

2. The extent of change caused by a transition is fixed,

it does not depend on the state at which it occurs, and

3. A transition is enabled to occur at a state if and only

if there are enough tokens to consume.

Obviously these assumptions restrict the kind of system
behaviors that can be modeled. Removing these restric-
tions leads to several extensions. Of course such extensions
tend to reduce the tractability or analyzability of the model
[Pet81]; in fact, they often lead to the computation power
of Turing machines.

Regarding the finiteness of the number of nodes, if col-
ored PNs had color classes of infinite cardinality, e.g., the
naturals, they would be finite representations of systems
with an infinite number of transitions and state variables

— the unfolding would lead to a net with infinite places and
transitions. This is somehow similar to partial differential
equations compared to ordinary differential equations: the
distributed state variables can be seen as an infinite num-
ber of state variables.

Regarding the fixed extent of state change, reset nets
[AK77] (the occurrence of a reset transition empties a
place), self-modifying nets [Val78] (the arc weights are non-
homogeneous linear combinations of place markings), or
more generally nets with marking-dependent arc cardinal-
ity [Cia94] have been proposed.

Regarding the logic of enablement in terms of consump-
tion, the enablement can be broken up in two parts: con-
cession (there are enough tokens in the input places) and
some additional “guard”. Therefore, the conjunction of
consumption requirements of a transition is no longer suf-
ficient but only necessary in the logic of enablement. The
guards could be chosen to be arbitrary predicates on the
state, or they can be somehow restricted. The most popu-
lar of all such guards (in fact, the most popular extension)
are inhibitor arcs [AF73], [Pet81]: the inhibiting place must
be empty (or have less tokens than the weight) for the tran-
sition to be enabled. Also the complementary notion, test
arcs, has been proposed [CH93], [LC94], [MR95], where the
tested place must have enough tokens for the transition to
be enabled. It is important to notice that a test arc dif-
fers from a self-loop, because the latter affects concurrency
due to the consumption semantics: clearly a “read” oper-
ation is not equivalent to a “rewrite” (take and put back)
operation in a distributed system!

Another way to modify the logic of enablement is by way
of priorities: for a transition to be enabled, no transition of
higher priority can be enabled. We can either define a (ir-
reflexive antisymmetric transitive partial) relation between
pairs of transitions (the priority of ¢ is higher than that of
t', etc.) [BK92], or a partial ordering (each transition has
some priority level) [Pet81].

Some of the above extensions are theoretically inter-
changeable, since their computation power is the same.
Even more, under some circumstances (typically bounded-
ness of certain state variables) even plain place/transition
net systems can simulate extended models. The existence
of these connections allows to re-use some results for the
analysis. Nevertheless, it is not usually convenient from a
modeling point of view to artificially simulate a given ex-
tension (typically the resulting model is larger and does
not reflect so well the structure of the modeled system).

III. THE PN MODELING PARADIGM FOR DEDS

The connection of a formalism and reality is provided by
the interpretation. In a totally uninterpreted theory there
is no meaning associated to the mathematical objects. For
instance, the theory of graphs does not assume any partic-
ular meaning for its objects (e.g., graph nodes can repre-
sent sites, states, actions, etc.). This very abstract setting
has some advantages: it is extremely general (so it can
be applied in a diversity of domains, with the consequent
economy) and precise. A semi-interpreted formalism gives

a sort of generic meaning to the mathematical objects. For
instance, control theory is semi-interpreted: some variables
in the differential equations describe the state, others play
the role of external inputs or excitation, some of which are
control signals while others are perturbations, etc. But the
same formulation/equations can describe systems with a
very different nature (electrical, mechanical, socioeconom-
ical, etc.). When a given model is completely interpreted,
every variable has a precise meaning in terms of the real
world system being modeled.

In this sense, autonomous PNs are semi-interpreted:
places have the meaning of state variables, transitions are
state transformers, and some rules for the dynamic behav-
ior are provided by the logic of enablement /occurrence. We
can associate a precise meaning to places and transitions
(e.g., this place represents a store, this transition represents
the arrival of a part, etc.) in the form of a labeling (with
statements) indicating to the human observer the intent of
the model. Doing so, the behavior is not affected.

But in many situations the association of a meaning to
the net objects has stronger implications: if a transition
models the end of some activity, there may be temporal
constraints for its occurrence once it is enabled; or if two
transitions are in conflict, their meaning may imply that
there is some constraint on how this conflict should be
solved. The behavior of autonomous PNs is independent of
time and environment. In this sense their non-determinism
(notice that we fixed when a transition is enabled to occur,
but not when would it occur, even whether it would occur
at all, or how a conflict would be solved) can be regarded
as a total abstraction of time and environment. (This ab-
straction is even stronger than in the case of stochastic
models, where some knowledge, though incomplete, is cap-
tured by pdf’s — probability distribution functions.) If the
constraints associated to the interpretation are taken into
account, the non-determinism is reduced (or removed) and
the behavior of the model is affected, actually restricted.
This is why the adjective interpreted is usually regarded as
synonymous of non-autonomous in the PN literature, while
in time-invariant continuous systems non-autonomous is
synonymous of forced, a meaning that fits also very well
in our context, although is not conventionally used.

Since similar interpretations are useful in a diversity of
application domains, interpreted extensions (simply inter-
pretations in the sequel) incorporating external constraints,
often in terms of time, have been proposed. They lead
to different PN based formalisms sharing some basic prin-
ciples. This is why we speak of a Petri net paradigm.
Some of these formalisms developed from PNs have be-
come standards, either by their use or by the influence of
organisms, as it happens in other areas (e.g., the use of
BCMP queueing networks [BCMP75] made them a stan-
dard within queueing networks, or LOTOS (Language of
Temporal Ordering Specification) [ISO88| is a standard-
ized language, based on process algebra, oriented to open
distributed systems).

In the following subsections we will comment on two par-
ticular kinds of interpretations. Our selection is motivated

by the relevance for automation applications. In the first,
constraints on the timing and conflict resolutions are pro-
vided, leading to timed/stochastic PNs. These formalisms
are used in performance evaluation and optimization, or in
scheduling. In the second, the evolution is constrained by
external inputs, which is interesting in control. The net
model evolves in closed-loop with its environment, which
is not modeled (at least at the same degree of detail, only
some signals are selected to inform about its state).

A. Timed/Stochastic PNs

One among the very many possible ways to incorporate
time in a PN system is by associating it to transitions.
This can be done as a delay, constraining the amount of
time that elapses between the enabling of a transition and
its instantaneous occurrence (assuming it is not disabled in
the meanwhile by the occurrence of another — conflicting
— transition), or as a duration, and then the occurrence
is in three phases: start/activity/end. “True concurrency”
leads to temporal realism of these models.

Different ways of constraining time lapses are:

o Giving a time interval, or window, as in time PNs
[Mer74]. The interval may be just a point, and then
timing is deterministic, as in timed PNs [Ram74].

« In a probabilistic fashion, giving the pdf, as in stochas-
tic PNs [Mol82], [ABC84], [ABCT95].

e In a possibilistic fashion, by way of fuzzy sets. In
[CVD96] fuzzy PNs are overviewed. (In some cases
not only the timing but also the marking is fuzzyfied.)

Similarly, different ways of constraining conflict resolu-
tion are:

o Giving a fairness constraint. The constraint may be

rigid, and then it is deterministic.

o In a probabilistic fashion, as in stochastic PNs.

e In a possibilistic fashion, by way of fuzzy sets.

Defining a sound interpretation in order that the model
reflects faithfully the intended behavior is not always
an easy job. In the case of stochastic interpretations,
[ABBT89] explores different sound possibilities, and it
shows that the net structure should be carefully taken into
account.

Figure 4 shows a PN model under two different inter-
pretations. The model is extremely simple, yet it reveals
some paradoxical behaviors. If we associate a stochastic
interpretation, e.g., firing durations are exponentially dis-
tributed with means [s1,7,0.1,2, 1, 7], we can plot the cycle
time versus s1, the mean duration time of ¢; (what reveals
that the system can be speeded up — the global cycle time
decreases — by slowing down a subsystem, ¢; in this case).
If we associate a deterministic duration interpretation, e.g.,
firing durations are [1,2, 1,2, 1, 3], we can compare different
scheduling policies by depicting the corresponding Gantt
charts (what reveals a well-known phenomenon in opti-
mization: the optimal global behavior may not be reached
using local optimization rules, such as immediate progress
— firing as soon as possible — in this case).

PN based formalisms can be related to other for-
malisms which are used for similar purposes. For instance,

cycletime

15.5

N
"

Immediate progress

ul b [t
u | |t s |

Optimal schedule
t t | i3
b |t tg

Fig. 4. Different interpretations of a PN. With an stochastic du-
ration time interpretation it is illustrated that slowing down a
subsystem may speed up the whole system. With a determinis-
tic duration time interpretation it is illustrated that immediate
progress scheduling may slow down the whole system.

stochastic PNs are used for performance evaluation, the
same as (the diverse formalisms in the family of) queue-
ing networks. With the presented interpretation, transi-
tions clearly correspond to stations (self-concurrency cor-
responds to multiple servers), and queues are modeled
by places. PNs provide a systematic way to introduce
synchronization primitives (in this sense Figure 5 is self-
explanatory). Moreover, since in a net model not all the
places need to play the role of queues (they can model
resources, or local states of a station which has been re-
fined for a better description), it is possible to merge the
customer /server and functional modeling perspectives. On
the other hand, work needs to be done to fully incorpo-
rate service, queueing, and routing disciplines into the PN
framework, where it is current practice to assume random
policies.

As another example, (possibly stochastically) timed PNs
can be used for the modeling and solution of scheduling
problems. In this case, transitions can be classified as
controllable or uncontrollable. The latter fire as soon as
possible, while the former need to be scheduled, e.g., to
obtain a good (ideally the best) performance. From this
perspective, scheduling is a performance control activity.
Compared to PERT graphs, which represent only prece-
dence constraints between tasks, PNs also allow for the
natural representation of resource constraints, generalizing
conjunctive-disjunctive graphs [CC88], and allow the con-
sideration of cyclic behaviors.

Besides the economy and coherence gained by the use of
related formalisms, concepts developed for one particular
purpose can become meaningful for others. We shall il-
lustrate this phenomenon by two significative examples. In
the analysis of timed systems it is usually found that activ-

SPNs Synchronized QNs
places O waiting rooms (queues) 1]
0 timed |:| stations (servers) @)
transitions 0
O immediate "\ routing —I
\/ { .
<Gl v
>| synchronizations { A

A Adgquisition
V Release
¢ Fork

s
=
sB--o--
Sy Yo
]
E -
&
P
%@ﬂ?
<}
=

D [
lg
Py t7)
:|:|:|}|—> Reservoir of n
delay —— / resources
station vt Rrtag o

——————— P

3

(b) Extended queueing network representation.

Fig. 5. Stochastic PN and extended queueing network represen-
tations of a customer/server system with passive resources and
synchronizations.

ities take very different amounts of time to be completed,
what leads to the appearance of states with very different
steady state probabilities. States with negligible proba-
bilities could be disregarded in many analyses to reduce
the computational complexity. To facilitate this simplifica-
tion, a time-scale notion was introduced in stochastic PNs
by the definition of immediate transitions [ABC84], which
have the additional important benefit of facilitating the de-
scription of the routing. The distinction of different time
scales has been related to the distinction of observable and
non-observable transitions in the framework of logic anal-
ysis [SA92], laying a bridge for the cooperation from both
views of the problem.

As a second example, it is conventional to describe (wide
range) quantized signals by continuous signals. A well-
known example is the description of the populations in
predator-prey systems (e.g., goats and wolves living in an
island) by positive real functions over time as an approxi-
mation of the more realistic natural functions. A fluidiza-
tion of this kind has been used in approximate performance
analysis techniques but it is also interesting to extend the
PN modeling paradigm to cope with some continuous and
hybrid systems (see, for instance, [LAD91], [O1s93], [TK93],
[DA94]).

Regarding the matter of standardization, there is still a

wide diversity of timed/stochastic PN formalisms. Nev-
ertheless the use of generalized stochastic PNs (GSPN)
[ABC'95] and their colored extension has made them
a de facto standard or reference model for performance
modeling and evaluation. For scheduling applications, in
most cases (deterministically) timed PNs [Ram74] where
all transitions are controllable are used.

B. Marking Diagrams

In order to use PNs in automation it is needed to connect
the net model (acting as a controller) to the plant being
controlled. This implies that the evolution shall be some-
how governed by inputs and reflected by outputs. State
diagrams [Boo67], [Lew85] have associated inputs and out-
puts. We call a PN model with a similar association of
inputs and outputs a marking diagram, as a natural — al-
though not generally used — name, provided that in PNs
the state is called marking. Models of this kind can be
found in [DB76], [Sil85], [MKMHS6], [Sil89], [DHP*93],
[ZD93].

Inputs (either in the form of external events or logic con-
ditions) are associated to transitions in the form of guards.
They affect the evolution: a transition must occur when-
ever it is enabled and the corresponding guard is true (pro-
vided contingent conflicts are solved). Outputs or actions
can be associated to both places and transitions. In the
former case some action is produced while the place is (suf-
ficiently) marked (e.g., while train in critical section, repre-
sented by a corresponding place marked, red light on). In
the latter some signal is produced at the occurrence of the
transition (e.g., start a timer, step a counter, etc.). Actions
can be further conditioned by external conditions.

In local control, net conflicts are typically solved by the
corresponding guards. Otherwise, especially in coordina-
tion level control, the occurrence of controllable transi-
tions is decided by consulting some ezternal oracle (e.g., a
knowledge-based scheduler) [VCA*88], [MMS™89], [VC93].

Marking diagrams allow for concise and natural repre-
sentation of concurrency and sequencing compared to state
diagrams and relay ladder logic diagrams, respectively.
PN based controllers are available [DB76], [MKMHS&6].
Grafcet, an International Standard since 1987, is another
tool for the specification of logic controllers which is essen-
tially a subclass of interpreted PNs [DA92], [Dav95].

C. Consequences for the Analysis

Interpretations restrict the behavior of the underlying
autonomous model, so they must be taken into account
for the analysis. On the one hand, this may become ex-
tremely complicated in some cases because the notion of
state must be enlarged, e.g., time PNs [BD91]. On the
other hand, performing analysis of the autonomous sys-
tem is only conclusive for some particular properties and
subclasses of interpreted systems [Sil85]. For instance, the
autonomous system in Figure 6 (a) is not bounded unless
the interpretation ensures that t' fires as often as t; the
autonomous system in (b) deadlocks (fire ¢ twice) unless
the interpretation precises that the conflict is resolved in

(@) (b) (©

Fig. 6. The interpretation affects qualitative properties.

alternating fashion; in (c), if ¢ takes always more time to
fire than ¢’ then the system will not return to the initial
marking and ¢" will die, although the autonomous model
is live and reversible.

All in all, the shared structure allows to re-use structural
objects and relations since the only modifications are in the
occurrence rule. Therefore different PN based formalisms
can be viewed as members of a family where the relation-
ships lead to both economy and coherence. Although for
each purpose or degree of detail the adequate formalism
would be chosen from the family, the transformation from
one formalism to another could be sound, if not formal or
even automatic. The use of a single family of formalisms
for such a diverse range of problems is not only beneficial
from the point of view of communication and re-utilization
of results. It has proven to lead also to a synergic situation
where the concepts and techniques developed in one area
help in the solution of open problems in another one [Sil93],
[SC95]. For instance, the computability of the visit ratios
(relative occurrence transitions) in stochastic net models
opened the way to discover the so called rank theorems
[CCS91], [TS96], which characterize in polynomial time im-
portant logical properties. As another example, symmetry
detection at the logical level is a fundamental step towards
efficient performance evaluation of stochastic colored PNs
[CDFH93].

IV. ON THE QUALITY OF FORMALISMS

In this section we reflect on some characteristics of for-
malisms, making reference to PNs. Our intention is not
to be normative or classificatory, but rather to give some
broad criteria for judgment.

A. On the Number of Concepts

Minimality in the number of primitives is usually a must
in the construction of a conceptual framework. This raises
a tradeoff between the engineering and scientific perspec-
tives: while engineers appreciate a rich ontology with dif-
ferent concepts suited for different purposes, scientists look
for basic and deep underlying notions. Take for instance
the two models in Figure 5. The extended queueing net-
work introduces a variety of specific primitives to handle
synchronization and resource constraints, although some
situations are quite similar, e.g., passive resources and cus-

tomers reside in different kinds of nodes and different nodes
are used to model a join and a resource acquisition. In the
PN model the same phenomena are represented with a few
basic primitives, e.g., a customer or a resource are tokens in
places, so both joins or resource acquisitions are modeled
in the same way.

The diversity and specificity of primitives may be conve-
nient to develop concise and elegant models, but it tends
to difficult formal reasoning and theory construction. An
ideal solution to conciliate reasoning capabilities and prac-
tical expressivity consists on having a minimal number of
basic primitives in terms of which richer derived primitives
can be constructed. In this sense, the basic PN formalism
is quite spare: only two simple and somehow orthogonal
primitives are identified: one active (transitions) and one
passive (places). These basic primitives are connected in
alternation to form nets. The fact that the two primitives
can be rated as active and passive does not condition the
modeling of what could be identified at a higher level as
active and passive subsystems/components (e.g., programs
and data structures). Actually, these are represented in the
same way: by means of nets. For example, in Figure 2 the
machines are active components while the buffer is passive,
but they are all represented as subnets even though they
play very different roles. When richer primitives are re-
quired, high level PNs (Subsection II-C) can be used as an
abbreviation of place/transition nets, and reversible trans-
formations (folding/unfolding) exist to go from one to the
other. As another example of abbreviation, in the case of
bounded systems the use of extensions such as inhibitor
arcs can simplify a plain place/transition model.

Up to this point, the number of primitives has been re-
garded mainly as a matter of modeling convenience. But
this is not the only implication of the number of primi-
tives. In some cases, having too few primitives prevents
the representation of certain situations and features. This
self-imposed limitation leads usually to stronger analysis
results, at the price of loosing theoretical modeling power.

In spite of the reduced number and simplicity of prim-
itives, place/transition systems are rather general, in the
sense that they are able to describe complex and subtle
phenomena, as it was illustrated in Subsections II-B and
III-A. But there are systems that cannot be represented,
or properties of systems that cannot be captured, what re-
quires the introduction of (interpreted) extensions in some
situations (Subsection II-D and Section III).

B. On Semantics

The semantics of a formalism must be clear and unam-
biguous. Operational semantics describe how the system
works in a way close to a conceivable implementation. A
semantics is denotational when it declares what is done, in
terms of equations, expressions, etc. for instance in a logic
specification. Denotational semantics are more abstract
and so more independent of implementation.

PNs are typical operational formalisms. They describe
the system in terms of (local) states, state changes (tran-
sitions), and the evolution rule. These objects are seman-

tically rich in the sense that they allow to represent con-
currency, synchronic relations, conflict, etc. as illustrated
in Subsection II-B. In particular, the representation of
concurrency by means of causal independence of transi-
tion occurrences is more faithful than in the case of inter-
leaving semantics, where concurrency is expressed in terms
of non-determinism. The separation of concurrency from
non-determinism leads to temporal realism in timed inter-
pretations, what is crucial for performance evaluation or
scheduling.

Contemplating non-determinism is important in a se-
mantics of a formalism for DEDS, specially in the case of
parallel and distributed systems, because it recognizes the
lack of observability of the global state of the system. In
autonomous PNs non-determinism means completely ab-
stracting from the scheduling of transition occurrences. In
other words, it is not fixed how conflicts are solved (as in
non-deterministic automata), even it is not fixed when en-
abled transitions occur. This abstraction of the scheduling
gives freedom for the implementation (as it happens in Ada
with the select statement).

Let us briefly comment on the semantics of the logic of
enablement /occurrence of autonomous PNs. Many bridges
have been laid between PNs and logic. For instance, first-
order predicate logic was used as a model for developing
a net theoretic formalism dealing with individuals (dis-
tinguishable tokens) and their properties and relations in
predicate/transition nets [GL81]. In [MZ88], [PM8&9] pred-
icate/transition nets are used for the formal modeling of
some logic programs. But there is an essential difference
between predicate logic and PNs due to the inability of clas-
sical logic to handle resources [VC93]. Linear logic [Gir87]
has been proposed to fill this gap. In classical logic, by
the weakening axiom, from ‘A implies B’ it can be deduced
that ‘A and C implies B’. So, if A, B, and C were inter-
preted as resources, and implication was interpreted as a
resource transformation, then resources (of type C) might
disappear without being used. However, in linear logic,
from ‘A implies B’ it can only be deduced that ‘A and C'
implies B and C°. Similarly, the contraction aziom (if ‘A
implies B’ then ‘A and A implies B’) is not valid in linear
logic. In [EW94] it is shown how linear logic may serve as
a specification logic for PNs.

In [EW94] PNs are used also to clarify some notions of
linear logic. In fact, the clear and intuitive operational se-
mantics of PNs together with their generality have made
them a kind of framework of reference for expressing the
semantics of other formalisms (e.g., [Tau89]). In [Old91]
three complementary formalisms are used to describe con-
current processes at different abstraction levels, and their
semantic links are explored; logic formulas of temporal or
ordinary predicate logic specify the bahavior, process terms
are used as an abstract concurrent programming language
that stresses compositionality, and place/transiton nets are
chosen to operationally describe processes as concurrent
and interacting machines.

C. On Locality and Structuration

When modeling large systems, composed by many dif-
ferent interconnected subsystems, it is essential that the
model reflects such structure (e.g., the physical structure
of a complex mechanical device or a manufacturing plant;
notice that most often we deal with man-made systems,
which have some kind of meaningful structure — perhaps
not unique — from their design). Otherwise, modifying a
subsystem or adding a new one may force to largely (some-
times completely) re-build the model, and it is not possible
to re-use subsystem models in different situations. Com-
plex systems typically have a long life cycle, so they require
indeed frequent such modifications, additions, and re-uses.

The locality of places and transitions is central in PNs.
It appears as the starting point for the structuration of net
models. For instance, it is possible to refine a place or
transition to give a more detailed description, or to com-
pose two modules by identification of shared transitions or
places. Refinements and modularity can be either based
on states or actions, thanks to their treatment on equal
footing.

It must be noted at this point that the basic PN for-
malism does not force to structure models. The fact that
somehow PNs are structure based does not mean that they
are structured. In other words, a PN model is a static
structure (places, transitions, arcs) on which a behavior is
modeled by “playing the token game”. But appart from
this structure (which is very important, e.g., for the anal-
ysis as we shall comment later) the net model is “flat”,
there is no ezplicit structuration in the form of modularity,
hierarchy, etc., so it can grow disorderly.

Structuration can be achieved either by introducing
construction operators (following the approach of pro-
cess algebras [Mil89] and defining some algebraic structure
[BK95]), or by following some pragmatical methodology
(e.g., [VMSS88], [CBGI1], [ZD93] in the context of manufac-
turing systems). For systematic construction it is essential
to investigate the fundamental notions of composition and
refinement, both based on the locality principle. Moreover
it is important to consider hierarchical and layered sys-
tems, where a collection of inter-related models are used to
describe with different degrees of detail the same system
or parts of it. This has been a major topic in PN research
[BGVI1], [BD92], [PRS92], [Feh93].

It is a common trend in systems theory to study re-
stricted subclasses of systems or formalisms where the
greater tractability is paid for by the lower expressive
power. For instance, linear time-invariant dynamic systems
are a well studied (and practically relevant) subclass of con-
tinuous systems. In the case of PNs, thanks to the clarity
and depth of the basic notions, it has been possible to char-
acterize specially tractable system behaviors in terms of
simple local syntactical constraints, leading to a sort of taz-
onomy of systems. In several cases the studied subclasses
allow for, or are meant to, systematic construction. Some
well studied subclasses are marked graphs and other de-
terministic systems [BCOQ92], [TCS97], free choice mod-
els [CCS91], [DE95], [TS96], macroplace/macrotransition

[DJS92], modules synchronized via rendez-vous [DDPS82],
[Don94], or restrictedly sharing resources [ZD93], [ECM95],
or cooperating via message passing [Sou93], [TSCC95].

D. On Methodological Support

Maturity of an engineering discipline requires not only
formalisms, but also some associated methodological sup-
port (e.g., in terms of synthesis procedures, analysis tech-
niques, tools, etc.) and the existence of ezpertise (e.g., in
terms of catalogs of models and methods for specific do-
mains, standards, etc.).

Figuratively, a formalism is a car that needs a driver
(methods and tools) in order to successfully reach the des-
tination (solving problems). For example, to obtain and
solve differential equations models of complex continuous
dynamic systems the aid of modeling methodologies (e.g.,
bond graphs [Tho90], system dynamics [Coy77], etc.) and
supporting tools are essential. In this subsection we briefly
comment on the support given by PNs for the modeling,
analysis, implementation, and documentation of DEDS.

Model building is mainly a creative, thus difficult to au-
tomatize, task. Nevertheless for a given kind of systems
and problems it may prove useful to somehow limit cre-
ativity, either to help in the automatic generation of the
model from a domain-oriented description of the problem
or to facilitate the subsequent analysis. The considera-
tions we made regarding structuration in Subsection IV-C
are relevant at this point. Additionally, when considering
high level models, a methodology for the data representa-
tion, integrating modern software engineering concepts like
algebraic specification and object-orientation, is required
[BDMS8S], [BB91], [Sib94], [van94], [VM94].

The analysis of PN models has been largely investigated.
Virtually all the already cited books and surveys on PNs
cover analysis issues, both of autonomous or interpreted
models. In fact, analyzability is frequently pointed out as
one of the major comparative advantages of net models.
Broadly speaking, (qualitative and quantitative) analysis
methods of PN models can be classified as behavioral, net-
driven, or structural. Behavioral methods are based on
some description of the state space, typically in terms of a
(partial) enumeration of the reachable states (e.g., reach-
ability graph, underlying Markov chain, etc.). While they
are often conclusive, they are computationally expensive
or non feasible due to the state space explosion problem.
To alleviate this problem, net-driven techniques have been
proposed to reduce the number of states for a given anal-
ysis (e.g., taking advantage from symmetries, reducing the
model at the net level, applying a “divide and conquer”
approach identifying appropriate structural components,
etc.). In some cases, specially when some net subclasses
are considered, the analysis can be done reasoning only at
the net level (i.e., structurally), typically by a combina-
tion of linear algebra/convex geometry and graph theory.
Besides the eventual efficiency achieved by structural meth-
ods, they have the advantage of providing a deeper under-
standing and giving results which are valid for a class of
models rather than a single one (because the initial mark-

ing is regarded as a parameter). As it was pointed out
in Subsection III-C the coherence between formalisms for
different purposes results in a synergic interleaving of con-
cepts and analysis techniques [Sil93], [SC95].

The availability of analysis results allows the designer
to apply a try and error design methodology: after the
model is built, the analysis techniques are applied; if the
results are not satisfactory then the model is changed and
the cycle is repeated. An alternative approach is to build
models which are correct by construction. To date this has
been more successfully achieved for top-down methodolo-
gies ([Val79], [SM82], reversed reduction rules of [Ber86]).
Correctness by construction is also one of the aims of the
theory of supervisory control, a control theory for DEDS
(see [RW89] for a tutorial survey). In [HKG95] a rather
complete overview of the use of PNs for supervisory con-
trol is given. The expected benefit from the use of PNs
comes from the clear and sound definition of the state space
through a structure that reflects the locality principle and
that can be exploited using (integer) linear algebraic or
graph theoretic techniques.

When using nets for design purposes, once a suitable
model has been obtained (e.g., the model for a controller,
a model for simulation or prototyping) it has to be im-
plemented. Basically an implementation is a device, usu-
ally a programmed computer system, which emulates the
behavior expressed by the model. The implementation is
affected by the selected formalism (low or high level, dif-
ferent interpretations of the firing rule), the algorithmic
approach (interpreted, where the net model is a data struc-
ture, or compiled, where a program is obtained from the
given net; centralized or parallel/distributed schemas), and
the computer architecture (high or low level programming
language; single or multi processor). It is quite apparent
from the above that PNs, when used as a specification for
implementation, leave significant freedom.

Regarding the support provided for documentation pur-
poses, it is widely recognized by the clear and intuitive
semantics together with the graphical representation of net
models make them a valuable tool for the dialog between
different people through different stages of the design and
operation (even acting as a kind of “blue print” or con-
tract), and for the visualization and animation in monitor-
ing. (In large models, the graphical representation requires
some kind of modularity and hierarchy to be manageable.)

Complete methodological support requires, in addition
to conceptual developments, their integration, computer
implementation, and some degree of standarization, pos-
sibly tailored for specific application domains. Regarding
computer support, this is essential to aid in the construc-
tion of models (editing facilities, syntax checks, libraries,
etc.), their analysis (the designer is not required to know
in detail analysis techniques, and they are reliably and
efficiently applied; quick interaction helps in the under-
standing and shortens the time lapses in try and error
iterations), implementation (automatic code generation,
prototyping, etc.), and operation (e.g., in computer inte-
grated manufacturing). In this respect, much work needs

to be done yet to meet industrial requirements, although
significant achievements are available (a good pointer is
http://www.daimi.aau.dk/PetriNets/, the Web page on
PNs maintained by DAIMI, Aarhus University).

Significant expertise exists in the application of PNs to
diverse fields, in particular to the design and operation
of manufacturing systems. Some recent survey or tuto-
rial publications on the topic are [SV89], [DA92], [VN92],
[DHP 93], [DAJ94], [ZZ94], [ST96).

To conclude, we believe that PNs are an adequate con-
ceptual framework or paradigm for the operational descrip-
tion of DEDS. Nevertheless, we do not believe that it is
always possible to select a single formalism, or family of
them, to deal in a reasonable way with every aspect of every
DEDS. The complexity and variety of systems suggest in-
stead the interest of having multi-paradigm environments,
where the existence of sound and efficient bridges between
different paradigms becomes a major issue.

ACKNOWLEDGEMENT

We are grateful to Javier Aracil from the University
of Sevilla and to our colleagues from the University of
Zaragoza Javier Campos, José Manuel Colom, and Laura
Recalde, who made very helpful comments and suggestions
after reading earlier versions of this paper.

REFERENCES

M. Ajmone-Marsan, G. Balbo, A. Bobbio, G. Chiola,
G. Conte, and A. Cumani. The effect of execution poli-
cies on the semantics and analysis of stochastic Petri
nets. IEEE Trans. on Software Engineering, 15(7):832—
846, 1989.

M. Ajmone-Marsan, G. Balbo, and G. Conte. A class
of generalized stochastic Petri nets for the performance
analysis of multiprocessor systems. ACM Trans. on
Computer Systems, 2(2):93-122, 1984.

M. Ajmone-Marsan, G. Balbo, G. Conte, S. Donatelli,
and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. Wiley, 1995.

T. Agerwala and M. Flynn. Comments on capabilities,
limitations and “correctness” of Petri nets. Computer
Architecture News, 2(4), 1973.

M. Ajmone Marsan, editor. Application and Theory of
Petri Nets 1993, volume 691 of Lecture Notes in Com-
puter Science. Springer, 1993.

T. Araki and T. Kasami. Some decision problems related
to the reachability problem for Petri nets. Theoretical
Computer Science, 3:85-104, 1977.

M. Baldassari and G. Bruno. Protob: An object oriented
methodology for developing discrete event dynamic sys-
tems. Computer Languages, 16(1):39-63, 1991.

F. Baskett, K. M. Chandy, R. R. Muntz, and F. Palacios.
Open, closed and mixed networks of queues with differ-
ent classes of customers. Journal of the ACM, 22(2):248—
260, 1975.

F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat.
Synchronization and Linearity. Wiley, 1992.

B. Berthomieu and M. Diaz. Modeling and verification
of time dependent systems using time Petri nets. IEEE
Trans. on Software Engineering, 17(3):259-273, 1991.
L. Bernardinello and F. DeCindio. A survey of basic net
models and modular net classes. In Rozenberg [R0z92],
pages 304-351.

E. Battiston, F. DeCindio, and G. Mauri. OBJSA nets:
A class of high-level Petri nets having objects as domains.
In Rozenberg [Roz88], pages 20—43.

[ABB*89]

[ABC84]

[ABC+95]
[AFT3]
[Ajm93]
[AKTT]
[BB9I]
[BCMP75]
[BCOQY2]
[BDO1]
[BD92]

[BDMSS]

[Ber86]

[BGV91]

[BHO5]

[BK92]

[BK95]
[Boo67]
[BRA83]

[BRR&7]

[CBGY1]

[CCss]

[CCs91]

[CDFH93)

[CHY3]

[Cia94]

[CoyTT7]

[CVDY6]

[DA92]
[DA94]
[DAJ94]

[Dav9s]

[DB76]

[DD95)

[DDPS82

[DE95]

[Des89]

[DHP+93]

[DJS92]

G. Berthelot. Checking properties of nets using trans-
formations. In G. Rozenberg, editor, Advances in Petri
Nets 1985, volume 222 of Lecture Notes in Computer
Science, pages 19-40. Springer, 1986.

W. Brauer, R. Gold, and W. Vogler. A survey of be-
haviour and equivalence preserving refinements of Petri
nets. In Rozenberg [Roz91], pages 1-46.

J. P. Bowen and M. G. Hinchey. Seven more myths of
formal methods. IEEE Software, 12(4):34-41, 1995.

E. Best and M. Koutny. Petri net semantics of prior-
ity systems. Theoretical Computer Science, 96:175-215,
1992.

E. Best and M. Koutny. A refined view of the box alge-
bra. In De Michelis and Diaz [DD95], pages 1-20.

T. L. Booth. Sequential Machines and Automata The-
ory. Wiley, 1967.

G. W. BRAMS. Réseauz de Petri: Théorie et Pratique.
Masson, 1983.

‘W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri
Nets: Central Models and their Properties. Advances in
Petri Nets 1986, Part I, volume 254 of Lecture Notes in
Computer Science. Springer, 1987.

D. Cruette, J. P. Bourey, and J. C. Gentina. Hierarchical
specification and validation of operating sequences in the
context of FMSs. Computer-Integrated Manufacturing,
4(3):140-155, 1991.

J. Carlier and P. Chretienne. Problémes d’Ordonnance-
ment. Modélisation, complezité et algorithmes. Masson,
1988.

J. Campos, G. Chiola, and M. Silva. Properties and
performance bounds for closed free choice synchronized
monoclass queueing networks. IEEE Trans. on Auto-
matic Control, 36(12):1368-1382, 1991.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Had-
dad. Stochastic well-formed coloured nets for symmet-
ric modelling applications. IEEE Trans. on Computers,
42(11), 1993.

S. Christensen and N. D. Hansen. Coloured Petri nets
extended with place capacities, test arcs and inhibitor
arcs. In Ajmone Marsan [Ajm93], pages 186—205.

G. Ciardo. Petri nets with marking-dependent arc cardi-
nality: Properties and analysis. In Valette [Val94], pages
179-198.

R. G. Coyle.
1977.

J. Cardoso, R. Valette, and D. Dubois. Fuzzy Petri nets:
An overview. In 13th [FAC World Congress, San Fran-
cisco, CA, USA, July 1996. To appear.

R. David and H. Alla. Petri Nets and Grafcet. Prentice-
Hall, 1992.

R. David and H. Alla. Petri nets for modeling of dynamic
systems — a survey. Automatica, 30(2):175-202, 1994.
A. Desrochers and R. Y. Al-Jaar. Applications of Petri
Nets in Manufacturing Systems. IEEE Press, 1994.

R. David. Grafcet: A powerful tool for specification of
logic controllers. IEEE Trans. on Control Systems Tech-
nology, 3(3):253-268, 1995.

E. Daclin and M. Blanchard. Synthése des Systémes
Logiques. Cepadues, 1976.

G. De Michelis and M. Diaz, editors. Application and
Theory of Petri Nets 1995, volume 935 of Lecture Notes
in Computer Science. Springer, 1995.

F. DeCindio, G. DeMichelis, L. Pomello, and C. Si-
mone. Superposed automata nets. In Girault and Reisig
[GR82].

J. Desel and J. Esparza. Free Choice Petri Nets, vol-
ume 40 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1995.

A. Desrochers, editor. Modeling and Control of Auto-
mated Manufacturing Systems. IEEE Computer Society
Press, 1989.

F. Dicesare, G. Harhalakis, J. M. Proth, M. Silva, and
F. B. Vernadat. Practice of Petri Nets in Manufacturing.
Chapman & Hall, 1993.

A. Desrochers, H. Jungnitz, and M. Silva. An approx-
imation method for the performance analysis of manu-
facturing systems based on GSPNs. In Procs. 3"¢ Int.

Management System Dynamics. Wiley,

[Don94]

[ECMY5]

[EW94]

[Feh93]

[Fre82]

[Gir87]

[GL81]
[GR82]

[Hac75]

[Hal90]
[HC70]

[Her91]

[HKG95)]

[Ho89]

[1SO88]

[Jen91]

[JRO1]
[Kan92]
[KM69]

[LADO1]

[L.C94]

[Lew85]

[Mer74]

[Mil89]

[MKMHS6]

[MMS+89]

Conf. on Computer Integrated Manufacturing and Au-
tomation Technology (CIMAT ’92), pages 46-55. IEEE
Computer Society Press, 1992.

S. Donatelli. Superposed generalized stochastic Petri
nets: Definition and efficient solution. In Valette [Val94],
pages 258-277.

J. Ezpeleta, J. M. Colom, and J. Martinez. A Petri net
based deadlock prevention policy for flexible manufactur-
ing systems. IEEE Trans. on Robotics and Automation,
11(2):173-184, 1995.

U. Engberg and G. Winskel. Linear logic on Petri nets. In
A Decade of Concurrency. Reflections and Perspectives,
volume 803 of Lecture Notes in Computer Science, pages
176-229. Springer, 1994.

R. Fehling. A concept of hierarchical Petri nets with
building blocks. In Rozenberg [Roz93], pages 148-168.
S. French. Sequencing and Scheduling: An Introduc-
tion to the Mathematics of the Job-Shop. Ellis-Horwood,
1982.

J. Y. Girard. Linear logic.
ence, 50:1-102, 1987.

H. J. Genrich and K. Lautenbach.
with high level Petri nets.
ence, 13:109-136, 1981.

C. Girault and W. Reisig, editors. Application and The-
ory of Petri Nets. Springer, 1982.

M. H. T. Hack. Decidability Questions for Petri Nets.
PhD thesis, M.I.T., Cambridge, MA, USA, December
1975. Also Tech. Report 161, Lab. for Computer Science,
June 1976.

J. A. Hall. Seven myths of formal methods. IEEE Soft-
ware, 7(5):11-19, 1990.

A. W. Holt and F. Commoner. Events and conditions.
Applied Data Research, 1970.

U. Herzog. Performance evaluation and formal descrip-
tion. In Proc. IEEE Conf. CompFEuro 91, pages 750-756,
Bologna, Italy, 1991.

L. E. Holloway, B. H. Krogh, and A. Giua. Petri nets for
the control of discrete event systems: A tutorial survey.
In Supervisory Control of Discrete Event Systems. Lab-
oratoire d’Automatique de Grenoble, INPG, September
1995.

L. Ho, editor. Special issue on discrete event systems.
Proceedings of the IEEE, 77(1), 1989.

LOTOS: A formal description technique based on the
temporal ordering of observational behaviour. Techni-
cal Report DIS 8807, 1.5.0. — Information Processing
Systems — Open Systems Interconnection, 1988.

K. Jensen. Coloured Petri nets: A high level language
for system design and analysis. In Rozenberg [Roz91],
pages 342-416. Collected in [JRI1].

K. Jensen and G. Rozenberg, editors. High-level Petri
Nets. Springer, 1991.

K. Kant. Introduction to Computer System Performance
FEvaluation. McGraw-Hill, 1992.

R. M. Karp and R. E. Miller. Parallel program schemata.
Journal on Computer Systems Science, 3:147-195, 1969.
J. Le Bail, H. Alla, and R. David. Hybrid Petri nets. In
European Control Conference (ECC ’91), pages 1472—
1477, Grenoble, France, 1991.

C. Lakos and S. Christensen. A general systematic ap-
proach to arc extensions for coloured Petri nets. In
Valette [Val94], pages 338-357.

D. Lewin. Design of Logic Systems. Van Nostrand Rein-
hold, 1985.

P. Merlin. A study of the Recoverability of Computer
Systems. PhD thesis, Univ. California, Irvine, CA, USA,
1974.

R. Milner. Communication and Concurrency. Prentice
Hall, 1989.

T. Murata, N. Komoda, K. Matsumoto, and K. Haruna.
A Petri net based controller for flexible and maintainable
sequence control and its applications in factory automa-
tion. IEEE Trans. on Industrial Electronics, 33(1):1-8,
1986. Reprinted in [Des89].

J. Martinez, P. Muro, M. Silva, S. F. Smith, and J. L.
Villarroel. Merging artificial intelligence techniques and
Petri nets for real time scheduling and control of pro-

Theoretical Computer Sci-

System modeling
Theoretical Computer Sci-

[Mol82]

[MRO5]
[Mur89]

[MZs88]

[01d91]

[O1s93]

[Pet62]

[Pet81]
[Pet87]

[PM89]

[PRS92]

[Ram74]

[Rei85]

[Roz88]

[Roz91]

[Roz92]

[Roz93]

[RW89]

[SA92]

[SC95]

[Sib94]
[Sil85]

[Sil89]

[Si193]

[SM82]

[Sou93]

[ST96]

duction systems. In R. Huber et al., editors, Artificial
Intelligence in Scientific Computation, pages 307-313.
Scientific Publishing Co., 1989.

M. K. Molloy. Performance analysis using stochastic
Petri nets. IEEE Trans. on Computers, 31(9):913-917,
1982.

U. Montanari and F. Rossi.
formatica, 32:545-596, 1995.
T. Murata. Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE, T7(4):541-580, 1989.

T. Murata and D. Zhang. A predicate-transition net
model for parallel interpretation of logic programs. IEEE
Trans. on Software Engineering, 14(4):481-497, 1988.
E. R. Olderog. Nets, Terms and Formulas, volume 23
of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1991.

G. J. Olsder. Synchronized continuous flow systems. In
S. Balemi, P. Kozak, and R. Smedinga, editors, Discrete
Event Systems: Modeling and Control, pages 113-124.
Birkhauser, 1993.

C. A. Petri. Kommunication mit Automaten. PhD the-
sis, Institut fiir Instrumentelle Mathematik, Univ. Bonn,
1962.

J. L. Peterson. Petri Net Theory and the Modeling of
Systems. Prentice-Hall, 1981.

C. A. Petri. Concurrency theory.
[BRRS8T7], pages 4-24.

G. Peterka and T. Murata. Proof procedure and answer
extraction in Petri net model of logic programs. IEEE
Trans. on Software Engineering, 15(2):209-217, 1989.
L. Pomello, G. Rozenberg, and C. Simone. A survey of
equivalence notions for net based systems. In Rozenberg
[Roz92], pages 410-472.

C. Ramchandani. Analysis of asynchronous concurrent
systems by Petri nets. Technical Report Project MAC,
TR-120, M.I.T., Cambridge, MA, USA, 1974.

W. Reisig. Petri Nets. An Introduction. EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1985.
G. Rozenberg, editor. Advances in Petri Nets 1988,
volume 340 of Lecture Notes in Computer Science.
Springer, 1988.

G. Rozenberg, editor. Advances in Petri Nets 1990,
volume 483 of Lecture Notes in Computer Science.
Springer, 1991.

G. Rozenberg, editor. Advances in Petri Nets 1992,
volume 609 of Lecture Notes in Computer Science.
Springer, 1992.

G. Rozenberg, editor. Advances in Petri Nets 1993,
volume 674 of Lecture Notes in Computer Science.
Springer, 1993.

P. J. G. Ramadge and W. M. Wonham. The control
of discrete event systems. In Proceedings of the IEEE
[Ho89], pages 81-98.

C. Simone and M. Ajmone-Marsan. The application
of EB-equivalence rules to the structural reduction of
GSPN models. Journal of Parallel and Distributed Com-
puting, 15(3):296-302, 1992.

M. Silva and J. Campos. Structural performance analysis
of stochastic Petri nets. In IEEE IPDS ’95, pages 61-70.
IEEE Computer Society Press, 1995.

C. Sibertin-Blanc. Cooperative nets. In Valette [Val94],
pages 377-396.

M. Silva. Las Redes de Petri: en la Automdtica y la
Informdtica. AC, 1985.

M. Silva. Logic controllers. In IFAC Symposium on Low
Cost Automation (vol. II), pages 157-166, Milano, Italy,
November 1989.

M. Silva. Interleaving functional and performance struc-
tural analysis of net models. In Ajmone Marsan [Ajm93],
pages 17-23.

I. Suzuki and T. Murata. Stepwise refinement of tran-
sitions and places. In Girault and Reisig [GR82], pages
136-141.

M. Y. Souissi. Deterministic systems of sequential pro-
cesses: A class of structured Petri nets. In Rozenberg
[Roz93], pages 406—426.

M. Silva and E. Teruel. Petri nets for the design and
operation of manufacturing systems. In Procs. 5" Int.

Contextual nets. Acta In-

In Brauer et al.

[SV89]

[Tau89]
[TCS97]
[Tho90]

[TK93]

[TS96]

[TSCC95)

[Val78]

[Val79]
[Val94]

[van94]

[VC93]

[VCATS8S]

[VM94]

[VMS88]

[VN92]

[ZD93]

[ZZ:94]

Conf. on Computer Integrated Manufacturing and Au-
tomation Technology (CIMAT ’96). IEEE-Computer So-
ciety Press, 1996.

M. Silva and R. Valette. Petri nets and flexible manufac-
turing. In G. Rozenberg, editor, Advances in Petri Nets
1989, volume 424 of Lecture Notes in Computer Science,
pages 374-417. Springer, 1989.

D. Taubner. Finite Representations of CCS and TCSP
Programs by Automata and Petri Nets, volume 369 of
Lecture Notes in Computer Science. Springer, 1989.

E. Teruel, J. M. Colom, and M. Silva. Choice-free Petri
nets: A model for deterministic concurrent systems with
bulk services and arrivals. IEEE Trans. on Systems,
Man, and Cybernetics, 1997. To appear.

J. U. Thoma. Simulation by Bondgraphs. Introduction
to a Graphical Method. Springer, 1990.

K. Trivedi and V. G. Kulkarni. FSPNs: Fluid stochastic
Petri nets. In Ajmone Marsan [Ajm93], pages 24-31.

E. Teruel and M. Silva. Structure theory of equal conflict
systems. Theoretical Computer Science, 153(1-2):271—
300, 1996.

E. Teruel, M. Silva, J. M. Colom, and J. Campos. Func-
tional and performance analysis of cooperating sequen-
tial processes. In F. Baccelli, A. Jean-Marie, and 1. Mi-
trani, editors, Quantitative Methods in Parallel Systems,
pages 52—65. Springer, 1995.

R. Valk. On the computational power of extended Petri
nets. In Proc. 7" Sypm.Mathematical foundations of
Computer Science, volume 64 of Lecture Notes in Com-
puter Science, pages 527-535. Springer, 1978.

R. Valette. Analysis of Petri nets by stepwise refine-
ments. Journal of Computer and System Sciences,
18(1):35-46, 1979.

R. Valette, editor. Application and Theory of Pelri Nets
1994, volume 815 of Lecture Notes in Computer Science.
Springer, 1994.

K. M. van Hee. Information Systems Engineering: A
Formal Approach. Cambridge University Press, 1994.
R. Valette and M. Courvoisier. Petri nets and artificial
intelligence. In R. Zurawski and T. Dillon, editors, Mod-
ern Tools for Manufacturing Systems, pages 385-405.
Elsevier, 1993.

R. Valette, J. Cardoso, H. Atabakhche, M. Courvoisier,
and T. Lemaire. Petri nets and production rules for de-
cision levels in FMS control. In Procs. IMACS 1988,
12th World Congress on Scientific Computation, pages
522-524, 1988.

J. L. Villarroel and P. Muro. Using Petri net models
at the coordination level for manufacturing systems con-
trol. Robotics and Computer-Integrated Manufacturing,
11(1):41-50, 1994.

J. L. Villarroel, J. Martinez, and M. Silva. GRAMAN:
A graphic system for manufacturing system design. In
S. Tzafestas, A. Eisinberg, and L. Carotenuto, editors,
IMACS Symp. on System Modelling and Simulation,
pages 311-316. Elsevier, 1988.

N. Viswanadham and Y. Narahari. Performance Mod-
eling of Automated Manufacturing Systems. Prentice-
Hall, 1992.

M. C. Zhou and F. DiCesare. Petri Net Synthesis
for Discrete Event Control of Manufacturing Systems.
Kluwer Academic Publishers, 1993.

R. Zurawski and M. C. Zhou, editors. Special issue on
Petri nets in manufacturing. IEEE Trans. on Industrial
Electronics, 41(6), 1994.

