Petri Nets and Digital Hardware Design

Alexandre V. Yakovlev and Albert M. Koelmans

Department of Computing Science
University of Newcastle upon Tyne, NE1 7TRU, England

This document contains only the initial part of the full paper:
A.V. Yakovlev, A.M. Koelmans, Petri nets and Digital Hardware De-
sign Lectures on Petri Nets II: Applications. Advances in Petri Nets,
Lecture Notes in Computer Science, vol. 1492, Springer-Verlag, 1998,
pPp. 154-236.

Abstract. Petri nets are a powerful language for describing processes
in digital hardware, and particularly asynchronous or self-timed circuits.
Self-timed circuits are designed to operate without the use of a global
clock signal. Applications for such circuits are likely to increase during
the next decade, due to problems with on-chip event coordination as
VLSI technology approaches a density of one hundred million transistors
per chip. Designing such circuits without help of formal tools does not
seem to be possible. We present an overview of the methods for specifi-
cation, verification and synthesis of asynchronous circuits with the aid of
Petri nets. We present a number of design examples which are used to il-
lustrate the authors’ belief that Petri nets could become widely accepted
by digital system designers as a design method.

1 Introduction

1.1 Role of hardware in modern systems

Modern computers, telecommunication systems, items of consumer electronics,
and many other examples of systems controlled by a “silicon brain”, have com-
plex, multilayered architectures, implemented partly in hardware and partly in
software. The hardware and software parts used to be clearly separated both in
the tasks they had to perform and in the way they were designed, implemented
and tested. This situation is now changing rapidly. Software design technologies
have moved into the abstractions of object-orientation and distribution, and
hardware design methodologies are following. Consider for instance the world of
consumer electronics. The challenges posed by these applications are enormous.
Such systems must for example be able to perform a billion operations per sec-
ond to cope with video applications. To allow this, many of their functions must
be embedded in hardware. Making them as cheap as possible means designing
and fabricating them in a short time, say with a concept-to-manufacture cycle
of less than one year.

1.2 Role of hardware design tools

With the advent of submicron VLSI technology, which will soon enable hun-
dreds of millions of transistors to be placed on a single chip, hardware design is
facing new challenges [1, 81]. To cope with this complexity, and with the need
to produce new VLSI designs efficiently, designers must be provided with ad-
equate development techniques and tools. What is needed is a well-integrated
design system that combines simulation, synthesis, verification and testing ca-
pabilities. Such an environment must allow examination of the behaviour of a
whole system, redesign of some of its parts, and reconfiguration of other parts
if necessary. It must perform all of these tasks efficiently and without loss of
accuracy. At present, the electronics industry often lacks feedback in the design
process. It is often realised that previous design decisions were wrong at a point
in the design cycle when it is too late or too costly to change anything. The
designer should be able to model the system at most levels of detail before com-
miting to a particular design route. An important issue is that of the reusability
of design components. While in software design the notion of a reusable compo-
nent is hardly new, the circuit designer has always been faced with the problem
that circuit details are heavily dependent on the details of a particular silicon
technology. It is therefore crucial for design methods to support the necessary
modularity and technology independence.

1.3 Role of modelling language

Design methods and tools require appropriate modelling and specification tech-
niques. These techniques must be formal and rigorous, but also easy to compre-
hend. In the past, logic designers used to draw logic gate diagrams directly from
semi-formal specifications, defined by timing diagrams. The only way to prove
that the circuit performed correctly was to observe its behaviour with a logic
analyser. Today, the specification may not necessarily be defined at the level of
signal waveforms. It may be presented in a much more abstract form, similar
to a software specification. It is the designer’s responsibility to refine the orig-
inal specification in such a way that functional equivalence is preserved. Those
refinements may differ in speed (say, degree of parallelism between individual
component actions) and implementation cost (e.g., the number of gates or lay-
out area). These factors should be allowed to influence the design process, and
the modelling language must account for such non-functional design qualities.

1.4 Why Petri Nets

Why are Petri nets a good formalism to assist the designer and support hard-
ware design tools? The language of Finite State Machines (FSM) has also been
used by digital designers. Unlike timing waveforms, FSMs allow formal specifi-
cation of and reasoning about hardware. Many existing software tools support
the synthesis, verification and testing of systems using FSM representations [65].
So, why are FSMs not sufficient, and for what type of hardware are Petri nets
more appropriate?

Why not Finite State Machines? The main characteristic of the FSM-based
approach is that the system defined as an FSM is sequential. For a given input
signal and a particular state, the system may move to another state and produce
an output signal. While the system is performing a state transition, its inputs are
assumed to be stable. The process of changing state is seen as an atomic action.
Even if the FSM representation allows modelling of non-sequential effects such as
races, which are caused by concurrent transitions of state vector components, the
model still uses the notion of a global state, and any concurrent signal transitions
are modelled as a set of possible interleavings of state transitions.

The FSM approach suggests the notion of an FSM composition for the mod-
elling of large systems. Corresponding verification techniques and tools are es-
sentially based on the theory of FSM products, which usually leads to a com-
binatorial state explosion. In order to bridle the complexity of the composition,
the FSM approach must avoid the explicit construction of a product FSM, but
then it faces the problem of adequate interpretation of concurrency, parallellism,
and synchronisation between transitions in the different FSMs.

Petri nets can act as FSMs if the modelled system is totally sequential. How-
ever, if there is an explicit need to model concurrency without showing it in its
interleaving form, even for the purposes of a more compact representation, Petri
nets are adequate for doing so.

What are the advantages of Petri Nets? The area of hardware design has tra-
ditionally been a fertile application area for research in concurrency and Petri
nets using new ideas in modelling and verification [33, 51, 42, 43]. Similarly, the
theory and practice of digital system design has always recognised Petri nets
as a powerful and easy-to-comprehend modelling tool [38, 56]. In this paper,
when we talk about the use of Petri nets and other models of concurrency in
hardware design, we assume almost everywhere asynchronous circuit design'.
The reasons for this are twofold. Firstly, any synchronous circuit, i.e. a circuit
operating under the control of a global clock signal, can be considered as a spe-
cial case of an asynchronous system, where the clock signal is just an additional
event-generating component. The second reason is due to a crucial similarity
between asynchronous hardware and Petri nets. The paradigms of asynchrony
and concurrency are intrinsic to the behaviour of both. It would be very diffi-
cult to talk about concurrency in the presence of a clock signal used as a global
event scheduler. Thus, it would probably be less interesting to apply Petri net
modelling techniques to the analysis of clocked circuits.

1.5 Historical Review

We present here a brief historical outline of the relationship between Petri nets
and hardware design developed in the last four decades.

! This paper also presents (Section ??) a brief overview of existing techniques for the
synthesis of synchronous controllers from Petri nets.

1950°s and 1960’s: Foundations. The earliest work was done by D.E. Muller
on the theory of asynchronous circuits. The notions of concurrency, conflicts,
convergence etc. were developed by hardware researchers a few years before
they learned about the net formalism proposed by C.A. Petri. The theory of
speed-independent circuits presented by D.E. Muller and W.C. Bartky [50, 46]
introduced ideas of feasible sequences, final equivalence classes, confluence, semi-
modularity and distributivity. Muller’s work was based on the “state-transition”
modelling paradigm with its interleaving semantics, because it was mostly an
analysis-oriented investigation. However, it gave rise to new ideas in synthe-
sis, too. For example, the language of change charts [24, 68], apparently the
first “condition-event” approach to circuit specification, was formally related to
Muller’s state-based circuit classification [46]. The 1960’s were therefore the time
when the idea of expressing concurrency in its natural form was fostered amongst
digital design theoreticians fairly independently from the first work on net the-
ory. Eventually, the elegance and simplicity of a net form was duly appreciated
by circuit designers. For example, C. Molnar and his colleagues began to use
Petri nets, with signal names annotating net transitions, to specify the interface
behaviour of a circuit. At the same time, work of R.M. Karp and R.E. Miller
[32] on parallel program schemata established a very important link between a
formal model of concurrency and its interpretation (which could be arbitrary,
e.g. that of an asynchronous logic network).

1970’s: Towards Parallel Computations. When research into Petri nets grew in
the 1970’s, it quickly became the choice formalism for research into data flow
computers and distributed architectures. Several illuminating structural meth-
ods for logic synthesis with Petri nets [48, 59, 22] and related formalisms, such
as parallel flow graphs [17], were developed. These methods originated from the
seminal MAC project at M.I.T. led by J.B. Dennis. Almost simultaneously, Petri
nets gave rise to an alternative structural approach, developed at the Aerospace
Research Centre in Toulouse [8]. Such structural techniques are now usually ref-
ered to as methods of direct translation of a (behavioural) specification into the
circuit implementation, so as to differentiate them from the logic synthesis meth-
ods developed later. Work by J.R. Jump and P.S. Thiagarajan [30, 31] played
an important role in bridging the idea of interfacing speed-independent circuits
and the notion of composition in a class of labelled marked graphs. Another
good example is work of M. Yoeli [80]. In parallel, new techniques for design-
ing asynchronous control structures, very much in the style of Petri net based
methods, had emerged [6]. Structural methods were studied and enhanced with
additional modelling constructs and circuit components in the USSR-based work
on aperiodic automata [2, 71], led by V.V. Varshavsky. In the UK, work on an
asynchronous computer [49] and a design language called MUDL at Manchester
University stimulated the use of Petri net models [34]. An interesting method
for modelling and analysis of switching circuits with Petri nets was proposed in
Germany [25]. Timed Petri nets were developed and applied [61] for the purpose
of performance analysis. Despite their elegance and formal clarity, these methods
were not very efficient from the point of view of system size and performance.

They also completely relied on the designer’s experience if model optimisation
was required. They were not supported by software tools for the exploration of
large state spaces and the solving of complex optimisation tasks.

1980°s: First progress in VLSI design. The first book on very large scale inte-
grated (VLSI) systems design, written by C. Mead and L. Conway, appeared in
1980 and quickly became a bible on such design. Notably it included a special
chapter on self-timed circuits, written by Ch. Seitz [63], which prophesied the
increasing role of asynchronous systems in future generations of hardware, and
called for models and methods to make their design efficient. It was an inspiring
call for Petri net users. At the same time, the 1980’s saw Petri nets gradually
evolving into an independent computer science subject. One of the most re-
markable lines of research, into the semantics of concurrency [29, 54], led to the
exploration of similarities and differences between Petri nets and logic circuits.
For example, the notion of atomicity in transition firing and conflict resolution
in Petri nets was a high level abstraction of physical effects in circuits. This
generated a number of theoretical problems affecting the use of Petri nets for
the verification and synthesis of asynchronous circuits [69]. By the end of the
1980’s, which saw enormous progress of VLSI technologies and the emergence of
powerful software for logic synthesis and verification, Petri nets had attracted
attention as a potential practical tool for hardware design. The first work on Sig-
nal Transition Graphs, both in the USSR [62, 37] and the USA [13, 11, 12], laid
a foundation for their long-term exploitation in VLSI design. Initial attempts to
design asynchronous designs with timing constraints specified in Petri net models
were also made in [62]. The design-oriented links between Petri nets and self-
time circuits were demonstrated in one of the most comprehensive monographs
on asynchronous design [71].

1990’s: Towards powerful design tools. In the 1990’s, strengthened both descrip-
tively (high-level nets) and analytically (new semantics and related verification
methods), Petri nets are being used ever more widely. For instance, high-level
nets have already helped to tackle the modelling and verification of very com-
plex hardware [66]. Signal Transition Graphs and their close relative, Change
Diagrams [36], have uncovered numerous problems relating to the synthesis of
asynchronous circuits under bounded and unbounded delays and their hazard-
free implementation. These problems required new methods and algorithms for
checking various properties of interpreted Petri nets and their respective state
graphs, such as consistency and completeness of state assignment, and mono-
tonicity of boolean covers. In pursuit of efficient analysis and synthesis proce-
dures, new methods were developed, such as structural analysis [57], symbolic
traversal [58], and partial order (unfoldings) [45, 44]. Analysis of Petri net mod-
els with time annotation, a traditionally challenging area of research, has found
its application in the analysis and synthesis of hardware designs with timing
constraints [28, 52]. The problem of producing hardware implementable event-
based specifications has been greatly assisted by the progress in the theory of
regions and Petri net synthesis from transition systems [21, 20, 18, 55, 15].

This overview underlines the importance of the long-term relationship be-
tween Petri nets and hardware design, and its benefits for bridging the gap
between computer science and electronic engineering. Some of the techniques,
especially those concerned with modular synthesis of circuits by means of syntax-
direct translation from Petri nets, are only familiar to a limited audience. Recent
research has focused on the logic synthesis approach, under the assumption that
this is where the real power of Petri nets and Signal Transition Graphs lies.
Other approaches, such as Communicating Processes and Process Algebras, are
often seen as better suited to design at higher level of abstraction, and hence are
predominant in the area of syntax-directed synthesis. Such a subdivision of the
“spheres of influence” is in our opinion unfair, and restricts the genuine potential
of Petri nets.

The remainder of this tutorial is organised as follows. Section 2 presents a
general introduction to the principles underlying asynchronous circuits. Section
3 introduces design transformations, which are used as a first step towards the
synthesis of the final circuit. Section 4 gives an overview of the abstract design
stage. In section 5, logic synthesis is discussed in detail. Finally, in sections 6
and 7, we briefly discuss software tools and synchronous design strategies.

2 Asynchronous Circuits

This section presents an introduction to the principles of circuits designed to op-
erate without a clock signal. Such circuits or systems, traditionally called asyn-
chronous, are also called self-timed [63] or self-clocking 2. This section will firstly
present an informal overview of what an asynchronous circuit is. Then, a number
of advantages of such circuits over their clocked counterparts will be examined.
This will be followed by reasons why the main focus should be on control logic
rather than datapath logic. We will conclude this section with a classification
of asynchronous design stages and a presentation of examples. This section is
therefore mostly addressed to readers with a limited background in digital de-
sign.

2.1 What is an asynchronous circuit?

An asynchronous circuit can be regarded as a hardwired version of a parallel
distributed program [3, 9], in which statements or actions are activated if their
preconditions are true. However, unlike parallel programs, which normally ex-
ist on top of some run-time mechanism, asynchronous circuits do not need an
underlying mechanism. Their “statements” are their own physical components,
such as logic gates, memory latches, or complex hierarchical modules. These

2 We hope that the reader, particularly the reader without a special hardware back-
ground, will appreciate the difference between this interpretation of “synchronous
versus asynchronous” and the one often used in referring to different types of inter-
action between system components. For instance, in the area of real-time systems, the
term “synchronous” is usually connected with the “rendez-vous” type of interaction.

components have inputs and outputs which are connected by means of wires.
The role of the data exchanged between them is played by switching events that
occur on the interconnection signals. The conditions that activate these modules
are caused by similar events on their inputs. These conditions are evaluated by
the components in much the same way as the above-mentioned preconditions in
parallel programs.

Physical level. Although we talk about “parallel programs” of the lowest possible
level, this level is still a logical abstraction. Systems built from logic gates are
themselves models of the real hardware, which behaves according to the laws of
physics! Strictly speaking, in order to fully investigate the dynamic behaviour
of switching processes in hardware, one should refer to the physical models of
the circuits [63]. This can be done by means of systems of differential equations
that describe a circuit as a dynamical system [5, 26]. It is convenient to sacrifice
some modelling accuracy because of the complexity of the analogue models.
These grow enormously with the size of the circuit, which makes analysis of
systems consisting of more than a few gates infeasible.

Fortunately, in most cases it is possible to apply a discrete-event abstrac-
tion mechanism to asynchronous hardware. We only consider systems at the
discrete level, with signals encoded as Boolean variables and switching events
as transitions from logical 0 to logical 1 and vice versa, called up and down
transitions, respectively. There is of course a class of behaviours, traditionally
seen as anomalous phenomena in digital hardware, which is referred to when
the above-mentioned assumptions cannot be guaranteed. Examples of such phe-
nomena are hazards and metastability. Calling them “anomalous” is not really
fair because they are “necessary elements” of concurrency in electronic systems.
They can be approximated in discrete terms but only under certain assumptions
(see e.g. [7, 78]). However, given the discrete nature of Petri nets, this body of
research falls outside the scope of this tutorial. The interested reader may refer
to [39, 10]).

Logical level. At the logical level, the behaviour of an asynchronous circuit can
be characterised by sequences of up and down transitions on the inputs and
outputs of its components. The order between these transitions is not prescribed
by any global scheduler or clock, and is determined by the local causal relation-
ships between transitions. Such an order cannot be total, due to the locality of
dependence between signals, and hence should be considered as partial. When
a component is ready to switch its outputs, it does so without any additional
enabling factor. By contrast, in synchronous devices switching can only take
place when the enabling signal from the clock arrives. Designing a circuit with
the ability to act completely on the basis of causal relations between switching
events is the essential principle of self-timed design. In many ways, this behaviour
resembles that of a Petri net.

Figure 1(a) illustrates the principles involved in the design of a simple asyn-
chronous circuit. The circuit performs the calculation out = (a+b) * (x +y). The
major part of the circuit, the data path, consists of two adders and a multiplier.

In addition, there is a control element called C, the Muller C-element, that con-
trols the operation of the data path. In order to allow control of the data path,
the adders and the multiplier have an extra input called ‘req’ (for request) and
an extra output called ‘ack’ (for acknowledgement). A logic block is triggered
when the appropriate signal arrives on the ‘req’ input. Once the operation is
completed, the ‘ack’ signal is asserted. Since adders have variable completion
times, which depend on the values on the input signals and the length of the
carry path they generate, the Muller C-element is used to trigger the multiplier
only when both adders have completed. Figure 1(b) and 1(c) show the Petri
nets for the data path and control logic, respectively. Figure 2 shows an nMos
circuit implementation for the C-element. Its functionality is described by the
following Boolean equation: OUT = ab + (a + b)out, where OUT is the new
value of the output, while out denotes its previous value, arriving as a feedback
at the input. In this circuit, the two cross coupled transistors T1 and T2 form
a memory element (a latch). The output of the circuit assumes the value of the
inputs when both inputs are equal. The latch preserves the output when one of
the inputs changes. So, the output of the circuit changes only when both inputs
have changed.

reql — = ackl
X— T C
y — —
reg2 ack reg3 ack3
a —-> + *
out
@)
a b X y

N @i\ / ¥ ackl ack2

reg3

(b) (©

Fig. 1. (a) example circuit (b) data path Petri net (c) control Petri net

VDD

a | O

T1 T2

oA+ L

GND

Fig. 2. Circuit implementation of the C-element

Speed-independent and delay-insensitive circuits. Note that self-timed circuits
such as the C-element are generally much more robust to variations of delays
in their components, gates and wires, than synchronous circuits. The ability to
preserve the same partial ordering in their behaviour regardless of component
delays and variable completion times in the data path is an essential feature
of self-timed circuits, making them indeed similar to Petri nets. Depending on
the level of delay insensitivity of their behaviour, asynchronous circuits are of-
ten subdivided into classes. The most well-known historically is the class of
speed-independent circuits. Their behaviour is insensitive to variable delays at
the outputs of logic gates, although they can be sensitive to variations in the
delays of the interconnections between gates. In other words, speed-independent
circuits are hazard-free under the unbounded gate delay model. A hazard is an
anomalous behaviour of the circuit, i.e. a deviation from its normal functioning.
A more restricted subclass of circuits, whose behaviour is independent of both
gate and wire delays, is called the class of delay-insensitive circuits. A less re-
stricted class of circuits, which operate with some delay assumptions, is called
the class of asynchronous bounded-delay circuits. Synthesis and verification of
these classes has attracted most of the research in the last decade. Other tax-
onomies of asynchronous circuit design, such as classes of delay models, different
switching semantics, types of causality and their relationship with Petri nets,
may be found in [78, 73].

A synchronous implementation of the example circuit of Figure 1 would leave
out the C-element and the ‘req’ and ‘ack’ signals. Whenever new input values
would arrive, the adders would generate new outputs, typically at different times.
This in turn would lead to glitches on the output of the multiplier, as it would be
presented with new input values in rapid succession. The circuit designer would
have to ensure that the clock signal of the overall circuit was slow enough to en-
sure that all glitches had disappeared at the start of the next clock cycle. So, in
a synchronous implementation, the clock signal would have to take into account
the worst possible delay through the adders, even though the input patterns that
would generate such delays would occur rarely. The circuit would thus be idle
for significant periods of time. The glitches in the circuit would consume power,

which would be wasted. The clock signal itself would use typically half of the
power consumed by the entire chip. By contrast, the asynchronous implementa-
tion would run at average speed, since it would continue as soon as the adders
had completed. Power consumption would be only a fraction of the synchronous
implementation since there are no spurious glitches and no clock.

Let us discuss the arguments in favour of the design of hardware using the
priciples of self-timing in more detail.

2.2 Why go asynchronous?

It should be quite clear from the above simple example that implementing the
idea of synchronisation between two independent operands with the aid of a
clock signal is less natural than with a self-timed two-input C-latch. There are
a number of arguments in favour of asynchronous circuits:

— Performance. In clocked circuits, the logic is designed to operate in stages.
Latches are used to hold input and output data between stages. Data transfer
between stages takes place under the control of the clock signal. The period of
the clock must be set to the worst case delay in these stages. In asynchronous
circuits, modules propagate their switching conditions by themselves. As a
result, their activity is limited by actual, not worst case, delays.

— Power efficiency. A clocked chip dissipates power even when it does no useful
work, simply because the clock beats away and generates enable signals to all
parts of the circuit. Typically, the clock will consume half of the total power
requirements of a chip. Gating the clock from the idle parts of the logic, e.g.
by means of a special “sleep-mode” control signal, alleviates the problem, but
cannot solve it radically. An asynchronous chip achieves near-zero standby
power in the idle state.

— Clock skew. Reliable clock distribution is a big problem in complex VLSI
chips because of the clock skew effect. It is caused by variations in wiring
delays to different parts of the chip. It is assumed that the clock signal fires
off the different stages of the chip simultaneously. However, as chips get
more complex and logic gates reduce in size, the ratio between gate delays
and wire delays changes so that the latter begin to affect significantly the
operation of the circuit. Asynchronous circuits need not deal with clock skew
problems, and although they can also be subject to the bigger effect of wire
delays, those problems are solved at a much more local level.

— Metastability. All synchronous chips interact with the outside world, e.g. via
interrupt signals. This interaction is inherently asynchronous. A synchroni-
sation failure may occur when an unstable asynchronous signal is sampled by
a clock pulse into a memory latch. Due to the dynamic properties of an elec-
tronic device that contains internal feedback, the latch may, with nonzero
probability, hang in a metastable (somewhere in between logical 0 and 1)
state for a theoretically indefinite period of time. Although in practice this
time is always bounded, it is much longer than the clock period. As a result,

the metastable state may cause an unpredictable interpretation in the ad-
jacent logic when the next clock pulse arrives. Self-timed circuits wait until
metastability resolves. Even though in some (e.g. real-time) applications this
may still cause failures, their probabilty is very much lower than in clocked
systems, which must trade-off reliability against speed.

— Modularity. Different parts of a digital system are usually designed sepa-
rately. These different parts tend to have different timing constraints. Com-
bining them into a single synchronous circuit can be very difficult, and may
result in a complete redesign of the entire system. By contrast, asynchronous
designs can be much more easily combined into a single circuit. The only re-
quirement is to make sure that the functional and causal interfaces between
the modules are well defined. Since such interfaces are often based on delay-
independent handshake protocols (cf. the ‘req’ and ‘ack’ pairs in Figure 1),
self-timed designs can be much more independent of the implementation
technology, and thus support the idea of hardware component re-use.

— Electromagnetic compatibility (EMC). The clock signal is a major cause of
electromagnetic radiation emissions, which are widely regarded as a health
hazard or a source of interference, and are becoming subject to strict legis-
lation in many countries. EMC problems are caused by radiation from the
metal tracks that connect the clocked chip to the power supply and target
devices, and from the fact that on-chip switching activity tends to be concen-
trated towards the end of the clock cycle. These strong emissions, thus being
at the harmonics of the clock frequency, may severely affect radio equipment.
This is why it is sometimes not allowed to use portable computers on aircraft.
Asynchronous circuits emit much less radiation than synchronous ones.

2.3 Why control logic?

It is quite customary in hardware design to separate the design of control logic
from that of datapath logic. The control logic implements the control flow of
the algorithm of the problem specification, while the datapath logic deals with
the operational part of the algorithm. In many ways, such a distinction is not
absolute. It is perfectly acceptable to consider an application where the datapath
may have its own elements of control flow. Some hardware design examples, e.g.
an asynchronous bus or ring interface adapter [76, 40, 77], a tree arbiter [23, 79)
or a modulo-n counter [19, 72], can be control-flow dominated, with a fairly
simple datapath logic. Their control would be usually specified by a combination
of partially ordered sets of events. Other examples, such as an asynchronous
register bank or a parallel n-bit arithmetic-logic unit [60, 35, 41, 53], would have
a fairly simple control behaviour but may be quite complex from the functional
point of view.

2.4 Role of Petri nets

For obvious reasons, Petri nets have traditionally been used to aid the design
of control logic. Hence the focus of our discussion will be the control flow. In

order to design an asynchronous datapath unit, the designer could follow ex-
isting structural methods outlined elsewhere [71, 27]. Additionally, the designer
would need to specify the protocols between the datapath and the control, us-
ing Petri nets. Another reason why control circuits are our main concern here
is that their design is particularly difficult. They are behaviourally much more
diverse than datapaths, and hence the use of structural approaches is rather
limited. Virtually every new algorithm requires the design of a new controller.
This puts tremendous demands on the effectiveness of the tools for verification
and synthesis. Compared to other “asynchronous process” languages, Petri nets
are in a very advantageous position, because of their ability to represent the
paradigms of causality, concurrency, deterministic and non-deterministic choice
at any level of granularity and abstraction [78]. They also allow specification of
hierarchy and compositionality. For example, when designing an asynchronous
FIFO buffer, the move from a fairly abstract level of specification, in terms of
actions “put a data item” and “get a data item”, to a much lower level, in terms
of signal transition events, can be done quite comfortably through changing the
basic Petri net notation. Support from existing theory is provided by (i) the
composition of labelled Petri nets, (ii) the signalling refinement of the event
annotation, and (iii) the use of observational equivalence. Since Petri nets have
a clear link with the state-transition notation [55], they provide a semantically
rigorous bridge between other description languages and existing asynchronous
circuit synthesis tools [15].

2.5 Asynchronous design: abstraction levels and design stages

The overall design flow in a Petri net based system for designing asynchronous
circuits is shown in Figure 3. Such a design normally distinguishes between two
levels of abstraction and modelling, which are applied during the corresponding
design stages. The higher level is associated with the abstract design of the
control flow. This level deals primarily with behavioural descriptions; the notion
of the system structure comes only from the datapath and the way it is referenced
in the specification of the control flow. The internal structure of the control path
is usually determined by the structure of the behavioural specification of the
control flow, its level of compositionality, and the specific interpretation of the
abstract actions in terms of the lower level design.

The lower level design stage, called logic design, is focused on the transfor-
mation of the abstract model of the control flow into the asynchronous control
circuit, i.e. into an interconnected set of circuit elements (gates). This transfor-
mation consists of two major parts:

— the signalling refinement of the abstract behavioural model into its binary
signal “equivalent”; this is based on the definition of an actual interface
between the control logic and datapath, as well as interface between the
abstract components of the control flow in terms of the lower level protocols
for up and down transitions of binary signals.

} ' '

igh- Characteristic i~
High-level languages i . Transition
(VHDL, CSP, ...) predicates systems
execution traces

\verify i T verify / / verify

Abstract behavioural model
Labelled Petri nets (LPNSs)

| Signalling refinement | verify
Timing ;

Diagrams |~ | Logic behavioural model
Signal Transition Graphs (STGs) -~

/ ‘_

Syntax synthesis
Directed ¢
Translation
Logic equations verify
library Event/level library
cells based circuit cells Circuit mapping
Circuit
PN model

N

Fig. 3. Design flow of Petri net design system.

— the circuit implementation of the signal-refined behaviour; this part may
proceed either as a direct syntax-based translation of the behavioural model
or using some logical synthesis techniques; the latter often give a more ef-
ficient (in terms of silicon area and performance) implementation than the
direct translation methods.

To give an initial flavour of the use of Petri nets as a modelling tool at
the above-mentioned levels of abstraction, let us consider two relatively simple
examples.

2.6 Design examples

Asynchronous processor. At the higher design level the behaviour is defined
in terms of an asynchronous process that can be represented by a labelled Petri
net. The transitions of such a net can be labelled with the names of relatively

abstract operations on datapath or control components. For example, let us
consider a high-level design model of an asynchronous processor shown in Fig. 4.
At the top abstraction level, the behaviour of a processor consists of two actions,
Instruction Fetching (IF) and Instruction Execution (IE), which alternate and
are therefore performed sequentially.

We can now refine these actions into subactions according to our ideas about
the processor architecture. Thus, the IF action can be seen as a process, i.e. a
Petri net fragment, consisting of the following subactions: incrementing a Pro-
gram Counter (PC), loading a Memory Address Register with the new address
for memory reading (MAR.r), and reading the new instruction word from Mem-
ory (Mem). The IE action can be refined into a process (another Petri net frag-
ment) involving other subactions: loading an Instruction Register (IR), decoding,
activating and executing the fetched instruction for two possible instruction for-
mats, a one word instruction (1WdInst and 1WdEx) and a two word instruction
(2WdInst and 1WdEx). The part of the process concerned with two word in-
struction execution requires two memory cycles. As can be observed from the
analysis of this Petri net, the initial sequential operation between IF and IE has
been refined into a model which allows concurrency between actions with smaller
granularity. For example, the PC action can be executed concurrently with in-
struction reading, decoding and execution. Another paradigm appearing at this
level is that of choice between two types of instruction execution. The refined
model can be subjected to verification (e.g. for absence of deadlocks or undesir-
able conflicts between actions) and/or performance analysis (e.g., estimation of
the degree of concurrency between transitions, evaluating critical paths, simu-
lation). The process of refining the design can be continued until the designer
realises that the abstract behavioural model satisfies the desired functional and
quantitative requirements. The result of this design stage is a specification of the
control flow in such a form that its actions, i.e. transitions in the labelled Petri
net model, can be easily mapped onto the primitive operations of the datapath
units. This part of the design process is described in detail in [64].

VME bus adapter. The second example presents a Petri net model for a logic
design level specification. The transitions of such a net will be labelled with the
names of binary signal transitions. The example is a simplified version of a hard-
ware adapter which interfaces the VMEbus with a “slave” device, e.g. a memory
chip. Such interfaces are typically described directly at the logic design level,
by means of timing diagrams, as shown in Figure 5. Informally, the adapter’s
function is to synchronise two handshake (request-acknowledgement) protocols,
one at the VMEDbus link and other at the link with the device. The first hand-
shake involves bus data strobe signals DSR (read operation) or DSW (write
operation) and acknowledgement DTACK. The second handshake involves the
local data strobe command LDS and local acknowledgement LDTACK. The pro-
cess of synchronisation includes an additional signal, DEN, to control data bus
buffers. The order of the signal transitions is established in the corresponding
timing diagrams by means of arrows. The solid arrows stand for causality con-

PC = Program Counter Update
MAR_r = Memory Address

‘ | Register, loading for Read
,& ,,,,,,,,,,,,,,,,,,,,,,,,, Mem = Memory Read
| i © IR=Instruction Register Load

! Ingtruction
i Execution

iwdinst IWdEx)
i 1Wdinst = One Word Instruction
Decoding
2Wdinst = Two Word Instruction
Decoding
1WdEX = One Word Instruction
: Execution
JWdEx | 2WdEX = One Word Instruction
‘ Execution

Fig. 4. Petri net example: a high level behavioural model of an asynchronous processor.

ditions to be implemented by the adapter circuit. The dashed arrows designate
causal relations implemented by the environment, through the above-mentioned
handshakes.

DSR = data strobe read
DSR —=| | — DEN DSW = data strobe write
VMEbus DTACK = data acknowledgement
DSW —= gae = LDS DEN = data buffer enable

DTACK =] Interface |<— | DTACK LDS = local data strobe
LDTACK = local data acknowledgement

Data Read Operation: Data Write Operation:
DSR A W DSW /ﬁ — /\7
DTACK |)

T e [l
\\) DEN \THJ W
N Gy vy

‘ ‘. LDTACK o/ = S

VR
DEN| [f (
LDSW

LDTACK

Fig. 5. VME bus adapter example: timing diagrams.

The above behavioural specification can be converted into the Petri net shown
in Figure 6. Each transition is labelled with the name of a signal followed by
either 4+ or —, depending on whether this is a rising or falling edge. Such a net is
called a Signal Transition Graph (STG). The notation used for depicting STGs is
essentially a short-hand Petri net notation, where a place with a single input and
single output transition is simply replaced by an arc. Note also that transitions
are simply represented by their label.

DSR+ — LDS+ — LDTACK+ —= DEN+ — DTACK+ — DSR- —= DEN-

DSW+ —= DEN+ — LDS+ — LDTACK+ — DTACK+ — DSW-— DEN-

Fig. 6. VME bus adapter example: Signal Transition Graph.

This net, or STG, combines both Read and Write operations into a single
model. This is due to the ability of Petri nets to model choice using places with
several incident output transitions (e.g. place incident to transitions DSR+ and
DSW-). The STG also captures potential concurrency by allowing some transi-
tions to fire independently. For example, the release of signal DTACK followed
by the assertion of a new strobe signal, DSR or DSW, can be done concurrently
with the release of signals in the device handshake, LDS and LDTACK. The
completion of the latter is synchronised only at the point where the new acti-
vation of signal LDS is required. We recommend that the reader traverse the
firing sequences of the net and compare them with the original timing diagram
model. This Signal Transition Graph can be implemented in logic using synthe-
sis tools such as SIS or Petrify (see Section 6). The solution, which involves an
additional state signal csc0, inserted by Petrify for the purpose of appropriate
state encoding (see Section ??), is shown in Figure 7.

The process of constructing Signal Transition Graphs for this kind of hard-
ware and synthesis of their logic implementations, is described in more detail
in [76].

3 Overview of design transformations

In this section we briefly outline the major ideas underlying the overall two stage
design process. This outline presents the main design steps involved in applying
model transformations. We will use a very simple example which appeals purely
to the reader’s intuition, and does not require formal knowledge. We then proceed
to a more detailed examination of these design steps with the help of formal
models.

3.1 Transformations for Abstract Design

The basic idea behind model transformations in abstract design is depicted in
Figure 8. Here, the initial requirement is that two actions ® a and b can proceed
in parallel but only once, i.e. for a (or b) to occur again it must wait for the
completion of b (a). The circuit semantics of the model, used in a subsequent
refinement, assumes that actions a and b are started by the designed control

3 Unless specified otherwise, the terms “action” and “event” are equivalent.

DSW
DEN
LDS
LDTACK
cxo L
DSR]
DTACK

Logic equations (cscO is additional state signal):

DEN = DSW + LDTACK * cscO
DTACK = DEN * (DSW’ + LDTACK * csc0)
LDS=cscO* (DEN * DSW + DSR + LDS)
csc0 = LDTACK’ + csc0 * (DSR + DSW)

Fig. 7. VME bus adapter example: logic implementation obtained by an automatic
synthesis tool.

circuit. This means that these actions can be refined into so-called active hand-
shakes [70]. In such a handshake the first transition (e.g., a rising edge) is pro-
duced on the output request signal, and it is acknowledged by the environment
of the circuit with a transition on the acknowledgement wire.

We consider here two possible threads of abstract design. One, called compo-
sitional design, corresponds to the original idea of control flow being captured
in the form of causality constraints between individual actions. It then proceeds
through transformation of this knowledge into the form of a labelled Petri net
model via steps (1.1) and (1.2). The other thread, called synthesis from state-
based specification, assumes that the original description is given in an FSM-like
form, by a transition system. This model is used as a source for synthesis of
a labelled Petri net by means of the theory of regions; these transformations
are shown as (1.3) and (1.4). Note that both threads are complementary; we
may allow for the application of both at different levels. Indeed, the first one
is essentially based on a compositional approach, and is probably more natural
to be used at a higher level. Thus, the target labelled Petri net model can be
built as a parallel composition of labelled Petri nets for smaller scale control
elements. These simpler elements can themselves be built using either transfor-
mation thread. Let us look at these threads in more detail.

Original Labelled Parallel Composition

Causality LPN Assembly Petri net LPN of simple LPNs
Constraints from .
Lo Decomposition
#h<=ta+1 Primitives [b]
[a}—@—[Bb] | > |/ N__ | . - I E l\
Ha<=hH1 @y 12) O, ®
b} —@—al &
[d]
Original Semi-elementary) 1-safe Petri net
Transition Dummy Transition Region-based
System Action gygem Petri Net
Insertion o 54 Synthesis

51@ llllllllll .
(o \) %
2 s3

Fig. 8. Model transformations for abstract design.

Compositional approach (Section ??). Transformation (1.1) involves the
construction of a labelled Petri net model of the control flow from the initial
capture of causality constraints. In this example we have two such constraints,
which are specified as characteristic predicates on the numbers of occurrences
of events a and b in execution traces (denoted by the symbol #). The first
constraint, #b < #a + 1, says that the number of occurrences of event b in
any execution trace cannot exceed that of a plus 1. The second condition is
symmetrical. Each such constraint can be conveniently captured by a single place
labelled Petri net primitive. These primitives are composed together by means
of merging the transitions corresponding to the same event label. This merge
reflects the lowest level at which the parallel composition of nets via transition
synchronisation is applied.

Transformation (1.2) illustrates the process of decomposing the labelled Petri
net model into a set of nets each of which has a simpler behaviour than the ini-
tially obtained net (in step (1.1)). This decomposition is again based on the idea
of a parallel composition of labelled nets with synchronisation on transitions
with the same label. In our example, the initial net model, whose reachability
set consists of three states (cf. states in the transition system used for the second
thread) can be decomposed into two nets, each of which has only two states. The
nets consist of two transitions each. One of those two transitions in each net is
labelled with the same name, d. Thus their parallel composition exploits syn-

chronisation on this label. Furthermore, the original net is behaviourally 2-safe
(each place can keep two tokens in some markings), whereas the simpler nets are
1-safe. The notion of 1-safeness is important for the application of some logic de-
sign procedures. Note that transformation (1.2) may be based on intuitive ideas
about the control logic structure. For example, each simple net is implemented
by its own control logic unit; these units can interact through a handshake port
implementing the common transition. Thus, since we do not generally apply any
kind of correctness-by-construction principle to this decomposition, and rely on
the intuition of the designer, we should assume that the resulting net needs
to be verified against the original one. We will show that this verification can
be based on the notion of observational equivalence [47] between labelled Petri
nets. This notion fits well with the concept of conformance tests between the
implementation and specification models.

Synthesis from state-based description (Section ??). Let us consider the
second thread. Transformation (1.3) is applied to a Transition System * which
does not satisfy a semi-elementarity condition, defined in Section ??. This is a
necessary and sufficient condition for applying further transformations (1.4). To
satisfy this condition, we insert at stage (1.3) additional events into the model.
These events can be regarded as dummy (sometimes also called “silent”[47])
actions. In the same way as labelled Petri nets, the correctness of this trans-
formation will be taken in the sense of observational equivalence between the
original and the resultant Transition Systems, which is sufficiently powerful for
the purpose of asynchronous design. Both notions (for Transition Systems and
Labelled Petri nets) are formally defined below. In our example, an auxiliary
event d helps satisfy the semi-elementarity conditions. The new Transition Sys-
tem is observationally equivalent to the original one with respect to the set of
events {a, b}. The reader may note the similarity between the idea of introducing
dummy events and that of new transitions with shared labels in the composi-
tional approach (transformation (1.2)).

Transformation (1.4) is based on the notion of regions in a Transition Sys-
tem [55], which are sets of states corresponding to places in the synthesised 1-safe
Petri net. If the Transition System satisfies the condition of semi-elementarity,
the synthesised net generates a reachability graph which is isomorphic to the
Transition System. Thus, due to the property of transformation (1.3), the Petri
net should be observationally equivalent to the original description. Note that
the event labels of transitions in the original Transition System are used as the
unique labels of the events.

* The term “Transition System” is used as a synonym to “State Graph”. Only if it
may cause confusion, we will apply the latter term in a more specific sense than the
former. Namely, a State Graph is a Transition System which has a binary encod-
ing. This follows the terminological tradition established in the asynchronous design
community.

3.2 Transformations for Logic Design

The logic design transformations shown in Figure 9 use a labelled Petri net for
each control logic unit. Note that each such net may be only a part of the overall
net model — due to the compositional approach.

Two-phase Two-phase
STG Syntax-driven Cireut

. Implementation
Conversion

........... o T N\ /oKt
2.2 @

a d br

1-safe Petri net
Action-Signal

T 7
(handshake)
[a] @ Refinement

O - Four phase STG STG-based
(21 Ak \ d L bkt Logic Logic
PIsRNE : Implementation

ar- " br 1| Synthesis
AT A d = ak* bikceol (ak+bk)
ak-; : k- [= ar=!d
\ g 1 @3 br=1d

ar+[“./d K br+

a S by

Fig. 9. Model transformations for logic design.

Action refinement (Section ??). Transformation (2.1) is an action refine-
ment. It is, however, different from the insertion of dummies in (1.3), since it
involves associating an original event name with a set of events. Furthermore, it
is performed at the Petri net level. In order to cast it into the notion of obser-
vational equivalence, we need to establish a mapping between the set of refined
actions and the original actions. For every original action such a mapping should
select a critical event from the refined set while other events must be regarded
as silent actions. The idea of such refinements for labelled Petri nets has been
defined in [74, 75]. The refinement can be done in two ways that lead to circuit
implementations (2.2) and (2.3). Note that for the example shown in Figure 9
those implementations produce the same result, which is of course not true in
general; an alternative implementation, (2.3), is shown in Figure 10.

Direct translation (Section ??). The (2.2) label is assigned to the imple-
mentation type in which the circuit is obtained by direct, syntax-based, con-
version of Petri net fragments into corresponding macromodules in the style

of [67] or [59]. The class of 1-safe simple [51] Petri nets is sufficient to perform
such a conversion [59]. The net, called a two-phase STG in Figure 9, is obtained
from the original net in the (2.1) transformation stage by means of: (i) expand-
ing abstract events into pairs of handshake signals (handshake expansion) in a
two-phase protocol (also known as a Non-Return-to-Zero, NRZ, protocol®) [67],
and (ii) for resolving conflicts with output signal non-persistency, by inserting
semaphore actions which are implemented with arbitration elements [16]. In our
example, the circuit semantics of events a and b in the original model is such
that they correspond to two active handshakes. Therefore, they are refined into
two pairs of signal transitions (ar ~, ak ~) (respectively, (br ~, bk ~)), meaning a
request to execute action a (b) and an acknowledgement of its completion. The
fact that the request part is leading in those handshakes (since they are both
active) is reflected in the relative position of the tokens, i.e. before ar ~ and br ~.
(Note also that the input transitions are underlined in the STGs of Figure 9.)

Logic synthesis from STGs (Section ??). The (2.3) stage is concerned with
synthesis of a logic gate implementation, which is called a four-phase implemen-
tation because it is synthesised from an STG in which signals are refined accord-
ing to a four-phase protocol (also known as a Return-to-Zero, RZ, protocol®).
Similar to (2.2), the (2.3) implementation also requires from the (2.1) refinement
that abstract events are expanded into handshakes, and that explicit arbitration
actions [16] are inserted. Unlike (2.2), the actual derivation of logic is performed
by means of logic synthesis from the STG. This is done with the aid of software
tools such as SIS or Petrify [65, 14], which themselves access the logic minimi-
sation package Espresso [4]. In the example, we refine both handshakes into an
STG for its four-phase logic synthesis, in a way that is not much different from
two-phase signalling. The purpose of this is to benefit from the existence of the
auxiliary event d, which can itself be interpreted as an extra state signal, and
refined into a pair of transitions d+ and d—. These are used to help solving the
Complete State Coding problem, which is a necessary condition for obtaining
logic equations for the output signals. Alternatively, by refining only the a and
b handshakes, we could completely rely on a synthesis tool, which could solve
both the state coding and logic synthesis issues. This is illustrated in Figure 10,
where three additional state signals (csc0, cscl and csc2) have been added for
Complete State Coding.

References

1. Semiconductor Industry Association. National Technology Roadmap for Semi-
conductors. Available on Web (URL: http://www.sematech.org/public/roadmap),

5 In such a protocol, both the rising and the falling edges of a signal have equal
significance from the semantical point of view.

5 Here, the process control semantics of the rising and falling edges of a signal is
different. Only the rising edge can be significant, say, to indicate that data is valid,
while the other edge simply carries out a “resetting” function.

1-safe Petri net Four phase ST G) STG-based Logic
Action-Signal . +’ - Implementation

O] O 73(3 — Logic
(handshake) _

[a] [b] ar- Yynthesis ar =lescO
Refinement i : br = Icsc1* (1cscO+csc2)

O O i\ [- csc0 = csc2 + cse0* escl

|23 cscl = bk + cscl* (Icsc0+csc2)
[d] @D ; gr i s : b i csc2 = ak + csc2* (!escl+bk)
Fig. 10. Alternative four-phase STG refinement.
1994.

2. A.G. Astanovsky, V. I. Varshavsky, V. B. Marakhovsky, V. A. Peschansky, L. Y.
Rosenblum, N.A. Starodubcev, R.L.Finkelshtein, and B. S. Tzirlin. Aperiodic Au-
tomata. Nauka, 1976. in Russian.

3. M. Ben Ari. Principles of Concurrent and Distributed Programming. Prentice Hall
International, London, 1990.

4. R. Brayton et al. Logic Minimisation Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, Hingham, MA, 1984.

5. R.W. Brockett. Analog and digital computing. In Lecture Notes in Computer
Science, Vol. 653, pages 279-289. Springer-Verlag.

6. J. Bruno and S. Altman. A theory of asynchronous control networks. IEEE Trans-
actions on Computers, 20(6):629 — 638, June 1971.

7. J. A. Brzozowski and C-J. Seger. Advances in asynchronous circuit theory — part
I: Gate and unbounded inertial delay models. Bulletin of the European Association
of Theoretical Computer Science, October 1990.

8. J.C. Cavarroc, M. Blanchard, and J.Gillon. An approach to the modular design of
industrial switching systems. In Proceedings of the Int. Symp. on Discrete Systems,
Riga, volume 3, pages 93-102, 1974.

9. K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

10. T.J. Chaney and C.E. Molnar. Anomalous behavior of synchronizer and arbiter
circuits. IEEE Transactions on Computers, C-22(4):421-422, April 1973.

11. T.-A. Chu. On the models for designing VLSI asynchronous digital systems. In-
tegration: the VLSI journal, 4:99-113, 1986.

12. T.-A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifica-
tions. PhD thesis, MIT, June 1987.

13. T.-A. Chu, C.Leung, and T.Wanuga. A design methodology for concurrent VLSI
systems. In Proceedings of the International Conference on Computer Design,
October 1985.

14. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Pet-
rify: a tool for manipulating concurrent specifications and synthesis of asyn-
chronous controllers. In Proc. of the 11th Conf. Design of Integrated Circuits and
Systems, pages 205-210, Barcelona, Spain, November 1996.

15. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing Petri
nets from state-based models. In Proc. of ICCAD’95, pages 164-171, November
1995.

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

J. Cortadella, L. Lavagno, P. Vanbekbergen, and A. Yakovlev. Designing asyn-
chronous circuits from behavioural specifications with internal conflicts. In Inter-
national Symposium on Advanced Research in Asynchronous Circuits and Systems,
Salt Lake City, Utah, pages 106-115, November 1994.

J.B. Dennis. First version of a data flow procedural language. In Lecture Notes in
Computer Science, Vol.19, pages 362-376. Springer-Verlag, 1974.

J. Desel and W. Reisig. The synthesis problem of Petri nets. Technical Report
TUM-19231, Technische Universitdt Miinchen, September 1992.

Jo C. Ebergen and Ad M. G. Peeters. Design and analysis of delay-insensitive
modulo-N counters. Formal Methods in System Design, 3(3), December 1993.

A. Ehrenfeucht and G. Rozenberg. A characterization of set representable labeled
partial 2-structures through decompositions. Acta Informatica, 28:83-94, 1990.
A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part I, II. Acta
Informatica, 27:315-368, 1990.

F.C. Furtek. Modular implementation of petri nets. Master’s thesis, MIT, Septem-
ber 1971.

H.J. Genrich and R.M. Shapiro. Formal verification of an arbiter cascade. In
Proceedings of 13th Int. Conferenece on Application and Theory of Petri Nets,
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1992.

D.B. Gilles. A flow chart notation for the description of the speed-independent con-
trol. In Proceedings of the Second AIEE Symposium on Switching Circuit Theory
and Logical Design, Detroit, Michigan, volume S-134, October 1961.

J. Grabowski. On the analysis of switching circuits be means of Petri nets. In
Elektronische Informations-verarbeitung und Kybernetik, volume 14, pages 611-
617. 1978.

M.R. Greenstreet and P.Cahoon. How fast will the flip flop? In International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
77-86, November 1994.

S. Hauck. Asynchronous Design Methodologies. Proceedings of the IEEE, 83(1),
1995.

H. Hulgaard and S.M. Burns. Bounded delay timing analysis of a class of CSP
programs with choice. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 2-11, November 1994.

R. Janicki and M. Koutny. On equivalent execution semantics of concurrent sys-
tems. In Lecture Notes in Computer Science, Vol. 266. Springer-Verlag, 1987.
J.R. Jump. Asynchronous control arrays. IEEE Transactions on Computers, TC-
23(10):1020-1029, October 1974.

J.R. Jump and P.S. Thiagarajan. On the interconnection of asynchronous control
structures. Journal of ACM, (4):596-612, October 1975.

R.M. Karp and R.E. Miller. Parallel program schemata. Journal of Computer and
System Sciences, 3(2):147-195, May 1969.

R.M. Keller. A fundamental theorem of asynchronous parallel computation. Lec-
ture Notes in Computer Science, 24:103-112, 1975.

D.J. Kinniment. Regular programmable control structures. In Proceedings VLSI-
81 (Ed. by J.P. Gray), Edinburgh, August 1981.

D.J. Kinniment. Evaluation of asynchronous adders. IEEE Transactions on VLSI
Systems, 4(2), March 1996.

M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Concurrent Hard-
ware: The Theory and Practice of Self-Timed Design. John Wiley and Sons, Lon-
don, 1993.

37

38.
39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

A. Y. Kondratyev, L. Y. Rosenblum, and A. V. Yakovlev. Signal graphs: a model
for designing concurrent logic. In Proceedings of the 1988 International Conference
on Parallel Processing. The Pennsylvania State University Press, 1988.

D. Lewin. Design of Logic Systems. Van Nostrand Reinhold (UK), 1985.

L.R. Marino. General theory of metastable operation. IEEE Transactions on
Computers, C-30(2):107-115, February 1981.

A.J. Martin. Synthesis of asynchronous VLSI circuits. In J. Staunstrup, editor,
Formal Methods for VLSI Design. North-Holland, 1990.

A.J. Martin. Asynchronous datapaths and the design of an asynchronous adder.
Formal Methods in System Design, 1(1):119-137, July 1992.

A. Mazurkiewicz. Concurrency, modularity and synchronization. In Lecture Notes
in Computer Science, Vol. 879. Springer-Verlag, 1989.

K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

K. McMillan. Trace theoretic verification of asynchronous circuits using unfold-
ings. In Computer Aided Verification, Proc. 7Tth Int. Conference, volume 939 of
Lecture Notes in Computer Science, pages 180-195, Liege, Belgium, July 1995.
Springer-Verlag.

K. McMillan. Using unfolding to avoid the state explosion problem in the veri-
fication of asynchronous circuits. Formal Methods in System Design, 1995. (to
appear).

R. E. Miller. Switching theory, volume 2, chapter 10, pages 192-244. Wiley and
Sons, 1965.

R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs, NJ, 1989.

D. Misunas. Petri Nets and speed-independent design. Communications of the
ACM, pages 474-481, August 1973.

D. Morris and R.N. Ibbett. The MU5 Computer System. Macmillan Computer
Science Series, 1979.

D. E. Muller and W. C. Bartky. A theory of asynchronous circuits. In Annals of
Computing Laboratory of Harvard University, pages 204-243, 1959.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of IEEE,
77(4):541-580, April 1989.

C. Myers and T. H-Y. Meng. Synthesis of timed asynchronous circuits. In Pro-
ceedings of the International Conference on Computer Design, October 1992.
Christian D. Nielsen and Alain J. Martin. Design of a delay-insensitive multiply-
accumulate unit. In Proc. Hawaii International Conf. System Sciences, pages 379-
388. IEEE Computer Society Press, 1993.

M. Nielsen, G.Plotkin, and G.Winskel. Petri nets, event structures and domains.
Part 1. Theoretical Computer Science, 13:85—-108, 1981.

M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition systems.
Theoretical Computer Science, 96:3-33, 1992.

J.V. Oldfield and R. C. Dorf. Field-programmable gate arrays : reconfigurable logic
for rapid prototyping and implementation of digital systems. John Wiley and Sons,
Inc., 1995.

E. Pastor. Structural Methods for the Synthesis of Asynchronous Circuits from
Signal Transition Graphs. PhD thesis, Universitat Politécnica de Catalunya,
Barcelona, 1996.

E. Pastor, O. Roig, J. Cortadella, and R. Badia. Petri net analysis using boolean
manipulation. In 15th International Conference on Application and Theory of
Petri Nets, Zaragoza, Spain, June 1994.

59

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

S. S. Patil and J. B. Dennis. The description and realization of digital systems. In
Proceedings of the IEEE COMPCON, pages 223-226, 1972.

N.C. Paver. The Design and Implementation of an Asynchronous Microprocessor.
PhD thesis, University of Manchester, 1994.

C. Ramchandani. Analysis of asynchronous concurrent systems by Petri nets.
Technical Report MAC-TR-120, MIT, Project MAC, February 1974.

L. Y. Rosenblum and A. V. Yakovlev. Signal graphs: from self-timed to timed
ones. In International Workshop on Timed Petri Nets, Torino, Italy, 1985.

C. L. Seitz. Chapter 7. In C. Mead and L. Conway, editors, Introduction to VLSI
Systems. Addison Wesley, 1981.

A. Semenov, A.M. Koelmans, L. Lloyd, and A. Yakovlev. Designing an asyn-
chronous processor using Petri nets. IEEE Micro, 17(2):54-64, March 1997.

E.M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R.Murgai, A. Saldanha,
H. Savoj, P.R. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. SIS: A Sys-
tem for Sequential Circuit Synthesis. Memorandum No. UCB/ERL M92/41, Elec-
tronics Research Laboratory, Department of Electrical Engineering and Computer
Science, University of Californica, Berkeley, May 1992.

R.M. Shapiro. Validation of a VLSI chip using hierarchical colored Petri nets. In
International Conference on Application and Theory of Petri Nets, Paris, France,
pages 224-243, June 1990.

I. E. Sutherland. Micropipelines. Communications of the ACM, June 1989. Turing
Award Lecture.

R.E. Swartwout. One method for designing speed-independent logic for a control.
In Proceedings of the Second AIEE Symposium on Switching Circuit Theory and
Logical Design, Detroit, Michigan, volume S-134, October 1961.

M. Tiusanen. Some unsolved problems in modelling self-timed circuits using Petri
nets. Bulletin of EATCS, 36:152-160, October 1988.

K. van Berkel, J. Kessels, M. Roncken, R. Saejis, and F. Schalij. The VLSI-
programming language Tangram and its translation into handshake circuits. In
Proceedings of European Design Automation Conference, pages 384 — 389, 1991.
V. Varshavsky, M. Kishinevsky, V. Marakhovsky, V. Peschansky, L. Rosenblum,
A. Taubin, and B. Tzirlin. Self-Timed Control of Concurrent Processes. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1990. V.I. Varshavsky, Ed.

A. Yakovlev. Solving ACiD-WG design problems with Petri net based methods. In
Proc. ESPRIT ACiD-WG Workshop on Asynchronous Circuit Design, Groningen,
September 1996. TR CSN9602, Computer Science Notes Series, University of
Groningen.

A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and M. Pietkiewicz-
Koutny. On the models for asynchronous circuit behaviour with OR causality.
Formal Methods in System Design, 9:189-233, 1996.

A. Yakovlev, A.M. Koelmans, and L. Lavagno. High level modeling and design of
asynchronous interface logic. Technical Report Series 460, University of Newcastle
upon Tyne, Computing Science, November 1993.

A. Yakovlev, A.M. Koelmans, and L. Lavagno. High level modelling and design
of asynchronous interface logic. IEEE Design & Test of Computers, 12(1):32-40,
1995.

A. Yakovlev and A. Petrov. Petri nets and parallel bus controller design. In In-
ternational Conference on Application and Theory of Petri Nets, Paris, France,
pages 244-263, June 1990.

7

78.

79.

80.

81

. A. Yakovlev, V. Varshavsky, V. Marakhovsky, and A. Semenov. Designing an
asynchronous pipeline token ring interface. In Proceedings of the Second Work-
ing Conference on Asynchronous Design Methodologies, London, May 1995, pages
32-41. IEEE Computer Society Press, May, 1995.

A. V. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli. A unified signal tran-
sition graph model for asynchronous control circuit synthesis. Formal Methods in
System Design, 9:139-188, 1996.

A. V. Yakovlev, A. I Petrov, and L. Lavagno. A low latency arbitration circuit.
IEEFE Transactions on VLSI Systems, pages 372-377, September 1994.

M. Yoeli. Petri nets and asynchronous control networks. Technical Report Re-
search Report CS-73-07, University of Waterloo, Department of Computer Science,
April 1973.

. A. Yu. The future of microprocessors. IEEE Micro, 16(6):46-53, December 1996.

This article was processed using the IXTgX macro package with LLNCS style

