314 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 1S, NO. 3. MARCH 1989

Detection of Ada Static Deadlocks Using Petri Net
Invariants

TADAO MURATA, recLrow, ieee, BORIS SHENKER, MEMBER, IEEE, AND SOL M. SHATZ, MEMBER, 1EEE

Abstract— This paper presents a method for detecting deadlocks in
Ada tasking programs using structural and dynamic analysis of Petri
nets. Algorithmic translation of the Ada programs into Petri nets that
preserve control flow and message flow properties is described. Prop-
erties of these Petri nets are discussed, and algorithms are given to
analyze the nets to obtain information abuut static deadlocks that can
occur in the original programs. Petri net invariants are used by the
algorithms to reduce the time and space complexities associated with
dynamic Petri net analysis (i.e., reachability graph generation).

Index Terms—Ada, deadlock, invariants, Peiri net, static analysis,
tasking.

I. INTRODUCTION

NE important contribution of the Ada programming

language is its ability to support concurrent program-
ming. Ada’s tasking and rendezvous-based communica-
tion provide a convenient mechanism for programmers to
implement both concurrent and distributed software. In
this paper, we assume that the reader is familiar with Ada
tasking and the related concepts of Entry call statements
and Accept statements [1], [2].

Over the past few years, a few techniques have been
proposed for use in the validation of Ada tasking pro-
grams. These range from static analysis techniques, which
do not require actual execution of the source program, 10
dynamic analysis techniques. which introduce a special
monitoring task into the program. Taylor [3] has pre-
sented a general static analysis technique for Ada tasking
and has shown that such analysis has an exponential ime
complexity (in terms of the number of tasks). German {4}
has described an approach for detecting deadlocks in Ada
tasking programs using dynamic analysis. Since the ap-
proach uses dynamic analysis, results are dependent on
the supporting environment, especially on the scheduler
characteristics. In this paper, we propose the use of a Petri
net invariant method for detecting deadlocks in Ada task-
ing programs. Our technique reduces to sOmMe extent the
time and space complexities associated with the general
state enumeration method used by Taylor.

Manuscript received November 260 1986, This work was supporied by
the National Scicnce Foundation under Grants ECS83-10719 and ECSSS:
10208.

T. Murata and S. M. Shatz are with the Department of Elecinical En
gincering and Computer Science, Universily of Hiinois, Chicago. 1L 60680

B. Shenker was with the Depariment of Elcctrical Engineenng and
Computer Science, University of Hilinois. Chicago. 1. 60680. He is now
with AT&T Bell Laboratories, Nupervitle 1L

IEEE Log Number 8823773,

Our ’deadlock analysis technique starts with the trans-
lation of Ada tasking programs into Petri net models {5]
and uses structural and dynamic analysis of these specific
Petri nets, which we call Ada nets. Ada nets are abstract
models of the source programs since an Ada net only
models the Ada source program’s control flow and mes-
sage flow. As such, only those Ada statements which can
alter the control flow (such as If, Loop, and Select state-
ments) or which constitute a rendezvous {Entry calls and
Accepts) contribute to the Petri net translation. Further
details on the translation of Ada programs into Ada nets
will be given in Section II.

Unlike the previously reported techniques of Shatz and
Cheng {7], which are concerned with both deadlock and
general tasking analysis, our method is not entirely based
on generation of the complete Ada net reachability graph.
Instead, we have been able to combine the specific prop-
erties of Ada nets with the Petri net concepts of place and
transition invariants in order to reduce the complexity as-
sociated with generating the complete reachability graph.

Since the intuitive concepts and definitions of Petri nets
are well known and space is limited, we will follow the
terminology and notations of Petri nets as defined in [6],
unless otherwise stated. Since the concepts of Petri nct
invariants play a key role in our subsequent discussion,
we bricfly review the definitions related to the invariants.
For a Petri net having # transitions and m places, the in-
cidence matrix is an n X m matrix 4 = [a;] where g;; =
a; —a;, a; = the number of directed arcs from transi-
tion i to place j, and a; = the number of directed arcs
from place j to transition i. An S-invariant (T-invariani)
is defined as an integer solution' y(x) of the homoge-
neous cquation Ay = 0(A'x = 0) where 4 is the nci-
dence matrix of a Petri net. The subset of places (transi-
tions) corresponding to nonzero entries of an m-vecior y
(an n-vector x) is calied the support® and is denoted by
i yi (Ixll) where m is the number of places and n is the
number of transitions in a Petri net. A support is said to
be minimal if no proper nonempty subset of the support
is another support. An S-invariant (T-invariany) whose
support is minimal is called a minimal S-invariant (T-in-
varianiy.

The invariants have the following intuitive meanings.

'All S-invariants (7-invarianis) as used in this paper arc nonncgalive.
*The term “support’ in this paper will also be applicd to the vectons
corresponding to markiags and submarkings of an Ada nct

0098-5589/89/0300-0314501.00 ©.1989 IEEE

MURATA o of DETECTION OF ADA STATIC DEADLOCKS
The firing count vector ¢ of a firing sequence o lcading
from a marking My back to My is a T-invarant x = o =
0. Converscly, given a T-invariant & 2 0. there ¢xist a
marking My and a firing sequence o leading from M, back
to M, such thatx = g, t.e.. the ith entry of x is the number
of times that the ith transition fires in the firing sequence
o.i=1.2.--- .n Onthe other hand. the ith entry of
an S-invariant y is a weight ¥(i) associated with the ith
place. ¢ = 1.2, - .o such that the weighted sum of
tokens remains the samc for all the markings reachable
from an initial marking. There exists a simple algorithm
1o obtain all net invariants {8].

The remainder of this paper is organized as follows.
Section 11 prese nts_an overview.of a technique for.trans-.

ng Ada tasking programs.into. Petri nets. Section 111
presents notations and properties associated with Ada nets.
Section 1V discusses the notion of static deadlocks and
presents algorithms for detecting the two types of static
dendlock: inconsistency deadlocks and circular dead-
locks. Finally, Section V summarizes the main results of
this paper.

11. OVERVIEW OF ADA TRANSITION BY ExAMPLE

Automated translation from Ada programs into Petri net
maodels produbes what we call Ada nets. This transiation
can be considered a pant of the syntactic analysis and in-
termediate code generation phases of an Ada compiler.
Thus, Ada nets would be generated along with the ma-
chine language code. The process of Ada net generation
can be simply described as follows. Whenever the right-
hand side of any Ada syntactic construct is recognized
during parsing, the Ada actions associated with the con-
struct are invoked (along with other code generation ac-
tions of the compiler). These actions generatg a part of
the Ada net, the part that models the given construct.
Control then passes to the syntactic parent of the trans-
{ated construct. The transiation process continues until the
root of the parse tree is reached. At this point. the input
Ada program is either recognized or rejected. If it is rec-
ognized, the Ada net corresponding to the program will
have been successfully constructed. The parts of the net
that are generated are linked together into an Ada net that
preserves the behavior of the input program. Consider the
following fragment from an Ada program’: !

task body TASKI 18
begin
1) while cond! loop

task TASK2 s

0) entry ENTRY2:

2) TASKZ2 ENTRYZ: end TASK2:
3) end loop: task body TASKZ 1s
end TASKI; begin
4) accept ENTRY 2:
end TASKZ:

The Ada translation maps the program fragment into the
Ada subnet illustrated in Fig. 1(a). The dashed places,

.
The statcinent numbers are not a part of the Ads sy atax: they are used
only for ater reference

that e oMo BFFASK] “may exit from tHeAsuspended

31s

(<) ()

Fig. 1. Sicpwise translation of an Ada program into an Ada nct.

transitions, and arcs represent connections to the parts of
the program not shown.

First, we show that the behavior of the program frag-
ment is properly modeled by the subnet. Then, we briefly
discuss the translation process for the example. Place pg
represents a Loop statement. The Entry call statement 2)
is represented by I3, 14, ps. p2. pa, and pg. The Accept
statement 4) is represented by fs, f6. 23, P2, P3s and py.
Places p;, ps, and p, represent the communication channel
of ENTRY2 in TASK2. In general, every entry in any
Ada program is represented by three unique places { Pucp.
Puend» Psck) 10 the corresponding Ada net. Thus, for this
example, the three places for entry CENTRY2' are py,
py. and py, respectively. Place p; is initially marked and
belongs to the set of mutual exclusion places. Such a place
is referred t0 as Ppe,. Execution of statement 2) is repre-
sented by firing transition ;. This firing is possible only
if Pinep O ENTRY2 (place p1) is marked. When ps is not
marked. some Entry call of ENTRY2 must be currently
involved in a rendezvous with an Accept statement of
ENTRY2. When 1, successfully fires, places py and ps
become marked. This submarking of the Ada subnet rep-
resents the situation in which the Entry call [statement 2)]
is trying to initiate a rendezvous with an Accept statement
of ENTRY2. When the Accept staicment [statement 4)]
is ready to rendezvous, /s fires and removes the token from
p1. Note that if there exists more than one Accept state-
ment for ENTRYZ, then p; serves as an input place to
multiple transitions. fThe place p, is referred to as a send-
ing place (pag). Firing 1, represents the control of
TASK?2 exiting the Accept statement. Afier the Accept
statement ends, place p, enables transition /. T‘l}“i*g],mcans:
state (due to the Entry call). Place p, is referred to as an
acknowledging place (p,). When 1, fires, py becomes
marked. This means that no Entry call is now rendez-
vousing with any Accept statement of ENTRYZ.

The details of translation from an Ada program into an

316 IEEE TRANSACTIONS ON SOF IWARI

Ada net are fairly complicated and require syntactic anal-
ysis as well as some semantic analysis (for example, t
distinguish package function calls from task Entry call 5)
The major technique is to generate pieces of the net dur-
ing each production rule reduction during parsing. We
briefly describe the idea in the previous example. Since it
is assumed that Ada task specifications precede task bod-
ies, statement 0) is reduced first. Three communication
places (pa, p3, and py) for ENTRYZ2 in TASK2 are gen-
erated, as illustrated in Fig. 1(b). Statement 2) is reduced
next. It causes 73, 44, and ps 10 be generated and linked
with the communication places of ENTRY?2, as illustrated
in Fig. 1(c). The dashed places and arcs are not yet gen-
erated. The reduction of the Loop statement in TASKI
creates the Ada subnet illustrated in Fig. 1(d). Place p, 1s
substituted for both dashed places in Fig. 1(c). Finall
statement 4) is reduced. Two new transitions, 75 and 7,
are linked to the places p; and pg of ENTRY2. The Ada
subnet for the program fragment is then complete and is
illustrated in Fig. 1(a). A detailed discussion of the gen-
eral Ada transiation technique used here is found in {5].
Another approach to automated translation of Ada tasks
into Petri net equivalent models is discussed in [7].

1I1. PropeERTIES OF ADA NETS

A. Definitions and Characteristics

A sequential program is characterized by only one pro-
ess running at any time. The control flow of a sequential
program can be represented by a state machine, a subclass
of Petri nets where each transition has exactly one input
place and one output place. In a distributed environment,
we usually have more than one process running at a time.
If we disregard all communication between processes,
such a distributed program can be modeled by a set of
state machines, one state machine per process.

Definition: A process-subner is a state machine that
models one of the processes (Ada tasks) in a distributed
environment when communication between processes is
ignored.

Fig. 2(a) 1 Hustrates two separate process-subnets. Note
that each begins with a place and ends with a place.

At translation time, we introduce two transitions into
the Ada net: 1, (par-begin transition) and 7, (par-end tran-
sition) in order to give a cycle in the Petri net graph. These
two transitions are connected through a placé p, {cycle
place). In Fig. 2(b), we have the two process-subnets of
Fig. 2(a) structured as a distributed program with no com-
munication. However, most useful distributed programs
are characterized by some communication between the
processes. In Ada, processes communicate through com-
munication statements (i.e., Accept statements and Entry
call statements). As discussed in Section 11, every com-
munication statement is represented by two transitions and
at least four places. Fig. 2(c) illustrates the distributed
program of Fig. 2(b) with some communication.

A transition that represents a cCommunication statement

ENGINFERING. VOL. 15, NO. &,

MARCH Y89

Fig 2 Process-subnets in a distnbuted environment

is referred 1o as an AE transition (Accept or Entry tran-
sition). Since every communication statement is repre-
sented by exactly two AE transitions in an Ada net, we
will refer 1o one of them as ““first” {e.g., 15 in Fig. 2(c)]
and the other one as “‘last’ [e.g., I in Fig. 2(c)]. based
on the order of their occurrence in a transition firing se-
quence starting with 7, A place in a process-subnet that
is eithen an output place of some first AE transition and/
or an input place of some last AE transition is referred o
as an AE place {e.g., place p; in Fig. 2(c)]. The places
generated by the translation of an entry specification are
referred 10 as conununication places [e.g., p», p3. and p,
in Fig_ 2(¢)]. They are not considered part of any process-
subnet. All noncommunication places are referred to as
sequential places. Any arc connecting an AE transition
and a communication place is referred to as a communi-
A communication arc is not considered part
of any process-subnet. All noncommunication arcs are re-
ferred 10 as sequeniial arcs. Three communication places.
pnkp, Puena~ @nd P (pa. p3. and pyg in Fig. 2(c), respec-
tively), are required for token (information) exchange be-
tween (wo or more process-subnets. The places may be
thought of as ¢ co:muumcalion channel between potential
“senders” * The mutual exdusxon place
Pucp guarantees that only one prdcess subner ma :
_token atany time o the receiving p y net. No other
process-subnet will send a token to that receiver until the
current sender is acknowledged by puc.

Definition: A netis sirongly connected iff there is a di-
rected path from any place and transition to any other
place and transition.

Definition: An Ada net is 2 strongly connected Petri net
APN composed of process-subnets possibly intercon-
nected with communication arcs and places. The strong
connectiveness of APN is provided by p, (cycle place), 4

carion arc.

and “Trecervers.

MURATA ¢f al.: DETECTION OF ADA STATIC DEADLOCKS

(par-begin transition), and ¢, (par-end transition), as in

Fig. 2(c).
We can easily observe the following important charac-

teristics of any Ada net.

1) |-6,| = |1 -] = 1 {p serves as both the only input
and the only output place of 7, ‘and 1, respectively).“
lt; -1 = |- 1| = k where k is the number of process-

subnets in APN (since f, concurrently enables all the pro-
cess-subnets and ¢, synchronizes their terminations).
2) For the three communication places representing an

entry E (channel) we have | - prep| = | Psenal = | Paac
= | Paep| = Cg,» (Cg is the number of Entry calis of E).
| Peena] = | * Pack| = Ag where Ag is the number of Accept

statements of E. Let t,; and 7, be the first and last transi-

. tions, respectively, representing an Accept statement of

S ——

E. Let 1, be any of the transitions representing the Entry
calls of E. Then, | -1} = |1;| =] 1] = {ta] = 2 and
lta'fi =]'Iali =1

3) For any other transition ¢ not discussed above, | - 7]

B. Dynamic and Structural Properties of Ada Nets

The initial marking M, for an Ada net reprgsents the
situation in which a program modeled by the net is ready
to start executing. The marking M, consists of places p,
and every P, initially marked with one token. No other
places have tokens initially. M, for the Petri net in Fig.
2(©)is(1 100000000 0).

1 2 3 4 5
s rf-1t o 0o 0 1
211 0 0 0 0

31 0 0 0o 0 -1

- 41 0 0 0 0 0
A4=51 0 -1 1 0 0

6f 0 1 0 -1 .0

710 0 -1 0 0

81 0 10

9 0 0 0

Theorem 1: An Ada net APN <P, T >7 is safe for
My, 1.e., M(p) =< 1 for each place p in P and for any
marking M reachable from the initial marking .

Proof: Consider first an Ada net APN <P, T>
consisting of n process-subnets with no communication
involved. Since each process-subnet is a state machine,
the sequential places of each process-subnet together with
the cycle place p, constitute the support of an S-invariant

*Here, - ¢ (1) denotes the set of input (output) places of transition 1,
zmci *p { p) denotes the set of input {output) transitions of placc p.
“Here P(T) is the set of APN places (transitions).

317

having exactly one token. There are n such S-invariants,
and each place p in P belongs to one of these n S-invariant
supports. Since the token content of each S-invariant sup-
port remains the same and is one for any marking M
reachable from My, we have M(p) = | for each place p
in P and for any marking M reachable from M,. Next,
when there are communications between process-subnets
of APN, by the construction of an Ada net, there are
S-invariants whose supports consist of communication
places (Prmeps> Prends Pack) and some sequential places. Each
of the supports of these S-invariants contains exactly one
token (initially in pnc,). Thus, every place p in Pisin
the support of at least one S-invariant having one token.
Therefore, M(p) =< 1 for each p in APN and for any
marking M reachable from M,. Thus, APN is safe for
M. Q.E.D.

Theorem 2: An Ada net APN < P, 7 > is conserva-
tive, i.e., there exists an m-vector y such that the weighted
sum of tokens y * M (the inner product of y and M),
where y(p) > 0 for each p in P, remains the same for
each marking M reachable from M.

Proof: Since each place in APN is in the support of

at least one S-invariant, it is obvious thaty * M = y * M,
= a constant for any marking M reachable from M, where
y is the sum of all minimal S-invariant vectors in APN
and y(p) > O for each p in P. Therefore, APN is a con-
servative Petri net. Q.E.D.

Example: The incidence matrix of the Petri net shown
in Fig. 2(c) is given by

6 7 8 9 10 I
o 0 0 1 0 O
0 0 -1 0 0 -1
i 0 0 0 0 O

-1 0 1t 0 0 0

-1 1 0 0 0 0
I -1 0 0 0 O
0o 0 0 -1 1 0
0 0 0 0 -1
0 0 0 -1 0 1]

Each place in the net shown in Fig. 2{c) is covered by one
of the following three S-invariants:

yw=[10001 11100 0],
y»=[0 11100000 1 0],
yy=[1 0000000 1 1 1]

Since the support of each of them contains exactly one
token, we have, for each p, M(p) =< 1 for any marking
M reachable from M, and y * M = y * M, = 3 where y

=y +y+y

1V. DeTecTioN OF STATIC DEADLOCKS IN ADA
ProGrAMS

We now define static deadlocks and discuss algori% ms
for their automatic detection. The method for Ada dead-
lock analysis consists of the following basic steps (586
Fig. 3):

1) translation of an Ada program into an Ada net, as
discussed euarler,

2) detection and removal of a class of deadlocks called
inconsisiency deadlocks, and

3} finally, detection of a class of deadlocks caliedrc_:_ij;
cular deadlock

A Sratic Deadlacks

There is no commonly accepted definition of a static
deadlock in a distributed programming environment. Tra-
ditional deadlock detection techniques (reachability tree
or state graph analysis), using exhaustive search, label
every potentially reachable deadlock as a “'static dead-
lock.”” However, such techniques can generate some ex-
tra information. For example, a variable index loop con-
taining communication stalements always creates a
potentially rcachable deadlock. Since the number of times
the loop executes is determined at execution time, any
number of loop iterations is assumed possible in this pa-
per. Therefore, here we do not consider such a deadlock
to be a static deadlock. Since Ada nets do not distinguish
between loops with variable and constant indexes, poten-
tially reachable deadlocks caused by Loop statements
would not be reported by our static deadlock detection
system. We would report any other deadlocks that can be
predicted by static analysis of a program’s source code.
In the following sections, we define two classes of static
deadlocks: inconsistency deadlocks and circular dead-
locks. We consider SD = ID U CD where SD is the set
of all static deadlocks for a program and ID and CD are
the sets of all inconsistency and circular deadlocks. re-
spectively, for the program.

B. lnconsisiency Deadlocks

Some potentially reachable Adu program static dead-
locks can be easily detected using only struuura analysis
of Ada nets. We call these deadlocks inconsistency dead-
locks. In this section. we present an algorithm to detect
such deadiocks.

An Ada program is called staric execuiable when its
corresponding Ada net has f, (par-end transition) poten-
tially enabled for M,. We will refer 10 a set of linearly
independent T-invariaats x of an Ada net, such that x ()
= 0 for each 7 in the net and x(1,) = x(7,) = | where
is the par-begin transition and 1, is the par-end transition,
as a set of Ada T-invarianis of the net.

Since there is always an Ada T-invariant in an Ada net
corresponding to a static execution path of the Ada pro-
gram, it can be scen that the following hoids.

Theorem 3: A necessary condition for an Ada program
Ap 1o be static executable is that its corresponding Ada
net APN < P, T > has at least one Ada T-invariant.

By Theorem 3, if an Ada net APN < P, T > modeling

ST U S
{ surce Ada Progrﬂ U, 7
- B

T Does User removes
/ tne Program have YES the detected
< inconsistency Deadlocks? e Deadiocks
~ 7
—
!
i NO
7 Does User removes
" ine Program Have YES the detected
\ Porentially Reachable Deadiocks
~Lircular Dead 0Tk

S SR

f Ada Program
\ Free of Sialic Deadiocks

Fig 3. Overview of the static deadlock detection method.

an Ada program Ap does not have an Ada T-invanant,
then Ap is not static executable. Moreover, if some tran
sition does not belong 10 the support of the linear com-
bination of all Ada T-invariants of APN, then the state-
ment of Ap represented by the transition does not belong
10 any successful exccution path. Such a situatgp iodi-
Ciﬁii.in‘“ AB ha e stati adlock, caused by
a"Comimunication statement (or a group of communication
staternents). For example, consider the following pro-
gram fragment:

TASKI

TASK2.ENTRY?Z;
TASKZ2.ENTRY

TASK2Z:

if condl then accept ENTRY?Z
else accept ENTRY I

The net corresponding to this Ada program would not have
Ada T-invariants. Thus, the program is not static execut-
able (it has 2 static deadlock). as can easily be checked.

Note that removal of some communication statements
{e “TASK2.ENTRY!" and ‘‘accept ENTRY1)
could make the fragment static executable since then every

statement in the modified program would belong to at least
one static exccution path. Then, the support of a linear
combination v of all Ada T-invariants of the Ada net (for
modified program) would cover every transition in the
net. Since the detection of these deadlocks depends on @
test for T-invariants, we refer (o them as inco;zs{;{mﬁ,
deudlogks. Now, we present an a lggrithm that detects -

consistency deadlocks in an Ada program Ap (with its
corr@mondmo Ada net APN) and repops the minimal
number of communication statements that need 10 bere-

.
ihe

(S 41w

moved in order to remove the deadlock potential. This
information is useful to the programmer in determining
the actual causes of the deadlocks.

Algorithm INCONSISTENCY DETECT
H Input

A—the incidence matrix of an Ada net APN;
4—the number of communication statement(s in the
Ada program Ap,

%

—
Nnd «

At

MURATA ¢ al.: DETECTION OF ADA STATIC DEADLOCKS 319

S—the set of all possible subsets of communication
statements of Ap.

Qutput:
The set of communication statements of Ap *‘caus-
ing’' inconsistency deadlocks in Ap.

Method:

1) loopl: Fori = Otokdo

2) loop2: For each element 5 of S such that Is| =
ido

3) A= A,

4) Update A’ to reflect the removal of all
communication arcs associated with
communication statements in 5]

For any entry, if the three columns of

A" corresponding 1O Pmeps Psends AN Pack

each have all zero entries then remove

the three columns from A

(* some communication channels be-

come disconnecied ¥}

Else if not every column of A" has both

positive and negative entries then return

to step 2);

(* some communication channels have
lost all their Accepts or Entry calls
{but not both) *)

5) Find the support x'§ of any linear
combination of Ada T-invariants of the
Petri net APN' corresponding to 4

6) If every transition of APN’ belongs to
flx* 1|, then report s to the user and exit
the algorithm;

(* Here. s is the subnet of communica-
tion statements causing the inconsis-
tency deadlock. *)

end loop2;
. end loopl;
As an example, consider a modified version of the clas- Fig 4 Ada net for a producer-consumer program with inconsistency
sical consumer—producer problem: deadlock.
task body Producer is task body Buffer s task body Consumer is
begin begin begin
while condl loop while cond2 loop while cond3 loop
Buffer.produce: select Buffer.consume;
Buffer.msg_send; when end loop;
accept msg_ack: buffer not full = > end; -
accept msg_ack;
end loop: accept produce;
end; Producer.msg_ack;
accept msg_send:
or
when
buffer not empty = >
accept consume;
end select;
end loop; ,
end; f

Note that after Producer supplies an item to Buffer, both whenever Producer sends’ an item to Buffer, the program
tasks intend to exchange messages (msg_send and deadlocks.

msg_ack). Unfortunately, the programmer made a mis- The Ada net for the program is shown in Fig. 4. The
take in coding this exchange. The result is such that first iteration of loop! in the algorithm INCONSISTEN-

CY_DETECT reveals two Ada T-invariants:
xo={1 1
and

n={ 1t 1 11

ing the sccond eration of loopl (with Is
trying to remove the deadlock. After we remove the com-
munication arcs associated with the Producer’s first Ac-
cept statement, the algonthm reports three Ada T-invari-

Xy + xy, the program has sn inconsistency d
!). we are

0000000O0O0O0O0O0O0O0OO0O0O00O0)

1110000000 0).

gram free of inconsistency deadlocks) due to a set of com-
munication statements, each in a separate task, mutually
suspending each other and, thus, also the control flows of
their respective tasks.

A typical example of a circular deadlock is the deadlock
that can occur in the classical dining philosophers prob-

ants: fem. The circular deadlock occurs after each philosopher
.n:{l100000(}00000000000000).
.1'3:(5111lOOOOOOlliOOOGOOOO).
and
x‘:{xxUOliliithOllllili}i}.
Leta’ = x, + 1 + xy Now, [v [includes every tran- has picked up his left fork, but no philosopher has picked
sition of the net. Therefore. the Accept statement is re- up his right fork.
ported as a “cause’ of the mconsistency deadlock. Pre- An Ada net dicircuit (directed circuit or closed directed
sumably, the programmer would then update the program path), which represents a circular deadlock, is referred 10
by removing the extra Accept stutement. The updated ver- as a C-type dicircui (dicircuit of circular type). For ex-
sion is as follows: ample, the only circular deadlock for the program of Fig.
task body Producer iy task body Bufferis task body Consumer is
begin begin begin
while cond! toop while cond2 loop while cond3 loop
Buffer produce: select Buffer.consume;
Buffer msy_send: when end loop:
accept ming ucks buffer not full = > end:

end foop:

accept produce:
Producer.msg_ack:

accept msg_send:

butfer not empty = >
aceept consume.

end;
or
when
end select
end loop:
end;
The reader may note that iy now version stifl suffers from

4 deadlock. This deadlock. however, I 0L 4n INCORSIS-
tency deadlock; it is a circular deadlock and will be treated
in the next section. The Adu net for the above program is
tustrated in Fig. 5.

C. Circudar Deadlocks

Even if an Adu program i free of inconsistency dead-
locks, some statements may not belong 10 any stalic ex-
ccution path of the progrum. In this section, we discuss
potentially reachable static deadlocks in Ada programs
free of inconsistency deadlocks.

Definition: A circdar deadlock is « deadlock {in a pro-

5 is represented by the C-type dicircuit (1,5, fig. 20, fy.
fi. 1h1). A C-type dicircuit possesses the following prop-
erties.

1) The dicircuit is composed of directed paths in pro-
cess-subnets (segments), which start and end with com-
munication transitions (e.g., {15, 119, f20] and {19, D10, T]
in Fig. 6). The starting 1ransition of such a segment is
referred 1o as a ready transition. and the ending transition
is a last-executable rransition. The last-executable tran-
sition of one scgment is connected to the ready transition
of another segment through a communication place {e.g..
in Fig. 5, last-executable {ransitions fyy and f;; arc at-
tached to ready transitions fg and 7y, respectively). Thus.

MURATA et al.: DETECTION OF ADA STATIC DEADLOCKS

Fig. 5 Ada net for the producer-consumer prograim with NO INCONSISICNCy

deadlocks.
e -7
s ———
. Py .
1 -
AN o
I
=

Fig. 6. Loop transformation.

a C-type dicircuit has a set of ready transitions and a set
of last-executable transitions.
.-2) A set of communication places representing at least
two Ada entries belongs to the C-type dicircuit (e.g.. Pio
represents entry msg_ack and p; represents entry
msg_send in Fig. 5). Otherwise, the dicircuit is called a
single-entry dicircuit and is not a C-type dicircuit.

3) If more than one segment of a process-subnet be-

321

longs to the same dicircuit, such a dicircuit is called a
multi-sequential-part dicircuit and is not considcred a
C-type dicircuit. It is easy to show that such a dicircuit
does not represent any circular deadlock. For if it did,
then in order to *‘enable such a dicircuit,”” we would need
1o have a marking which would enable all the ready tran-
sitions of the dicircuit. Since one of the process-subnets
has more than one ready transition, reachability of such a
marking would contradict the safeness of Ada nets (Theo-
rem 1).

Theorem 4: A sufficient condition for an Ada nct to
have a C-type dicircuit is that there be a minimal S-in-
variant y such that the places of its support Il yll have no
tokens at M, and do not form either a single-entry or multi-
sequential-part dicircuit.

Proof: 1f the support || yll does not have any tokens
at M,. then the number of tokens in Il yll is O for any
marking reachable from Mg [6]. If the places of Il yil do
not form either a single-entry or a multi-sequential-part
dicircuit, then the places in | yll form a C-type
dicircuit. Q.E.D.

The condition of Theorem 4 can be used to detect every
circular deadlock in a program that has only one Entry
call and one Accept statement per entry. The example of
Fig. 5 shows an Ada nct for which the reporting of
S-invariants provides complete information about its C-
type dicircuits.

Finding circular deadlocks in general is a more com-
plicated task. We detect C-type dicircuits by isolating
them from any other possible dicircuits. The algorithm
CIRCULAR_DETECT iteratively removes vertices (tran-
sitions or places) which are not pant of any C-type dicir-
cuit. To do so. the algorithm first removes the dicircuits
representing iterative statements, such as Loop state-
ments. The procedure for that is illustrated in Fig. 6. We
remove a dicircuit representing a Loop statement by re-
placing place p; (representing the Loop statement) with
two places p; and p,,, as shown in Fig. 6. Since no ini-
tially marked places can be part of any C-type dicircuit,
these places are removed. As a result, some transitions
can then be removed, and this in turn leads to the removal
of more places and transitions. We keep removing such
vertices until every vertex belongs to at least one dicir-
cuit. Finally, all single-entry and multi-sequential-part di-
circuits are eliminated, leaving only the C-type dicircuits.

Now, we are ready to present the algorithm CIRCU-
LAR_DETECT, which finds and reports all circular dead-
locks in an Ada program.

Algorithm CIRCULAR_DETECT
‘ Input:
A—the incidence matrix of an Ada net APN.
Output:
The set of minimal supports of submarkings en-
abling all C-type dicircuits in APN. Communica-
tion places are not included in the supports.
Method:

1) Disconnect the dicircuits representing Loop
statements.

2) Remove all initially marked places from the in-
cidence matrix A. The result is a new incidence
matrix A for some ncw Ada net APN'. Perfonn
procedure PRUNE_TREE.

3) Perform procedure ALL_IN_DICIRCUITS.

4) Trace all the dicircuits in A and place them into
a set C. Remove al} single-entry and multi-se-
quential-part dicircuits from C. For each dicir-
cuit in C, find the support of the minimal sub-
marking enabling the dicircuit and place it into

L a sct R (if it is not already there).

Procedure PRUNE_TREE
(* The following procedure makes a Petri net con-
nected *)
Repeat the following step until every place and tran-
sition of APN’ has at lcast one input and at least one
output arc.
If any place or transition of APN" has no input or
output arcs, then remove it from APN' The new
- incidence matrix of APN is sull denoted by 4"
Procedure ALL_IN DICIRCUITS
(* The following procedure mukes a Petri net strongly
connected *)

1) If APN’ has n transtions and m places, then
Create an (m 4+ oy X (o + o) matrix L for all
vertices of APN'. Iniually. L has all entnes set
10 Q. If there exists an arc from a transition f 10
a placc p in APN'. then set L{t. p)to L. By
symmetry, an arc from a place p 1o 2 transition
¢ in APN' implics that we set L(p. 1) 10 L.

For cach entry of L. perform Dijkstra’s shortest-
path algorithm o derive 4 new matnx L {9].
For all vertices ¢ (places and transitions), if
there is no veriex ¢, such that L{v, v > 0 and
L{v, ¢,) > 0 and APN’ has more than four
transitions and four plac then ,
from A’ (from APN'), perform procedure
PRUNE TREE. and go to step D) of this pro-
: cedure,

j) Return the resultng

oA TN

o
>
e

[SN remove o

SpTp— S

Ada net APN'.

A detailed stepwise discussion and analysts of the al-
gorithm can be found in [5]. The following examples il-
lustrate the algorithm CIRCULAR_DETECT.

Consider the Ada net tHustrated in Fig. 5. Step 1) dis-
connects Loop statements reprosented by places pos. Pre-
and pyy. Step 2) removes all onginal places and transitions
of the net, except for the ones with thickly drawn arcs {in
Fig. 5) as their inputs and vutputs. Siep 3) has no effect
in this example since every place (transition) left has at
fcast one input and at least one output thickly drawn arc.
Step 4) traces the only C-1ype dcrreutt of the net: (1.

I1gy Ta. Ty, T1o. £11). When the algorithm terminates. set R
has only one element, the set { pyg and P } (representing
the communication statements that would block if the
deadlock were reached).
As another example, consider the following static-
deadlock-free Ada fragment Ap:
TASKI: TASK2: TASKY:
TASK2 ENTRY2!
accept ENTRY 1

TASK3 ENTRY31
accept ENTRY21
TASK3 ENTRY3!

accept ENTRY 3!
TASKI.ENTRYI
accept ENTRY3!

Fig. 7(a) illustrates the Ada net APN corresponding to
Ap. After performing steps 1), 2), and 3) of CIRCU-
LAR_DETECT, we obiain the Ada net APN’ shown in
Fig. 7(b). Note that the dashed places are not a part of the
output of step 3); they are used in step 4) to find the ready
submarkings of all C-type dicircuits of the Ada subnet in
Fig. 7(b). The clements of set C are as follows.

Single-Entry Dicircuits:

(1y, f9, Nig. T11s F17. 1yg)s
{13, 19, Tig. Iyy- G135 Gias fysa Dhes Ty Lig),
(g, 9. Loe Trns Dias Ta)

Mulii-Sequential-Part Dicircuit:

(T Tae Dise 50 Ter Ty 117 ig Tas fo5 Tios T).
The Only C-Type Dicireuit ¢

(11, 117, 115 18 Ig, 1. 155 15, :'(,).

The C-type dicircuit ¢ is illustrated in Fig. 7(c) along
with the minimal support of the submarking (dashed cir-
cles { pis. pys. and pae }) which would enable ¢'. From
this example. we can sce that not every circular deadlock
is of interest 1o a programmer. Only the ones that are ac-
wally reachable by static execution paths should be de-
tected and reported. Such circular deadlocks are referred
10 as potentially reachable circular deadlocks. Structural
analysis (using structural restrictions and Petri nct in-
variants) is necessary, but not sutficient for detecting po-
tentially reachable circular deadlocks. Dynamic (rcacha-
bility tree) analysis must be used 100. The algorithm CIR-
CULAR_REACHABLE. presented next, reponts only the
potentially reachable C-type dicircuits of an Ada no?

Algorithm CIRCULAR REACHABLE
Input:)

An Adu program Ap and its corresponding Ada net
APN;

X—the set of Ada T-invariants of APN:

R—the set of the minimal supports of submarkings
enabling the C-type dicircuits of APN (the out-
put of CIRCULAR_DETECT).

Qutput:
R'—the set of the minimal supports of reuchable

'

MURATA er al:

DETECTION OF ADA STATIC DEADLOCKS

| z
Qa , OP,
[7 (gp
1 i) 1
H
§: 1y _L t,
s i
i () o S
PSQ
Fos
! 10
[N
. ,—.J

Fig. 7. Example for the algorithm CIRCULAR_DETECT.

submarkings enabling the C-type dicircuits of
APN.

Method:

i

(* T-invariant-directed Reachability Graph Gener-
ation *)

deadlock free and exit.

1) LOOPIL:

For each x in X perform

(* Select T-invariant as a firing count

vector *)

3
§
\ 0) If R is empty, then report that Ap is circular

@

2) LOOPZ: cheat
(* Perform
Graph Generation ¥)

then do

Ap 15 found; *)

M::MD.X'::x;R':

if STACK is empty then exit LOOPZ;

323

selective Reachability
If no ¢; with x'(5;) > 0 is enabled at M

(* if x* = 0 then static execution path in

retrieve the last saved marking of APN,
firing count vector, and transition in
conflict, and store them into M, x’, and
1;. respectively:
end do;
Else if more than one transition 1s enabled
at M then do
assign one of those transitions o 1;; for
every other transiion in confiict
push current values of M and x” onto
STACK;
end do;

0001001 01

M= {0 1

0010

Else assign the enabled transition of APN
1o 1y
Fire transition /, 10 get a new marking M,
Letx'(f) = x' {5}y = L;
[f the current M was considered before then
do
if STACK s empty then exit LOOPZ;
retrieve the lust saved marking of APN,
firing count vector, and tramsition in
conflict, and store them into M, x’, and
1, respectively;
end do:
Else if any of the elements of R is a subset
: of the support of ¥
: and the element does not belong to R’
: then add the element to R;
END LOOPZ;
END LOOPI:

[N_—

An Ada program that is free of inconsistency deadlocks
and free of potentially reachuble circular deadlocks is re-
terred 1o us a static-deadlock-free program. Even though
the program corresponding (o the net in Fig. 7(a) has a
circular deadlock, it is a static-deadlock-free program
since the circular deadlock reported by the algorithm CIR-
CULAR DETECT is not reachable (as would be reported
bv the algorthm CIRCULAR REACHABLE).

The aluorithm CIRCULAR_REACHABLE is more ef-
ficient than “*blind"” tracing of the Petri net’s reachability
graph. CIRCULAR_REACHABLE uses the knowledge
of the Petri net’s Ada T-invariants in order 1o requce the
time comnplexity of Petrl net dynamic (reachability) anal-
ysis. As an example, consider the Ada net illustrated in
Fig. 5. As noted carlier, the Ada net is free of inconsis-
tency deadiocks and has three Ada T-invariants:

I

X
o=

and

G 00000 1 11

F-invariant x, indicates that the program may terminate
(i.e., the Petri net may cycle) without any communication
between the tasks Producer, Buffer, and Consumer. Ada
T-invariants x, and x; correspond to the nets shown in Fig.
8(a) and (b), respectively. Generating the reachability
graph for the net in Fig. 5 using x, or x; as a guiding firing
count vector does not lead to a marking whose support
would include both p.g and pyy, the places previously
identified by the algonthm CIRCULAR_DETECT. On
the other hand, when the algorithm generates the reach-
ability graph using x; as the guiding firing count vector,
we eventually reach marking

00001 0000O0O0COT1 0 0).

Since M’'s support includes both pyg and D, CIRCU-
LAR_REACHABLE reports the potentially reachable
C-type dicircuit. Presumably, the user would then elimi-
nate this deadlock by interchanging the order of the state-
ments ‘‘Producer.msg_ack’” and “‘accept msg_send”’ in
the task Buffer. If we were to use ‘*blind”’ reachability
graph analysis for the Ada net in Fig. 5, then we would
generate a reachability graph of 82 vertices. In contrast,
our algorithm generates a 2-node reachability graph when
using x, as the guiding T-invariant, a 19-node graph when
using x, as the guiding 7-invariant, and a 16-node graph
when using x5 as the guiding T-invariant. Thus, the static
deadlock detection system is more time and space efficient
than unrestricted reachability graph analysis. In fact, for
an Ada program Ap modeled by an Ada net APN, the
more linearly independent Ada 7-invariants APN has, the
more efficient the analysis of APN by CIRCU-
LAR_REACHABLE. The number of T-invaric
depends on the number of conflict staf ément:

The analysis can also be considered to be modular since
a user interested in some particular statements may not
have to deal with the whole reachability graph of the Ada
net modeling his system. Only the Ada T-invariants whose
supports include the transitions which represent the state-
ments of interest need to be used in the algorithm CIR-
CULAR REACHABLE.

V. SUMMARY

In this paper, we have described a static deadlock de-
tection method for Ada tasking programs. First, an Ada
program is translated into a Petri net, called an Ada net,
which properly models the communication patterns and
control flow of the source program. Then, the Ada net is

IOUOOOOOOOOOOOOOOOO).

00000 0),

100 1 1 1 1111

ants of APN
le confli nts (If, Select,
“and Case) that have nested communication statements.

MURATA ¢ al.- DETECTION OF ADA STATIC DEADLOCKS

.

(b)

Fig 8. Ada net determined by the Ada 7-invariants.

analyzed for the existence of static deadlocks based on
structural analysis (using T-invariants, S-invariants. and
structural restrictions) and dynamic analysis (using the
reachability graph). The overall structure of the proposed

method (system) is illustrated by the flowchart in Fig. 3.
Here, static deadlocks are considered cither inconsisiency
or circular deadlocks. Algorithms for the detection of both
classes were presented and illustrated by examples. Due
to the use of both structural and dynamic Petri net tech-
niques, our static deadlock detection method is relatively
time (space) cfficient and can support modular analysis of
Ada tasks.

REFERENCES

1] 1. C. Pyle. The Ada Programming Langhage. Englewood Cliffs, Ni:
Prentice-Hall, 1981,

2] N. Gehani, An Advanced Iniroduction Including Reference Manual
for the Ada Programming Language. Englewood Cliffs. NIt Pren-
tice-Hall, 1984.

{3] R. Taylor. A general purpose algorithm for analyzing concurrent

programs,”” Commun. ACM. vol. 26, no. 5. pp. 362-376, May 1983.

S. German, **Monitoring for deadlocks and blocking in Ada task-

ing..” IEEE Trans. Software Eng.. vol. SE-10. Nov. 1984,

B. Shenker, “"Using Petri nats for automated detection of siatic dead-

locks in Ada programs.”” Master’s thesis. Dep. Elec Eng. Comput.

Sci., Univ. llinois. Chicugo. IL. Sept. 1985,

T. Murata. “Modcling and analysis of concurrent systems.’” in

Handbook of Software Engineering. C. R. Vick and C. V. Rama-

moorthy, Eds. New York: Van Nostrand Reinhoid. 1983, ch. 3.

S. M. Shatz and W, K. Cheng, A Petri net framework for automated

static analysis of Ada tasking behavior,” J. Sysi. Sofrware, vol. 8,

pp. 343-359. Dec. 1988,

7. Martinez and M. Siiva. A simple and fast aigorithm 1o obtain all

invariants of a generalized Peint net.” in Application and Theory of

Petri Nets (Informatik-Fachberichie 52). New York: Springer-Ver-

lag, 1982, pp. 301-310.

E. Horowilz and S. Sahni. Fundamentals of Data Siruciures. Po-

1omac, MD: Computer Science Press, 1977,

R. Taylor and T. Standish, “*Steps i0 an advanced Ada programming

environment,” JEEE Trans. Software Eng.. vol. SE-11, Mar. 1985.

D. Mandrioli. R. Zicari. C. Ghezzi, and F. Tisato. " Modeling the

Ada task system by Pciri nets, 10, no. 1. pp-

43-61, 1985.

Compui. Lang. . vol

Tadao Murata $62-M 06-SM T7-F'85) re-
ceived the M.S. and Ph.D. degrees in electrical
cngineering from the University of fHinois, Ur-
hanu.

e i prosently a Profeaor of Bl

incal Engi-
niversity
leaves of

~ Durning occusona?
ahsence from the University of Hhnois, he has
taught at the University of California, Berkeley.
and Tokai University. Tokvo. Japan, and was in-
vited 1o visit Petri’s Iastitne ot GMD mbH in
Germany and several other rescarch astitutes and vniversiies in Europe.
His current rescarch interests include apphications and theory of Petri nets,
concurrent computer systems, and data flow and paratic] compuiations. in
thesc arcas he has published extensively and been awarded several National
Scicnce Foundation rescarch grants since 1975, Pring 1o that he worked in
the area of circuits. systems. and apphed gruph theory

Dr. Murata has served on the U.S. National Acudemy of Scicaces Com-
puter Science and Technology Board pancls. He is an Editor of the 1EEE
TRANSACTIONS ON SOFTWARE ENGINEERING and served as the General
Chairman of the Intcrnational Workshop on Petri Nets and Performance
Models. held August 24-26, 1987, He is a member of the Association for
Computing Machinery., EATCS. 1ECE. and the Information Processing
Society of Japan. He is listed in Who s Who in Engineering and Whe's Who
in America.

