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Abstract

The paper discusses the problem of enforcing generalized mutual exclusion con-
straints on place/transition nets with uncontrollable transitions. For a class of Petri
nets, marked graphs with control safe places, we discuss and compare several control
structures. Two of these controllers will be fully compiled, i.e., the corresponding
supervisor is represented by a place/transition net, while a third one will be par-
tially compiled, i.e., the corresponding supervisor is given as an interpreted net in
which the firing of some transitions not only depends on the marking of the net but

on the value of some predicates as well. The approach is applied to a manufacturing

example.
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1 Introduction

In this paper we compare several closed form solutions, i.e., net supervisors, for generalized

mutual ezclusion problems on control safe marked graphs with uncontrollable transitions.

Mutual exclusion constraints are a natural way of expressing the concurrent use of a finite
number of resources, shared among different processes. For systems represented as Petri
nets, Giua et al. (1992) have defined a generalized mutual exclusion constraint (GMEC)
as a condition that limits a weighted sum of tokens contained in a subset of places. Let
(N, M) be a net system with set of places P. A constraint (w0, k) defines a set of legal
markings:

M@, k) = {M € NP | 5T . M < k),

where W is a weight vector of nonnegative integers, and k is 2 positive integer. Markings
in NIP! that are not legal will be denoted forbidden markings. In the terminology of other
authors, GMEC’s have also been called “linear predicates” (Li and Wonham, 1994), “set

conditions” (Krogh and Holloway, 1991), “place invariants” (Moody et al., 1994 ).

In traditional Petri net modeling all transitions are assumed to be controllable, i.e., may
be prevented from firing by a control agent. A single GMEC may be easily implemented
by a monitor, i.e., a place whose initial marking represents the available units of a resource
and whose outgoing and incoming transitions represent, respectively, the acquisition and

release of units of the resource.

In the framework of supervisory control (Ramadge and Wonham, 1989) the complexity of
enforcing a GMEC is enhanced by the presence of uncontrollable transitions, i.e., transi-
tions that may be observed but not prevented from firing by a control agent. To enforce a
given GMEC, it is necessary to prevent the system from reaching not only the forbidden
markings (i.e., those markings that do not satisfy the constraint), but also all those mark-
ings from which a forbidden one may be reached by firing a sequence of uncontrollable
transitions as discussed in Golaszewski and Ramadge (1988). Unfortunately, in this case
1t was shown that there exist problems which do not have a “monitor-based” solution

(Giua et al., 1992).

The following on-line control policy may be used to allow the system the maximally
permissible behavior while preventing it from violating a GMEC. Let T, be the set of

" enabled controllable transitions at a given marking M. For each transition t € T., let
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M’ be the marking reached from M by firing t'. The firing of # should be disabled at M
if and only if there exists a marking M" reachable from M’ by firing only uncontrollable
transitions and such that M" does not satisfy the GMEC. Using this control scheme,
the control agent needs to solve several rechability problems at each step. Although
known to be solvable, the reachability problem llés a very high computational complexity
(DPSPACE(exp) hard, Jones et al,, 1977) and no primitive recursive solution. Thus, this

approach is unfeasible.

. Two ways have been explored for reducing the computational complexity invoved in solv-

ing a GMEC problem for nets with uncontrollable transitions.

On one hand, one may give up the pretence of computing a maximally permissi}.ble control
policy and be willing to accept a more restﬁctive control policy provided it can can be
easily computed. This approach has been followed by Moody et al. (1994, 1995). In their
approach the idea is that of always using very simple controllers in the form of monitor
places that only constrain controllable transitions. An algorithm is given to compute such
a monitor to ensure that a given GMEC will never be violated. In (Moody et al., 1995)

this approach has also been extended to nets with uncbservable transitions.

On the other hand, one may consider special PN structures for which the maximally
permssible control policy can be easily computed and implemented. There have been two

interesting approaches in this sense.

Holloway and Krogh (1990) presented an approach in which the problem of controlling
the marking of a place can be decomposed into the control of paths of uncontrollable
transitions. In (Krogh and Holloway, 1991) this approach is used to enforce GMEC. The
controller is designed in two steps. In a first off-line step the control path of interest

1‘5 . . . .
are determined and some predicates are defined. In a second step, the control policy is
computed by an on-line controller as a function of the path predicates. The approach
may be applied to safe marked graphs. Note also that the authors consider the possibility

of concurrent firing of simultaneously enabled transitions.

Li and Wonham (1989) used integer programming techniques to compute the control law
that enforces GMEC on vector discrete-event systems (VDES), a model substantially
equivalent to place/transition nets (Li and Wonham, 1993). The state equation of acyclic
nets gives necessary and sufficient conditions for reachability. Thus, the authors showed

how the control law may be computed by a supervisor if the uncontrollable transitions



of 2 VDES do not form cycles. At each marking the supervisor decides — by solving an
integer programming problem - if the firing of a controllable transition leads to a legal
marking or not. In the first case the transition should be enabled, in the second case
the transition should be disabled. The technique may be applied to all those nets whose -
reachability set may be studied by integer or linear programming, such as the class of

Elementary Composed State Machines nets described by Giua and DiCesare (1994).

The structural net restriction considered by Li and Wonham is not very strong and thus
their approach can be applied to a wide range of systems. However, there is a problem
with this approach: at each marking the supervisor needs to perform heavy computations
to determine the control law. In (Li and Wonham, 1994) the authors go 2 step further
and show how closed-form solutions for GMEC problems may be computed for restricted
classes of nets. By closed-form solution the authors mean that the controller may be
represented as VDES, ie., as a net, or as a “generalized” VDES. The method can be
applied to nets whose uncontrollable transitions form either tree structures of type TS1
(each transition has a single output arc) or tree structures of type TS2 (each transition

has a single input arc).

It may be interesting to note that the classes of nets considered in (Krogh and Holloway,
1991) and in (Li and Wonham, 1994) are in a sense complementa;z‘j,f, Krogh and Holloway’s
method may be applied to safe marked graphs, i.e., safe nets whose places have a single
input and output arc. L and Wonham’s method may be applied to TSI (TS2) nets, i.e.,
tree-like nets whose transitions have a single output (input) arc. Safe marked graphs are

neither a subclass nor a superclass of TS1+TS2 nets.

In this paper we show that closed-form solution can also be given for GMEC problems on
control safe marked graphs, l.e., a subclass of safe marked graphs for which Holloway nad
Krogh have derived a control policy. The paper presents several closed-form solutions,
l.e., net supervisors capable of enforcing GMEC constraints. Two of these supervisors
will be simple place/transition net and we cal] them fully compiled, to indicate that their
action solely depends on their net structure. A third supervisor will be an interpreted
net, i.e., a net in which the firing of some transitions not only depends on the marking but
on the values of some predicates as well. We call this second type of supervisor partially

compiled.

There are several advantages in fully compiling the supervisor action into a net structure.

Firstly, the computation of the control action is faster, since it does not require separate



on-line computation. Secondly, the same Petri net system execution algorithms may be
used for both the original system and the supervisor. Finally, a closed-loop model of
the system under control may be built with standard net composition constructions, and

efficiently analyzed for structural properties of interest.

On the other hand, partially compiled models are more flexible in the sense that some
interpretations may be used to implement complex control policies, whose corresponding

net structure may be exceedingly large.

The paper is structured as follows. Section 2 introduces the notation on Petri nets and
define generalized mutual exclusion constraints. Section 3 discusses the problem of en-
forcing GMEC on marked graphs with uncontrollable transitions. In particular, the class
of marked graphs with control safe places is defined and we show that the maximally
permissible control policy is a simiple function of marking of the net. Section 4 presents
a simple P/T structure called monitor capable of enforcing GMEC for this class of nets.
Section 5 presents a different supervisor, called compiled supervisor, that is 2 P/T net
as well. A third control structure, called partially compiled supervisor is presented in
Section 6. Section 7 discusses the advantages and disadvantages of the different control
structures. Section 8 discusses a simple example in which the methodology previously

developed is applied to the control of a manufacturing system.

2 Generalities

A place/transition net (P/T net) (Murata, 1989) is a structure N = (P, T, Pre, Post)
where:

e P is a set of pluces represented by circles;

e I is a set of transitions represented by bars;

o Pre: P x T — IN is the mnput function that specifies the arcs directed from places

to transitions;

e Post : P x T — IV is the outpul funciion that specifies the arcs directed from

transitions to places.

Here IV = {0,1,2,...} and it is also assummed that PNT =@ and PUT # §.
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The preset and postset of places and transitions are defined as follows:
‘p={te€T|Post(p,t)>0}, p*'= {t €T | Pre(p,t) > 0},
‘t={pe P|Pre(p,t) >0}, ¢t = {p € P| Post(p,t) >0}

This notation can be extended to sets. As an example, if P’ C P then

oPi — U 'P.
peF?

A direct path § = z1z, -+ -z} is an ordered set of elements z; € PUT such that z; € *z;,;.

A direct circuit is a direct path with z; = z,.

A marked graph (MG) is a P/T net such that each place has exactly one input arc and

one output arc.
Given a set X, let |X| be its cardinality.

A marking is a vector M : P — IN. NIP! will denote the set of all possible markings that
may be defined on the net. One writes M [t) M’ to denote that an enabled t may fire at
M yielding M'. A firing sequence from My is a (possibly empty) sequence of transitions
= t1...tx such that My [t1) M; [t2) My--- [te) M. R(N,M,) denotes the set of

markings reachable on the net N from an initial marking My.

A P/T system or net system (N, M) is a net N with an initial marking M. A net
system is live if from every reachable marking there exists a firing sequence containing all
transitions. If NV is a marked graph, then (N, My) is live if My places at least one token

in each direct circuit of V.

Let (N, Mo) be a net system with set of places P. A single generalized mutual ezclusion
constraint (W, k) defines a set of legal markings: M@, k) = {M e NFL| g7 . M < &},
where @ : P — IV is a weight vector, and k& € IV*. The support of 1 is the set

Quw={p € P|wp) >0}. All markings that are not legal are called forbidden.

A set of GMEC (W, k), with W = [i7,...5,] and E = (&, ... k)T, defines a set of legal
markings M(W, k) = (MeNPHWT. ) < Z}

As a particular case, when w < I, i.e., w{p} =1(Yp € Q.), the unweighted GMEC (7, k)

1s reduced to the set condition considered by Krogh and Holloway (1991).

We assume, now, that the set of transitions 7" of a net is partitioned into two disjoints

subsets: T, the set of uncontrollable transitions; and 7., the set of controllable transitions.
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A controllable transition may be disabled by the supervisor, a controlling agent which
ensures that the behavior of the system be within a legal behavior. An uncontrollable

transition represents an event which may not be prevented from occurring by a supervisor.

Given a system (N, Mo) and a set of GMEC (W, k), in the presence of uncontrollable
transitions it is necessary to restrict the behavior of the system, avoiding not only all

forbidden markings but also the set
MW E) = {M e NPV Mo\ M, M ¢ M(W,E),0 € T7)

of all those markings from which a forbidden marking may be reached by -firing only

uncontrollable transitions. The set of legal markings are this case:

—

MW, E) = MW, )\ Mu(W, B).

3 Enforcing GMEC on Marked Graphs

In this section we show how the problem of enforcing GMEC on Petri nets with uncon-
trollable transitions can be solved by disabling the firing of sets of control transitions that

increase the token count in particular subnets called control subnets.

In the case of marked graphs, the computation of the maximally permissible control policy
does not require reachability analysis but (as showed by Holloway and Krogh, 1990) a
simpler analysis of the marking of a set of paths in the control subnets. In the case
of conirol safe marked graphs, this computation can be further simplified: we just need
to keep track of how many control transitions for each control subnet have fired. The
results of this section will be used in the following sections to prove the validity of several

supervisors.

3.1 Control Subnet

To enforce a GMEC (7, k) it is necessary to be able to prevent the firing of those transi-
tions that increase the token count in the set of places Q.. When one of these transitions,
say ¢, is uncontrollable, it is still possible to regulate its firing by disabling a set of con-
trollable transitions (called control transitions of t) whose firing is required prior to the

firing of ¢.
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Let N = (P, T, Pre, Post) be anet, and let #; be an uncontrollable transition. The control
subnet for ¢; is N; = (B, T;, Pre;, Post;) where P; C P is the set of places connected to
t; by a direct path containing only uncontrollable transitions; T; = *FP, N P?; Pre; =
Pren (P; x T:), and Post; = Post N (£ x T;). The set of control transitions for i; is the
set Ai={teT|(3p€P)pect,(3p e P)pc t*}.

From this definition it follows that all transitions in A; are controllable.

This definition may be extended to controllable transitions as well. Given a net NV =
(P,T, Pre, Post) and a controllable tranéition t; € T,, the control subnet for ¢; is not
defined but the set of control transitions for ¢; is the set A; = {#;}, i.e., the transition
itself. This will allow us, in the following, to use the same formalism for both controllable

and uncontrollable transitions.

In the case of marked graphs (MG), given a constraint (w,k) the problem is that of
controlling the firing of the single input transition of a place in @, to ensure that the
constraint is always verified. In the remaining part of the paper we will use this notation.
Let p; be a place in the support of a GMEC. One may denote: 7 its output transition; ;
its input transition; N, = (P:,T;, Pre;, Post;) the control subnet for i A= {t},--- i}
the set of control transitions for #; (that we assume is never empty). Thus, one may speak
of control subnets and control transitions associated to a place p; € Q,,.

Example 3.1. In Fig. I places P1,P2,p3 belong to the support of @ GMEC. The figure
also shows the control subnets for their input transitions, with the corresponding control
transitions. The remaining structure of the marked graph is not shown. The controllable
transitions are shown as white bozes; the uncontrollable ones are shown as black bozes.
Note 3.1. We make two assumptions similar to the notion of independent events used

by Li and Wonham (1994).

1. No place p € Q,, belongs to the control subnet of any place p’ € Q,,, i.e.,

Qw N (Upeq, Pr) = 0.

4

2. The output transition of a place p € Qy s not a control iransition for a place

P EQ,, ie., forall p;,p; € Q.,: #¢ g A;.

In Giua et al. (1992) it was shown that these restrictions are purely technical and do

not cause any loss of generality for the classes of nets considered in the following. In



fact, given a GMEC that does not satisfy the assumptions of Note 3.1, it may always be
possible to find an Wzﬁ;tﬁ_(sve Giua et al., 1992) that does satisfy these
assumptions. ,‘/

For MG systems it is possible to analytically compute the dependency between the firing
of an uncontrollable transition and the firing of its control transitions. One may thus
characterize the set of legal markings M.(&, k) for a GMEC (7, &) on marked graphs
based solely on the structure of the net, without resorting to the construction of the space
of reachable markings.

Proposition 3.1. Let (N, My) be a live MG system and (&,k) a GMEC satisfying
the assumptions of Note 3.1. For each place p; € @, let t; be its input transition;
N; = (Pi,f};Preg,Posfg) the control subnet for t;; A; = {t} .-t} the set of control

transitions for ;.
3

1. Forall p; € Q, T: € T.. This means that A;,NT; = 0.

2. For all p; € Qy, given a marking M € R(N, My) the mazimuwm number of times t;
may fire without firing any transition in A; (the deviation bound between t; and A;)
is:

DB(M,t;, A;) = min{td(M,¢,4) | t € A:},

where td( M, t,t;) is the token distance between transitions t and t;, i.e., the minimum

token content among all possible direct paths from t to t; at marking M.
3. The set of legal markings is
M(@,k) = {M € NP &7 - (M + Dpr) < k3,

where DM(p,') = DEB(M,t;,A;) if p; € Q, else Dar(pi) = 0.

Proof.

1. For all p; € Q, if t € T., then uo place in *f can be in P, as its only output

transition is controllable; hence ¢t & T3

2. See Murata (1989). Note that the token distance DB(M,¢;, A;) may be computed
solely from the analysis of N; and its marking. Note also that if £; is controllable
then A.; = {fi}, hence DB(A[ f{,A;) = DB(;’!';[,Q, :’f{) = {.
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3. Firstly, we prove that if a marking A is such that &7 - (M + D) <k, then it is
never possible to reach a forbidden marking by firing only uncontrollable transitions.
In fact, if we disable all control transitions for all places in @ w, We may at most fire
each ¢; 2 number of times equal to Dys(p:i) according to Proposition 3.1, Part 2. We
thus reach a marking where the token count of place p; has increased from M(p;)

to M{p;) + Dups(p;) at most. Such a marking is clearly legal.

Secondly, we prove that from a marking A/ such that %7 - (M + D) > kit is always
possible to reach a forbidden marking by firing onlydncontrollable transitions. In
fact, according to Proposition 3.1, Part 1, the set of transitions T belonging to the
control subnet of a place p; € Q, are uncontrollable. Since the net is live, there
may not be unmarked direct circuits contained in the control subnet; hence, by firing
only transitions in 7} we may always fire transition ¢; for a number of times equal to
Dyr(p:). Also, by the assumptions in Note 3.1, Part 1, no transition t; may belong
to any of the sets T} for all PisPj € Qu, i.e., the firing of transitions contained in
the control subnets does not decrease the token count of a place in Q,. Thus from
marking M we may reach a new marking M’ such that M'(p;) = M (p:) + Das(ps)

for all p; € Q,, that is clearly a forbidden marking.
O

The previous proposition may be used to define the mazimally permissible control policy
that enforces the constraint (w0,k). The maximally permissible control, as defined by
Krogh (1987), prevents only transition firings that lead from a marking M € M (w, k)
to 2 marking M’ & M (17, k).

Given a marked graph system (IV, M) and a constraint (7, k), the maximally permissible
control may be computed step by step as follows. Let 4 = (Us,e0, A:). Then from any
marking M € R(N, My):

* A transition t € 4 such that M[t)M', may be left free to fire if 7 - (M'+ Dyp) < k

e All other transitions may be left free to fire.
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3.2 Control Safe Places

Let us consider in the following a special class of MG systems introduced in the next
definition.
Definition 3.1. A place p; of a MG system (N, My) is said to be control safe off for all

t € A; there exists a direct circuit containing « single token passing through t and Di-

Given a GMEC (4, k), it will be assumed in the following that the places in Q,, are control
safe. This restriction will permit a simplification of the control problem, in the sense that
will allow one to derive simple control structures. The idea here is that to check whether
a place p; € @, may be marked by a firing sequence of uncontrollable transitions one

needs to check only how many firings of transitions in A; have occurred while there is no

e,

need to record which transitions have fired.
Proposition 3.2. Let (N, M) be a live MG system, and p; a control safe place of N,
with set of control transitions A;, and output transition t. Then V.M € R(N,My):

[N

cforallt € A;r td(M 4, 12) + td(M,12,8) = 1;

IS

- forallt € Ay; if Mt > M/ then td(M,+,#2) = 0 and td(M',t,#2) = 1;

Lo

Cforallt € Ag: dif M[t? > M then td(M,+,12) = 1 and td(M’,1,12) = 0;
4. M(p:) + Dar(pi) < 1y

- M(p:) + Dy(p:) = 1 < (Vt € A)[td(M,1,12) = 1].

O

Proof.

1. Since there is a direct circuit with a single token passing through t and p; (and
hence through # and 1) we have that td(M,1,2¢) + td(M,#?,#) < 1. Liveness of the

system implies that the equality holds.

[S]

Let 6 be a direct path from # to t7. Since the net is a MG, the firing of # (¢2) increases
(decreases) the token count of § by one token, while the firing of any other transition
does not change the number of tokens in 0. According to Note 3.1, Part 2, ¢ £ 2,
hence td(M’,1,2) = td{M,1,12) + 1. From 1], it follows that td(M’,¢,2?) = 1 and

td(M,t,¢2) = 0.
3. The proof is the dual of that in 2] considering a direct path ¢ from 2 to .

11



4. By contradiction, assume that M (p;) + Dar(pi) > 1. As proved in Proposition 3.1,
Part 3, it is possible to reach a marking M'(p;) = M(pi)+ Dar(p;) > 1. This means
that all direct circuits passing through p; contain at least Af(p;) tokens, hence place

p; 1s not control safe.

e

5. (=) There are two cases.

e Let M(p;) = 1. By contradiction, assume that exists ¢+ € A; such that
td(M,1,t?) = 0. Now, let C be the direct circuit with a single token pass-
ing through ¢ and p;, and let & be the direct path from t? to ¢ contained in
C. Since p; is marked, &' contains no token, hence td( M, 22, t) = 0. This

contradicts Proposition 3.2, Part 1.

o Let Dy(p;) = 1. Then by Proposition 3.1, Part 3, 1t 1s possible to reach a
marking M’ such that M'(p;) = M(p;) + Dyslp;) = 1 without firing transitions
in A; or t7, l.e., without changing the token distance between the transitions
in A; and t?. Thus the reasoning used in the proof of the previous case may

be applied.

(&=) By definition, if (Vt € A;)[td(M,1,12) = 1] then DB(M,;, Ai) = 1. Then,
from Proposition 3.2, Part 4, it follows that 1 > Pv[(p,') + Dy(pi) = M(p:) +
DB(J‘/I,Q,A{) > DB(Z‘J,??,A{) =1.

O

Let (i, k) be a GMEC with |Q,] = m and assume that the places in (), are control safe.
For each place p; € Q,, let A4; be its set of control transitions, with |4;] = n;. According
to the previous proposition, Part 5, a control safe place p; of a MG can be marked
uncontrollably if and only if the token distance between all control transitions A; and the
output transition 27 is equal to 1. If we cousider a place p; and any one of its control
transitions, say 7, we say that ¢ is unconstraining if the token distance between ¢ and the
output transition £7 is equal to 1 (i.e., if the path from # to p; along the single token circuit
is marked). We may assign to a marking of the net a vector M) =[e (M) cn (M),
where ¢;(M) < n; counts how many transitions in A; are unconstraining at marking M.
Finally we can give the maximally permissible control policy for this problem as follows.

From any marking M € R(N, M,):



e A transition ¢ € A; such that M)A, may be left free to fire if one of the following

conditions is true

1. C,(./er) < 4.
(In this case place p; cannot be marked uncontrollably from M)
2. c(MYy=mnand Y wip) <k with I(M) = (] (M) = n;}.

i€ f(M")
(In this case p; can be marked uncontrollably from A/’ but without violating

the GMEC.)

e All other transitions may be left free to fire.

It is clear that: a) the firing of a transition ¢+ € A; will increment the value of ¢; of one
unit; b) the firing of the output transition of p; will decrement the value of ¢; of n; units,
ie., will reset it to 0; ¢) the firing of any other transition will not change the value of ¢;.
Hence we only need to compute the value of M) for the initial marking, and update it
at each transition firing. This control policy is simpler than the one given in section 3.1
for general MG, in the sense that while the latter requires path analysis at each step to
compute the value of M’ + Dy, the former requires a simple updating of the counter

M.

4 Monitor-based Controller

Here we consider a simple control structure that is implemented adding new places, called

monitors (Glua et. al, 1992), to the net.

We first consider a very special case, in which the GMEC (17, k) is unweighted, i.e., % < 1,
and also the |Q,] = £+ 1. Later we show how any GMEC that does not have this special
structure can be represented as a set of constraints in this form.

Definition 4.1. Let (N, M,) be « MG system and (W, k) be an unweighted mutual ez-
clusion constraint, i.e., w < 1, defined on it. It is assumed that M, € M (0, k). Let
Qw = {p1,...,p,} be a set of control sufe placcs of N with |A] = ni. Assume that
r = |Qu = k+ 1. The monitor that enforces this constraint consists of a place § to be
added to the original net with arcs as follows. For allt € T:

Pre(S,t) = Z a(p;, t);

7i€Qw
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Post(5,t) = 3 n; x o(p;, 1),
Pi€Qun

where a(p;,t) = 1 ift € A; else a(pi,t) =0, and o(p;,1) =1 if t = t} else o(p;,t) = 0. The
initial marking of place S is: Mo(S) = (Z,co. T Mo, p;)) — 1 where

H(ﬂ{{api) = Hf € A; 1 id{ﬂjj:f‘vt?) = OH?

ve., II{M,p;) counts how many control transitions in A; must fire before place p; may be
marked. '
Example 4.1. Let us assume it is requived to enforce the constraint M(p) + M(ps) +
M(ps3) <2 over the net in Fig. 1. In Fig. 2 it is shown the monitor place S with its arcs
as dotted lines. Place pg initially contains F tokens (one token less than the mumber of
control transitions) because for all control transitions t € A; td(M,t,12) = 0.
Proposition 4.1. 4 monitor constructed as in Definition 4.1 enforces the mazimally

permissible policy that ensures that the constraint (W, k) will be satisfied.

Proof. Note that M(S) = (Zoico, H(M,p)) =1, for all M € R(N, My) (this follows by
the construction of the monitor and from Proposition 3.2). The monitor prevents only
transition firings that yield markings M’ such that (Vi=1,...,7)(Vt € A)[td(M',1,12) =
1], that by Proposition 3.1 and Proposition 3.2 are the only illegal markings for unweighted

constraints of this kind. O

A set of constraints (W, 1?) of this form may be enforced by adding several monitors.

Assume now (w, k), with @ < I, is such that |Quw| > &+ 1. The previous construction
may not be used. However the original constraint may be rewritten as a set of constraints
according to the following proposition.
Proposition 4.2. et (w, k) be @ mutual exclusion construint, with @ <1, and 1Qu >
k+1. Then:

Mw k) = ﬂ MW k)

€Ly

where It = {0 € {0, 1} 7 < 5, Q] =k +1}.
Proof. (C) is trivial. Let us prove (2). Any marking M € ﬂ‘i?€!k+; MW, k) marks at
most k places in Q,,, otherwise there exists 5" € Iitr such that Qv C {p | M(p) > 0}
and M & M(@" k). Let w"” € Ii.y, be a weight vector whose support contains all the

places marked by M. Clearly M € M(3" k) = M € M(w, k). O
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The previous proposition shows that the unweighted coustraint (%, %), with @ < 1 and

|Qu| > k+1, is equivalent to the set of constraints (W, k-1) = {(&, %) | @' € ts1}, hence

. Qw
may be enforced by a set of monitors. However the problem is that there are ( AI 2l )
c 41

different subsets of @, of cardinality £+ 1. Thus in the worst case the number of monitors

is exponential with respect to the cardinality of Q,,.

The monitor based construction may also be used, when the weight of the places is not
unitary, rewriting the weighted constraint as an equivalent set of unweighted constraints.

Giua et al. (1992) proved that this is always possible for the class of nets considered here.

5 Compiled Supervisor

This subsection presents a net supervisor, capable of enforcing a set of GMEC. It is
assumed that the supervisor observes the execution of the unconstrained system and at any
given instant provides a control pattern, i.e., specifies which controllable transitions are
allowed to fire. The control pattern is implicit in the transition structure of the supervisor,
in the sense that a controllable transition that belongs to the supervisor structure is
enabled by the control pattern if and only if it is enabled by the marking of the supervisor
net.

Definition 5.1. Let (N, M) be a MG system and (0, k) be ¢ GMEC. It is assumed that
My € M@, k). Let Q, = {p1,...,p-} be a set of control safe places of N with |A;] = n;.
The compiled supervisor that enforces this constraint is N° = (PS5, T, Pre’, Post®) with:
P = {po, 01, P, ', Plo - -+ P P, P} TF = AJUAYU A UALUATU{ES,. .., 2} where

Al and A are sets of transitions synchronized with A;; Pre® and Post® are such that:

o Pre’(po,t) = w(p;) if t € AY else Pre®(py,t) = 0;

PostS(pg,t) = w(p;) if t = 12 else Posi®(pg,t) = 0;

o Pre(pit) =1if t € Al else Pre™(p),t) = 0;
o PostS(pl,t) =ni—1if t = 12 else Post3(pl,t) = 0; ¢ (=e foe Sy
o PreS(pl,t) =n;— Lif t € A else PreS(pf,t) =0; |

PostS(p!,#) = 1if t € Al else Post¥(p". 1) = 0; J



o Pred(pl t) =1if t =1 else Pred(p 1) = 0;

o Post®(p",t) = 1if t € A else Post¥(p/ 1) = 0.

3

The initial marking of N¥ is MJ such that¥i=1,...,r:

if (Mo(pi) + Dagy(p:) = 1]
then [MJ(p!)=MS(p!)=0A M§ (") = 1]
else  [M3Z(ph)=TI(M,p;) -1 '
AMS(p!) = ni — 1 — M3 (p))
AMS (pi") = 0]

and M§(po) = k — 7, w(p:) M (p").

In the previous definition there are two assumptions. Firstly, it is assumed that (Vi =
1,...,7)n; > 1; if n; = 1 one may remove the places p! and p? and the set of transitions
A}, as in the next example. Secondly, it is assumed that (Vi # j) A; N A; = 0 and

t? # t%; if this is not the case, we need to slightly change the structure of the supervisor
by merging the common transitions.
Example 5.1. In Fig. 3 it is shown the supervisor that may be used to enforce the con-

straint w(p; )M {(p1) + w(p2) M (p2) + w(ps) M (ps) < k over the net shown in Fig. 1.

In the example in Fig. 3 the set of parallel transitions A! (and AY) have been represented as
a single transition. Whenever the system executes a transition ¢ € A;, the corresponding
transition in A} or A will fire. Note that the behavior is deterministic: if a transition
in A is enabled, the corresponding transition in A? is not, and conversely. For the
computation of the control pattern, a transition in A; is enabled by the control pattern if
the corresponding transition in A! or in A is enabled.

Proposition 5.1. The supervisor constructed nccording to Definition 4.2 enforces the

mazimally permissible policy that ensures that the constraint (@0, k) will be satisfied.

Proof. First, let us note that given a marking M of the systemn and a corresponding mark-
ing M% of the supervisor it holds: (Vi=1,... JTNM (p;) + Dag(p:) = M3(p?")]. Since the
place py is enforcing the constraint T, w(p;) M (p") < k it follows, by Proposition 3.1

and Proposition 3.2, that the supervisor enforces the required policy. O

In the case of a set of constraints (W, k) one needs to construct a supervisor for each single

constraint (w;, k;). Should a controllable transition belong to more that one supervisor,
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say N°! and N2 it will be enabled by the control pattern if and only if it is enabled on

both NS! and N¥2,

6 Partially Compiled Supervisor

The net structure of the supervisor may be further simplified. For instance we may avoid
repeating the set of transitions A;. However we need to add additional control structure
by introducing transitions with an associated‘predicate. This partially destroys the pos-
sibility of analyzing the net with traditional PN techniques. The advantage, however, is
that the partially compiled supervisors that we discuss here may be easily modified to en-
force constraints on larger classes of systems than marked graphs with control safe places
or to enforce other control policies than the maximally permissible one, as discussed in
the example in section 8.

Definition 6.1. Let (N, My) be a MG system and (@, k) be « GMEC. It is assumed
that My € M (@, k). Let Qu = {p1,...,pr} be a set of control safe places of N with
|A:l = n;. The deterministic partially compiled supervisor that enforces this constraint is
NS = (PS, TS, PreS, Post®) with:

S N roY .
o P ”{p07p1?p27p27'“:pr7pr}:
o T° = A UAU...UA U, 12 U {xl, ol =, ..., =l ="} where = and =’ are
transitions to which « predicate is associated;

e Pre® and Post’ are such that:

- Preg(po,t) =11ift = x! else P‘i‘t‘,s(pg,f:> =0;
— Post®(pg,t) = 1 if [t =12 or ¢ = x¥] else Post®(py,t) = 0;

3

— Pred(pl,t) =11if t € A; else Pre’(pi,t) =0;

Post®(pi,t) =n; — 1 if t = #¢
else [Post™(pl,t) = 1 if t = =/ else Post®(p},t) = 0],

|

Pred(pl,t) = n; if t =17 else Pre™(p? t) = 0;

POS}fS(pE",f) =11ft € A; else P().\:I,‘S,(p".’,t) = 0;



The initial marking of N¥ is Mg such that Vi=1,. ., ,T

i [Molpi) + Dag(pi) = 1

then [MJ(p!)=0A M (p!) = n;)

else  M7(p) = II(M,p;) — 1
AMG(pY) = n; — Mg (ph)]

and Mg (po) = r— | {i | M5 (p!) = ni} |.

The predicate associated to the transitions 7 and ©) are used to implement the control

v o= Z l_ﬂ_______’[(P:-’)} w(p:)

3
PiEQw . “‘

policy. Let

Then:

o mi: [M(pl) + M(p!) = ni = 1A [v < k — w(pi)]:

o 7 [M(p) + M) = ni] Ao > k— w(p)].
There some aspects of this supervisor that warrant a discussion.

o The compiled supervisor is synchronous with the plant, i.é,, the firing of each transi-
tion of the compiled supervisor is triggered by the firing of the corresponding tran-
sition on the plant. In the partially compiled supervisor there are however some
transitions, those with associated predicates, that have no corresponding transition
on the plant. The firing of these transitions corresponds to the computation of the

control action. Thus we will assume the following execution policy of this supervisor.

1. Given the initial marking for the plant and supervisor, the supervisor will
execute all those predicate transitions that are enabled by the current marking,
and whose associated predicate has a value TRUE. The marking reached by
the supervisor at the end of this step will enable a certain set of transitions,

and this set is the control pattern that the supervisor will provide to the plant.

2. As soon as a transition fires on the plant, the corresponding transition will fire
on the supervisor. This may enable some predicate transitions that will be

executed to compute the new control pattern.

* Assigning different values to the predicates it is possible to implement other control

policies as discussed in the example presented in section 8.
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Example 6.1. In Fig. { we show lhe supervisor that may be used to enforce the constraint
w(p1) M (p1) +w(p2) M (p2) + w(ps) M (pa) < k vver the net shown in Fig. 1. Note that the
structure of the supervisor does not depend on the weight vector & and on the integer k,

that affect only the value of the predicates = and Ty

In the previous definition it is assumed that (Vi # j) 4; N A; = 0 and #7 # 2. If this is
not the case, we need to slightly change the structure of the supervisor by merging the

common transitions.

It is difficult to show that this supervisor is actually implementing the maximally per-
missible control policy because of the predicates associated to the transitions =} and ="
Note however that given a marking M of the system and a corresponding marking M°
of the supervisor, we have that (Vi = 1,...,7)[M(p;) + Das(p;) = 1 & M>(p?) = ni].
The transitions = will remove the token necessary to reach A/¥(p?) = n; whenever the

marking of place p; would violate the constraint.

7 Comparison of the Models

The monitor-based controller is an extension to systems with uncontrollable transitions
of the controller studied by Giua et al. (1992) for nets with only controllable transitions.
Thus all the structural properties of monitors may be used to analyze the system under
control. The drawback is that a monitor-based solution may require an exceedingly large
number of monitors. However, in those cases in which it may be used efficiently, it is the

simpler and most straightforward solution.

The compiled supervisor has the advantage of always maintaining a compact structure
that grows linearly with the number of places in the support of the weight vector. However,
since it requires all control transitions to be represented twice, it leads to a closed-loop

model less easy to analyze.

The deterministic partially compiled supervisor has the simpler structure but its behavior
. Y ; I p

strongly depends on the predicates associated to the transitions. The predicates associated

to the transitions may be used to implement different run-time policies. It is at the same

time the simpler model to implement and the most difficult to analyze.




& A Manufacturing Example

In this section we consider as an example the manufacturing cell shown in Fig. 5. The
cell is composed of two machines, 3, and Mg, a robot and a buffer of capacity one. Two
separate parts, PartA.a and PartA.b arrive on two couveyors. The robot loads the two
parts on M. After the machine has been loaded it processes the two parts, and produces
a single PartA that is put in the buffer. When the buffer has been emptied, the cycle is
repeated. Machine M3 has a similar behavior. A simplified Petri net model of the system
is shown in Fig. 6. Since the each loading operation has been rapresented by a single

transition ({3, t4, t19, and t1;) we need not introduce a place corresponding to the robot.

We assume that once a machine has been loaded, it may uncontrollably produce a part
and output it in the buffer. This corresponds to the firing of uncontrollable transitions
t5 and t12. Since only one part may be in the buffer at a given time, we need to regulate
the operations of the robot, that are supposed to be controllable. Thus, in this example

we want to enforce the constraint:
Mps)+ M(pry) < 1
enabling and disabling the control transitions t3, t4, 210, and #yq.

Monitor-based controller
To enforce this constraint we just need a single monitor, because the constraint is un-
weighted and it satisfies the condition & = |QI — 1. The structure of the plant with the

addition of the monitor place is shown in Fig. T.a.

Starting from the initial marking of the net given in Fig. 7.a, the execution of the firing

sequence: o = tylalgtotatytiy brings the net in the marking
M=[000001100001100]

where the first component of 3 is related to pu- The transition #1; is enabled in the plant

net since M(py;) = 1, but it cannot fire on the net in Fig. 7.a, because M(pg) = 0.

Compiled supervisor

The compiled supervisor for this constraint is shown in Fig. 7.b. The transitions of the
supervisor net in Fig. 7.b are syuchronized with the transitions of the plant net in Fig. 6
having the same label. The state of the supervisor changes with the occurrence of an

event on the plant net in Fig. 6. As an example, when transition #, is fired on the plant,
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the state of the supervisor does not change, since #; is not a transition of the supervisor
net. However, if transition #3 is fired on the plant, one of the transitions labeled i3 will
be fired on the supervisor net and the state of the supervisor changes. Note that the
behavior is deterministic: for any reachable marking on the supervisor there will never be

two transitions with the same label simultaneously enabled.

A transition in A; is enabled by the control pattern if there exists a transition with the

same label enabled on the supervisor.

Starting from the initial marking of the plant net given in Fig. 6 and from the initial
marking of the supervisor given in Fig. 7.b, the execution of the firing sequence: o =

titotstotatytyo brings the plant net in the marking
M=[00001100001100]
and the supervisor in the marking
Ms = [M(po) M(p) M(p) M(p¥) M(pl,) M(pl) M(p)]T = (0002010,

The transition t;; is enabled in the plant net, but it is not enabled by the supervisor,

because M (p},) = M(p{,) = 0.

Partially compiled supervisor

The partially compiled supervisor for this example is shown in Fig. 7.c. If we define

L {ﬁffgpi-’) J N {M(f@ ) J

o= =

we can assign the following values to the predicates:

wr: [M(ph) + M(pf) = 1A v =0
w0 [ M(ph) + M(pE) =2 A v > 0);
Tl [Mph) + M) =1 A =0}
mys [MpL) + M(pl) =21 A [v > 0]

It is possible to see that this supervisor hehaves exactly as the compiled supervisor.

From the initial state in Fig. 7.c, both predicates x2 and =%, are true, hence the corre-
é: I 7 id

sponding transitions will fire and the supcrvisor net reaches the marking:

Ms = [M{po) M(ph) M(p2) M(p) M(pi))T=[0202 0]%.



At this point all predicates #’s are false and the supervisor will wait for a transition to
fire on the plant net. The execution of the firing sequence: o = t;4,tgdetat tsq brings the

plant net in the marking
M=[00001100001100]7
and the supervisor in the marking
Ms=1[00211]%.

At this point predicate w7, will be true, the corresponding transition will fire, and the
P P 14 P = 3

supervisor net reaches the marking:
Ms=[10201].

The transition #1; is enabled in the plant net, but it is not enabled by the supervisor,

because M (p},) = 0.

Changing the predicates, the partially compiled may be used to implement other control
policies than the maximally permissible one. As an example, assume we also want to
enforce a priority constraint such as: “the loading operations on machine A have priority
over the loading operations of machine B”. This could be enforced changing the predicates

T4 and wf, to:

74t ([M(Pha) + M(p1h) = 0] A [M(p3) + M(pa) = 0])
V([M(pry) + M(ply) = 1] A [v = O] A [M(ps) + M(ps) = 0]);
mra ([M(pha) + M(ply) = 2] Afv > 0])
VM (p3) + M(ps) > 0].
The effect of these new predicates is the following. Whenever place p3 or py are marked,
l.e., whenever there is a part ready to be loaded on machine A, the firing of transition
714 Will remove all tokens from place p), thus cdisabling transitions #;5 and #;;. Hence, the
loading operations on machine B are disabled whenever a loading operation on machine A
is ready to start. As soon as places py and p, are not marked, the firing of transition w},

will put back in place p), as many tokens as it can be done without violating the GMEC.

8 Conclusion

The paper has presented three Petri net structures capable of enforcing generalized mu-

tual exclusion constraints on marked graphs with control safe places and uncontrollable
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transitions. The first one is a monitor-based solution; the second one a supervisory based.
Both structures are fully compiled, i.e., they are given as place/transition nets with no

associated predicates. Two partially compiled supervisors have also been discussed.

The monitor-based structure is conceptually simpler but in the worst case it is requires
a number of monitors that grows exponentially with the number of places in the support
of the constraint weight vector. The supervisory based structures grow linearly with the
number of places in the support of the weight vector, thus always maintaining a compact

control structure.
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Figure 1: Control subnets for places py, pa, ps.
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Figure 2: Example of monitor.
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Figure 3: Example of compiled supervisor.
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Figure 5: A manufacturing system.

py=wait PartA.a
pp=wait PartA.b
py=PartA.a amrived
pg=PartA.b arrived
ps=PartA.a loaded
ps=PartA.b loaded
p7=PartA in buffer
pg=wait PartB.a
po=wait PartB.b
pio=PartB.a arrived
p11=FartB.b arived
pip=PartB.a loaded
pi3=PartB.b loaded
pi14=PartB in buffer

Figure 6: Petri net model of the system in Figure 5 .
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Figure 7: Different control structures for the net in Figure 6: (a) monitor; (b) compiled

supervisor; (c) partially compiled supervisor.
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