Chapter 26

Flexible Manufacturing
Systems

26.1 A brief overview of the domain

A manufacturing system involves the manufacturing activity which, as defined
in [44], is “the transformation process by which raw material, labour, energy
and equipment are brought together to produce high-quality goods”. A manu-
facturing system is composed of two main subsystems:

e The physical subsystem, composed of the physical resources (hardware
components) such as conveyors, robots, buffers, work stations, etc.

o The control subsystem, also called the Decision Making Subsystem
(DMS) [35], which establishes how to use the physical subsystem in order
to organise and optimise the production process.

Usually, manufacturing transformation processes are classified into continu-
ous (chemical and oil industries, for instance) and discrete (consumer goods and
computer industries, for instance). According to the type of transformations to
be carried out during the manufacturing process, the discrete manufacturing
systems are classified into assembly and non-assembly processing. The assem-
bly processes combine several components to obtain a different product, while
the non-assembly processes concern the transformation (machining, moulding,
painting, etc.) of raw materials.

In order to face some problems related to mass manufacturing systems (very
efficient for a large production of a small number of types of products, but
inflexible in order to be adapted to a changing market), and in parallel with
the developments in computer and automation technologies, a new type of pro-
duction system appeared: the Flexible Manufacturing Systems (FMS). Taking
the definition in [29], an FMS can be defined as “a computer-controlled con-
figuration of semi-independent work stations and a material handling system

2 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

Central Computer

<| I>

<

T
ell Controller

— PC Machine l] Machine PC —

— AGVC
— PC 4' Machine l l J l Machine '7 PC —
-

Figure 26.1: An abstract view of a Flexible Manufacturing System

T
Cell Controller

(o]

(MHS) designed to efficiently manufacture more than one part type from low to
medium volumes”. The adjective “flexible” stands for the ability of the system
to respond to changes in the system in an effective manner. These changes can
be internal, breakdowns or quality problems for instance, or external, changes in
the design and demand for instance. In [4] eight different types of flexibility are
summarised: machine flexibility (which refers to the time required to change the
machines necessary to produce a new type of part), process flexibility (related
to the mixture of jobs that the system can produce simultaneously), product
flexibility (the ability to produce new types of products), routing flexibility (the
possibility of the system to route parts via several routes), volume flexibility
(capacity of the system to operate at different production volumes), expansion
flexibility (the capacity to expand the system in a modular way), operation
flexibility (the ability to interchange the ordering of several operations for each
part type) and production flexibility (the set of part types that the system can
produce).

Figure 26.1 depicts a typical plant of an FMS[44]. The global coordinating
system communicates, via a local area network, with the controllers of each cell.
Each one of these cell controllers is in charge of the control of the programmable
controllers (PC) that are in charge of the control of each one of the physical
hardware components in the cell. As it will be detailed later, the complex-
ity of these systems makes the hierarchical organisation of the control system
necessary.

26.1. A BRIEF OVERVIEW OF THE DOMAIN 3

)
M me

3,
0T

Figure 26.2: A small manufacturing cell.

FMS hardware components are typically a set of work stations, an automated
material handling system (conveyors, industrial robots, automated guided vehi-
cles, etc.) allowing a flexible routing of parts through the different work stations,
a load/unload station for the entry/exit of parts, some storage means for the
work-in-process parts storage, some (local and central) tool magazines and a
computer control system that is usually organised in a hierarchical way.

With the aim of introducing these systems in a more detailed way, let us
present, in an intuitive and informal way, a small FMS.

Counsider the manufacturing cell whose physical layout is depicted in Fig-
ure 26.2. The cell is composed of three machines, M1, M2, M3 and a robot
R, whose role is to load an unload the machines. The robot can also pick up
parts from conveyor I, where parts arrive in the system, and unload parts into
conveyor O, where the parts processed in the cell are unloaded. Let us assume
that the flexible machines can carry out different operations on the incoming
parts. Let us also assume that M1 can process three parts at a time, while
machines M2 and M3 can process only two parts at a time. In the sequel,
we call the elements composing the cell (machines, stores, robots, buffers, etc.)
“resources”.

Finally, we consider that in this cell two different types of parts must be
processed. Parts of type one must be processed first either in machine M1 or
M3 and then in machine M2; parts of type two must be processed first in M2
and then in M1 (at this moment, we are not considering what kind of processing
operation must be carried out in each machine and for each type of part).

This system exhibits some important characteristics that are common to
almost all the FMS [47]:

e It is event-driven: the system behaviour consists of a discrete state space
where a change in the state occurs when some events are triggered (a new
part enters or leaves the cell, a machine loads a part, etc.)

o [t is asynchronous. Some events in the system occur in an asynchronous
way: the end of the processing of a part in machine M1 is asynchronous
(in time) with respect to the loading of a new part in machine M2.

4 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

e [t has sequential relations. Some events must occur in a sequential way.
So that a part can be unloaded from machine M1, this machine must have
been previously loaded and the processing of the part be finished.

e [t has concurrency. The processing of a part in M1 and a second part in
M2 can be done in a concurrent way, and these two actions do not interact
with each other.

e [t has conflicts. A part of type one that has been held by the robot can
be loaded either into M1 or into M3 (assuming both machines have free
slots to load new parts). So, a decision must be taken.

e It has mnon-determinism. As a consequence of conflicts, some non-
determinism can appear. In the previous situation, we cannot, “a priori”,
predict which action will be taken: either the part is loaded into M1 or
into M 3.

e [t has deadlocks. In the case in which all three machines are fully busy and
the robot holds a raw part that must be loaded into one of the machines,
the system is in a (total) deadlock situation: no action can be executed
since no machine can be unloaded (the robot is busy) and the robot cannot
release the part (since it has to go to a machine).

o Mutual exclusions. Let us consider the processes corresponding to the
processing of a part of type one and a part of type two. Both processes
cannot stay simultaneously in the state “the part is being held by the
robot”. So, this state implies a mutual exclusion for these two processes.

We can conclude that the design of manufacturing systems is a very complex
task: many different elements have to be combined, and many different aspects
must be taken into account. This complexity has raised two important needs:
1) The design of the production control system in a hierarchical way. 2) The
use of formal methods in order to validate the system.

As summarised in [35], the DMS is usually decomposed into the following
levels:

e Planning. It considers both the whole plant and the estimated demand.
It considers the production on a long time horizon, establishing how the
amount of needed products will be produced along this time interval.

e Scheduling. Going down in the DMS hierarchy, this level establishes when
each operation on each product must be carried out.

e Global coordination. This level must have an updated state of the work-
shop and must also take real-time decisions taking into consideration the
state of each resource and the state of the parts being processed.

o Sub-system coordination. The global coordination system can be decom-
posed into modules specialised for the coordination and supervising of
sub-systems: a transport system, a robot, a buffer, etc.

26.1. A BRIEF OVERVIEW OF THE DOMAIN 5

e Local control. 1t is the lower level of the hierarchy, and it is in charge of
the interaction with sensors and other low level hard components.

The second important need was the use of formal methods. As stated in
[24], the use of a formal framework entails some important benefits: 1) In the
process of formalising the system requirements some omissions, ambiguities and
contradictions can be discovered. 2) A formal method can allow automatic
system development. 3) Mathematical methods can be applied to verify system
correctness. 4) A formally verified subsystem can be incorporated into larger
systems with greater confidence. 5) Different designs for the same system can
be compared.

However, the use of different formalisms (e.g., Markov chains, queueing net-
works or simulation for performance evaluations, mathematical programming
for planning, Petri nets for modelling and analysis) for the different problems
to solve generates a “Babel Tower” where the communication among the people
working at different stages in the design process is a very difficult task [34].

As proposed in [34], a good solution is to use a family of formalisms which,
sharing the basic principles, allows the transformation (in an automatic way if
possible) from one formalism into another. The family of Petri net formalisms
is a good issue in the manufacturing system environments. This family has the
following advantages [35, 47]: 1) Easy representation of concurrency, resource
sharing, conflicts, mutual exclusions, and non-determinism. 2) Application of
Top-down and Bottom-up design methodologies, and the possibility of having
different levels of abstraction of the system. 3) Ability to generate control code
directly from the Petri net model. 4) A well-defined semantics that allows
qualitative and quantitative analysis for the system validation. 5) A graphical
interface that allows an intuitive view of the system.

The use of Petri nets in manufacturing systems has been widely dealt with in
research (see [35, 34] for a wide set of references) and application literature, and
many text books concerned with this domain have appeared in the last few years
[44, 9, 47, 8, 30]. Petri nets have been used in all aspects of the designing and
operation of FMS: modelling and verification, performance analysis, scheduling,
control and monitoring.

The present chapter studies some problems related to the designing and
control of discrete non-assembly FMS by means of the use of Petri nets as a
family of formal models. Here, we focus on a class of problems that arise at the
global coordination level.

The chapter is divided into three main sections. The first one shows how
some Petri net elements (tokens, places, transitions and arcs) can be mapped
into FMS concepts. The second one deals with the problem of system modelling.
This is not a very simple task. Computer aided design tools are interesting
in order to get models as well-structured as possible. The section presents a
modelling methodology for a wide class of systems. This modelling methodology
relies on a clear differentiation between the model of the system layout and the
models of the types of parts to be produced. From these inputs, and in an
automatic way, a Coloured Petri net can be obtained. The section shows what

6 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

the input data models are like and it also explains the process from its first step
until the final model is obtained.

As stated previously, one of the advantages of formal models is that some
system properties can be studied in the model. The second part of the chapter
is devoted to show how the structure of the Petri net model can be used in
order to deal with one of the main problems in automated manufacturing sys-
tems, the deadlock problem. First, it is shown what the place/transition models
corresponding to the coloured models obtained by the modelling methodology
are like. Secondly, it is shown how deadlock problems can be characterised in
terms of some Petri net structural elements called siphons (also called structural
deadlocks in the literature). The structural deadlock characterisation is used
in order to get a control policy for deadlock prevention, and this control policy
is also implemented by means of Petri net elements (addition of some new arcs
and places to the former model).

Throughout the chapter the same “toy example” will be used. More in-
teresting and complex models can be found in the literature. The aim of this
chapter is to show the use of Petri nets (ordinary and Coloured Petri nets) for
modelling and analysing of flexible manufacturing systems. In this sense, this
chapter is not a survey of all the different approaches that have been adopted
for the use of Petri nets in the domain; it just presents one of them. In [34] a
complete set of references related to this subject can be found. The chapter only
treats qualitative aspects of the domain. For quantitative aspects, the reader is
referred to [44, 9, 8].

26.2 Using Petri nets in FMS

In order to get an insight of the use of Petri nets in the considered domain, we
are going to present a set of models corresponding to some basic components of
FMS, such as machines and buffers or stores.

e Figure 26.3 depicts the abstract model of three different transportation
systems. In the three cases the interactions with the rest of the system
are represented by means of the transitions ¢I and tO, which model the
loading and unloading of parts in the module.

Figure 26.3-a is the model for a buffer (also a store) with capacity for k
parts. Notice that if we take & = 1 this PN can also model a robot, for
instance. Figure 26.3-b is used to model a FIFO queue with capacity for
three parts: there are three positions that are accessed sequentially in an
ordered way. Finally, Figure 26.3-c models a LIFO module. This module
represent the set of states that can be reached, but not the firing sequences.
Notice that nothing is forbidding the sequence (t12t21)* which, of course,
must not be allowed. In all the examples we are introducing, nothing
is said about the control; we are just concentrating on the modelling of
the structure of the component. In all theses cases we are assuming that

26.2. USING PETRI NETS IN FMS 7

the time necessary for the execution of the operations related to each
transition is negligible.

e Figure 26.4-a shows a model for a reliable machine (no breakdown is con-
sidered). When the part is loaded into the machine (transition tLM is
fired) the processing starts and, once the machining has finished, a token
is put in place pAP and then, transition tUM can be fired. Notice that
in this model two different types of transitions appear. Thick black tran-
sitions represent “immediate” actions (here, immediate transitions model
system actions whose time execution is negligible); square white tran-
sitions model system actions whose execution time can be modelled by
means of a probability distribution function. Usually, this function is
taken to be an exponential, and the A\ parameter which appears near the
transition is the firing rate (then, 1/A is the mean time needed for the
processing of the part).

Figure 26.4-b shows the model of the same machine, but once the possi-
bility of a breakdown has been considered. In this model, in order to load
or unload a part it is necessary that the machine be in the OK state (arcs
joining tLM and OK place and also tUM and OK place). The machine
breaks-down with a rate Ay and is repaired with a rate A;.

e Finally, Figure 26.5 models an unreliable assembly machine. Notice that
in order to start the assembling, it is necessary to have loaded a part into
pT'1 and another one into pT'2. Here X is the rate of time needed to carry
out the assembling. The model for a disassembly machine is almost the
same: it is enough to reverse the arcs related to transitions tL1, tL2, tA
and tU.

As we have seen, when using ordinary Petri nets for the modelling of flexible
manufacturing systems, the main Petri net elements (places, transitions, arcs
and tokens) can have different meanings:

e A place can be used for the modelling of different elements. 1) States
in which a part that is being processed can stay. Let us consider, for
instance, place pBP in Figure 26.4-a. It represents a part of a given
type that has been loaded into the machine and that is being processed
there, while place pAP is used to model the state of that part in the same
machine, but whose processing has already been finished and is ready to
be unloaded from the machine. 2) A partial state of a resource. Place
kM in Figure 26.4-a models the free state of the machine; in this sense,
this place does not contain “physical” things, but it is used for a rather
“logical” interpretation.

e A transition usually models a sequence of system actions that change the
state of some system elements. For instance, transition tA in Figure 26.5
is modelling the sequence of system actions by means of which the parts
modelled by the tokens in places p7'1 and pT'2 are assembled in order

8 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

| :pIB
@/lto
kB
a)
t pIBL t12 plB2 t23 pl B3 o

O OO

Figure 26.3: a) A generic model for a storage device b) A model for a FIFO
device ¢) A model for a LIFO device

pBP tEP pAP

.._)(t =)_>|:| _,/ ¢ >_w:

kM

a)

KO
tF O\ tR
I =
Af

Ar

pBP t EP pAI

b)

|t UM

Figure 26.4: a) A model for a reliable machine b) A model for an unreliable
machine

26.2. USING PETRI NETS IN FMS 9

tL2 /@
T2

tLl
k1

A
eIy

~

Figure 26.5: A model for an unreliable assembly machine

to produce a new product (modelled by means of the new token that is
put into place pA). Another type of actions that are usually modelled
by means of the firing of a transition is the movement of a part between
two different locations in the system (for instance, transition ¢12 in Fig-
ure 26.3). Also, a transition can model the change in the state of a system
resource, as it is the case of transition ¢tF in Figure 26.4-b: it models a
break-down of the machine modelled in the figure.

e Usually, an arc models either a precondition or the flow of parts among
resources. The arc joining transition kM and transition ¢tLM in Fig-
ure 26.4-a is an example of the first kind of arcs. It models the necessity
of having a free position in the machine in order to load a new part. Arcs
from pT'1 and pT'2 to transition tA in Figure 26.5 fall into the second class.
They model two elements that are withdrawn from the two buffers. Also
the arc joining pA and transition tU in the same figure belongs to the
second class. It models the flow of an assembled element to the output of
the assembly machine.

o Tokens can also have different meanings. In the case of Figure 26.4-a, the
token in place kM models the availability of the machine (the machine is
non-busy), when a token in place pI B in Figure 26.3 represents a product
that is stored in the buffer. In the case of Coloured Petri nets, a token
can carry a lot of information, as it will be shown later on.

As stated previously, one of the main problems when dealing with real appli-
cations is the complexity of the model. From the design point of view, different
approaches have been adopted:

e Hierarchical /compositional approach: The idea behind these approaches
is the modelling of the systems in an structured way. Using the first

10

CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

approach (also called top-down) the modelling is carried out in several
steps. At each step more detailed elements are considered. In general, the
process consists in the replacement of some net elements (place, transition,
path, subnet) by some subnet in which the replaced elements have been
refined [40, 37, 46].

When using the compositional approach (bottom-up) the global model is
obtained by means of simpler models that are combined by means of some
composition mechanism: fusion of places common to a set of submodules
(and modelling the same elements), synchronisation of a set of transitions
and fusion of common paths [1, 28, 25, 39, 3, 15] and also Section ?7.

Even if the two approaches below help in the design process, both present
one important drawback: it is very difficult to ensure that in the modelling
process (either compositionally or in a hierarchical way) some desired sys-
tem properties (such as boundeduess, reversibility, deadlock-freeness, live-
ness, etc.) be preserved from one step to the next one. This means that,
for instance, we can have two live modules, whose composition is non-live.
The same goes for the case of a hierarchical approach. It can arrive that
at a given abstraction level the system behaviour is live, but once a new
refinement is given the new “view” of the system is not live.

In order to cope with this problem two different kinds of solutions have
been adopted: 1) The kit of refinement/composition mechanisms is re-
stricted. This means that the composition of modules or the refinement
must only be done when some special conditions hold and 2) The work is
restricted to some special subclasses such as free-choice nets [10], marked
graphs [27], modules synchronised by means of (restricted) message pass-
ing [31] or (restricted) resource sharing [12, 22].

However, in both cases the modelling power is decreased.

High level Petri nets approach: High level Petri nets, and Coloured Petri
nets [23] as a particular case, arise as a very useful tool for modelling
complex systems in which different components have analogous behaviour.
One of the main advantages of this class of nets is the compactness and
the clarity of the models generated [7, 26, 42, 17, 18, 14, 21].

However, usually, they present the drawback of the difficulty to carry out
the analysis of properties.

Object Oriented (OO) and Artificial Intelligence (AI) approaches: A lot of
work related to the use of Petri nets in manufacturing systems has tried
to extend the capacity of Petri nets for the modelling of systems with
the capacity of Al techniques for the reasoning about properties. Also
here different approaches have been adopted. In some papers [16, 5] some
elements of Al are used to implement and control the Petri net.

Other papers, [41, 33, 32, 43], use Al elements to implement the Petri net
(tokens or places as frames and transitions as rules, for instance), and use

26.2. USING PETRI NETS IN FMS 11

the semantics of the underlying Petri net for simulation and control of the
system.

The use of one of these approaches does not exclude the use of another. For
instance, we can adopt both a hierarchical approach [20] and a compositional
approach [6] in order to obtain a Coloured Petri net model.

But, once we have obtained a Petri net model for the system we want to
deal with, what kinds of Petri net properties are interesting for our model? Let
us enumerate some important behavioral properties. It is important to notice
that some of the following properties are related: one property can be deduced
from others.

e Reachability. From the model point of view, this property establishes
if a given (vector) marking is reachable from the initial marking. From
the real system point of view, this property is able to inform if a system
state is reachable from the initial configuration. This property can be
used to answer questions of the following types. Is it possible to reach a
state where machine M is processing two parts while robot R is busy and
machine M’ is free? Is it possible to reach a state in which buffer B is
full? The answers to a set of well-defined questions can be used in order to
establish a correct system design. Notice that if, for instance, the answer
to the last question is NO, the designer can decide whether to use a buffer
with less capacity, which can indeed make the system less expensive. A
second related property is coverability. From the Petri net point of view, it
establishes if a marking is reachable so that it is greater or equal to another
given marking. From this kind of property, more partial information can
be obtained; but this information can be used in an analogous way as is
the case of reachability properties.

e Boundedness. This property is able to establish if the number of to-
kens in a given place is always smaller or equal to a given constant k
(k-boundedness). Usually, in FMS domains, and using the possible mean-
ings of a place as stated previously, all the places must be bounded. So,
if in the analysis of the Petri net model we realize that a place is not
bounded, the model is, perhaps, incorrect. However, if the model is cor-
rect and a place is detected unbounded, some overflow problems may arise.
A related property is safeness (1-boundedness).

e Reversibility. When verified, this property establishes that the initial state
can be reached from each reachable state. In the application domain
considered this property means that each possible erroneous situation has
been considered by means of some error recovery strategy. These erroneous
situations include the case of system deadlocks and the case of resource
failures.

e Deadlock freeness/liveness . These properties will be commented in a more
detailed way in section 26.3.3.

12 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

As it has already been intuitively shown by means of the models of compo-
nents in an FMS, Petri nets have also been used for the performance evaluations
of FMS. To do that, the notion of time has been added to the Petri net mod-
els. Introducing time constrains is necessary if we want to consider performance
evaluations or scheduling of real time control problems.

Usually, time has been introduced in one of two different ways: either associ-
ated to places or to transitions. The second way is more natural since transitions
usually model system activities (which need some time to be executed). In this
approach, time is considered as follows: a transition can fire some time after it is
enabled w.r.t. the number of tokens in its input places. This time can be either
deterministic, timed Petri nets, or random, stochastic Petri nets (see [44, 9, 8]
for a clear introduction to these concepts).

In FMS domains the different quantitative measures that can be obtained
from the Petri net model have specific and clear meanings: probability of a
resource to be non-busy, mean number of parts in a machine or buffer, mean
waiting time of parts in an input buffer, production rates of parts, mean time
of parts in in-process states, etc.

In this chapter we are going to concentrate on the qualitative analysis using
structural methods.

26.3 A design approach

In this section we are going to present a particular approach to the designing
and control of FMS using Petri nets. As stated in Section 26.1 many different
approaches have been adopted. The reader is referred to the literature cited
in this chapter for a comprehensive study of the different approaches. The
presentation of the method is carried out in an intuitive way following a simple
example. A formal presentation can be found in [11].

This Section is organised as follows. First, we introduce the place/transition
model corresponding to the system in Figure 26.2; after that we present how an
equivalent model can be obtained in an automatic way; finally, it is shown how
the structural analysis of the Petri net can be used to establish a control policy
for deadlock prevention in order to ensure a good behaviour.

26.3.1 An intuitive introduction to a class of nets

Let us consider the model in Figure 26.4-a once again. In the case we are not
interested in performance evaluations we can model each action by means of an
immediate transition. This change allows us to obtain a simpler model. For
instance, let us consider the general model of a reliable machine of the figure. If
we apply a reduction rule, the path pBP,tEP,pAP in the figure can be replaced
by a unique place, obtaining an equivalent model'. This approach will be used

LOf course, when talking about some equivalence we must specify what kind of equivalence.
Here, as it will be stated later, we are interested in liveness properties. Then, in this case the
transformation maintains the liveness of both models: the original one and the transformed

26.3. A DESIGN APPROACH 13

Gl
(M1, opl)r—au
root M2, 2
(M3 op —> (op2)

G2
ITOOt —>» (M2, op3)—> (M1, op4)

Figure 26.6: The models of process plans for two types of parts to be processed
in the system in Figure 26.2.

in the following. And, since only one kind of transitions will be considered, all
the transitions will be drawn as white rectangles.

Let us consider the manufacturing cell shown in Figure 26.2 that was de-
scribed in Section 26.1. Each part belongs to a different part type. The type
of the part establishes the correct sequences of operations. In a first step,
these sequences are established in terms of transformations to be carried out
on parts. Considering the cell, these sequences of operations are transformed
into sequences of pairs (resource,operation) which establish, for each operation,
the resource where the operation has to be carried out. Each part type can be
modelled by means of an acyclic graph. Figure 26.6 represents the operation
graphs corresponding to two different process plans. Parts of type W1 have to
be processed first either in machine M1 or M3, and then in machine M2. Parts
of type W2 have to visit machine M2 and then machine M 1. Since parts must
be loaded (unloaded) into (from) the system, each process plan needs more in-
formation than the operation graph. So, a process plan must be completed with
two sets. The first one represents the system actions that load parts of the cor-
responding type into the system. The second set represents the system actions
that unload parts of the corresponding type from the system. So, in the consid-
ered example, we define W1 = (G1, I1,01) where I1 = {fromlI},O1 = {toO}
and W2 = (G2, 12,02) where 12 = {froml},02 = {toO}.

Each process plan model has an initial node root (as shown in Figure 26.6)
that models the raw state of parts. The other nodes correspond to the label of
the transformation resources the part can visit during its processing.

From a process point of view, let us show how the processing of parts of
type 2 is carried out. The sequence of steps that one part of this type must
follow is as follows. The part is held by the robot, loaded into machine M2,
held once again by the robot, loaded into machine M1, held a third time by the
robot and finally unloaded from the system. These different states are modelled
in figure 26.7-b by means of the thick places. A place p0(2) (called the idle
state place) has been added in order to introduce a notion of repetitive process,
modelling the repetitive nature of the processing of different parts of the same
type. The initial marking of this place establishes the maximum number of
parts of type 2 that are allowed to be concurrently processed in the system.
Notice that if the initial marking is big enough (as in the example considered,

one.

14 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

for instance), this idle place becomes implicit 7?7, and has no effect in the model
behaviour.

The transitions in this figure model the system actions that carry out the
state changes of this type of parts. The net belongs to the class of the S2P
in [12] and, essentially, is the same as a job subnet in [19]. In any case, it is
usually imposed that all the cycles of the S2P (and analogous classes) contain
the idle state place. This implies that no cyclic behaviour is allowed during the
processing of a given part: once the processing of a part has started, the part
cannot change its state infinitely often without terminating its processing.

Notice that we have one of these nets for each type of part to be processed.
How can these nets be obtained? The process is as follows. Let us classify
the set of system resources into two classes: those resources that make some
transformation on parts, called processors (e.g. lathes, milling machines, saws,
grinders, etc.) and those which do not transform the parts, called handlers
(e.g. robots, stores, buffers, conveyors, etc.). Notice that since in the operation
graphs only part transformations are established, these nodes are always labelled
with processors. Let us concentrate once again on parts of type 2. A part of
this type, once loaded into the system, must be driven to M2 from one of its
corresponding loading actions (established by I2). So, we must compute all
the possibilities of driving the part from the input to M2 using only handlers
(the first transformation on this part must be carried out in M2). According
to the plant layout depicted in Figure 26.2, the only possibility is that the part
be held by R and loaded into M2. This means that an intermediate state
(the part is held by R) is needed, and also the transitions modelling the flow
of the part from froml to R and from R to M2. In this way we obtain the
path fromlI(2,s)R(2,s)toM2(2,s)M2(2,M2) in Figure 26.7-b. Now we must
consider the arc (M2, M1) in the operation graph. The part must be driven
from M2 to M1 using only handlers. And the only way of doing that is using
R once again. So, the path fromM2(2, M2)R(2, M2)toM1(2, M2)M1(2,M2)
is added to the model. From M2, the part must be unloaded. So, we must find
all the possibilities for the part to be driven to the output of the system using
only handlers. And the only possibility is that the part be held a third time
by the robot. Notice that this process must be repeated for each processing
sequence taken from the operation graph of each part. It is also important to
point out that in this process both the system layout and the process plans
are involved. It can also happen that some operation sequences established by
the operation graph be not executable because of the layout architecture (no
path joining two machines M, and M, exists, when the arc (M,, M;) belongs
to some operation graph). This justifies the following definition [11]: a process
plan is ezecutable for a given architecture if for each arc ({p1,op1), (P2, 0p2)) in
the operations graph there exists at least one path from p; to p» using only
handlers. In the sequel, we will call state places the places that are generated
during this process, in order to distinguish them from the places that model
the resource capacity constraints, called resources places, and which will be
introduced in the following.

At this level, the system resources that are used in the processing of parts

26.3. A DESIGN APPROACH 15

04
8)€
PO (1)
)
R(1,M2)

fromM3(1,M3) toM2 (1,M3)
R(2,s)

toM1(1,s) fromMl(1,M1) R(1,M1)

R(2,M1) M1(2,M1) R(2,M2) M2 (2,M2) toM2 (2, s)
tof(2,M1) fromMl (2,M1) toMl (2,M2) fromM2 (2,M2)

o))
>

b)

Figure 26.7: The models corresponding to the processing of the two types of
parts under consideration.

have not been considered. This means that the constraints the resources impose
on the concurrent processing of parts have still not been considered. So, it is
necessary to model these constrains. In order to deal with them, a place is added
for each system resource: one place for each machine, whose initial marking is
equal to the number of parts that the machine can process concurrently, and a
place for the robot, whose initial marking is equal to one (we have assumed that
the robot can hold one part at a time). The loading of a part into one machine
needs at least one of the machine positions to be free (an arc from the resource
place to the transition modelling the system actions that load a part into the
machine is added). On the contrary, the unloading of a part from one machine
increases in one the number of non-busy positions in the machine. So, an arc is
added from a transition modelling the unloading of one machine to the resource
place. The net in Figure 26.7-b depicts the whole model corresponding to the
processing of parts of type 2. In the same way, the net in Figure 26.7-a models
the processing of parts of type 1. These two nets belong to a special class of
nets, called S?PR in [12].

And, finally, the interactions among different types of parts must be consid-
ered. The complete system model corresponds to the fusion of the places that
the models of the two types of parts have in common, i.e., the places modelling
the system resources (in the example considered, places kM1, kM2,kM3,kR).
This is quite natural: the interaction of the processing of different parts is made
by means of the system resources since all the parts in the system must compete

16 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

for the same resources. Figure 26.13 depicts the final model once the composi-
tion of the sub-models corresponding to the types of parts has been carried out.
This net belongs to a class of nets called S®PR in [12]. This class is analogous
to the notion of production sequence in [2] or Production Petri net in [19].

26.3.2 Automation of the modelling process

In this section we are going to show that it is possible to adopt a more abstract
point of view for the system, and that this point of view allows us to obtain
easily the Petri net model presented previously. First, we present how the plant
layout can be modelled by means of a place/transition Petri net. Secondly, we
consider the models of the process plans as introduced above. Finally, we show
that both models can be integrated in order to obtain the complete model. This
final model, which can be obtained in an automatic way from the inputs (the
model of the plant layout and the models of the process plans), will be a CPN.

As stated previously, from an abstract point of view, the state of a resource
can be modelled by means of two places: 1) The “resource capacity place”,
modelling the remaining capacity of the resource to hold new parts. In the case
of multiple copies of identical resources, the marking of this place models the
number of copies of the resource that are not engaged in a processing operation.
2) The “resource state place”. Each token in this place models a part that is
using either the resource or one copy of the resource in the case of multiple
copies of identical resources. For instance, consider machine M1 in Figure 26.8.
This machine is modelled by means of places M1 and kM 1. When considering
a state reachable from a given initial state, the tokens in place M1 model the
parts that are being processed in the machine. The tokens in kM1 model the
number of parts that can still be loaded into machine M 1. Notice that the sum
of the number of tokens in M1 and the number of tokens in kM1 must always
be equal to three, the capacity of machine M1 that we have assumed.

Let us now show how the possibility of part flow among resources is modelled.
Let us consider the resource places R and M 1. Since the physical layout allows
the flow of a part from R to M1, transition toM1 is added between these two
resources. Also, since this flow is from R to M1, an arc from R to toM1 and an
arc from toM1 to M1 are also added. Since the capacity constraints must also
be considered, two more arcs are added: the one from kM1 to toM1 and the
one from tomM1 to kR. And this must be done for every two resources that
are connected in a direct way.

Given the previous considerations, the PN model of the considered cell is
depicted in Figure 26.8. Robot R is modelled by means of places R and kR, ma-
chine M1 by means of places M1 and kM 1, machine M2 by means of places M2
and kM2, and machine M 3 is modelled by means of places M3 and kM3 (places
whose name starts with “k” are capacity places). In this PN each directed path
between places R, M1, M2, M3 not using capacity places kM1, kM2 kM3, kR
models a possible path which a part can follow inside the cell. Since machine M1
can process three parts at a time, the initial marking must be mg[kM 1] = 3,
while for the other machines mg[kM2] = mgo[kM3] = 2 and for the robot

26.3. A DESIGN APPROACH 17

M3

e\

k
t oMB fromvB
f romwi
ML R
:
t oML KR
L
m toO

L

fro

Figure 26.8: PN layout model of the cell in Figure 26.2.

Il’lo[kR] =1.

In a next step we need to integrate the model of the cell layout and the
models of the process plans in Figure 26.6. The modelling of the state of a part
in the system is carried out as follows. Each part in the Petri net is modelled
by means of a token. The token has two components; so, it will be modelled by
means of a coloured token. The first component identifies the part type, i.e., its
process plan. The second component identifies the last node of the process plan
model the part has visited during its processing. Let us consider, for instance,
a raw part of type W1, as considered in Figure 26.6. The part is modelled by
means of a token (W1, root) when it is in the system and no transformation has
been carried out on it. When the part has already visited machine M1, and
not yet machine M2, the part is modelled by means of a token (W1, (M1, opl))
(since, up to now, (M1,0pl) is the last node of the operation graph “visited”
by the part). When the part has already been processed in machine M2, it
is modelled by means of the token (W1, (M2,0p2)). Since (M2, 0p2) is one
of the “leaves” corresponding to its operations graph, we understand that the
processing of the part in the system is finished, and then, the part has to go
outside the system.

The PN in Figures 26.9 and 26.10 represent what parts of type W1 and
W2 supply the system PN model, respectively. In order to make the figures
more readable, the operation component does not appear. So, (M1,o0pl) is
represented as M1, while the process plan W1 is represented as 1. For the same
reason, the root node is represented by means of the letter s. Notice that if an
idle state place is added to the net in Figure 26.9 we have exactly the same net
as in Figure 26.7-a. And the same goes for the nets in figures 26.10 and 26.7-b.

In the final model, the different “small” transitions will be modelled by
means of the colour domains of transitions in the global PN model, while
“small” places will be modelled by means of colour domains of places. The

18 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

fromM2

Figure 26.9: A partial PN model that considers only parts of type W1.

Figure 26.10: Partial PN model considering parts of type W2.

26.3. A DESIGN APPROACH 19

kM1 kR

N @
<eo>
M1 s R

M1 Id

toMl

Figure 26.11: A (partial) view of the arcs and functions surrounding transition
toM1.

arcs joining a place p (transition t) and a transition ¢ (place p) will be
modelled by means of a function defined over the colour domain of transi-
tion ¢ and whose images belong to the colour domain of place p. For in-
stance, the colour domain of place M1 in the (coloured) global model will
be cd(M1) = {{(W2,(M1,0pd)),(W1,(M1,0pl))}, the colour domain of tran-
sition toM1 will be cd(toM1) = {{(W1,root),(W2,(M2,0p3))}, while the
colour domain of capacity places will be the “neutral colour”. In this case,
cd(kR) = cd(kM1) = {e}.

The function labelling the arcs joining the previous places and transitions
will be the following. Post[M1,toM1] = Spn is defined from cd(toM1) to
cd(M1) as:

o Sui((W1,7o0t)) = (W1, (M1,0pl))
o Sy ((W2, (M2,0p3))) = (W2, (M1,0p4))
o Post[kM1,toM1] = Pre[kR, toM1] = (s)
e Pre[R, toM1] = Id

where (e) represents the constant function that always returns the neutral
colour (“neutral function”) and Id is a symbolic representation of the Identity
function in its “liberal” meaning; i.e., Id(x) = x, even if the origin and final
sets are not the same. Figure 26.11 shows the arcs and functions related to
transition toM1 that the CPN model would have. Figure 26.12 shows the final
CPN model for the example considered. The other functions are as follows:

e Sy((W1,(M1,0pl W1, (M2,0p2))

) =
)) = (W2, (M1, 0pd))
e Sy ({(W2,r00t))

(«)
o Sy2({(W1,(M3,0pl)
(« (
(« (

{
{
W2, (M2, 0p3))
o Sus((W1,root)) = (W1, (M3, 0pl))

We have shown in an intuitive way how the CPN model can be obtained
from the considered input data. In [13] the algorithms that obtain this coloured
model in an automatic way, as well as their complexity are presented.

20 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

toM2

S
QM2

M2

Id

fromM2

Figure 26.12: The Coloured Petri net obtained applying the proposed method-
ology. All arcs related to capacity places must be labelled (o)

26.3.3 Using structural analysis for the system control

Structural elements (P-Semiflows and T-Semiflows, for instance) (see Section??)
have been widely used in order to get information from the model. In the
example considered (this is also valid for all the nets belonging to the S*PR
class), a lot of information about the model correctness is given. Let us now
consider, once again, the PN in Figure 26.13.

e It is easy to prove that we have two kinds of (minimal) P-Semiflows. For
each resource, the sum of the number of tokens in the resource and its
holders is always equal to the initial marking of the resource. A state
place is a holder of a resource r if the resource is used in this state. For
instance, M1(1,M1) is a holder of the resource M1 since the marking of
M1 decreases when a token enters in M1(1, M 1) (place M1(1, M1) “uses”
M1). Notice also that when a token leaves M1(1,M1), the marking of
M1 is increased. The set of holders of a resource 7 is denoted as H(r)?.
{r} U H(r) induces the following P-Semiflow: at each reachable marking
m, mr]+ > ¢ yy(,) = molr]. In our example we have:

- H(M1) = {M1(1,M1), M1(2, M1)}, which induces the P-Semiflow
m[kM1]+m[M1(1, M1)]+m[M1(2, M1)] = mo[kM1] = 3. Which
is the particular interpretation of this P-Semiflow? Notice that to-
kens in places M1(1, M 1) and M1(2, M 1) model parts that are being
processed in machine M1. The P-Semiflow states that the number
of parts in M1 plus the number of free positions in M1 is always 3.
This is a necessary condition for our model to be correct.

2For a set of resources S, we extend the definition of set of holders as follows: H(S) =

U’I'ES H(T)

26.3. A DESIGN APPROACH 21

(M2) = {M2(2,M2),M2(1,M2)}, which induces the P-Semiflow
[kM2] + m[M2(1, M2)]+ m[M2(2, M2)] = mglkM2] = 2

(M3) = {M3(1,M3), which induces the P-Semiflow m[kM 3] +
[M3(1, M3)]+ m[kM3] = mg[kM3] =2

B H(R) = {R(175)7R(15M1)7R(15M3)7 R(15M2)7R(255);
R(2,M2),R(2,M1)}, which induces the P-Semiflow
m[kR] + m[R(1,)] + m[R(1, M1)] + m[R(1, M3)] +m[R(1, M2)] +
m[R(2,s)] + m[R(2, M2)]+ m[R(2, M1)] = mo[kR] = 1

There is a second type of P-Semiflows: for each S?P, at each reachable
marking, the sum of the number of tokens in its places is equal to the
initial marking of the idle place. For the example we have:

- m[p0(1)] + m[R(1,s)] + m[M3(1,M3)] + m[R(1,M3)] +
m[M1(1, M1)]+ m[R(1, M1)] + m[M2(1, M2)] + m[R(1, M2) =
mo[p0(1)]

- m[p0(2)] + m[R(2,s)] + m[M2(2,M2)] + m[R(2,M2)] +
m[M1(2, M1)]+ m[R(2, M1)] = mg[p0(2)]

The general interpretation of both kinds of P-Semiflows is easy. P-
Semiflows of the first kind state the correctness of the model with respect
to the resources. This means: 1) A resource can be neither created nor
destroyed. 2) At each reachable state, the sum of the available free posi-
tions/copies of each resource and the parts that use it is always equal to
the total capacity of the resource. P-Semiflows of the second type estab-
lish the correctness with respect to the types of parts. The initial marking
of the idle places establishes, for each type of part, the maximal number
of parts of the type that are allowed to be concurrently processed in the
system. The P-Semiflow for a type of part states that the total number
of parts that are concurrently processed plus the number of parts of this
type that can still be accepted is constant.

e It is also very easy to prove that each cycle of each S%P forms a T-
Semiflow. The interpretation of these T-Semiflows is easy: each T-
Semiflow establishes a possible processing sequence for a part. This means
that when the firing of a T-Semiflow corresponding to an S*P is com-
pleted, the processing of a part of this type has been finished.

Or, all things together, when the processing of all the parts inside the
system finishes (every T-Semiflow, once started, is completed), the ini-
tial state of the system is reached. Considering parts of type 1, for in-
stance, we have two T-Semiflows related to it. The first one, o1 is as
follows: o1[from(1,s)] =1, o1[toM1(1,s)] =1, o1[fromM1(1, M1)] =1,
o1[toM2(1, M1)] = 1, o1[fromM2(1,M2)] = 1, and 01[toO(1,M2)] =1
and o4[t] = 0 for any other transition.

Analogously, the second one is the following: oy[from(1,s)] = 1,
o2[toM3(1,s)] = 1, oa[fromM3(1,M3)] = 1, o2[toM2(1,M3)] = 1

3

22 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

oo[fromM2(1,M2)] = 1, and o2[toO(1,M2)] = 1 and o3[t] = 0 for any
other transition. Being C the net incidence matrix, it is verified that
C-0; =0, i =1,2. Notice that the firing of any of the two previous
T-Semiflows models the completion of the processing of a part of type
one.

Now, we are going to concentrate on another kind of structural elements,
the siphons (see Definition??), and we are going to show that, for this class of
nets, the siphons are related to the system liveness. In Petri net theory there
are two main concepts related to the existence of system activities. The first
one is the concept of deadlock freeness, while the second concept is the concept
of liveness. Let us now pay a little more attention to these concepts in the
application domain we are dealing with.

e deadlock freeness. A Petri net system (i.e., a Petri net with an initial
marking) is said to be deadlock free when at each reachable marking there
exists at least one transition that is enabled. In our application domain
this means that it is always possible to make some production activity
(executing a new step in the production sequence of a part, introducing a
new part in the system, for instance).

o liveness. Deadlock freeness is not enough for this domain: it is possible
to have a part of the system that can always be running correctly, but
also another part of the system that is in a deadlock. For instance, it is
possible to have a type of parts to be correctly processed, but also to have
some parts in the system whose processing has been started but cannot be
finished. So, deadlock freeness is not good enough a property for highly
automated systems; liveness is the “good” property. A Petri net system
is said to be live if from each reachable marking it is always possible to
fire any transition. In the application domain considered this means that
it is always possible to execute the system actions modelled by means
of any transition. So, as a consequence 1) the processing of each part,
once started, can always be finished: the transitions “driving” a token
(modelling a part) to the system output can be fired. So, the processing
of the part can be finished. This also means 2) if there are always new
raw materials, their processing can be carried out.

In some cases, as for free-choice nets [10], the previous properties are equiv-
alent. But this is not the case for the class of nets we are considering.

When facing automated systems, deadlock problems are very important is-
sues. In effect, if we want a system highly automated, a deadlock represents a
special situation we need to deal with [2, 12, 44]. As stated above, a deadlock
represents that the processing of a part has been started, but cannot be fin-
ished. Therefore, the part can stay in the system for a long period of time (until
some recovery strategy is applied). During this time, the part is using some
system resources and the system performance will be decreased. In systems
where deadlocks can appear, two main different approaches have been adopted:

26.3. A DESIGN APPROACH 23

the deadlock prevention/avoidance approach and the deadlock detection and re-
covery approach. In the first approach a deadlock prevention/avoidance control
policy is applied in such a way that the system evolutions are controlled in order
to ensure that no deadlock is reached. In the second one, when a deadlock is
detected, a recovery strategy is applied in order to change the system state to
a non-deadlocked state.

For the general class of nets we are considering, different control policies can
be found in [2, 44, 12, 45]. Let us show how the structure of the net allows
us to establish a deadlock characterisation which can be applied in order to
get a control policy for deadlock prevention. Let us consider the net in Fig-
ure 26.13. From the initial marking shown in the figure the firing of sequence
o = (fromI(1,s)toM1(1,s))> fromlI(2,s)toM2(2,s) fromM2(2, M2) yields a
marking m (mg[o)m) such that m[kM2] = m[kM3] = 2, m[M1(1,M1)] = 3,
m[R(2,M2)] = 1, m[p}] = 3, m[p)] = 5 and m[p] = 0 for any other place
p. Notice that this state is a deadlock: the parts modelled by the tokens in
place M1(1, M1) cannot change the state. This means that these three parts
will remain in machine M1 (forever if nothing is done!). The same goes for
the part modelled by means of the token in place R(2,M2). A question ap-
pears. Is there any information in the Petri net structure allowing the char-
acterisation of deadlock situations? The answer to this question is “yes”. For
the considered marking m, the set of heavily shaded places in Figure 26.13,
S = {R(1,s),R(1,M3),R(1,M1),R(1,M2),R(2, M1),R(2,s),kM1,kR}, is a
siphon and it is unmarked. Remember that one of the most important behav-
ioral properties of a siphon is that once it becomes unmarked, it remains un-
marked. So, no transition in S*® can fire any more. So, neither fromM1(1,M1)
nor toM1(2, M2) can fire, and the tokens considered will remain in their places.
Therefore, the processing of the considered parts cannot be finished.

The following theorem establishes the liveness characterisation.

Theorem 26.1 [12] Let (N, mgq) be a marked S*PR, let m € RS(N,mq) and
lett € T be a dead® transition for m. Then, there exists a reachable marking
m’ € RS(N, m) and a (minimal) siphon S such that m'(S) = 0.

Therefore we can deduce the following corollary.

Corollary 26.2 [12] Let (N, mg) be a marked S*PR. Then, (N, mg) is live if,
and only if, for every reachable marking m € RS(N,mg) and every (minimal)
siphon S,m(S) #0

This liveness characterisation is not true for general nets. The net in Fig-
ure 26.14 is a clear example: transition ¢ is dead for the shown marking. How-
ever, the only siphon in the net, {p, q,, s}, is always marked. In the following
we are going to see how this deadlock characterisation can be used in order to
establish a control policy for deadlock prevention. The aim of the control policy

3To say that a transition is dead for a reachable marking m is equivalent to say that the
transition cannot be fired at any state reachable from m.

24 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

(1)

fromM3 (1,M3) toM2(1,M3)

R(2,M1) M1 (2,M1) R(2,M2) M2 (2,M2)toM2 (2,5) R(2/8)

fromM1 (2,M1) toMl (2,M2) fromM2 (2,M2)

0(2
>0

Figure 26.13: The considered S® PR where the elements related to the considered
siphon have been shaded.

A
Y

Figure 26.14: The property a dead transitions implies an empty siphon is not
true for general nets: ¢t is dead, but no siphon is empty.

26.3. A DESIGN APPROACH 25

is to add some constraints to the system in such a way that no deadlock state
is reached.

Let us distinguish two classes of minimal siphons: those which are the sup-
port of a P-Semiflow and those which are not. Considering the set of minimal
P-Semiflows (previously presented) and the class of initial markings we are con-
sidering, siphons of the first class remain always marked, and therefore, they
are not involved in deadlock problems. Then, only siphons of the second class
are related to deadlocks. We will refer to this second class of siphons as “dan-
gerous siphons”. A dangerous siphon S can be written as S = Sg W Sp, where
Srp = SNPg, Sp =S\ Sg = SN Ps*. The set of holders H(Sg) can be
partitioned into two subsets: those holders that belong to the siphon .S (heavily
shaded holders in Figure 26.13) and those that do not (light shaded places in
Figure 26.13). Notice that, so that a token can enter one of these holders, a
token needs to have been previously “stolen” from the siphon. For instance, the
firing of transition toM1 decreases the marking of siphon S in one token. This
means that a token in place M1(2, M1) implies a token less in kM1, and then,
a token less in S.

The control policy for deadlock prevention established in [12] uses this prop-
erty. For each dangerous siphon, a structurally implicit place 7?7 is added en-
suring that at any reachable state the number of tokens in the system that can
reach those siphon holders which “steal” tokens from the considered siphon is
smaller than the initial marking of the siphon. In this way it is ensured that
the marking of the siphon is always > 1, i.e., the siphon cannot be emptied.

For the siphon considered, the control policy will add a place S; (see
Fig. 26.15) such that *S; = {fromM1(2, M1), fromM1(1,M1),toM3(1,s)}
and S$1* = {fromI(1,s), fromI(2,s)}. Since mg[S1] = 4, it is enough to put
mg|[S1] = 3 (for short, we also call mg the initial marking of the extended net)
to ensure that S cannot be emptied. Of course, any value mg[S1] € {1,2,3}
will be valid. However, we take the maximum of them in order to have as much
parallelism as possible using this control strategy. Notice that the addition of
this new place generates a new P-Semiflow: for each reachable marking m of
the controlled net, we have m[S1] + m[R(1,s)] + m[M1(1, M1)]+ m[R(2,s)] +
m[M2(2,M2)] + m[R(2, M2)] + m[M1(2,M1)] = 3. From this invariant re-
lation it is deduced that m[M2(2, M2)] + m[R(2, M2)] + m[M1(2, M1)] +
m[M1(1,M1)] < 3, and then, since no more than three tokens can be stolen
from the siphon, it cannot become unmarked.

The same goes for the rest of dangerous siphons of the example considered.
Those are the following:

Sy = {R(1,s),R(1,M2), R(2, M2), R(2, M1), kM2, kR}
Sy = {R(1,s),R(1,M2),R(2, M1), kM1, kM2, kR}
Sy = {R(1,M3),R(1,M1),R(1,M2),R(2,s), R(2, M1),kM1,kM3,kR}

4For a given S®PR, Py denotes the set of resource places, Ps the set of state places and
Py the set of idle states

26

CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

fromM3 (1,M3) toM2 (1,M3) £00(1,M2)

fromI(l,s) toMl(1, fromM1 (1,M1) toM2 (1,M1) fromM2 (1,M2)

N
s1 ¢
to0(2,M1) toMl (2,M2) fromM2 (2,M2)

fromI (2, s)
If romM1 (2, M1)

Figure 26.15: The part of the control policy for deadlock prevention generated
by the siphon in Figure 26.13.

Ss

= {R(1,M2),R(2,M1),kM1,kM2, kM3, kR}

And for them, the added elements are the following:

Sy = {fromI(1,s), fromI(2,s)}
*Sy = { fromM2(2, M2), fromM2(1, M2)}

S3* = {fromI(1,s), fromI(2,s)}

*Ss = { fromM1(2, M1), fromM2(1, M2)}

Sy = {fromI(1,s), fromI(2,s)}

*S, = {fromM1(2, M1), fromM1(1, M1), fromM3(1, M3)}
Ss* = {fromI(1,s), fromI(2,s)}

*Ss = {fromM1(2, M1), fromM2(1, M2)}

In order to have a final CPN model, the control policy can be incorporated
to the initial CPN obtained using the proposed methodology. To do that, a new
place called CP (Control Place) is added to the coloured model. The colour
domain of this place is a set bijective with the set {Si, ..., Sk} of control places
to the underlying S®PR model added by the control policy. Let cd(CP) =

v, ..

..V} be such a set. The arcs which the control policy has added to the

underlying S® PR are represented by the arcs and functions which must be added
to the final coloured model.
The elements added in Figure 26.16 are as follows:

cd(CP)
mo[CP)

{V11V27‘/37‘/41V5}
3Vi +2Vo + 5V + TV, +7V5

26.3. A DESIGN APPROACH 27

fromM1l toM3|;| I:l fromM3 toM2

2\ N
O

\

" |
toM1l fromM2
[]]
fromI toO

Figure 26.16: Elements added by the control policy.

U ((Wl,root)) = Vi+Vo+Va+Vi+Vs
U ((W2,r00t)) = Vi+Vo+Va+Vi+7V;
To((W2,(M1,0p4))) = Vi+Vs+Vi+Vs
T,((WL,(M1,0p1))) = VitVy
Us((Wl,root)) = Vi
U, ((W1,(M2,0p2))) = Vo+Vs+Vs
Uy((W2,(M2,0p3))) = Vo

A question arises. In the previous sections no constraint has been imposed
with respect to the system layout. However, in the definition of an S*PR a
termination property has been imposed (see the introduction of S2P in sec-
tion 26.3). So, in order to ensure that the underlying system belongs to the
S3PR class we need to constrain the system layout to those of acyclic handling.
This means that in the layout model no cycle is possible using only handlers.
This ensures that there is no cycle without transformation, and then, in the
underlying model each production sequence eventually reaches the idle state.
From the application domain point of view, Flexible Manufacturing Cells and
Flexible Manufacturing Lines (as considered in [29]) correspond to this class
of acyclic handling systems. However, systems where the layout contains some
carousel do not fit into this class: a carousel allows parts that can complete
cycles with no transformation, which would violate the termination property
imposed on the S?P.

It must be pointed out once again that the control policy applied is not
optimal, where optimal in this context means maximal concurrency without
deadlock problems. For the general case of the systems under consideration,
to find an optimal control policy remains an open problem. However, for some
more restricted cases some solutions have been found [45].

28 CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

26.4 Conclusions

The chapter has been devoted to show how Petri nets can be applied to Flex-
ible Manufacturing Systems. This is a domain whose complexity and inherent
concurrency requires the use of formal methods to deal with very important
problems, such as the design and the control problems, in order to synthesise
the software that ensures a correct system behaviour.

With respect to the first problem, the chapter has introduced a design
methodology which, from the input data describing both the structure of the
system architecture and the logic of the processing of different types of parts
to be processed obtains, in an automatic way, a Coloured Petri net model of
the entire system. The use of a high level Petri net model has the advantage of
compactness. Also, the model obtained by this methodology shows in a clear
way the structure of the system: the skeleton of the net has the same form as
the configuration of the hardware components. Since the different processing
sequences are modelled by means of colour domains of places and transitions
and the functions labelling the arcs, the introduction/withdrawing of types of
parts does not change the “look” of the model.

With respect to the control problem, the chapter has studied the ordinary
place/transition nets corresponding to the coloured models synthesised by the
modelling methodology presented. This has allowed the study of deadlock prob-
lems for this systems from a structural perspective. One of the advantages of
Petri net models is that they allow the study of some properties using struc-
tural techniques, avoiding the computation of the reachability graph and, in-
deed, avoiding the state space explosion problem. Unfortunately, structural
techniques characterising liveness have not been developed for general Petri net
models, but for special subclasses (e.g., state machines, marking graphs, free
choice nets, choice free systems,...). However, the special syntactic structure of
the class corresponding to the systems we are considering allowed us to establish
the deadlock characterisation. As it has been shown, this characterisation has
been used in order to establish a control policy for deadlock prevention which
constrains the system evolutions to ensure the liveness of the controlled system.

From the development of the chapter, some general conclusions can be
drawn:

e Petri nets are a family of formalisms well suited for application to FMS
environments.

e The results obtained in the general Petri net theory are not enough to
deal with all the problems that arise in application domains. Therefore,
it is necessary to develop new specific results adapted to these domains.
However, Petri nets are a powerful framework which allows these develop-
ments.

e These specific results must not be “ad hoc” for each problem, but they
must concentrate on some modelling/programming paradigms. In the
class of nets considered in the present chapter, we fall into the case of

26.4. CONCLUSIONS 29

sequential processes using monitors (in a restricted way). Natural exten-
sions to this case, applicable to general manufacturing systems, operating
systems, databases, etc., comprise the use of monitors in a general way
and communication by means of buffers [36, 38, 31].

e The use of Coloured Petri nets, and High Level Petri nets in general, has
some important advantages with respect to the modelling. However, we
are faced with a new problem: symbolic processing of these nets is not
complete, and hence, it must be developed. The steps given for some
subclasses of coloured Petri nets makes this approach look promising.

30

CHAPTER 26. FLEXIBLE MANUFACTURING SYSTEMS

Bibliography

[1]

2]

3]

[4]

(8]

[9]

[10]

T. Agerwala and Y. Choed-Amphai. A synthesis rule for concurrent sys-
tems. In Proceedings of the 15th. Design Automation Conference, pages
305-311, Las Vegas (U.S.A.), June 1978.

Z. Banaszak and B. Krogh. Deadlock avoidance in flexible manufacturing
systems with concurrently competing process flows. IEEE Transactions on
Robotics and Automation, 6(6):724-734, December 1990.

L. Bernardinello and F. De Cindio. A survey of basic net models and mod-
ular subclasses. In G. Rozenberg, editor, Advances in Petri Nets, volume
609 of Lecture Notes on Computer Science, pages 304-351. Springer-Verlag,
1992.

J. Browne, D. Dubois, K. Rathmill, S.P. Sethi, and K.E. Stecke. Classifi-
cation of flexible manufacturing systems. The FMS magazine, 2(2), 1984.

E. Castelain, D. Corbeel, and J. Gentina. Comparative simulations of
control processes described by Petri nets. In Proceedings of the IEEE
COMPINT’85 Conference, 1985.

G. Chehaibar. Use of Reentrant Nets in Modular Analysis of Colored Nets,
pages 596-617. High-level Petri Nets. Theory and Application. Springer-
Verlag, 1991.

J.M. Colom, J. Martinez, and M. Silva. Packages for validating discrete
production systems modeled with Petri nets. In P. Borne and S.G. Tzafes-
tas, editors, Applied Modelling and Simulation of Technological Systems,
pages 529-536. Elsevier Science Publishers B.V. (North-Holland), 1987.

A.A. Desrochers and R.Y. Al-Jaar. Application of Petri Nets in Manufac-
turing Systems: Modeling, Control and Performance Analysis. IEEE Press,
1995.

F. Dicesare, G. Harhalakis, J.M. Proth, M. Silva, and F.B. Vernadat. Prac-
tice of Petri Nets in Manufacturing. Chapman & Hall, 1993.

J. Esparza and M. Silva. On the analysis and synthesis of free choice
systems. In G. Rozenberg, editor, Advances in Petri Nets, volume 483 of

31

32

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 243-286. Springer Verlag, Berlin,
1991.

J. Ezpeleta and J.M. Colom. Automatic synthesis of colored Petri nets
for the control of FMS. IEEE Transactions on Robotics and Automation,
13(3):327-337, June 1997.

J. Ezpeleta, J.M. Colom, and J. Martinez. A Petri net based deadlock
prevention policy for flexible manufacturing systems. IEEE Transactions
on Robotics and Automation, 11(2):173-184, April 1995.

J. Ezpeleta, J.M. Couvreur, and M. Silva. A new technique for finding a
generating family of siphons, traps and st-components. application to col-
ored Petri nets. In G. Rozenberg, editor, Advances in Petri Nets 1993, vol-
ume 674 of Lecture Notes on Computer Science, pages 126—-147. Springer-
Verlag, Aarhus (Denmark), 1993.

J. Ezpeleta and J. Martinez. Petri Nets as a Specification Language for
Manufacturing Systems, pages 427-436. Robotics and Flexible Manufac-
turing Systems. Elsevier Science Publishers B.V. (North Holland), 1992.

R. Fehling. A concept of hierarchical Petri nets with building blocks. In
G. Rozenberg, editor, Advances in Petri Nets, volume 674 of Lecture Notes
on Computer Science, pages 148-168. Springer-Verlag, 1993.

A. Elia G. Bruno. Operational specification of process control systems:
Execution of Prot nets using OPS5. In Proceedings of the 10th World IFIP
Congress, Dublin, 1986.

J.C. Gentina, J.P. Bourey, and M. Kapusta. Coloured adaptative struc-
tured Petri nets. Systems, 1(1):39-47, February 1988.

J.C. Gentina, J.P. Bourey, and M. Kapusta. Coloured adaptative struc-
tured Petri nets. part-ii. Systems, 1(2):103-109, May 1988.

F. S. Hsieh and S. C. Chang. Deadlock avoidance controller synthesis
for flexible manufacturing systems. IEEE Transactions on Robotics and
Automation, 10(2):196-209, April 1994.

P. Huber, K. Jensen, and R.M. Shapiro. Hierachies in coloured Petri nets. In
G. Rozenberg, editor, Advances in Petri Nets 1991, volume 483 of Lecture
Notes in Computer Science, pages 313—-341. Springer Verlag, Berlin, 1991.

M.A. Jafari. An architecture for a shop-floor controller using colored

Petri nets. The International Journal of Flexible Manufacturing Systems,
4(4):159-181, 1992.

M.D. Jeng and F. DiCesare. Synthesis using resource control nets for mod-
eling shared-resource systems. IEEE Transactions on Robotics and Au-
tomation, 11(3):317-327, June 1995.

BIBLIOGRAPHY 33

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[34]

[35]

K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, Berlin Heidelberg, 1994.

S.B. Joshi, E.G. Mettala, J.S. Smith, and R.A. Wysk. Formal models for
control of flexible manufacturing cells: Physical and system mode. IEEE
Transactions on Robotics and Automation, 11(4):558-570, August 1995.

B.H. Krogh and C.L. Beck. Synthesis of place/transition nets for simulation
and control of flexible manufacturing systems. In Proceedings of the IFIP
Symposium on Large Scale Sytems, Zurich, August 1986. IFIP.

J. Martinez, P. Muro, and M. Silva. Modeling, validation and software
implementation of production systems using high level Petri nets. In Proc.
of the IEE International Conference on Robotics and Automation, pages
1180-1184, Raleigh (North Carolina), 1987.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541-580, April 1989.

Y. Narahari and N. Viswanadham. A Petri net approach to the modelling
and analysis of flexible manufacturing systems. Annals of Operation Re-
search, 3:449-472, 1985.

H.T. Papadopoulos, C. Heavy, and J. Browne. Queuing Theory in Manu-
facturing Systems Analysis and Design. Chapman & Hall, London, 1993.

J.M. Proth and X. Xie. Petri Nets. A Tool for Design and Management of
Manufaturing Systems. John Wiley & Sons, 1996.

L. Recalde, E. Teruel, and M. Silva. On well-formedness analysis: The
case of deterministic systems of sequential processes. In J. Desel, editor,
Proceedings of the International Workshop on Structures in Concurrency
Theory, Workshops in Computing, pages 279-293. Springer, 1995.

S. Ribaric. Knowledge representation scheme based on Petri net theory. In-
ternational Journal of Pattern Recognition and Artificial Intelligence, 2(4),
December 1988.

A. Sahraoui, H. Atabatche, M. Couvoisier, and R. Valette. Joining Petri
nets and knowledge based systems for monitoring purposes. In Invited
Sessions: Petri Nets and Flexible Manufacturing Systems, IEEE Int. Con-
ference on Robotics and Automation, pages 1160-1165, Raleigh, USA, 1987.

M. Silva and E. Teruel. Petri nets for the design and operation of manu-
facturing systems. European Journal of Control, (3):182-199, 1997.

M. Silva and R. Valette. Petri nets and flexible manufacturing. In G. Rozen-
berg, editor, Advances in Petri Nets, volume 424 of Lecture Notes on Com-
puter Science, pages 374-417. Springer-Verlag, Berlin, 1989.

34

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

BIBLIOGRAPHY

Y. Souissi. Deterministic systems of sequential processes: a class of struc-
tured Petri nets. In Proceedings of the 12th. International Conference on
Application and Theory of Petri Nets, pages 62-81, Aarhus (Denmark),
1991.

I. Suzuki and T. Murata. A method for stepwise refinements and abstrac-
tion of petPetriri nets. Journal of Computer Systems Science, 27:51-76,
1983.

F. Tricas and J. Martinez. An extension of the livennes theory for concur-
rent sequential processes competing for shared resources. In Proceedings
of the 1995 International Conference on Systems, Man and Cybernetics,
pages 4119-4124, Vancouver (Canada), October 1995.

K.P. Valavanis. On the hierarchical modeling analysis and simulation of
flexible manufacturing systems with extended Petri nets. IEEE Transac-
tions on Systems, Man and Cybernetics, 20(1):94-110, January 1990.

R. Valette. Analysis of Petri nets by stepwise refinements. Journal of
Computer Science, (28):35-46, 1979.

R. Valette and H. Atabakhche. Petri nets for sequence constraint propaga-
tion in knowledge based approaches. In Concurrency and Nets, Advances
in Petri Nets, pages 555-570. Springer Verlag, Berlin, 1987.

J.L. Villarroel, J. Martinez, and M. Silva. Graman: a graphic system
for manufacturing system modelling and simulation. In Proceedings of the
IMACS Symposium on Systemn Modelling and Simulation, pages 311-316,
Cetraro (Italy), September 1988.

J.L. Villarroel and P.R. Muro. Using Petri net models at the coordination
level for manufacturing systems control. Robotics and Computer-integrated
Manufacturing, 1(11):41-50, 1994.

N. Viswanadham and Y. Narahari. Performance Modeling of Automated
Manfacturig Systems. Prentice-Hall, 1992.

K.Y. Xing, B.S. Hu, and H.X. Chen. Deadlock avoidance policy for Petri-
net modeling of flexible manufacturig systems with shared resources. IEEE
Transactions on Automatic Control, 41(2):289-295, February 1996.

M. Zhou and F. DiCesare. Parallel and sequential mutual exclusions for
Petri net modelling of manufacturing systems with shared resources. I[EEE
Transactions on Robotics and Automation, 7(4), August 1991.

M. Zhou and F. Dicesare. Petri Net Synthesis for Discrete Event Control
of Manufacturing Systems. Kluwer Academic Publishers, 1993.

