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Abstract. Petri nets (PNs) are widely used to model discrete event dynamic systems (computer systems, manu-
facturing systems, communication systems, etc). Continuous Petri nets (in which the markings are real numbers
and the transition firings are continuous) were defined more recently; such a PN may model a continuous system
or approximate a discrete system. A hybrid Petri net can be obtained if one part is discrete and another part is
continuous.

This paper is basically a survey of the work of the authors’ team on hybrid PNs (definition, properties, model-
ing). In addition, it contains new material such as the definition of extended hybrid PNs and several applications,
explanations and comments about the timings in Petri nets, more on the conflict resolution in hybrid PNs, and
connection between hybrid PNs and hybrid automata.

The paper is illustrated by many examples.
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1. Introduction

Many systems are naturally hybrid, i.e., their modeling needs at least one continuous state
variable and at least one discrete state variable (more information on the definition of a
hybrid system can be found in (David, 1997)). In some cases, a discrete systgrart

a of system, can be approximated by a continuous model (Gershwin and Schick, 1980;
Dubois and Forestier, 1982) and this approximation may be very good (Btald 1990;
Mandelbaum and Chen, 1991).

Petri nets (PNs) are widely used to model discrete systems (computer systems, manu-
facturing systems, communication systems, etc). In a PN, the marking of a place may
correspond either to the Boolean state of a device (for example a resource is available or
not), or to an integer (for example the number of parts in a buffer). A general analysis
method is to compute the set of reachable states and deduce the different properties of the
system. But when a PN contains a large number of tokens, the number of reachable states
explodes and this is a practical limitation of the use of Petri nets. To illustrate this point,
consider a manufacturing line composed of three macHimgsM, and M3 in order, and
two intermediate buffer8; and B, with respective finite capacitie€; andC,. The parts
move on the machines, and wait in the intermediate buffers if required. We assume that
there are always unworked parts upstreldimand available space downstredmy. The
number of reachable states of this systemN is- 23(C; + 1)(C, + 1); thenN = 1 352 for
C1 = C, = 12. For a set composed of 10 machines and 9 buffers each with capacity 12,
N = 210 x 13° which is greater than 1B states!
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This observation led us to define continuous PNs and hybrid PNs. In a continuous
PN, the markings of places are real numbers and the firing of transitions is a continuous
process. For the example considered, the flow of parts on the machine may be approxi-
mated by a continuous flow and the numbers of parts in the buffers may be approximated
by real numbers. However, the state of each machine (operational or not) is necessar-
ily discrete. Hence, a hybrid model can be used for this system (presented in Section 3,
Fig. 14).

Continuous Petri nets were introduced in (David and Alla, 1987). The concept of hybrid
Petri net, introduced in the same paper, was developed in (LeBali] 1991).

A continuous PN may be either autonomous (no time is involved, formal definition in
(David and Alla, 1990)) or with firing speeds associated with transitions. Atimed model may
be used for the performance evaluation of systems. Various timed continuous PN models
have been defined which differ by the calculation of the instantaneous firing speeds of the
transitions (David and Alla, 1987, 1990) (Le Bailal, 1993; Duboist al,, 1994). They
provide good approximations for performance evaluation when a PN contains alarge number
of tokens. All the models mentioned above work on the same basic rule (Equation (12) in
Section 3.3.4). The only difference is the way in which the instantaneous firing speeds are
defined,; it follows that other definitions of this firing speed can be chosen (see Section 3.5.2).
Other authors have added some timings to places in continuous Petri nets (Brinkman and
Blaauboer, 1990). In (Olsder, 1993), the continuous flows are studied with the help of
Max-plus algebra. Various theoretical results on continuous timed Petri nets, including a
correspondence between these nets and a Markov decision process are presented in (Cohen
etal, 1995, 1998). The modeling power of hybrid PNs and a comparison with Bond graphs
is presented in (Pettersson and Lennartson, 1995).

In the fluid stochastic PNs proposed in (Trivedi and Kulkani, 1993), the arcs represent
fluid flows. In this paper, the authors model the same kind of systems as the hybrid PNs
with a stochastic discrete part (Section 3.5.3), while other simulation possibilities are added
in (Ciardoet al, 1997). Some authors have explicitly added new concepts and results to our
initial definition of hybrid Petri nets: special places and transitions have been added in order
to model systems processing batches of parts (Demongodin, Petrat, 1992, 1998);
differential PNs are an extension capable of modeling hybrid systems whose continuous part
is represented by differential equations (Demongodin and Koussoulas, 1998); in (Balduzzi
et al,, 1998), the authors use hybrid stochastic Petri nets, in which the discrete transitions
may be either immediate or stochastic or deterministically timed, in order to model flexible
manufacturing systems; hybrid high-level nets were introduced and used for modeling and
simulation in (Weiting, 1996).

In this paper, the authors present both a survey of their previous results on hybrid Petri
nets, including a part of (Alla and David, 1998), and new material, particularly a defini-
tion and applications ofxtended hybrid Petri netspecification opriority rules between
discrete and continuous parteind a connection betwedtybrid Petri nets and hybrid
automata

The paper is organized as followAutonomousybrid PNs are presented in Section 2,
timedhybrid PNs in Section 3, and application examples in Section 4. Section 5 describes
the move from a hybrid PN to a hybrid automaton. Section 6 is the conclusion.
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2. Automomous Hybrid Petri Nets

The models described in this section are autonomous, i.e., time is not involvedu-An
tonomousPetri net enables qualitative study of all possible behaviors. The word “au-
tonomous” may be implicit when not specified.

2.1. Intuitive Presentation

Itis assumed that the reader is familiar with Petri nets (Peterson, 1981; Murata, 1989; David
and Alla, 1992).

Figure 1.aillustrates a Petri net. Let us notethe number of tokens (or marksn place
P,. The marking of the PN in Fig. 1.ais (2, 1, 0, 0), which corresponds to the increasing
order of indexes,i.e.,m = (my, My, Mg, M4). The transitiond; andT; are enabled since
there is atleast one token in each input place of these transitions. Firing consists of removing
a token from each input place and adding a token to each output place of the transition fired.
The firing of T; would lead to the markingl, 1, 1, 0), and the firing ofT3 would lead to
(2,0,0,1). Allthe possible firings appear on the marking graph in Fig. 1.b. Note that there
are two marking invariantan; + mgz = 2 andm, + my = 1. The state of the PN can thus
be represented bym;, m,) instead of(my, m,, mz, my) which is redundant. This enables
us to represent the marking graph in the plane: see Fig. 1.c. Six possible states can be
observed.

Remarkl In a discrete PN, from a marking, afiring sequencémplies a string of suc-
cessive markings. Theharacteristic vectos of a firing sequenc&is a vector for which

each component is an integer corresponding to the number of firings of the corresponding
transition. Then a marking reached frommg by firing of a sequenc& can be deduced
using theflundamental relation

m=my+W-s, (1)

whereW is the incidence matrix.

2.1.2. Autonomous Continuous Petri Nets

In (David and Alla, 1990), autonomous continuous PNs are defined as a limit of a discrete
PN: a mark is split intd tokens, andk tends to infinity. Figure 1.d shows a continuous PN
(the continuous places and transitions are represented by a double line). The initial marking
shown is alsd2, 1, 0, 0) but in this case the markings are real numbers and no longer inte-
gers. Inthis state the transitiolsandTs are enabled, i.e., firable, since the markings of their
input places are not nil. Transition can be fired, for example, but we now defindiarig
guantity’ which is a real number taken from the continuous intervall]) the maximum

value, 1 in this case, correspondshtg (which is the minimum ofm; andm,). For a firing
guantity 0.2, the markingl.8, 1, 0.2, 0) is obtained. As above, the marking invariants can



12 DAVID AND ALLA

1
5
1
5

A
= —
A

,\
=
S
~
%)
Py
1 T
—NCO N DN —O
N
~—
o
/4\\
3 .
>—=>—-O>—]EI
"
o
Py
—~SON N DO
=
~—"

(a)

\ 3
0
O Ty M1

Figure 1. (a)(b)(c) Discrete Petri net. (d)(e) Continuous Petri net. (f)(g) Hybrid Petri net.

be used to represent the state of the system in the phanen,): see Fig. 1.e. We observe
that there is an infinite number of accessible markings corresponding to the shaded part of
the plane. Arrows mark the transitions that can be fired at different points of the plane.
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Remarlk2

a) In a continuous PN, from a marking, a firing sequence implies a trajectory
corresponding to a string of successive markings. chagacteristic vectos of a trajectory
is a vector for which each component is a real number corresponding to a firing quantity of
the corresponding transition. Then a markmgeached frommg by firing of a sequence
Scan be deduced using thendamental relationm = mg +W - s.

The fundamental relation of a continuous PN is identical to the fundamental relation of
a discrete PN. Then, every property of a discrete PN resulting from this relation can be
transposed to continuous PNs. In particular, the results for P-invariants and T-invariants are
similar for a continuous PN and for a discrete PN.

b) The concepts of liveness, boundedness and deadlock-freeness, allowing some logical
properties to be studied, are quite similar for continuous and discrete Petri nets.

2.1.3. Autonomous Hybrid Petri Nets

Figure 1.f shows a hybrid PN. The continuous placesRarand Ps, the continuous tran-

sitions areT; and Ty, the discrete placeB, and P4, and the discrete transitioig and T;.

The transitionsT; and T3 are enabled and thus firable. Let us consider the firing of the
continuous transitiofi;. For a firing quantity 0.1, the marking..9, 1, 0.1, 0) is obtained.

A marking quantity 0.1 has been removed fr&nand P, which are the input transitions,

and the same quantity has been adde&stand P, which are the output transitions. We
observe that the marking in the discrete pl&sés still an integer (since the same quantity

has been removed and added). Figure 1.g shows that the reachable markings are the two
shaded segments. We move continuously along a segment by TiriogT,. We move

from one segment to another for the discrete firing9br T,.

Inthe 3 cases described in Fig. 1, wmehn= 0, the transitio; is not enabled. InFig. 1.c
there is no arc marked; whenm, = 0. In Fig. 1.e there is no arrow in the direction of
T; whenm, = 0. Likewise in Fig. 1.g we cannot move on the segment corresponding to
my = 0 by firing Ty.

2.2. Hybrid Petri Nets

In Section 2.2.1, an autonomous hybrid PN is formally defined. Then, in Section 2.2.2, the
behaviors which can be modeled are illustrated.

2.2.1. Definition

Definition1 An autonomous hybrid PNis a sextupleQ = (P, T, Pre, Post mg, h) such
that:

P ={Py, P, ..., P,}is afinite, not empty, set of places;

T ={Ty, T, ..., Ty} is afinite, not empty, set of transitions;

PNT =g,ie. The sets P and T are disjointed;
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h: PNT — {D, C}, called “hybrid function,” indicates for every node whether it is
a discrete node (seRP andTP) or a continuous node (seB" andT°);
Pre. P x T — R* or \V, is the input incidence mappirfg;
Post P x T — R* or \V, is the output incidence mapping;
mo: P — R or A is the initial marking.
In the definition ofPre, Postandmg, A/ corresponds to the case where
P. € PP, andR* corresponds to the case whétec PC.
Pre and Post functions must meet the following criterionPiland T; are a place
and a transition such th& < PP andT; € TC thenPre(P,, T;) = Post(P,, T;) must be
verified. ]

As usual,°P, and P° denote respectively the sets of input transitions and the set of
output transitions of plac®; °T; andT;° denote respectively the sets of input places and
the set of output places of transitidp. To abbreviate, D-place, D-transition, C-place,
and C-transition, may stand for discrete place, discrete transition, continuous place, and
continuous transition, respectively.

In a hybrid PN, thecharacteristic vectors of a sequencé& is a vector for which each
component is either an integer corresponding to the number of firings of a D-transition or
a non-negative real number corresponding to a firing quantity of a C-transition. A marking
m can be deduced from a marking, due to a sequenc® using the fundamental relation:

m=my+W-s 1)

In Equation (1), allthe components of the vector s are integers, whil§ th€lcomponents
of s are either integer or non-negative real numbers: this is the only difference between
both equations. Then, we have the same properties as stated in Remark 2, i.e., the results
for P-invariants and T-invariants are similar for a hybrid PN and for a discrete PN.

2.2.2. A hybrid Petri net allows modeling of .

Informally, there are two parts in a hybrid PN, a discrete part (contairfhigndT ) and a
continuous part (containinB® andTC), and these parts are interconnected thanks to arcs
linking a discrete node (place or transition) to a continuous node (transition or place). In
some cases, one part can influence the behavior of the other part without changing its own
marking. In other cases, the firing of a D-transition can modify both the discrete and the
continuous marking. Here are some illustrating examples.

a) Influence of the discrete part on the continuous part

Figure 1.f is an illustration of this influence. Let us assume that the C-pRcasd P;
correspond to tanks between which a liquid flows. The marking of a place corresponds
to the quantity of liquid in the corresponding tank. The transiflemepresents pumping
(moving from Py into P3). The transitionl, corresponds to a gravitational flow. When the
pump is running (a token in the D-plaé®), the continuous part evolves by continuous
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Figure 2. (a) Influence of the continuous part on the discrete part (and vice-versa). (b) and (c) Transformation of
continuous marking into discrete marking and vice-versa.

firing of the transitionsl; andT,. When the pump is stopped (a tokenRpbut not inP,),
the transitionT; is no longer enabled and is thus no longer fired. In the continuous part,
only the transitiorir, can still be fired as long asz > 0.

b) Influence of the continuous part on the discrete part

An example is given in Fig. 2.a. In this case the continuous part represents a production
system. The transitiofy correspondsto the production of amachine, continuous production
or approximation by a continuous flow of a discrete production. When the output buffer
reaches a certain level, 14.8 in Fig. 2.a, production stops (firifg)ofT his transition takes
priority over the continuous transitions (see Section 3.4).

¢) Converting a continuous marking into a discrete marking, and vice-versa

Figure 2.b illustrates the conversion of a continuous marking into a discrete marking by
the firing of a D-transition. Inthis figure, the transitidgis not enabled becausg < 0.75,
i.e., the marking ofPs is less than the weight of the aR; — Ts. Figure 2.c illustrates
the opposite conversion, i.e., converting a discrete marking into a continuous marking.
TransitionT; is enabled; firing consists of removing a token (integer) from pRcand
adding a marking quantity 0.75 .

In the general case, @iscrete transitionmay have input and output places, either con-
tinuous or discrete, without restriction. dontinuous transitiortan also have discrete and
continuous input places as well as discrete and continuous output places. Halever
discrete input places must also be output places, and vice-{eesaoutput places must
be input places)with arcs of the same weighfThis is illustrated in Fig. 1.f and 2.a, for
example. This is a vital property for preserving the integral character of discrete mark-
ing (it follows that thefiring of a continuous transition cannot modify the marking of the
discrete patr}.
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Figure 4. Inhibitor arc in a hybrid PN. (a) and (b) Weights /. (c) and (d) Weight € Rt U {0*}.

2.3. Extended Hybrid Petri Nets

In a discrete extended PN, an inhibitor arc of weiglitom a placeP; to a transitionT;
allows the firing ofT; only if the marking ofP, is less tham. The same concept may be
used in a hybrid PN. In Fig. 3.a, the inhibitor arc frdmto T; has a weight = 10.3. This

is athreshold test. It means that the transifipgannot be fired, i.e., production is stopped,
as long as the level of products in the output buffer modeleBig at least 10.3. As soon
as the consumption (corresponding to the continuous firirig)dfias lowered the marking
in P; such thaimz < r = 10.3, the transitiornl; can be fired since there is a tokenPn.
This firing adds a token t@, and the production (continuous firing ®f) can start again.

If the inhibitor arc has its origin at a discrete place (in a discrete or a hybrid PN) and has a
weightr = 1, it corresponds to a zero test. As a matter of fact, the corresponding transition
can be fired only ifn; < 1, i.e. if m; = 0 sincemy; is an integer. Now, how can we model
a zero test if the origin place is continuous? In order to be able to use the concept of zero
test, we introduce hetehe following convention: 0 represents a weight infinitely small
but not nil For example, in Fig. 3.b, the transitida can be enabled only ifi; = 0.

All the cases of inhibitors arcs encountered in a hybrid PN are presented in Fig. 4. There
are 4 cases of firing of transitions in case of inhibitor arcs (it is assumed that other input
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places can exist, according to Definition 1). The weigbf the inhibitor arc is an integer
if the corresponding place is discret® (in Fig. 4.a andPs in Fig. 4.b), it is a real positive
number or the conventional valug @ the corresponding place is continuou {n Fig. 4.c
andP; in Fig. 4.d).

Let us now define an extended Petri net.

Definition2 The definition of anextended hybrid PN (autonomous) is similar to the
definition of a hybrid PN (Def. 1), except that:

1) one can have, in addition, inhibitor arcs (according to the previous explanation);

2) the weight of an arc (inhibitor or ordinary) whose origin is a continuous place takes
its value inR* U {0"} instead ofR *;

3) the marking of a continuous place takes its valuginU {0"} instead ofR*. ]

The use of the conventional valué @nhay also have other applications than the case of
zero test. Two examples will be given in Section 4, after the timed hybrid PNs have been
presented.

3. Timed Hybrid Petri Nets

Some basic concepts about the time in discrete PNs are recalled in Section 3.1 and mod-
eling of time in hybrid PNs is presented in Section 3.2. Then, a hybrid PN in which the
timings (firing speeds for C-transitions and delays for D-transitions) are constant, is given
in Section 3.3. The conflicts in a hybrid PN are analyzed in Section 3.4, and cases where
the timings are not constant are presented in Section 3.5.

3.1. General Information on Time in Discrete PNs

Two basic models of timed discrete PNs have been defined; time is associated either with
the places (Sifakis, 1977) or with the transitions (Ramchandani, 1973). It is well known
that transfers are possible from one model to another. In a PN, it is natural to associate
with a place a state which has some duration and to associate with a transition a change of
state, this change having no duration. It is then natural to associate the duration of some
operation or state with a place, and the time of waiting for an event to the transition which
is fired when the event occurs. Let us illustrate these ideas with examples.

Figure 5.arepresents a system made of two machifieandMg on which four customers
pass alternatively. Machingl 5 has a single server, whilglg is a double-server machine
(i.e., two customers can be processed at the same time). The processing Mrésafy,
and the processing time of both serverdvf is dg. In Fig. 5.a, the state of the system is
as follows: the tokens if?; represent customers waiting for an operation on the machine
Ma; a customer is processed by the machimg (token in P,), hence the machine is not
available (no token irP,) and the transitiorT, cannot be fired. A customer is processed
by Mg (token in P,); a server of this machine remains idle (tokerP}f) since there is no
token in P;. Operation timesly anddg are naturally associated with the plad@sand
P4; this means that a token arriving P must remain duringla before allowing firing of
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Figure 5. Natural modeling of time. (a) Modeling of timed operations. (b) Modeling of waited events.

transitionT, (during this time, the token is said to beavailablg. Similarly, a token put
into P4 remains unavailable falz. It may beconvenient not to specify the delay associated
with a place if this delay is zeran our example, any token put int®,, P;, Ps, or P, is
immediately available. In Fig. 5.a, the timésanddg may be either deterministic (P-timed
PN) or stochastic (exponential distribution or any other distribution).

Figure 5.b represents the state of a maciigewhich can fail and be repaired. The token
in Pp means that the machine is operational: the transifiaran be fired andg represents
the time when the failure will occur. Similarlgr represents the repair time. In this
example, the timedr anddr are stochastic, with any distribution; if they are exponentially
distributed, the rates (to failure and to repair) may be represented instead of the times (this
is usual in stochastic PNs).

In Fig. 5.a, the durations are naturally associated with the places modeling the corre-
sponding operations. In Fig. 5.b, the durations are naturally associated with the transitions
fired when the corresponding events occur. Now, if we want to associate all the delays with
the transitions, how can we modify the Fig. 5.a to meet this requirement? Two solutions
are presented in the sequel.

The first solution consists of preserving the structure of the PN and of associating the
delays to the transitions corresponding to the events “End of operatibhband “End of
operation orMg.” This solution is illustrated in Fig. 6.all the transitions without explicit
delay are immediaté.e., fired as soon as they are enabled).

The second solution consists of associating an operation with a transition. For our exam-
ple, the sub-PN made &, P, Ty, and the corresponding arcs, in Fig. 5.a, are replaced
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Figure 6. Time associated with the transitions. (a) Time to events. (b) Duration.

by the single transitio;, in Fig. 6.b. Similarly, transitiofTs, in Fig. 6.b represents the
operation orMg. This solution consisting of representing an operation by a transition in a
discrete PN, although it is intuitively less natural, is often used because the obtained model
contains less places and transitions. However, a problem remains: the representation of
the tokens which were in the places that disappeared in the transformation from Fig. 5.a
to Fig. 6.b. The token i, on Fig. 5.a should be “in the transitioR,” in Fig. 6.b. In

this figure, this is represented Bservedokens (represented as white tokens) in the input
places which have allowed the firing ®f in Fig. 5.a. In the model in Fig. 6.b, whén,

is enabled (at least one non-reserved token in [Bpthnd P,), a token is reserved in both

P, and P; (this reservation corresponds to the firingTafin Fig. 5.a). The tokens are
reserved foda, thenTy, is fired (this firing corresponds to the firing ©f in Fig. 5.a): the
reserved tokens are taken out and non-reserved tokens are pBg iatal P,. Informally,

the reserved tokens correspond to a token which “should be in the transition,” hence they
are not available for re-enabling a transition.

3.2. Modeling of Time in Hybrid Petri Nets

The authors have defined models of timed continuous and hybrid PNs in which time is asso-
ciated with the transitions (however, other models could be used, based on the autonomous
model defined in Section 2Jor the discrete part, the model illustrated in Fig. 6.a is uSed
i.e., times to events are associated with the corresponding transionthe continuous
part, the model draws inspiration from Fig. 6amd is illustrated in Fig. 7.

InFig. 7.a, the operation on a machine is represented as a continuous flow on this machine.
Since there is no discrete customer on the machine, there is no token “in the transition,”
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Figure 7. (a) Continuous PN approximating the behavior of the discrete PN in Fig. 6.b. (b) and (c) Equivalent
hybrid PNs.

hence no need of a reserved mark (more precisely, we could say that there is an infinitely
small part of token “in the transition”). ta is constant, the maximal firing rate of transition
Ty, in Fig. 6.b is Yd, (this maximal rate is obtained if there is always at least one token
in Py). Accordingly, the maximal speed associated Within Fig. 7.aisVio = 1/da. In
Fig. 6.b, the maximal firing rate of transitidi, is 2/dg since there are two servers (this
maximal rate is obtained if there are always at least two toker)in Accordingly, the
maximun speed associated witky in Fig. 7.a isV34 = 2/dg. In Fig. 6.b, the maximal
number of customers on a machine is fixed by pleegandP,. In Fig. 7.a, this limitation
is taken into account by setting the maximal speégsandVz,.

Figures 7.b and c present two hybrid PNs whose behaviors are similar to the behavior of
the continuous PN in Fig. 7.a. Itis clear that pla@sind P, in Fig. 7.b add no constraint
on the validation of the transitions. In Fig. 7.c, transitiby is split into two transitions
corresponding to the two servers of the machine. The behavior of this hybrid PN is such
thatva + vp = v34. FoOr the system which is modeled here, it is clear that it is simpler to
use the model in Fig. 7.a. Models similar to Fig. 7.b and ¢ may be useful when a resource
is shared between two (or more) productions. An example will be presented in Section 3.4
devoted to conflicts in hybrid PNs.

Up to now, the time associated with a D-transition and the maximal speed associated with
a C-transition have not been specified. In Section 3.3, a model in which these times and
speeds are constant will be presented. Other models where the speeds of the continuous part
depend on time or other parameters, or where the times in the discrete part are stochastic,
will be presented in Section 3.5.

3.3. Constant Timings and Speeds

In this section, the main ideas and concepts will be introduced progressively. First, a pure
continuous system will be modeled by a continuous PN. Then, a discrete part will be added
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Figure 8. (a) A continuous system. (b) Continuous PN. (c) Marking evolution.

and the whole system will be modeled by a hybrid PN. The notions of IB-state (standing
for “invariant behavior state” and evolution graph will be illustrated. Finally, some general
topics relevant to a hybrid PN will be presented more formally.

3.3.1. Example of Continuous Petri Net

Figure 8.a represents a continuous system. A liquid flows from tank 1 to tank 2 by gravity
(3 liter/sec). It is transferred from tank 2 to tank 1 by a pump (2 jgec). We assume
that the liquid in the pipes is not taken into account and that, at initial state, there are 60
litersintank 1 and 120 liters in tank 2. The behavior of this system is modeled by the timed
continuous PN in Fig. 8.b where the markingsinand P, represent the quantity of liquid
in tanks 1 and 2, respectively; the spe&gsandV, associated with the transitioifg and
T4 correspond to the flows previously presented.

Consider the model in Fig. 8.b. Whem > 0, transitionTs is fired at the speell; =
3 liter/sec. Whemm, > 0, transitionTy is fired at the speeWl, = 2 liter/sec. It follows
that

mz(t +dt) = ms(t) + (2 — J)dt, (2)

Myt + dt) = my(t) + (3 — 2)dt. (3)
Sincems(0) = 60 andm,4(0) = 120, from (2) and (3):

ms(t) = 60— 1t, 4)

mat) = 120+ 1t. (5)
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Equations (4) and (5) remain true as longmas> 0.

Attimet = 60, mz = 0 andm, = 180. TransitionT, can still be fired at its maximal
speed sinceny > 0, butTs cannot. As a matter of faahz = 0 (tank 1 is empty). However,
mg is fed at speed, by firing of T, (tank 1 is fed by the pumping). Then, transitibsncan
be fired at speed 2 (speed of the flow from tank 1 to tank 2), which is no longer the maximal

speed.
Maximal speed is noted with a capital V, and instantaneous speed with ausritakn,
vl(t) = V1 =3
va(t) = Vp = 2} forO < t <60. (6)
vl(t) = V2 =2
va(t) = Vo = 2} fort = 60 ()

The corresponding markings are illustrated in Fig. 8.c. for 60, transitionT, is
strongly enabledall its input places are non-empty), and transitians weakly enabled
(allits input places which are empty are fed by firing of other transitions). The definition of
enabling in a continuous PN was given in (David and Alla, 1987). This definition is easily
extended to hybrid PNs (Def. 4 below).

3.3.2. Example of Hybrid Petri Net

Let us now modify the specified behavior of the process in Fig. 8.a. The \alvay

be either open (flow 3 lit¢sec) or closed (no flow). The pump may be working (flow

2 liter/sec) or not. The following behavior is assumed (with the same initial state). In turn,
the valve is open and the pump is working. At the initial state, the valve is open for 90
seconds, then the pump is working for 75 seconds, the valve is open again for 90 seconds,
and so on.

This system is modeled by the hybrid PN in Fig. 9. For the marking in this figure (initial
time), transitionTs is strongly enabled becaugg is not empty and there is a token if;
hence it is fired at its maximal speegl = V3 = 3. At the same time, transitiofy is not
enabled because there is no tokerPjn v, = 0. It follows thatP; is emptied at the speed
of 3 liters per second: it becomes empty at 20 seconds. Hence, from= 20, neitherTs
(becauseP; is empty) norT, (because there is no tokeni) is enabled. The only enabled
transition isT; which will be fired att = 90. Hence, front = 90, bothT, andT; become
enabled:T, is continuously fired aty = V4 = 2 up tot = 165 wheniT; is fired. And so on.

3.3.3. IB-States and evolution graph

The marking of the hybrid PN in Fig. 9 is the vector= (m;, m,, mz, my). Because of

the marking invariante; + m, = 1 andmg +m, = 180, the marking is completely known
from (mg, mg). This is illustrated in Fig. 10.a where A represents the initial marking. The
evolution of the hybrid PN may be analyzed thanks to the evolution graph in Fig. 10.c.
This graph is made of IB-states and transitions among them. An IB-state is suthethat
marking of the discrete part and the instantaneous speed vector of the continuous part
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P3

Figure 9. Timed hybrid Petri net.

remain constanas long as the system is in the same IB-state. For example, IBisitate

Fig. 10.c corresponds to the behavior from the initial state in Fig. 9: the marking of the
discrete part igmg, mp) = (1, 0) and the instantaneous speed vectawis vs) = (3, 0).

The marking of the continuous part which is writtéms, m;) = (60, 120), corresponds

to the continuous marking when the IB-state is reached (initial state in our example). The
continuous marking evolves continuously and linearly as long as the system is in the same
IB-state. For each C-place, thalanceof the marking is defined as the algebraic sum

of instantaneous speeds of the transitiéesdingthe place (i.e., input transitions, with

a positive sign), and of the transitioesptyingthe place (i.e., output transitions, with a
negative sign). Hence, this balance, dendsedor the placeP;, corresponds to the time
derivative ofm;. For the C-places in Fig. 9:

M3 = By =v4 — v3 and my; = By = v3 — v4. (8)
For the IB-statel, one obtain%
m3=B3=0—-3=-3 and m;=B;=3-0=+43. (9)

Accordingly, the markingnz decreases and becomes 0 at time 20 sec (trajectory
from A to B in Fig. 10.a). The occurrence of this evemz‘= 0" modifies the transition
enablings in the hybrid PN. Hence, a new IB-state is reached. In Fig. 10.c, the transition
between IB-statd and IB-state? is labelled by two pieces of information separated by
a /. The information on the lefthand side is theentprovoking the transition, and the
information on the righthand side is thiene elapsedn IB-statel. When IB-state? is
reached, the marking im = (1, 0, 0, 180); the only transition enabled i§. The firing
of this transition will occur at = 90, i.e., after 70 seconds elapsed in IB-state 2. This
firing corresponds to the jump from B to C in Fig. 10.a, and to the transition from IB-state
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Figure 10. Evolution of the state of the hybrid PN in Fig. 9. (a) In the space of markings. (b) Markings.
(c) Evolution graph.

2 to IB-state3 in Fig. 10.c. And so on. Figure 10.c shows that, after a transient behavior
(IB-statel and?2), a periodic behavior is reached (IB-st8t& and5). Figure 10.b presents
the evolutions of markings; andmg from tg = 0 up tot about 400.

3.3.4. Formalization

This section formalizes some concepts which were presented intuitively in the previous
sections. Most of these results were given in (Le Ba#l., 1991).

Definition3 A discrete transitionin a hybrid PN issnabledif every placeP; in °Tj meets
the condition

m; > Pre(R, Tj).



ON HYBRID PETRI NETS 25

Definitior” 4 A continuous transition T in a hybrid PN isenabledif every placeR, in
°T; meets the following conditions.
If P is adiscrete place

m; > Pre(R, Tj).

If B, is acontinuous place
either 1)m; > 0,
or 2) B isfed i.e., there is at least one continuous transifipin ° P, such that
vk > 0.
An enabled C-transition strongly enabledif m; > 0 for every continuous place T .;
it is weakly enabledotherwise. [ |

Let us now give some helpful notations. The sets of pld&@Bsand P, and the sets of
transitionsTP and T¢, were defined in Def. 1 in Section 2.2.1. P andmC® denote
the markings of the discrete part (places?iR) and of the continuous part (placesRt),
respectively. Itis always possible to order the places in the hybrid PN in such a way that
the indexi of any D-placeP, is always lower than the index k of any C-plaBg in that
way,m = (mP, m®). If the transitions are ordered similarly, the vector of instantaneous
speeds may be denoted by= (0, v°©) (this vector whose dimension [i§ |, the cardinality
of T, containg TP| 0's for the D-transitions; the dimension &f is | T€)).

Definition5 An IB-state corresponds to a time interval such that:
1) mP is constant;
2) V¢ is constant;
3) the set of discrete transition enablings is constant,
4) when the IB-state is reachad’ always has the same valtie.

Definition6 Thebalanceof the marking of a continuous pla¢® is:

Bi= > PostP.T)-vj— Y Pre(R. T v (=m). (10)
Tie°R TkGPi°

Propertyl A change of IB-state can occur only ifamentbelonging to one of the following
kinds occur.

First kind: adiscrete transitions fired.

Second kindthe marking of acontinuous placéwhose balance is negative) becomes 0.

Third kind the marking of acontinuous placéwhose balance is positive), that is an
input place of a discrete transition, reaches the weight of the arc linking the place to the
transitior}? (or a multiple of this weight in case of multiple enabling). [ |

In Fig. 10.c, the transition between IB-stdtand IB-state? is of the second kind and the
transition between IB-stateand IB-state3 is of the first kind.

Let n; denote the number of firings of the D-transitidp from the initial time. The
vector of discrete firings may be denotedrby= (nD, 0); this vector is made of thg P|-
dimensional vecton® corresponding to the numbers of firings of every D-transition, and
|TC| zeros corresponding to the C-transitions.
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Let us now present thiindamental equation when time is involvdd the sequel, the
time will be explicitly noted, for example(t) denotes the marking at timet.

Equation (1) in Section 2.2.1 is modified in the following way. The characteristic vector
sin Equ.(1) may be specified as:

t
s(t) = n(t) +/ v(u) - du, (12)
0

where the first term of the sum corresponds to D-transitions and the second term to C-
transitions. Hence, Equl’) becomes

t
m() =m@0) +W - (n(t) +/ v(u) - du) . (12)
0

Let us consider for example the evolution of the hybrid PN in Fig. 9 frem0 tot = 170.
During this time interval;T; is fired att = 90, T, is fired att = 165, Tz is continuously
fired atvs = 3 fromt = 0 tot = 20 then fromt = 165 tot = 170 (i.e., during 25 sec),
andT, is continuously fired abt, = 2 fromt = 90 tot = 165 (i.e., during 75 sec). Hence
we have:

1 -141 0 O
|1 0|, _|+1 -1 0 0|,
MO=1e | W=] 0 o0-141]
120 0 0+1 -1
(13)
1 0
1 170 0
na70 = | | /0 vit) dt=| o
0 150
From (12) and (13), one obtains:
1
m70 = | .° (14)
~ [ 135(°
45

wPb 0
WCD WC
nodes,WC corresponds to arcs among continuous nodes,VeR8 corresponds to arcs
among C-places and D-transitions. Arcs among D-places and C-transitions corresponds to
the submatri0, according to the restriction about these arcs in Def. 1.

WhenWCP = 0, the net is called aslementary hybrid PN. Figure 11 corresponds to
an elementary hybrid PN, according to its incidence matrix in (13). In such a net, there
is a decoupling between the discrete and the continuous parts (one part may influence
the behavior of the other one, but there is no “transformation” of discrete marking into
continuous marking or vice-versa). The P-invariants (T-invariants) of an elementary hybrid

In a general casalV = [ ] whereW?P corresponds to arcs among discrete
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PN are the linear combination of the P-invariants (T-invariants) of the discrete part, and of
the P-invariants (T-invariants) of the continuous part.
Let us end this section with a property related to a periodical behavior.

Property2 The existence of a T-invariant is a hecessary condition for a periodical func-
tioning of a hybrid PN. ]

As a matter of fact, if a periodical behavior of period d has been reached, from (12)
one obtainsn(t + d) = m(t) + W - s(d) = m(t), wheres(d) is the characteristic vector
associated with the trajectory during a period; sid¢es(d) = 0, s(d) is a T-invariant.

For the example in Fig. 9(1,1,0,0) and (0,0, 1, 1) are T-invariants corresponding
respectively to the discrete and the continuous part. The periodic behavior appearing in
Fig. 10.b, corresponds to the linear combinat@i65 = (1, 1, 150, 150).

3.4. Conflicts in a Hybrid Petri Net

If there are conflicts, several behaviors are possible. The conflict resolution is interesting
when time is involved in the model. As a matter of fact, an autonomous PN (discrete,
continuous, or hybrid) models the set of all the possible behaviors.

Firing speeds (and thus evolution graphs) can be calculated only if some hypotheses are
made on solutions to the conflicts (if conflicts exist, of course). We will consider here the
conflicts specific to hybrid PNs: conflict between a continuous and a discrete transition,
and between two continuous transitions.

3.4.1. Conflict between a Continuous and a Discrete Transition

Rule 1 If there is a conflict between a discrete transition and a continuous transiteon,
discrete transition has priority over the continuous transitién ]

This rule is intuitively logical since the firing of a C-transition corresponds to a continuous
working while the firing of a D-transition corresponds to a brutal change of state of the
system. For example, in Fig. 9, at= 165, bothT, and T4 can be fired sincens, = 30,

m, = 1, and the delagl, = 75 ends. It appears clearly from this example that transition
T, must be fired even if, is still enabled. The authors have never encountered an example
for which Rule 1 would be a handicap for modeling.

3.4.2. Conflict Between Two Continuous Transitions

Two cases have to be considered: either the common place is continuous or it is discrete,
as illustrated in Fig. 11.
InFig. 11.a, placé®; is empty. Itis fed by the continuous firing ®f atv; = 2. According
to Def. 4, bothT, andT; are weakly enabled, but there is a conflict becayse V, + V.
Hence, all the solutions such that + v3 = v; = 2 are possible. Note that there is no
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Figure 11. Conflicts between continuous transitions. (a) The common place is continuous. (b) The common place
is discrete.

conflict if eitherv; = 0 (becausé, andT; are not enabled) ar, > V, + V3 (becausd,
andT; can be fired at their maximal speedspif> V., + V3, the balance is positive then
P:1 does not remain empty).

Rule 2 For the models such that the maximal speeds do not depend on the markings of the
input places? if there is aconflict between several continuous transitions with a common
continuous input place jRvhich is empty, any solution such that the balamge= 0 is
admissible. ]

Here are some examples. i) PriorityToover T3: v, = 2 andvz = 0. ii) Priority to T3
overT,: vz = V3 = 1 andv, = 1. iii) Sharing proportional to maximal speeds: = 1.5
andvz = 0.5.

In Fig. 11.b, placeP; corresponds to a resource which is shared between two operations
represented by (operatiorL) andT; (operationR). Ifthe resource is allocated to operation
L, ve = Vg = 3; inthis case, the resource cannot make operatiare.,v; = 0. Similarly,
if vz = V7 = 2, thenvg = 0. However, the resource may share the time between both
operations abiding by

Ve U7
—+—=1 15
Ve TV, (15)
Note thatthere is no conflict if bot®, andPs are empty and if they are fed atinstantaneous
speeds, andvs such thath‘; + {j—i < 1.

Rule 3 For the models such that the maximal speeds do not depend on the markings of the
input places: if there is aonflict between several continuous transitions.T. , T, with
a common discrete input plac®ntaining a token, any solution such t@le {’,—J] =1is
admissible. [ |

Here is an example of continuous system: a tap can mix hot water and cold water. The
maximal flow is 0.2 litefsec (when the tap is open and both waters are available). This
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Figure 12.Continuous PN whose maximal firing speeds depend on time.

system is modeled like in Fig. 11.b, whelPg represents the tafig and T; correspond to
the flows of hot and cold water, respectivels = V; = 0.2. Here are some possible cases
of behavior. i) Flow of hot watervg = 0.2 andvz = 0. ii) Flow of cold water:vg = 0 and

vz = 0.2. iii) Example of mixed temperature = 0.14 andv; = 0.06 (v + v7 = 0.2 is
verified, corresponding to Equ. (15) singg= V7 in this particular case).

3.5. Timing and Maximal Speed Depending on Time

Several examples are presented in the sequel. In the first one, maximal speeds are explicit
functions of time. Then, examples where the maximal speeds depend on the marking are
given. Finally, the last example illustrates a hybrid PN whose discrete part is stochastic.
Some of the examples are continuous PNs, i.e., particular cases of hybrid PNs; adding a
discrete part would complicate the presentation without necessity.

3.5.1. Maximal Speed Depending on Time

Figure 12.a represents a continuous PN whose maximal speeds depend on time. The
maximal speed/;(t) associated with transitiof; is periodic as illustrated in Fig. 12.b.
The maximal speell,(t) associated with transitiofy is O fort up to 8 thenv,(t) = 2 for
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Figure 13.Other applications for the calculation of the firing speed of a transition.

t > 8 as illustrated in Fig. 12.c. The instantaneous firing speeds are no longer piecewise
constant. It follows that the marking of a place is given by an integral.
According to Equ. (12) in Section 3.3.4, for the plé@gin Fig. 12.a:

t
ma(t) = my(0) + fo (v2(U) — va(u))du (16)

SinceT; is always strongly enabled; (t) = Vi(t).

As long asV(t) = 0, va(t) = 0.

At t = 8, whenV,(t) takes the value 2n,(t) = 8 (this is obtained from (16), given
m;(0) = 0). ThusTs; is strongly enabledv,(t) = V,(t) = 2 for some time.

The calculation shows that,(t) = 0 att = 16. From this time, transitiof, is weakly
enabled becausé (t) < Va(t); hencevy(t) = vi(t) = Vi(b).

The values ob,(t) andm; (t) are illustrated in Figures 12.d and e.

Continuous Petri nets with maximal speeds depending on time are defined in (Dubois
et al, 1994), in which a simulation algorithm for the case of piecewise constant speeds is
given.

3.5.2. Maximal Speed Depending on Marking

The different models presented above correspond to particular cases of the transition firing
speed calculation. Nevertheless, the relation giving a marking in function of tim&d.e.,

(12), is true for any expression aof(t) (however, the speeds and markings must remain
non-negative). Other applications for the calculation@j can be considered.

For example, the system presented in Fig. 13.a represents a tank filled with an input
flow v1(t) and an output flow.(t) which is proportional to the height of the liquid in the
tank. This system can be modeled by the continuous PN of Fig. 13.b where the marking of
placeP; represents the volume of liquid in the tank and the firing speed of trangiien
va(t) = k- my(t)/S(Sis the surface of the section of the tank).
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Figure 14.(a) Transfer line. (b) Hybrid PN with a stochastic discrete part, modeling the behavior of this system.

Another example of the calculation of the firing speed is given in Fig. 13.c. In this case,
the firing speed depends on the product of the marking of the input places of the transition
(Flaus,1996).

3.5.3. Stochastic Discrete Part

Figure 14.a shows the manufacturing line presented in the introduction. This is a very
conventional model (Dallergt al., 1989) (the number of machines and buffers may vary)

in which the machines$/; are characterized by 3 parameters, a constant serviceSime

a failure ratex; and a repair ratg.;; each bufferB; is characterized by its capacic;.

The number of states of such a system is considerable. A continuous model in which parts
are assumed to move on the machines like a flow with a spe¥d6f1/S, has been in

use for a long time now (Zimmern, 1956). This continuous model is normally a very good
approximation (Davickt al.,, 1992).

When modeling a system we try to use general standard models such as Petri nets, queuing
networks, automata, etc. Only a few years ago it was impossible to “include” the system
described above in one of these models. This system has two features: 1) one partis discrete
and the other is continuous; 2) one part is deterministic (processing of constant duration on
a machine) and the other is stochastic (time between failures and between repairs). It can
now be modeled like a hybrid PN with a stochastic discrete part (Dubois and Alla, 1993).
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o

Figure 15.Use of the marking © for modeling the constraint, + vz = v;.

See Fig. 14.b. This modeling does not change the resolution method (Gershwin and Schick,
1980; Dubois and Forestier, 1982; Dalleztyal., 1989) but provides an interesting formal
structure from a theoretical standpoint which could well lead to other ideas.

4. Application Examples

Several examples illustrating modeling by hybrid Petri nets have already been published.
In (Alla et al, 1992), a Motorola production system is modeled: a batch (discrete) is
transformed and processed as a continuous flow. In (Alla, David, 1998), a water supply
system is modeled: the continuous part of the model corresponds to storing and flow of
water. In the sequel, two examples illustrate the use of the markiran@ of the weight

0" introduced in Def. 2 (Section 2.3).

First Example

Figure 15 illustrates use of the symbadl @s a marking of C-place. The modeled system,
presented in (Balduzat al, 1998), is as follows: the flow of parts processed by machine
Mj is routed to the machindgl, and M3, and this routing is immediate (one could also
imagine a liquid flow separated into two flows). Plaegrepresents the input buffer of
machineM3, and transitionT; represents the processing on this machine. Transifipns
and T3 model the flows which are routed to machirds and M3, respectively. The loop
containing place®; and P, expresses the constraityt + vz = vy (v1 < Vi, depending

on the marking ofP; and its feeding speed). If the sum of markingsfhand P, were
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Figure 16. Modeling of a delay, using the weight 0 (a) System with a conveyor. (b) Extended hybrid PN
modeling this system.

zero, none of the transitions amofig T,, andTs, would be enabled. Using conventional
marking 0, an infinitely small quantity, allows enabling of these transitions and abiding
to constraints on firing speeds.

Second Example

Figure 16.a represerisa conveyolC with an input bufferB; and an output buffeB, (both
capacities oB; and B, are assumed not to be bounded). A batch of 80 parts is deposited
into B; every 2 min fromt = 0. The conveyor length is 11 m and its speed is/snm. Its
maximal capacity is 20 partm (i.e., 220 parts for the total length).

The behavior of this system is represented by the extended hybrid PN in Fig. 16.b where
the flow of parts is considered as continuous. Markings of pl&emnd Ps correspond
to the parts in the input and output buffers. Transitidgsand T, correspond to parts
entering and leaving the conveyor. The maximal speeds associated with these transitions
correspond to:

V3 = V, = conveyor speed maximal density= 5 x 20 = 100 partgmin. a7

PlacePs; models the place available on the conveyor. The delay associated with transition
T, corresponds to the time spent on the conveyor, i.e.,
Conveyor length 11 .
dy = —2VEYOTIeNGIN_ 22 _ 5 5 min (18)
Conveyor speed 5
The weights 0 of arcs fromPs to T, and fromT, to P, mean that: as soon as an infinitely
small quantity of parts is put on the conveyor (i.e.F4), transitionT; is enabled and this
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guantity will be put at the end of the conveyor (i.e.,Ry) when the timed, has elapsed.
Roughly speaking, this model corresponds t@aritinuous firing of a discrete transitidn

Note that, if the conveyor speed changes, the valu¥s,of;, andd,, change immediately
according to (17) and (18) (David and Caramihai, 2000).

5. Hybrid Petri Nets and Hybrid Automata

It has been shown in the previous sections that a hybrid PN inherits all the advantages
of PN models. It provides models designed in an intuitive way. Meanwhile, except for
the properties related to invariants, a quantitative analysis can be performed only via the
construction of the evolution graph, which is a kind of simulation.

Hybrid automata are another tool for the modeling of hybrid dynamic systems. Several
procedures have been proposed to analyze systems modeled by hybrid automatizalAlur
1995). Although this analysis is oriented mostly towards the verification of system speci-
fications, these procedures may also be used for other analysis goals. Hybrid automata are
difficult to use for the modeling of complex systems. The goal of this section is to associate
the modeling power of hybrid PNs with the analysis power of hybrid automata by an auto-
matic transformation from a hybrid PN into a hybrid automaton. This approach is similar
to the approach combining stochastic PNs with Markov chains (automatic transformation
from a stochastic PN into a Markov chain for which powerful analysis methods exist).

5.1. Hybrid Automata

In order to introduce the hybrid automaton model intuitively, let us consider an example.
The water level in a tank is controled through a monitor, which continuously senses the
water level and turns a purmgn or off. The water level is represented by a variable h.
When the pump isff, the water level falls by 2 dpfmin (decimeter per minute). When the
pump ison, the water level rises by 1 dfmin. Suppose that initially the water level is 6

dm and the pump is turnash. We wish to keep the level of water between 1 and 12 dm.
Moreover, there is a delay of 2 min from the moment that monitor signals the status of the
pump until the change becomes effective. An extended hybrid PN describing the water
level monitor is shown in Fig. 17.a. PlacPg and P, represent respectively the status on
and off of the pump and plade; the level in the tank. Transitiof is continuously fired

at speediz = V3 = 1. As soon asng = 10, transitionT, is enabled; it is fired 2 minutes
later: T3 is no longer enabled antl becomes enabled. Transitidn will be enabled as
soonasns <5...

Itis easy to see that this model is natural since each node represents a physical entity. The
corresponding hybrid automaton is given in Fig. 17.b. The construction of this model is
less intuitive. It has four locations: in locatiohsandl,, the pump is turnedn, in locations
I3 andly4, the pump ioff. The variabley models time delaysy is the time derivative of.
Passing froni; to |, corresponds to enabling @ (conditionh = 10); passing fronh, to
I3 corresponds to firing of, (conditiony = 2, andy is reset); and so on.
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(a) (b)

Figure 17.Models of the water level monitor: (a) Hybrid PN, (b) Hybrid automaton.

Adopting the terminology of (Aluet al,, 1995), a hybrid automaton is defined as follows
(the examples refer to Fig. 17.b):

Definition7 A hybrid automaton is a seven-tupléd = (X, Q, ¥, Inv, A, Ev, Ag):

X is afinite set of real-valuechriables{x; }. We denote by the vector of variables. The
values of all variables at a given moment defirgade of variablege.g.: X = {h, y}). The
set of states of variables is denoted\by

Q is a finite set of vertices called locations (e.@:= {l1, |2, 13, l4}).

¥ is a function that assigns to each location Q a functiony; describing the evolution
of variables as a function of time (e.g.lin h = 1 andy = 0}).

Inv is a function that assigns to each locatioa Q a predicatdny, called theinvariant
ofl (e.g. inl;: h < 10}).

A is a finite set of arcs called transitions. Each transitioa- (I,1’) joins a source
locationl € Q to a target locatiol' € Q (e.g.: A= {(1,12), (2, 13), (I3,14), (4,11)}). An
additional arc without source location corresponds to initialization.

Evis a function that assigns to each transiteoe- (1,1’), a predicateEv, calledevent
The execution of transitioa = (I, ") is conditioned by the occurrenceBb, (e.9.:Evy, i,
is“y =2").

Asis a function that assigns to each transitios (I, |’) a relationAs, calledassignment
It is used to model the discrete changing of the values of continuous variablgs.
X 1= g(x) (e.g.:Asy,,, corresponds toy := 0"). ]

A particular class of hybrid automata is representedidgar hybrid automata which
have the following features:

1) The evolution functiong; within a location are restricted to linear functions defined
by a set of first-order differential equations of the foxra- k; with k; denoting a constant
vector.
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2) Each location invariariny; and transition everiv, are defined by a conjunction of
linear inequalities oveW of the formRx 4+ ¢ < 0, whereR is a constant matrix; is a
constant vector, ande V.

3) The transition assignmeAs, is defined by a relatior := V, wherex := V, for ay
is a linear term oveY of the formR”x + ¢/, with R’ is a constant matrix antl is a constant
vector.

5.2.  From Hybrid PNs to Hybrid Automata

In order to systematize the change from hybrid PNs to hybrid automata, an algorithm
has been developed for the construction of the hybrid automaton associated with a hybrid
PN (Allam and Alla, 1998). Then quantitative analysis can be performed via the hybrid
automaton model.

The hybrid PN functioning may be characterized byekielution vectormade up of:

1) theenabledD-transitions (more precisely, all the validations since, at a tinae
transition may be enabled twitéor more)

2) thebalanceof the marking of the C-places (Def. 6 in Section 3.3.4).

According to Def. 5pone can notice that an IB-state implies an evolution vedttence,
in the sequel, obtaining of the hybrid automaton is presented from the evolution graph.
First, each IB-state is transformed into a location. Then, several locations corresponding
to the same evolution vector may be merged.

In a hybrid PN (hence in an IB-state), the continuous variables are:

1) the residual time to firing for every enabling of a timed D-transition;

2) the marking of every continuous place.

Similarly, in every location, the continuous variables are:

1) the time elapsed since enabling for every enabling of timed transition (the “delay
not yet elapsed” corresponds to the invariant of the location which is still satisfied, and
“delay elapsed” is an event provoking a transition to another location;

2) the marking of every continuous place.

Let us illustrate this transformation from the hybrid PN in Fig. 17.a. The corresponding
evolution graph is presented in Fig. 18.a. For construction of the hybrid automaton, the
following continuous variables are considered.

1) A variable yj for every timed-transition T;. WhenT; is enabled but not yet
fired: y = 1. (in case of multiple enabling, new variables will be added when necessary:
Yi1 Yi2s--)-

2) Avariablem; for everyC-place R; at any timem = B; (Section 3.3.3).

For our example, the evolution vector(ig, y», mz) and the hybrid automaton obtained
from Fig. 18.a is shown in Fig. 18.b. Atinitial timeyy, y>, m3) = (0, 0, 6).

With the initial IB-statel, is associated the initial locatibn NeitherT, norT, is enabled,
hencey; — y, = 0. Sincevs = 1 andvs = 0, B3 = m3 = 1. According to Fig. 18.a, the
next event provoking a change of IB-state igs‘reaches the value 10”. This is the event
associated with the transition framto |, in Fig. 18.b, and the invariant associated with
ismz < 10.
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Figure 18.(a) Evolution graph for the hybrid PN in Fig. 17.a. (b) Corresponding hybrid automaton.

With the initial IB-state2, is associated the initial locatidp In this locationy; sinceT;
is enabled andhz is still 1. The next event will bg; = 2 (delay 2 associated with transition
T, elapsed). Transition from to I3 is performed and the value gf is reset. And so on.

One can see in Fig. 18.b, th@t, V», Mm3) = (0, 0, 1) in bothl; andls. In addition, the
invariant is the same and the event associated with the transitibhstthe same. These
locations may be merged. It can be noticed that, after the merging, this automaton is iso-
morphic to the automaton of Fig. 17.b. Only remaining difference: one clocky in Fig. 17.b
and two clocksy; andy; in Fig. 18.b. §;; andy, are never activated simultaneously).

6. Conclusion

Continuous systems together with their modeling, analysis and control have long provided
research with subject matters. Modeling, analysis and control of discrete systems have
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undergone major developments in recent decades. General models such as automata, Petri
nets and queuing networks are used with variants (extensions).

In recent years the need has emerged to consider systems which are partially continuous
and patrtially discrete, in other words hybrid systems. To model such systems we could
use certain modeling tools normally used for discrete systems. This has in fact been
done for automata (Aluet al,, 1995), and for Petri nets as shown above (Le Bail,

1991). A software tool for modeling and simulation of continuous and hybrid PNs has been
developed’

Petri nets are known to be powerful tools for modeling and analysis of discrete systems.
The continuous and hybrid Petri nets, extensions of the basic model, allow modeling and
analysis of continuous and hybrid systems on the same conceptual basis. One can transform
atimed hybrid PN into a hybrid automaton, then use the power analysis methods developed
in the context of hybrid automata.

Notes

1. Since all the systems considered dyaamic onesthis adjective may be implicit. The expressidiscrete
systemss used instead of ‘discrete event systems’ or ‘discrete event dynamic systems’, for homogeneity with
the expressions ‘continuous systems’ and ‘hybrid systemdigitrete event systertie word event was added
to avoid confusion with discrete-time systems, sometimes called ‘discrete systems’ by abuse of language).

2. Theterms“mark” and “token” are normally synonymous. We use the word “mark” to refer either to continuous
or to discrete marking. The word “token” always has a discrete meaning.

3. Inthe text, two components of a vector are separated by a comma. Curly brackets represent a column vector,

ie.ab=[a b = [g]

4. R* denotes the set of positive real numbers, including zeromtenotes the set of natural numbers.

5. In (Alla and David, 1998), we have proposed for the case where the inhibitor arc has its origin at a continuous
place: enabling ifm; < r and zero test for = 0. This convention is not satisfactory since an arc wittee
weightusually corresponds to ttebsenceof arc. This is the reason why we introduce now the concept of
infinitely small weigth. It also allows to have the same conditign< r for either a D-place or a continuous
place (and no longem; < r for the continuous case).

6. In previous papers, the authors have used the model “with reserved tokens” (like Fig. 6.b) for the discrete part
of a hybrid PN. From now on, the model “without reserved tokens” (like Fig. 6.a) will be used. The modeling
power is the same for both models, i.e., any system modeled by one of these models can be modeled by the
other one. Since, in a hybrid PN, the operations are essentially represented by continuous transitions, it may
be convenient to model the discrete part by the model without reserved tokens. Note that both models (with
or without reservation of tokens) behave similarly as long as there is no conflict.

7. Note that the unit for a quantity of liquid is arbitrary: for example, the unitis 1 liter in Fig. 8.b but it could be,
for example, 1 r; in this case, we would haves = 0.060 n? andVz = 0.003 n¥/sec (more generally, the
behavior is similar if all the markings and all the speeds are multiplied by an arbitrary positive value). On the
other hand, the unit is not arbitrary for a number of discrete objects (number of parts in a buffer for example).

8. Obviously, these notions apply to pure continuous PN as well. Equ. (1) and (2) in Section 3.3.1 correspond to
M3 =B3=2-3andmg = B; =3-2.

9. This is an extension to hybrid PNs of the definition given in (David and Alla, 1987) for the continuous PNs.

10. This means that, if a D-transitidi becomes enabled (or becomes enabled once more) because the marking
of a C-place irf Tj has reached a sufficient value, a new IB-state is reached.

11. For example, in Fig. 10.c, IB-staBecan be reached either froBor from 5. In both casesn® = (0, 180).
12. For a D-place, this case corresponds to a first kind event.
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13. The choice represented by this rule was explicitly introduced in (David, 1997).

14. For some models, a transition firing speed may depend on the markings of the input places. For example, the
variable speed continuous PN (David and Alla, 1990) or the models in Fig. 13.b and c.

15. This example is inspired from an example in (Demongodin and Prunet, 1992).

16. For example, a D-transition with a single input D-place containing two tokens is enabled twice. If the delay
associated with the transition is not zero, the second enabling may occur between first enabling and first firing.

17. This software called SIRPHYCO is available at the address of one of the authors.
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