AN APPLICATION OF PETRI NET REDUCTION FOR ADA TASKING
DEADLOCK ANALYSIS

S. M. ShatzSenior Member, IEEES. Tu,Member, IEEE
T. Murata,Fellow, IEEE and S. Duri

Concurrent Software Systems Laboratory
Department of Electrical Engineering and Computer Science
University of lllinois at Chicago
Chicago, lllinois 60607

ABSTRACT

As part of our continuing research on using Petri nets to support automated analysis
of Ada taskingbehavior,we haveinvestigatedhe applicationof Petri net reductionfor deadlock
analysis. Although reachabilityanalysisis an important methodto detectdeadlocksi,it is in
general inefficient oevenintractable. Net reductioncan aid the analysisby reducingthe size of
the net while preservingrelevantproperties We introducea numberof reductionrules and show
how theycanbe appliedto Ada nets, which are automaticallygeneratedPetri net modelsof Ada
tasking. We define a reductionprocessanda methodby which a useful descriptionof a detected
deadlock state can be obtained from the reduced net's information. A reduction tool and
experimental results from applying the reduction process are discussed.

1. INTRODUCTION

One major difficulty that faces developers of concurrent and distributed sofsvanalysisfor concurrency-
based faults like deadlocks. Techniquessioach analysisare generallylimited in their applicability dueto the high
complexity of mostinterestinganalysisproblems.For example,Reif and Smolka[1] prove someundecidableand
NP-completenesgesults for reachability problemsof various modelsof communicatingprocessesRauchleand
Toueg [2] provide a PSPACE-hardness result for deadletéctionin a boundedcommunicationchannelmodel for
communicating finite state machines. With regards to concurrency analysis for inastden Ada tasking, Taylor
[3] proved NP-Completeness results related to the classical (static) deadlock detection problem.

This work was supported in part by the Office of Naval Research (ONR) under grant
number NO00014-90-J-1446 and the National Science Foundation (NSF) under grant
numbers CCR-8913580 and CCR-9321743.

An earlier version of this paper has been published in the Proceedings of the 10th
International Conference on Distributed Computing Systems.

1

Despitethe difficulty of the concurrencyanalysisproblem,a numberof techniqueshave beenproposed,
especiallyfor static analysisof Adatasking[4-16]. We previouslydefineda Petri net frameworkfor this type of
analysis [6] and developed a toolkit that supports this approach [10]. The architecture of the toolkEGBi&d
is shown in Fig. 1.1. The FETS (Front-End Translator Subsystem) translates AdacsollecT asking Language
(ATL) design descriptions [10] into Petri net format, i.e., a set of appropriateedplacenodes transition nodes
and arcs. We referto the resulting Petri net as an (original) Ada net. Thesenetsare suitableonly for analysisof
programscomposecf a static set of tasks. The BIDS (Back-endInformation Display Subsystem)is definedto
receive users' queries and present tasking analysis resultsobezedlysisof the Ada net [11]. BIDS usesdifferent
supporttools to carry out the desiredanalysis.For example,deadlockdetectionusing the methoddescribedin [9]
would invoke the tool to calculatenet invariants.For the approachthat is the subjectof this paper,BIDS first
invokes the net reduction tool and then uses a reachability graph generator tool. Unlitajpuamalysismethods,
which ignore all variables,our approachcan model booleanvariables,which can increasethe accuracyof the
analysis.Generalimplications of using static analysisare discusseclsewherg4,10]. A few other Petri net-based
tools aimed at Ada analysis have be@eaposedjncluding one developedby the SoftwareProductivity Consortium
(SPC); a primary concern of that work is performance modeling [12].

Taylor's "concurrencyhistory” method[4] was one of the earliestAda tasking analysismethods. As
discussed in [6], his definition of a concurrency graph is very similar to a classical reacigagghyor a Petri net.
The goal of Taylor'paperwasto proposea systematiamethodfor generatinga program'sconcurrencyhistory for
"general analysis"; it was not concerngith methodsfor improving analysiseffectivenesgor any specific type of
analysis (like deadlock,our concernhere). Yet, Taylor's work also simplifies the model by focusing on
synchronizationand concurrencyissues. Long and Clarke [5] introduced a "task interaction graph" (TIG)
representation focreatingconcurrencygraphsthat are smallerthan thosecreatedby Taylor's method. We provide
some experimentally based comparison of TIG-based results to our reduction-based results in SEutigod.of
the TIG work is similar to ours, although we feel that our method has an advantage of being based on a model that |
both theoretically mature (and continues to be widely and actively studied) and is suppartady availabletools.
Also, our approaclis distinguishedby the methodologyof first deriving a semanticallyrich modelindependenbf
any specificanalysisissue,andthen manipulatingthis model with algorithmsthat are designedfor the specific
analysisissue of concern.Recently, Dwyer, et al. presenteca compactPetri net representatiorfor concurrent
programs that is based on the TIG model [17]. Standard deadlock pregestinget reductiontechniquescannotbe
appliedto thesenets, but some forms of deadlockpreservingreductionsthat are applicableto these nets are
suggested.

Some analysis methods that harewn particularpromisein handlingreasonablyiarge examplesinclude
those that use binamgjecisiondiagrams(BDDs) to represensymbolically a statespace[18,19], andthosethat use
some special Petri net conceptssuch as stubbornsets of Petri net transitions[20], partial ordersof Petri net
transitions [21], and net symmetry [22]. Some BDD-methods have been very successfully applied to hardware syster
analysis,but it is not yet clear how directly suitablethe methodis for concurrentsoftware analysis. The other
methods mentioned are well defined for Petri nets, but do not exploit any particular type of concauemay that
defined by Ada's tasking model. The work of [23] explores the use of these methods with Ada nets.

In this paperwe consideranalysisfor the classicalcaseof global deadlockdetection,i.e., all tasksbeing
blocked. In the context of the Petri net approach, a straightfomaydo detectdeadlockswould be to generatehe
Ada net's reachability graph and then sedhghreachabilitygraphfor statesthat haveno successostates. This is
very easyto implementwith our toolkit system[10], but is computationallyexpensivesincethe complexity for
generating a reachability graph fo(safe)net is exponentialin the numberof nodes[24]. Previously,we studied

the use of Petri net structural invariants to @déddlockdetectionin Adatasking[9]. In keepingwith this research
technique, i.e., seeking to exploit and adapt existing general Petri net theory, in this paper we considexdbosv to
the computation of deadlock analysis by use of another Petectetique net reduction.This is a modelreduction
method. Our experimental results indicate that this technique is quite powerful asigriéicantly extendthe range
of problem sizes that can be handled. We Hauad that our reductionmethodcomparesvery favorably with other
automatedtasking analysismethods,especiallythose that are also rooted in explicit reachability analysis. In
addition, we have founthat our modelreductionmethodfacilitatesthe use of somestatereductionmethods-- the
combinationof model reductionfollowed by state reductionallows problemswith more than 100 tasks to be
analyzed. Our experimental results with such problems fare verynvetimparisorto the resultsreportedfor both
the constrained expressions tool [8,16] and the PAL tool (which is based on using process algebhrgasitional
analysis) [15], which are the only other automated methods we know dfabelbeenshownto be ableto analyze
an Ada program of more than 100 tasks.

Early work on reductionof graphmodelsexpressingconcurrencywas reportedby Gostelowet al. [25].
Their reductions were based on a narrow set of substitutions in arbitrary graph models. A more comprehensive set (
Petri net specific reduction rules was later presented by Berthelot [26]. Our work smfapisf Berthelot'srulesto
the specific modeling domaiof Ada taskingand caststhe rulesinto a techniqueandtool for the specific software
analysis problem of deadlock analysis.

2. BACKGROUND: PETRI NETS, ADA NETS AND NET REDUCTION

For this paper,we assumethat the readerhas a basic understandingdf Petri nets [24,27] and general
knowledge of Ada tasking [28].This sectionprovidesbackgroundn threeareas:Someterminology andnotations
from Petri net theory are presented; some terminology and properties of Ada nets are introdubeddeadf Petri
net reduction is explained.

Definition 2.1
A (general)Petri netis a 5-tuplePN=(P, T, F, W, Mg), whereP is a finite set of place nodeB,is a finite

set of transition noded; is a set of arcs (flows) defined Byl PxT 00 TxP, Wis aweight function definedas W:
F - N, andMg is the initial marking (state) defined o:P - IN, whereN standsfor the setof positive integers
andIN for the set of the non-negative integers. A Petri net that is restricted by léving {1} (i.e., arc weights
are always equal to one) is calledaadinary Petri net|]
Definition 2.2

For a Petri netPN, x* ={y| (x,y)OF} and *x={y| (y,x)0F}, x,y O POT. If x is a place (transitionJx is the
input transition (place) saif x andx® is theoutput transition (place) seff x. []
Definition 2.3

For a Petri net, PN, a marking (state)M is a mappingM: P-IN. A marking (state)M is graphically
represented by an assignment of tokens (shown as small black dots) to places. Theviiglatienotes the number
of tokens in plac@ at markingM. []
Definition 2.4

Givena markingM of a Petri net, PN, for a transitiontOT, if OpO°t, M(p) = W(pt), t is saidto be
enabled Note that for an ordinary net, the transition is enablénpifi*t, M(p) > 0. []
Definition 2.5

For a Petrinet, PN, a transitiont that is enabledn markingM canfire, resultingin a new marking M’
where 1)0p0O °t - t*, M'(p) = M(p) - W(p,t); and 2)dgO t* - °t, M'(g) = M(q) + W(t,q). Note that foran ordinary net,

the firing of the transition results in a new markMbwhere 1)dp0 °t - t*, M'(p) = M(p) - 1; and2) OgO t* - °t,
M'(@) =M(q) + 1.]
Definition 2.6

For a Petri netPN, a markingM is saidto be reachablefrom a markingM' if thereexistsa sequencef
markingsMj, Mj+1, ..., Mj+k, whereMj=M, Mj+k=M’, andMj+j resultsfrom firing someenabledtransitionin
markingMj+i-1, fori=1,2, ..k. A sequence of transition firings that leads from sonaekingM to a marking M’
is called aransition firing sequencd]

Definition 2.7
For a Petri netPN, the set ofeachable markings denoted by R{N,MO),

R(PN,MO):{M | M is a marking reachable fromq}.

Definition 2.8

A Petrinet, PN, is saidto be safeif the numberof tokensin every place doesnot exceedone for any
reachable marking, i.ejMDR(PN,MO) andOpOP, M(p)<1. []
Definition 2.9

A Petri net,PN, candeadlockif there exists a reachable marking in which no transition is enabled. []

A Petri net thatis derivedfrom an Ada tasking programby the translationschemeof [6,10] is calledan
original Ada net An original Ada net models a number of communicating finite state machinesofrtmunication
is based on Ada's notion of rendezvous. Each state machine represents the locdlaverafch task. The intertask
communications are represented by extra nodes connecting diesmachines Control flow constructssuchas
if-else, case, and loogre modeledby structuresn the statemachinesf the control flow constructcanimpactthe
choice of a tasking construct like an entry calhoceptstatementThe translationalgorithm that producesoriginal
Ada nets uses a set Betri net templatescorrespondingo Ada statementsDetails of this translationare given in
[6]. Here we simply describe some of the key featofeAda netsthat are germaneto our upcomingdiscussionon
reduction.
In an original Ada net, each place is automatically labeled by the translation prapidias a well-defined
role in modeling the program's behavior. Each place label is prefixed with a keyword indicatyyetbéthe place
and a label also contains a statement number. For example, the template of an estatenahis shownin Fig.
2.1(a) and that of an accept statement with an accept body is shown in Fig. 2.1(b). Accept stafigmoeimizccept
bodies aremodeledin a more compactway as canbe seenin the exampleof Fig. 2.2. Generally,a rendezvouss
represented with the net structure shown in Fig. 2.1(c). The model does not directly synchronize the "entry" place ani
the "accept” place for th®llowing reasonBecausahe modelis createdautomaticallyduring translationof source
code, we chose to have an entry call construct that models the making of an entry cab@ardteacceptconstruct
that models accepting a call that has been made. This is convenienttfangiationalgorithm andalso providesa
model that can distinguish a task having made a call that is not yet accepted, from a task that is ready ¢almake
We explain this a bit more after the upcoming example.
Definition 2.10
In an Ada net, we call a place having a label prefixed with the string "begin-
or "select-", abegin-placewait-place accept-placeentry-ex-placeor select-placerespectively. []
By their method of construction, original Ada nets have the following characteristics [6,10]:
1) Original Ada nets are ordinary and safe Petri nets.
2) Original Ada nets havat most linear numberof nodeswith respecto the statementsn the correspondingida

wait-", "acCeptry,_ex-"

program.

3) Theonly placesthat containa tokenin the initial marking are those that representthe beginning of a task's
control flow; these are the begin-places defined above.
4) Decision statements, such as if-else and case stateémdo¢sil control flow, arerepresentethy a branchingnet
structure (i.e., a place has multiple output arcs).
5) In everybranchingnet structure,at least one branch (choice) containsa net structurefor some communication
statement. (The translation algorithm ignores decision statement that involve no intertask communication.)

To give the reader a feel for the labeling convention used in Ada nets and a sense of net reductican we use
example program called the gas station progi2®. The statemennumbersarenot a part of the programitself,
but are used for reference.

Example 2.1 (The gas station program)

1 task body Customer is 10 task body Pump is 20 task body Operator is
2 begin 11 begin 21 begin
3 loop 12 loop 22 loop
4 Operator.Prepay; 13 accept Activate; 23 select
5 Pump.Start; 14 accept Start; 24 accept Prepay do
6 Pump.Finish; 15 accept Finish do 25 Pump.Activate;
7 accept Change; 16 Operator.Charge; 26 end Prepay;
8 end loop; 17 end Finish; 27 or
9 end Customer; 18 endloop; 28 accept Charge do
19 end Pump; 29 Customer.Change;

30 end Charge;
31 end select;

32 end loop;

33 end Operator;

The original Ada net structurecorrespondingo the above3-taskprogram,is shownin standardPetri net
graphicalform in Fig. 2.2. For purposeof later referencethe token distribution shownin Figure 2.2 indicatesa
deadlock marking rather than the initial marking of this Ada net. We give the following interpretations of a few place
labels appearing in the Ada net shown in Fig. 2.2. Note that place label ack_entry_Operator_4 is abbreviated as aeC
in the figure.

ack _entry Operator 4 - An entry call (at line 4) has been made to, but not yet accepted by, the

Operator task
wait_ack_Operator_4 - The entry call at line 4 has been executed and the calling taglting
for the acknowledgment from the Operator task (the call may or may
not have been accepted yet)
entry ex 15 6 - A rendezvous is in progress (the entry is executing) for the entry call at
line 6 and the accept statement at line 15

Original Ada nets are intended $erveas a basemodelfor generaltaskinganalysis(as discussedn [10]),
not just deadloclanalysis.It canbe observedhat original Ada nets containatomic steps(transitions)that are not
strictly necessary to model tasking semantics, (for example end_loop transitiortk) dimlithe translationprocess.
Part of the effecof the reductiondiscussedn this paperis just to removethese"extra" steps.On the other hand,
there are also some net structures (for exansplee places)that are unnecessarfor deadlockanalysisbut may be
supportive of other forms of analysis. For example, a wait-place being marked indicates that a task has made an ent
call andis waiting for a response. In a distributed environment,this may correspondto stateswhere a request

messagds being transmitted,or stateswhere the remote task is performing the service, or stateswhere an
acknowledgment message is being sent tec#iiing task. So, to determinethe maximumnumberof entry calls
that can be "waiting" simultaneously, we can search for a stateahtginsthe maximum numberof markedwait-
places.

Petri net researchers have developed various reduction techniques for general Petri net analysis [26]. Petri ni
reductionaimsto transforma given Petri net, PN, into anotherPetri net, PN', suchthat PN' is easierto analyze
algorithmically (typically this means thBiIN' has a smaller reachability graph tHaH). To illustrate thisywe show
in Fig. 2.3 a netthatis producedby applying our net reductionrulesto the net of Fig. 2.2. It is importantto
observe that the reduced net does not explicitly model all the task interactions defined by theregrangas does
the Ada nein Fig. 2.2). For instance the sourceprogramspecifies6é entry calls and6 acceptstatementsyet the
reduced net contains only 4 transitions. But, by definition of the reduction rules that we will introdsi¢ayatthat
the reduced net does preserve the deadlock characteristics of the original Ada net.

Definition 2.11

A net that is derived from an original Ada net by some number of reductionustieygsthe reductionrules
presented in this paper is calleteduced Ada netA reduced Ada net is calledidly reduced Adanet if no reduction
rule can be applied to it. Akda netcan be either an original Ada net, a reduced Aelaor a fully reducedAda net.
0

A fully reducedAda net is not unique;it dependson the interplay of the reductionoperationsthat are
applied.

3. SOME GENERAL REDUCTION RULES

For practical use on Ada nets, we selectedfrom [26] some transition fusion reduction rules that are
applicable to general Petri nets. Our interest ithafact that theserules preservethe deadlockpropertiesof a net,
i.e., any deadlockstateis preservedandno new deadlockstateis introduced.Furthermoretheserules preservethe
safenes®f a net. Rigorousproofs canbe foundin [26]. We did not useall of the rules proposedn [26] because
some of them are of high computational complexity, i.e., it is computationally expeosihieckthe applicability
of those rules. In this section we also introduce a simple rule fromH{a7hllows removalof a placeor transition
in cases where theexist "parallel redundanthodes.In the next sectionwe will derive someotherreductionrules
that are special case rules useful for Ada nets. Note that whenever a reduetaails for the removalof a node(a
place or a transition), it is implied that the incident arcs of the node are also removed.

Rule 1 (Post-Fusion of Transitions) [26]
A non-empty subseb of T, the set of transitions in a Petri net, is post-fusable with another ddilfet
iff there exists a place such that the following four conditions are satisfied:

@ Of0OG, * f={p} -- the only input off isp,
pOf® -- p is not an output of.
(b) OhOH, pOh® and pC* h -- p is an output, but not an input, lof
(¢ OtOT-(HOG), pO*tandpdt® -- p is disconnected from other transitions except for those

belonging toH or G.
@ MyP)=0.

The operation of Rule 1 is to fuse e&ciH with eachfJG, by producing a transitionhf> such that <hf>=*h and

<hf>* = O(h* -{p}), and then deleting p and all the transitidi¢HG). []
Conditions (a) and (b) imply th&tn G=0. Fig. 3.1 shows the Post-Fusion of transitistandh2 with

f1 andf2. In the reduced net, if we consider the firing of every new transtttir,, asa firing sequencén which

both h andf fire once, the number of firings of each transitionthia reducednet is the sameas that of the original
net.

Rule 2 (Pre-Fusion of Transitions) [26]
A subsetG of T, the set of transitions in a Petri net, may be pre-fused with a trarfsitibiff there exists
a placeplP such that the following conditions are satisfied:

(@h*={p}andpd* h -- p is the sole output di andp is not an input td.

(b) OfOG, pO°* f andpOf* -- all transitions of G havp as an input, but none hpsas an
output.

(c) OtO (GO{h}), pOd°*tand pCit* -- p is disconnected from all other transitions.

(d) dga* h, |o° |=1 -- h does not share its input places with other transitions.

(e) Mo(p)=0.

The operationof Rule 2 is to fuseh with eachfdG, by substituting® f with (* f O * h)-{p} and then
deletingh andp. []
Fig. 3.2 shows transition fusing withf1 andfz. The properties preserved through pre-fusion areanee

as for Rule 1, post-fusion (proof in [26]). By applying Rule 2 to a glagee will reduce the number ¢fansitions
in the net by one and the number of places by one.

The third reduction rule is a special case of Rule 1. We explicitly specify it because it is easier to apply and
commonly occurring. Fig. 3.3 illustrates the operation of Rule 3.

Rule 3 (Serial-Fusion of Transitions)
If a single-input/output place has no token and is the unique output pladti ahd theuniqueinput place

of t,, i.e., if Mo(p)=O0, tl' =Hp}=* t, ., and I'pl=IF|=1, then t, andt, canbe fusedinto <t,t,> suchthat
<t t>="ty and <t 1> "=t 1
Rule 4 (Parallel Redundant Nodes) [27]

If two nodes(two transitions,or two placeswithout tokens),x andy, haveidenticalinputs andidentical

outputs (possibly empty), then they are a pair of parallel nodes, and either one obtte=gan be removed. That
is, if sx=ey andxe=ye, then eithex ory (but not both) can be removed. []

It is obvious that Rule 4 preserves deadlock and safeness properties of a net.

4. SPECIAL CASE REDUCTIONS FOR ADA NETS

Intuitively, a place in a Petri net can be considered tetendantf its removal will notalter any possible
transition firing sequences of the net. Throughout this paper, removal of a redundapt pleaesthat p andall of
p's incident arcs are removed. A benefit of identifying such places is that their removal can giawdliadbe further
reductionssuch as those that involve transition fusions. Clearly the safenessand deadlock propertieswill be

preserved by the removal of redundant places. Unfortunately, in general, there is no efficient algorithm for identifying
that a place is redundant. Berthelot gave a formal structure-based characterization of a redundant place Ratgeneral
nets[26], which is basedon the existenceof a place subset(called the I-sef that meetscertain conditions. Our
interestis in applyingthis conceptto Ada nets, so we seeksomeefficient rules that are specialcaseinstancesof
Berthelot's characterization.

We will begin by introducing a general characterization for a specific caseedfiadanplacein a safeand
ordinary Petri net; but first we want to establish the fact that Adaanetdways safeand ordinary nets. Recall that
original Ada netsare safeand ordinary netsby construction.As we notedearlier, the reductionrulesintroducedin
Section 3 preserve safeness. As established by Berthelot [26], Rule 1 always keeps an ordinary net thdinaty if
is safe to start with. It is not difficuto seethat Rules2, 3 and4 will keepan ordinarynet ordinary.Finally, the
new rules that we will introduce in this section only remawedes;so they cannotchangean ordinary netinto one
that is not ordinary. We will prove that every node to be removed by the new rules is reduarttargensethat the
removal does not alter any possible transition firing sequence. So, the safeness property of the nets will be preserve
Therefore, it can beoncludedthat Ada nets are alwayssafeand ordinary nets. This is importantsincewe want to
appealto a generalcharacterizatiorof a redundantplacein a safe and ordinary net to prove some special case
instances of redundant places in Ada nets.

Theorem 4.1 (Case 1 of Place Redundancy in a Safe and Ordinary Net)

For a safeandordinary Petri net, PN, placep is redundantif the following conditionsare satisfied: 1)
p°={t}; 2) Mo(p)=0; and 3) thereexists someb°t, wherebzp and OMOR(PNM), if M(b)=1 thenM(p)=1, i.e.,

wheneveb is markedp is also marked. []
Proof

Sincet is the only output transition @ p cannot impact the firing@f any transition exceptt. One of the
necessary conditions foto be enabled is thatis marked. Condition 3 establishémat wheneverb is marked,p is
also marked. So, the removalivill not impact the firing ot in any reachable marking, meaning tta placep
is redundant. []

While the above theorem does help define a narrower class of redundantrpleaegarisorto the general
characterization given by Berthelot, it is computationally expensive to use this thedoemtiy a redundanplace
due to the behavioral condition implied by Condit®nBut, we canappealto this theoremto define somespecial
case instances of redundant places in Ada nets. Remember, in an original Aalehpkstceis automaticallylabeled
by the translationprogramand has a well-definedrole in terms of modeling the program'sbehavior. So, the
semantics of the net must correspond to the semantas Ada program,if the netis a soundmodel-- which we
can assume is the case for this paper. We can exploit this sense of setnadénsify casesvhereCondition 3 of
the above theorem must be true. Thus, for these casesill havesimple and efficient reductionrules. Since our
goal is to usetheserulesto definea reductionprocess,we will explain how and why we selectsome ordering
dependencies for the rules.

Rule 5 (Redundancy of Wait-Places)
In an original Ada net structure corresponding to an entry call statement, the waitpéendantind can
be removed. The same holds for nets obtained by applying this rule one or more times to an original Ada net. []

Proof

Fig. 2.1(a) shows the original Ada net structure for modeling an entry call. The ack_entmeplasents
call that hasbeenmade,but not yet acceptedThe ack_accepplacerepresentsan acknowledgmentrom the called
entry to indicate that the rendezvdegerminating. The wait_ackplacerepresentshat the calleris waiting for the
terminationacknowledgmentAppealingto Theorem4.1, we canseethat Conditions1 and2 of Theorem4.1 are
true when the placgsandb are represented by the places wait_ack and ack_accept, respectively. By Ada seanantics,
rendezvous that is terminating must have been previously initiated by the Icatle.original Ada net structureof
Fig. 2.1(a), it can easily beeenthat oncea rendezvouss initiated by a caller, the wait_ackplacebecomemarked
and remains marked until the ack_accept place becomes marked. Therefore, Condiliba@arh4.1 is alsotrue,
and the wait-place is redundant. Sirlke removalof the wait-placeassociatedvith someentry call statementoes
not alter the Ada net structure of any other entry call statement, we can apply this reglugtomoretimes, i.e.,
to all wait-places. []

The importanceof Rule 5, aswill bethe casefor Rules6 and7, is that it providesan opportunity for
further reductions to apply. To illustrate this, let us consitl@mple4.1. Its correspondingdda netis shownin
Fig. 4.1(a).

Example 4.1
1 task body T1is 5 task body T2 is 10 task body T3 is
2 Dbegin 6 begin 11 begin
3 T2.E; 7 accept E do 12 T2.E;
4 endT1; 13 endT3;
8 end E;
9 endT2

Applying Rule 5, we removeimmediatelywait_ack T2 _3andwait_ack_T2_12Then, applying Rule 3
(Serial-fusion) and Rule 2 (Pre-fusion) L. 4t te Yot results in the net in Fig. 4.1(b). []

In our reduction process for deadlock detective,alwaysapply Rule 5 first, meaningthat we removeall
wait-places as the first step in the reduction process.

Rule 6 (Redundancy of Entry-Ex-Places)

In an original Ada net structurecorrespondingo an acceptstatementthe correspondingentry-ex-placeis
redundant and can be removidhis acceptstatemenhasat most one caller. The sameholdsfor netsobtainedby
applying this rule one or more times to an original Ada net. []

Pr oof

Fig. 2.1(b) showsthe original net structure for modeling an acceptstatement.The end_acceptplace
representshat the acceptingtask hasreachedhe end of the acceptbody andis readyto terminatethe rendezvous
initiated by some call. Thentry_ex_j_iplacerepresentshat a particularrendezvouss in progress- a rendezvous
associated with a particular entry call statememid a particulaacceptstatemenj. Appealingto Theorem4.1, we
canseethat Conditions1 and2 of Theorem4.1 aretrue when the placesp and b are representedy the places
entry_ex_j_iandend_acceptiespectively By Ada semanticswhena task reacheshe endof an acceptstatement,
theremust be a correspondingendezvousn progressln the caseof an acceptstatementwith only one possible
caller, there is only one corresponding entry-ex place (as shown in the case of Fig. 2.1(b), which is in ctherast to
multiple caller cas@s shownby the examplein Fig. 4.1(a)). Thus, wheneverthe end_accepplaceis marked,the
entry_ex_j_iplacewill be marked.So, Condition3 of Theorem4.1 is true, and the entry-ex-placeis redundant.
Since removal of entry-ex places does altgr the net structuresassociatedvith otheracceptstatementgrecall the

9

structures in Fig. 2), the removal of these places does not affect the application of Rule 6 to those struatgres. So,
can apply this reduction one or more times.]

It is clearthat removalof a wait-placedoesnot affect the validity of applying Rule 6 to a corresponding
entry-ex place. So, in our reduction process,alwaysapply Rule 6 after all possibleapplicationsof Rule 5. We
could have just as well chosen to define our reduction process to start with applications&ffRlideved by Rule
5 -- there is no important difference.

We now introduce a second theorem that is a generalization of ThdateBy appealingto this theorem,
we can prove two more special case rules for application with Ada nets.

Theorem 4.2 (Case 2 of Place Redundancy in a Safe and Ordinary Net)

For a safeandordinary Petri net, PN, placep is redundantif the following conditionsare satisfied: 1)
Mo(p)=0 and®|=r, and?2) for everytransitiont,, Op*, k=1, 2,..., 1, thereis a placeqg #p, whereq,,'={t,} and
DMDR(PN,MO), if M(gg,)=1 for any kU{1, 2, ..., r}, thenM(p)=1, i.e., if any q,, placeis markedin any state,

thenp is also marked in that same state. []

Fig. 4.2 contains an example net structure that corresponds to the structure defihedreyn4.2 (for the
case when r=2). At this time, one can ignore the labels of the nodes not defined in Theorem 4.2.

Proof
Condition 2 and the safeness property ofrieeimply that at any reachablestate,at most one of the g,

places can be marked. If more than one of these places could be marked then oassotthtenabledtransitions
could fire, resultingn a markingin which someq, placeis still markedbut placep is not marked.This would

contradict Condition 2. Now we can infer that at any reachable magkoam only impact the firingf at most one
transition, call it t. A necessaryondition for t to be enabledis that the corresponding,, is marked. Since
Condition 2 establishethat wheneverany q, is marked,p is also marked,the removalof p will not impactthe

firing of t in any reachable marking, meaning that the piaiseredundant. []

We now presentwo rulesthat appealto Theorem4.2 to identify somespecific casesof redundanplaces
that can occur in Ada nets. Both of the next two rulesbheaappliedat any time during the reductionprocesssince
the rules do not dependon Ada net issuesotherthanto help identify candidateplaces(by labeling) to check for
applicability of the rule. This improvesthe efficiency of the reductionprocess.For example,Rule 7 directsits
attention to accept-placels particular,if an Ada net indicatesthat a task calls two consecutiveentriesin another
task, then the net structure that enforces the called task's control flow can be simplified by theoEmwaf the
accept-places in the called task.

Rule 7 (Redundancy of Accept-Places)
In an Ada net, lep be an accept-placeith *p={t,;, t,,... , t,}, P"={ty} tgp -, o}, @andMo(p)=0. If

there exists another accept-placgich thag®="p, andp andq correspondo two acceptstatementsn the sametask
T, then place can be removed if the following conditions are also satisfied:

1C

1) For each transitioqu°p, kO{1, 2, ... ,r}, there existsa CorrespondingransitiontOkDp°, Wheretlk':{ P, o}

and'tOk:{ P, doyt: @nd each pair of placesf, d,,) correspond to statements of the same taskherek=T.
2) For each pair of transition,(t,,) defined in Condition 1), always fires firstt, cannotfire twice without a
firing of t,, andt,, cannot fire twice without a firing df, . []

Fig. 4.2 illustrates the nstructurecorresponding to Rule 7 for the case wheh.

Pr oof
Without loss of generality,we canreferto Fig. 4.2, which illustratesthe net structurecorrespondingo
Rule 7 for the case wher2. It can be seen easily that Condition 1 of Rule 7 establishes the structural comflitions

Theorem 4.2. The behavioral condition specified in Condition 2 of Theorem 4.2 can be shown to be true as follows:
If t,, is enabled (for somig in some marking, thenM(p)=0, otherwisep may contain multiple tokens and the net

would not be safe -- but we have previously established that Ada ne&f@nets. Thus, no transitiont, (for any
k) can be enabled in markilg. Wheneverthe transitiont, doesfire, p becomesnarked.But, in this casebefore
tok fires, no transitiont,, canfire; otherwisethe netwill againnot be safe.Condition 2 further ensuresthat no
transition other thaty, can fire. Thus, the token in plapevill not be removed until transitioty,, fires. Note that
transitiont,, cannot be enabled unless plagg is marked. ThereforeﬂMDR(PN,MO), if M(gg,)=1 for any k{1,

2, ...,r}, thenM(p)=1. The conditions of Theorem 4.2 hold. []

Example 4.2

Fig. 2.2 (the gas station example) can be used to illustrate a simple case of a redundant accept-place as defin
by Rule 7. Using the notation of the Rule 7, let accept_15 correspond to the platiet accept 14correspondo
the placey. By checking the figure, it can be seen tifafp and thar=1 for this example. Theask T, as definedby

the rule, is the task that contains the two accept statements in question --- this is the Pump task (as can be seen fr
the source code given in Section Bpw, consideringCondition 1, transitiont14 correspondso t, andtransition

t15 corresponddo t,,, wheretask Customercorresponddo task 1. Checking Condition 2, we can see that

ack_accept_Pump_(5t14° corresponds tq,, and ack_entry_Pump_6°t15 corresponds tg,,. From the Ada net

model of the task Customer, it is easy to confirm thatin everyiteration transition t14 fires beforet15 fires
(implying that execution of Statement 5 must precede the execution of Statement 6); So, Comlitiae.2Thus
by Rule 7, accept_15 is a redundant place. []

To implement Rule 7 we need to automatically check both conditions of the rule. Coddisiorot difficult
to check since theorrespondencbetweenplacesin an Ada net andstatementsn the Ada programis well defined
based on the type of place labeling that is used and was discussed earlier. Assuming now that Condition 1 is true, tt

main difficulty is in checking Condition 2. Without loss of generality, we consider only the checking of Condition 2
for onecalling task (i.e., whenr=1). Let us denotethe statementhat correspondso the place q, as sl andthe

statement that corresponds to plggg ass2 By Condition 1s1ands2belong to thesametask, call it taskk. As

mentioned in Section 2, an Ada reeintainssubnetsthat are communicatingdfinite statemachinesrepresentinghe
local control flow of each task. A subnet consistsll the placesthat correspondo the statementsn a particular
task, the input and output transitioostheseplaces,andthe arcsassociatedvith theseplaceandtransitionnodes.

Condition 2 can be checked by confirming the following two properties: a) In the subnet corresponding,tafiask
(directed)pathsstarting from the begin-placeof taskk to the placeq, go through a place correspondingo the

statemensl; and b) if a loop in the subnet corresponding to the kaséntainsthe placeqg,, thenthis loop must

11

also containa placecorrespondingo the statemensl To confirm thesepropertieswe temporarilyremoveevery
place that corresponds to statemehfThen we perform two searches: 1) a search for a path stitinghe begin-
place of taskk to placeq,, and2) a searchfor a loop startingfrom q,, andleadingbackto q,. If both searches

fail, then Condition 2 is satisfied; otherwise, Condition 2 is not satisfied.

Rule 8 (Redundancy of Accept-Body Places)

For a safeandordinary Petri net, PN, placep is redundantif the following conditionsare satisfied: 1)
'pl=p°|=r, and2) for eachtransitiont, O°p, k=1, 2,..., r, there exists a unique place q,,#p, where *qy, =t },
ldok I=1, and for everyransitiont,, Op*, k=1, 2,..., 1, *t5,={p, g andMo(p)=Mo(gn,)=0, k=1, 2,..., r. In Ada

nets, a structure representingatept-bodythat is modeledby a single placep andhasmultiple callersis a good
candidate for this instance of redundancy. If the conditions hold, theilscemoved. []
Pr oof

Rule 8 is a special case of Theorem 4.2 in Whim(:{tlk}. Clearly, thestructuralconditionsfor Theorem

4.2 aretrue. We establishCondition 2 of Theorem4.2 asfollows: i) Since'qu:{tlk} andtlkD‘p, whengg, gets
marked, so doe. ii) Sincep’={ty,;, t5, -, tor}, the tokenin p will not be removeduntil sometransitiont,,
(k=1, 2, ..., r) fires. iii) At any marking M where M(q,)=M(p)=1, no transitiont,, k=1, 2, ..., r, can fire;
otherwisep will have more than one token and the safeness property will not hold. Thusnerdy, placecanbe
markedin any reachablemarking.iv) Becauseof i) andiii), the tokenin p will not be removeduntil t,, fires,
which will remove the token ip andq, simuItaneoust.‘I’herefore,DMDR(PN,MO), if M(gg,)=1 for any k{1,

2, ...,r}, thenM(p)=1. The conditions of Theorem 4.2 hold. []

Now let usreturnto Fig. 4.1(b). Rule 8 allows us to removeplaceend_accept 8Then serial fusions of
<YLt tg> with <ty > and Gtstotio > with <tgty,> lead to the further reduced Ada net of Fig. 4.3.

Our final rule is a simple rule that applitss markedplacesonly and removesplacesandtransitionsunder
very restricted conditions.

Rule 9 (Redundancy of Begin-Places)

In a safe and ordinary net, if there exiatplaceblP, suchthat Mg(b)=1, b'={t}, ['t|=1, and "b=0J, thenb
andt can be removedndfor all dOt’, Mo(d) is setto 1. In Ada nets, begin-placesareinitially markedanddo not
have input transitions. So, they are used as candidates for thé.dlace
Pr oof

Marking every output placeof t andthenremovingt is equivalentto firing t once. Since ‘t=b and b is
marked initially,t can fire initially. But sinceb=0 , t can only fire oncein any transitionfiring sequenceSo, for
this case, removal of theodesb andt andreassignmenof the tokensas defineddoesnot changethe safenes®r
deadlock properties of the net. []

Note that it is possibléor Rule 9 to reducea netinto an isolatedmarkedplace,which would represent.
deadlock state. If different reduction rules are to be applied to a net9 Rhleuldbe appliedlast sinceall the other
rules (Rules 1 through 8) assume the places are unmarked, but Rule 9 can induce a markingrkifigisould be
lost if further reductions are allowed after Rule 9 is applied.

12

5. A REDUCTION PROCESS AND METHOD FOR DEADLOCK IDENTIFICATION

To applythe reductionrules discussedn the previoussectionswe define a reductionprocessor deadlock
detection and identification for Ada nets. The process statttsan original Ada net andthen appliesthe rulesin a
particular order. To preserve the soundness of the redymiaesswith respecto Rules5 through8, we follow a
rule ordering that is consistent withat mentionedin Section4. The orderingis definedas follows: we repeatedly
apply rule 5 until it does not apply, then do the same in sequence for rules 6, 7tteamttle rules 3, 2, 1, and4
are repetitively applied in that order until none of those four rules can be applied; and finally Rule 9 is applied.

Deadlockidentification requiresthat we be able to interpreta programstate correspondingo a detected
deadlockmarkingin a reducedAda net. The difficulty arisesbecausethe reductionprocessremovesplaceswhose
labels are helpful to defining the semantics of a program state corresponding to a reachable Foarkivagely,we
can provide a methodfor easily constructingan original Ada net's deadlockmarking from a reducednet's deadlock
marking. The method is based on an application of the Petri net state equation [27],

M=AT(v)+M, (5.1)
whereMq is the initial marking of the ne# is the incidence matrix [27] of the netdV is a firing countvector.

A firing countvectoris an m-vector (m is the numberof transitionsin the net), eachelementof which is the
numberof times that the correspondingransition fired [27]. Given A, Mg, andV, Equation(5.1) returnsthe
marking that the net will reach aftdre transitionsrepresentedby V fire. Our concernis with how to obtainV in
terms of the original Ada net.

During reduction,the applicationof eachtransition fusion rule (Rule 1, 2 or 3) will remove some
transitions and generate some rieansitions.When sometransitionsare fused,their labelsare concatenated.The
newly generated transition (the fusion of some transitions) then is labeled with this concatenation. Tiitakield
concatenation immediately gives the firing countof eachfusedtransition, but it ignoresthe firing order. Every
transition's label in the original Ada net will appear in some label(s) of the reduced Ada nethaé®es applied.
With these labels, it is easy generatea firing countvector X during the searchfor the deadlockin a reachability
graph. Howeverif Rule 9 is applied,sometransitionlabelsarelost. As we sawin Section4, the removalof a
transition by Rule 9 means that this transition has been fired. Thus we generateravettter,Y:

Y:(yl, Yo ...,ym)T, yi:1, if t is removed, or a fused transition containliin'gs removed, by Rule 9;
yi:O, otherwise.

By substitutingthe vectorsX andY forV in Equation(5.1), we can obtain the full descriptionof the deadlock
marking in the original Ada net. That is,

M=AT(X+Y)+M (5.2)

whereA is the incidence matrix of the original Ada net MéiiS the net's initial marking. Thexampleof the next

section illustrates this method.

13

If we record a state sequencgor transition sequencejeadingto a deadlockstate (either during or after
reachability graph construction), the states of this net sequence will be definedspitbtto a reducedAda net. To
provide an interpretation of this state sequence in terms of the program's exsegtienceywe canapply the same
basic method defined above (for interpreting a deaditete),only now we would be applying the interpretationto
intermediatestates.Sincethe necessaryransitioninformation andthe initial statearewell defined,the methodis
still sound.

6. AN EXAMPLE OF DEADLOCK DETECTION AND IDENTIFICATION

Now we can explain how to reduce thet of Fig. 2.2 (with aninitial markingwhereall begin-placesre
marked with one token) into that of Fig. 2.3, and how to use this new net to detect and identify deddlstkby
Rule 5, we canremoveall the wait-places.Then by Rule 6 we remove the entry-ex-placesgentry_ex 24 4,
entry_ex 28 16, and entry_ex_15 By Rule 7, we removethe acceptplace,accept_15Now we canfirst apply
Rule 3 and then Rules 1 and 2 to mamgupsof transitions.Placeaccept_14will be removedby Rule 4 whenit
becomes a parallel place piaceack _entry Pump_5Ne havethe reducedAda net shownin Fig. 6.1. Finally we
apply Rule 9The fully reduced Ada nas shownin Fig. 2.3 with a marking correspondingo the deadlockstate.
The reachability graph of the reduced Ada net of Fig. 2.3 is shown in Fig. 6.2; it is composed ofi4 statesn.
The deadlock state corresponds to the marking with a token in place "ack_entry_Customer_29". For comarison,
note thatthe reachabilitygraphof the original Ada net has78 states.The token allocationin Fig. 2.2 showsthe
deadlock marking in the original net, which can be represented by the following string:

"wait_ack Pump_6, entry ex 15 6, wait ack Operator 16, entry ex 28 16, ack _entry Customer_29,
wait_ack_Customer_29" (6.1)

From this deadlock marking, it easyto interpretthe correspondingprogramstateas a circular deadlock:
task Customer is in eendezvousith task Pump at entry Finish (statemen®) andtask Pumpis in a rendezvous
with task Operatorat entry Charge(statementl6), but task Operatorhas issuedthe entry call Customer.Change
(statement 29). The number of marked wait-places gives the number of tasks that are in a waiting state.

Using the method outlined in Sectién we canalso identify the deadlockwith the fully reducedAda net.
The path from the initial stateto the deadlockstatein the reachabilitygraph of Fig. 6.2 identifies the fired
transitions, T1 (t23,t24), T2 (t13,t25,t26,t4,t5,t32,t33,t21)T3 (t14,t6,t7,t15,t16,t28,t29). Thus, we have the
following "firing count vector" with respect to the 31 transitions:

X= (00011110000011110000111111100811)

The positions in the vector correspond to the following ordesingansitions:t1-t21, t23-t26, t28-t33 (for reasons
unimportant to this paper, the original Ada net does not have transitions labeled t22 and t27).

The applicationof Rule 9 removesthe fused transitions containing (t1,t2,t3), (t11,t12), and (t20,t21)
(compare Fig. 6.1 and Fig. 2.3). This yields another vector as defined by the reduction process:

Y= (1110000000110000000110000000000)

Now,
X+Y =(11111110001111110001211111105,11)

14

M0(begin_2_Customer)v40(begin_ll_PumpNO(begin_Zl_Operator)=l, amdp(p)=0 for everyother placep. By

applying Equation (5.2) defined in Section 5, we can obtain the marking vector that represemtsatateas that
of string (6.1).

7. A NET REDUCTION TOOL AND EXPERIMENTAL EVALUATION

We have implemented @rototypereductiontool thatis compatiblewith our currentresearcttoolkit used
for constructionand evaluationof Ada nets[10]. As was mentionedin Section1, the toolkit automatesthe
construction of Ada nets and supports varifarsns of net-basedanalysis,including now, reduction-basednalysis.
The Ada nets are representediitextual, production-ruleform that is compatiblewith the format of Petri netsfor
input to the P-NUT system [314 set of Petri nettools that allows for descriptionof netsaswell asreachability
graph generation, analysis, asithulation. In the textual representatiomf a net, eachtransitionis specifiedby a
production rule -- the left-hand-side gives the transition label (enclosed between colons) followed by ttedf tizenes
input places, and the right-hand-side gives the names of the output places.

Our net reduction tool, NRT, is implemented in C and runs on SWh@& The major input to NRT is
the Ada net produced by the FETS tool. The outpiNRT is a reducedversionof the input Ada net, in the same
textual format. NRT is executed by the following command:

nrt [-r] [-n] [- [1] [2] [3] [4] [5] [6] [7] [8]]
where the -r option calls for the output to report on every reduction rule attempted and applied; the -n opkon calls
the outputto list all intermediatenets producedduring the reductionprocessandthe final option specifiesthe id
numbers (as used in the earlier sections of this paper) of those reduction rules thia¢ ateetoptedand their order
of consideration. Rule 9 is automaticadlitemptedast. For example,-132 meansthat first Rule 1 is considered
(i.e., it is repetitively applied until nturther reductionsare possibleby this rule), then Rule 3 is consideredthen
Rule 2 is considered, and finally Rule 9 is considered. The typica@fud®T is to provideno id option, in which
case the rules are applied in the order defined by the reduction process discussed earlier in Section 5.

To evaluate our net reduction method we performed a numigapefimentsvith a variety of Ada tasking
programs.The experimentsprovide quantitativemeasuresof the effect of using our net reduction method (and
associated tools) for deadlock analysis. For some experirfientarticularthe dining philosopherseexample) these
measures can be comparecetasting datafor a different tasking analysisapproachandtoolset. The comparisonis
intended to show the benefit o§ing a "reduced"concurrencymodel when performing deadlockanalysis.Since our
reduced Ada nets are intended to support only deadlock analysis, it is not meaningful to interpret the codgtarative
in a broader sense.

We discuss two types of experiments using our NRT tool. The first experiments eraluateour ideaof
net reduction using different versions of two "benchmark" tasking programs: the gas station beogttira dining
philosophersgprogram.In theseexperimentspet reductionwas followed by full reachabilitygraph generation.As
mentionedbefore,this gives an opportunityto seesomecomparisornof the effectivenesof the reduction method
itself for deadlockanalysisin comparisonto anotherreachability-orientedand automatedAda tasking analysis
technique. Our second experiments evaluated the effectiveness of using our net reductiomneethjod ctionwith
some other existing state spacereductionmethods(i.e., methodsthat reducethe state spaceduring state space

1 The source versions we used were developed (and provided to us) by G. Afaunin
experimental work with theconstrained expressions analysis method.

15

generation -- ircontrastto our reductionmethod,which performsreductionson the net model prior to statespace
generation). For both types of experiments, we observed significant benefit from the net reduction method.

Net reductionon the exampleAda nets resultedin a more than 95% reductionin the state spacesize
(comparingoriginal net state spacewith fully reducednet state space).Our analysisof thesereducedAda nets
accurately reported the existence or nonexistence of deadlock for all the examples consideesghliBlodt some of
the reduction gain is due to the removal of atomic steps (transitions) thaitasteictly necessaryo modeltasking
semantics. We do not discuss further éimeountsof statespacereductionachievedn termsof original vs. reduced
nets; the more significant measures are those related to resultaspatssizes(for comparisonof reducednetsto
other tasking models that rely on reachability analysis) and analysis time.

All experiments were run using our reduction-baaedlysistools on a Sun Sparcstatior? with 64MB of
memory. For fully reduced nets, we gitree numberof uniquestates,the numberof arcsin the reachabilitygraph
(which indicatesthe numberof statesgenerated)andthe time to reducethe net plus generatethe state space,in
secondsas measuredy user+systentime in Unix. For all experimentsthe time to do the reductionstep was a
small fraction of the time to generate the state space and always less than one second. Lack of space prevents us fr
listing source code for the examples studied, but these are all available from the authors.

7.1 Net Reduction with Full Reachability Graph Generation

7.1.1 The Gas Station Example

The gas station program simulatasautomatedyas station systemconsistingof an operator,pumpsand
customers. We consider both one-pump and two-pump versions of this systemgnath-versionshat do and do
not have deadlock. In all cases, we used "unrolled" versiomngich different customerscall different entriesin the
operator task. The operator task uses boolean varibleseptrack of which customershaveprepayedor gasand
this control is automatically modeled in our Ada n@sir currentprogram-to-netranslatordoesnot yet handlethe
more generaluse of countervariables.Our reachability graph generatortool is intelligent enoughto consider
transition sequences that correspond to boolean variable evaluations as atomic abtisrsatescorrespondingo
interleavingsof theseevaluationstepsarenot stored (they cannotcorrespondto a deadlockstate). This issueis
discussed in some detail in [23]. THeadlockcaseswere createdoy having the operator'improperly” handlea flag
variable that indicates whempump is busy. The resultis that after a customerfinishes pumping andpaying, the
operatorstill thinks the pumpis busy and so it doesnot allow any customerto get accessto the pump. The
experiments reported in [23] introduced deadlocks in a slightly different way. Talewssomesampledatabased
on varying the number of customers, the number of pumps, and the potential for deadlock.

16

No. of Customers, Pumps, Tagks Deadlock? Fully Reduced Ada Net Reachability Graph
(states, arcs, time)

3,1, 5 No 170, 300, 1
51,7 No 1622, 3180, 2
9,1, 11 No 74222, 156636, 237
10, 1, 12 No 180204, 383960, 707
3,1, 5 Yes 214, 364, 1
51,7 Yes 2150, 4156, 2
9,1, 11 Yes 103150, 216796, 288
3,2, 6 No 2723, 7050, 2
52,8 No 212015, 777590, 344
52,8 Yes 198023, 720227, 331

Table 1. Experiments for the Gas Station Program

7.1.2 The Dining Philosophers Example

For the well-known diningohilosophersgproblemwe experimentedvith a few different versionsthat have
become"standard“examplesfor a numberof different concurrencyanalysisresearchprojects. Theseexamplesare
especially relevant to this paper since thdpw somequantitativecomparisornof our approachwith anotherstate-
space oriented analysis technique, the modified (optimized) version of the Task Interaction Concurrent Graphs (TICG
method[32,33]. We assumethat the readeris familiar with the dining philosopherproblem. The program
simulatingn philosophers consists ohAda tasks, one for eagfhilosopherand one for eachfork. Four versions
of this program are discussed in [32,33].

Version 1 is the classic dining philosopher problem without any deadlamilance. Table 2 showssome
comparisons of the state space sizes for our fully reduced Ada net model and the published data for the modified TICt
models [33]. Note that with our fully reduced Ada faat this problem,the numberof statesis 2P, whereP is the
numberof philosophertasks. For the modified TICG model, the numberof statesis 3P-1 -- but rememberthe
TICG model is a more general model in terms of preserving tasking properties (beyond deadlock potential).

In Version 2 each philosopher picks upldg/er-numberedork first. Similar to the situation reportedin
[32], the state space for Version 2 is approximately equal in size to that of VérsitmVersion 3, a dining room
butler-taskis addedwhich restrictsthe numberof room occupantdo be lessthan n by checkingthe value of a
countingvariable. Thus no deadlockshould happen. However, a deadlockwas superfluouslyreportedfor this
version by pure static analysis because the counting variable wamdeled.Although static analysisin this case
reveals a "false deadlock,"” the numerical results with respstatesizescanstill be comparedor the reducedAda
net model and the modified TICG model since both modelsignore the counting variable. Table 3 shows the
comparison of state space sizes for Version 3. To provide a further check on the reduction methodallg added
somenodesto the automaticallygeneratedoriginal) net modelsto simulate the control enforcedby the butler's
counting variable. For example, if the counter could take on the values from 0 to Wouldeadd 11 placesto the
Ada net, each modeling a unique value for the counter. As expected, the expenitfetii®senets showedthat all

17

superfluous deadlocks were suppressed in these monifidels. The statespacesizesof the reducednets obtained
from the modified net model are shown in the rightmost column of Table 3.

Reachable States

No. of Fully Reduced Ada Net Modified TICG [33] Difference in States
Phils, Tasks
(states, arcs, time) (states, arcs, time) (Approx. %)
3,6 8,18, 1 26, 51, 2 69
5, 10 32,120, 1 242, 805, 2 87
7,14 128, 672, 1 2186, 10199, 5 94
8, 16 256, 1536, 1 6560, 34984, 26 96
9, 18 512, 3456, 1 19682, 118089, 337 97
10, 20 1024, 7680, 1 59048, 393650, 8090 98
14, 28 16384, 172032, 8 not available —
18, 36 262144, 3538944, 175 not available -
20, 40 1048576, 15728640, 894 | not available -
Table 2. The Dining Philosophers Problem: Version 1
Reachable States
No. of Phils, Fully Reduced Ada Net Modified TICG [33] Difference Fully Reduced Ada Net
Tasks (Ignoring Variables) (Ignoring Variables) (%) (Simulating Counting
Variable)
(states, arcs, time) (states, arcs, time) (states, arcs, time)
2,5 16, 30, 1 28, 50, 1 43 56,1
3,7 64, 180, 1 154, 411, 2 58 37,78, 1
4,9 256, 960, 1 832, 2964, 3 69 175, 524, 1
5 11 1024, 4800, 1 4474, 19925, 7 77 781, 2980, 1
6, 13 4096, 23040, 1 24040, 128478, 56 83 3367, 15438, 1
8, 17 65536, 491520, 31 not available - 58975, 354616, 31
9,19 262144, 2211840, 146 not available - 242461, 1622016, 139
10, 21 1048576, 9830400, 656 | not available - 989527, 7274662, 711

Table 3. The Dining Philosophers Problem with Butler: Version 3

18

Young, et al [32] provided anotherprogramversion, Version 4, in which the dining room butler-task
simulates a counting variable by unrolling the selective-wait statement. The idea was to simulate the variable value
by levels of nesting of selective-wait statements, thereby avoiding spurious deadlocks in the state spaceTanalysis.
our surprise,our analysistool reporteddeadlockstatesfor Version4 whenthe numberof philosopherswas more
than two. After some investigation we realized it programitself wasin error and could indeeddeadlocksince
the method for unrolling the butler's selective wait (provided in [32]) may allghilosophergo occupythe room
simultaneouslyln [33] a programwith a correctedbutler-taskis given. Our analysistools properly detectedno
deadlocks in this "corrected" Version 4 program. Table 4 summaazasresultsusing the TICG datareportedin
[33] for the correctedunrolled butler task. As expectedthe numberof fully reducednet statesusing the unrolled
butler is the same as the number of net states given in Table 3 for the net model that dineubatisr's counting
variable.

The above comparisons show a significant advantage insgptatesizesfor reducednetsin comparisonto
the TICG model. This indicatesthat our philosophyof using a specific modelfor a specific problemis a useful
strategyin analysisof inherentlycomplexproblems.Here we seethe benefitof using a problem-specificreduced
model, not in comparison just to our own unreduced Ada net modelsy batindependentlydevelopedconcurrency
analysis model.

Number of Reachable States
No. of Phils, Fully Reduced Ada Net Modified TICG [33] Difference
Tasks Unrolled Butler (%)
(states, arcs, time) (states, arcs, time)
2,5 56,1 11,11, 2 55
4,9 175, 564, 1 511, 1543, 3 66
6, 13 3367, 17694, 1 18263, 90155, 47 82
7,15 14197, 88809, 7 104679, 625873, 1099 86
8, 17 58975, 427368, 33 not available -
9, 19 242461, 1995327, 165 not available --
10, 21 989527, 9108690, 910 not available -

Table 4. The Dining Philosophers Problem with Unrolled Butler: Version 4

7.1.3 The Waveform Generator Example

To see how the reduction procegarks on a "real world" example ,we obtainedan exampleAda program
that was developed to solve a real problem; it was not designed fourh@seof testing any particularconcurrency
analysis method. For this example, we did have to perform some hand modifications of the Ada source in order to ge
a proper net model dhe program.This was primarily dueto the presenceof someAda specific constructs- like
packages- that our translatoris not designedto handle. The waveform generatorprogramis a 1200 line Ada
simulation of electric equipmentthat generatevariouswaveforms.This is one of the programsusedin [23] for
experimentallystudyingvarious statespacereductionmethods,including net reduction.As indicatedin [23], two
versions of the program were created. For the two versions, the numbers of statesianthe reachabilitygraphs

19

corresponding to the original Ada nets are 10,996 states with 32,332 arcs, and 4,827 states with 14,25€harcs. For
fully reduced Ada net, the corresponding numbers of states and arcs redi@essaieswith 326 arcs,and 31 states

with 242 arcs.The statespacegeneratiortime for eachof thesecasesvas?2 secondslt shouldbe noted that the
numbersof statesand arcs quotedhere for the original Ada net are slightly smaller than the "full" state space
numbers given in [23]. This is due to the fact that we now consider a particulaftgpginal net reductionrelated

to selective-waitstructurego be part of the net generationprocessnot part of the net reductionprocessused for
deadlock detection (as was done in [23]). Of cowetber way, the reductionprocessprovidessignificantbenefitin
reducing the size of the state space.

7.2 Net Reduction with State Space Reduction

Our second series of experiments looked at the effectiveness of using our net reduction method iof support
some recently proposed reduced state space generation mettgatticliar,we consideredhreereducedstatespace
generation methods: stubborn setsPetri net transitions[20], partial ordersof Petri net transitions[21], and net
symmetry [22]. The basis of our experiments was to generate original Ada nets from Adseprafgramsandthen
to apply each of the reduced state space generation methods to these Ada nets.afipdiedour net reductionsto
the original Ada nets and again applegthof the reducedstatespacegenerationrmethods(this time to the reduced
nets). The examples we considered included those from the first experiments (versions of the gpsosfatinand
versions of the dining philosophers program) as well as versions of a readers/writers program. As an example, for th
traditional dining philosophersproblemwith n philosophersthe combinationof net reductionand stubbornsets
generatesr(2 - n + 2) states and theombinationof net reductionand symmetrygenerateg¢n + 1) states.Whatwe
observeds that for all caseqi.e., for all programsand for all reducedstate spacegenerationmethod)there was
significant benefit from using the net reduction metpadr to applying reducedstatespacegeneration- in effect,
our reduction step increases the utility of the state generation methodshekieme appliedto deadlockanalysisin
Ada tasking. Full details on experiments using reduction with reduced state space generation methods caim be found
[23,34]. It should be noted that the reduction method used in [34] was a lgblessul than the methoddescribed
in this paper. In particular, the rule 6 definedhis paperis a more generalrule thanthat usedin the experiments
reported in [34]. This is why, for example, the state space numbers reportied diming philosophersproblemare
better (i.e., smaller) in this paper in comparison to the numbers reported in [34].

The use of net reducticend reducedstatespacegeneratiorappeardo be a very powerful combinationfor
deadlockanalysisin Ada tasking. We can make the following observationsbasedon a comparisonof our
experiments with experiments reportied two otherfully automatedanalysistools that also avoid full statespace
generation -- the constrained expressions toolset [8,16] and th¢d®ksL[15]. Both of theseapproachefiavebeen
shown tobe capableof handlingthe dining philosophersproblemwith more than 100 philosophertasks.For the
dining philosophers problem (without a butler task), a combinatioretfeductionfollowed by reducedstatespace
generations also capableof handlingproblemswith morethan 100 philosophers.In fact, as statedbefore, one
combination provides a state space size that grows linearly with the number of philosophers [23]. To our knowledge
the only other work that reports a more favorable outcfimanalysisof this problemis the work of Valmari and
Tienari [35] using a semanticmodel called the Chaos-Fred-ailures-Divergence€CFFD) model. Their approachis
compositional, in a way similar to that of the PAL system [15]. By using a combinatisongdositionalanalysis
and induction, Valmarand Tienari are ableto analyzethe dining philosopherssystemby generationof a constant
number of states. Although this work is importahg technique'sffectiveneson otherexampless not yet clear
and the results cited require a manual step in recognizing the use of induction. Also, it is uncleartidgipeof

2C

inductive step leading toonstantstatespacesize for the dining philosophersexamplecan be easily automatedor
general usage. In contrast, our analysis work using net reduction and state space reduction is fully automated.

In comparinganalysistime for the constrainecexpressiorand PAL tools (which is aboutall that canbe
compared for these methods)e find that our analysisis as effective, or more effective, than the othertwo tools,
depending on which state space reduction method we use following net reduction. At this time, no singleasethod
establishedlefinite superiorityin termsof automateddeadlockanalysis. Continueddevelopmentand comparative
studies are clearly necessary.

8. CONCLUSION

It is commonly acceptedthat a major impedimentto static analysis of concurrentprogramsis the
complexity associated with producingriousforms of statespacerepresentations.We have presentech method
for dealing with this matter by optimizing the model, which is based on two key ingredients: focusieagtmek
as a specific analysis issue, and adapting an existing model-reduction technique, Petri net rethisti@sultis
part of our ongoing research into using Petri nets to support automated analysis of Ada taskingmutieadeel
by the belief that thereis muchto be gainedby basingAda tasking analysisresearcton a model that is both
theoreticallymature (and also continuesto be widely and actively studied)and is already supportedby many
available tools. By combining Petri net theory and knowledge of Ada tasking semantics, we derived some domain-
specific, and thus efficient, reduction rules for Petri net models of Ada tasking.

Generallyit is error-proneto constructa model and optimize it manually for programanalysis. |t is
critical that the model producedreflect the program'strue behavior,not some behaviorthat a programmer(or
modeler) desires or thinks is true tihie programin question.Furthermore model optimization can benefitfrom
an understandingf the analysisissuesthat are germaneto the program. Compiler techniquescan supportthe
automationof building correctmodels. But the combinationof model building and model optimization adds
another dimension of difficulty, considering that the issues to be analyzed may vary widely. We apply a two-phase
methodology to fully automate modeling and optimization: first deriving a semanticallgpnddelindependenbf
any specificanalysisissue,andthen manipulatingthis modelwith algorithmsthat are designedor the specific
analysisissueof concern.We haveobservedhat the reducedAda net modelsare a promising aid to deadlock
analysisof concurrentAda programs,especiallywhen usedin combination with other reducedstate space
generation methods.

ACKNOWLEDGMENTS

We thank Mr. M. Goto for his help with developmenbf the net reductiontool and U. Buy for helpful
suggestions on many aspects of this paper. We also thalfloluwhg for providing us with a copy of reference33.
Finally, we thank the referees for their very valuatdenxmentsthat havegreatly improvedthe paperboth in terms
of technical content and presentation.

21

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

J. Reif and S. A. Smolka, "The Complexity of Reachabilitypiatributed CommunicatingProcesses,Acta
Informaticag Vol. 25, 1988, pp. 333-354.

T. Rauchleand S. Toueg, "Exposureto Deadlock for CommunicatingProcesseds Hard to Detect,”
Information Processing Letter¥ol. 21, 1978, pp. 63-68.

R. N. Taylor, "Complexity of Analyzing the SynchronizationStructureof ConcurrentPrograms,"Acta
Informatica 19, 1983, pp. 57-84.

R. N. Taylor, "A General-Purpose Algorithm For AnalyziGgncurrentPrograms,"Communicationof the
ACM, Vol. 5, No. 5, May 1983, pp. 362-376.

D. L. Long and L. A. Clarke, "Task Interacti@draphsFor ConcurrencyAnalysis," Proceedingsf the 11th
Int. Conference on Software EngineeriRittsburgh, PA., May 1989, pp. 44-52.

S. M. ShatzandW. K. Cheng,"A Petri Net FrameworkFor AutomatedStatic Analysis of Ada Tasking
Behavior,"Journal of Systems and SoftwaBe Dec. 1988, pp. 343-359.

G. Avrunin and J. Wileden, "Describing aAghalyzing Distributed SoftwareSystemDesigns,"ACM Trans.
on Prog. Lang. and System#ol. 7, No. 3, July, 1985, pp. 380-403.

G. Avrunin, U. Buy, J. Corbett,L. Dillon, andJ. Wileden, "Automated Analysis of ConcurrentSystems
With the ConstrainedexpressionToolset," IEEE Trans.on SoftwareEngineering Vol. 17, No. 11, Nov.
1991, pp. 1204-1222.

T. Murata, B. ShenkerandS. M. Shatz,"Detectionof Ada Static DeadlocksUsing Petri Net Invariants,"
IEEE Trans. on Software Engineeringol. 15, No. 3, March 1989, pp. 314-326.

S. M. Shatz, K. Mai, C. Black, and S. Tu, "Design and Implementation of aN&tBasedT oolkit for Ada
Tasking Analysis,'|EEE Trans. on Parallel and Distributed Systeviol. 1, No. 4, Oct. 1990, pp. 424-441.
C. Black, S. M. ShatzandS. Upp, "TQL: A TaskingQueryLanguagefor ConcurrentProgramAnalysis,"”
Proceedings of the 12timt. Conferenceon Distributed Computing SystemsYokohama,Japan,June1992,
pp. 382-389.

A. Blakemore and G. Schebella, "Tools for Analyzing Dynamic Properties of SysteéBoftwareDesigns,"
Proc. of the IFIP XI Congres$an Francisco, Ca., 1989.

G. M. Karam and R. J. Buhr, "Starvationand Critical Race Analysis for Ada,” IEEE Trans. Software
Engineering Vol. 16, No. 8, August 1990, pp. 829-843.

W. J. Yeh and M. Young, "Compositional Reachability Analysis Using Process Alg&boe,"of the 1991
Symp. on Software Testing, Analysis, and VEFAYV), Victoria, B. C., Canada, Oct. 1991, pp. 49-59.
W. J. Yeh, Controlling StateExplosion in ReachabilityAnalysis PhD Dissertation,Dept. of Computer
Science, Purdue University, Aug. 1993.

J. C. Corbett, "Identical Tasks and Counter Variablesin an Integer Programming-Basedpproach to
Verification," Proceedings of the 7th Int. ACM Workshop on Softvgecificationand Design Dec. 1993,
pp. 100-109.

M. B. Dwyer, L. A. Clarke, and K. A. Nies, "A Compact Petri Net Representatiorfor Concurrent
Programs,'Proceedings of the 17th International Conf. on Software Engineedimgl, 1995, pp. 147-157.
R. Enders, T. Filkorn, and D. Taubner, "Generating BDDs for Symbédidel Checkingin CCS," Proc. of
the Workshop on Computer Aided Verification (CAM)91, pp. 263-278.

22

[19] J. Burch,E. Clarke,K. McMillan, D. Dill, andL. Hwang,"Symbolic Model Checking:1020 Statesand
Beyond,"Proc. 5th Annual IEEE Symp. on Logic in Computer Scieh@@0, pp. 428-439.

[20] A. Valmari, "A Stubborn Attack on State Space Explosion," Proc. Workshop on Computer-Aided
Verification LNCS 531, Springer-Verlag,New York, pp. 156-165,1991. Also in Formal Methodsin
System DesigrKluwer Academic Publishers, Vol. 1, 1992, pp. 297-322.

[21] P. GodefroidandP. Wolper, "Using Partial Ordersfor the Efficient Verification of Deadlock Freedomand
Safety Properties,Formal Methodsin SystemDesign Kluwer AcademicPublishersVol. 2, No. 2, April
1993, pp. 149-164.

[22] P. H. Starke,"ReachabilityAnalysis of Petri Nets Using Symmetries,"SystemsAnalysis Modelling and
Simulation Vol. 8, pp. 293-303, 1991.

[23] S. Duri, U. Buy, R. Devarapalli, and S. M. Shatz, "Application and Experimental Evaladtistate Space
Reduction Methods for Deadlock Analysis in AACM Trans. on Software Eng. Methodolpyyl. 3, No.
4, Oct. 1994, pp. 340-380.

[24] J. L. PetersorRetri Net Theory and the Modeling of SysteRrentice-Hall, Englewood Cliffs, N. J., 1981.

[25] K. Gostelow,V. Cerf, G. Estrin andS. Volansky, "Proper Terminationof Flow-of Control in Programs
Involving Concurrent Processegfoceedingof the ACM Annual Conf, Vol. I, Boston,Aug. 1972, pp.
742-754.

[26] G. Berthelot,"CheckingPropertiesof Nets Using Transformations,'G. Rozenberged), Advancesin Petri
Nets 1985LNCS 222, N.Y., Springer-Verlag, 1987, pp. 19-40.

[27] T. Murata,"Petri Nets: Properties Analysis and Applications," Proceedingof the IEEE, April 1989, pp.
541-580.

[28] United StatesDepartmeniof Defense ReferencéManual for the Ada ProgrammingLanguage ANSI/MIL-
STD-1815A-1983, Feb. 17, 1983.

[29] D. Helmbold and D. Luckham, "Debugging Ada Taskifpgrams,"IEEE Software Vol. 2, No. 2, March,
1985, pp. 47-57.

[30] S. M. Shatz,S. Tu, T. Murata,andS. Duri, "Theory and Application of Net Reductionfor Ada Deadlock
Analysis," Tech. Report, Dept. of EECS, University of lllinois at Chicago, Oct. 1993.

[31] E. T. MorganandR. Razouk,"Interactive State-Spacé\nalysis of ConcurrentSystems,"IEEE Trans. on
Software Engineeringvol 13, No. 10, Oct. 1987, pp. 1080-1091.

[32] M. Young,R. N. Taylor, K. Forester,and D. Brodbeck,"IntegratedConcurrencyAnalysis in a Software
Development EnvironmentProceedings of ACM SIGSOFT'89, TAVK@y West,Florida, Dec. 1989, pp.
200-209.

[33] M. Young, R. Taylor, D. Levine, K. Forester,and D. Brodbeck,"A ConcurrencyAnalysis Tool Suite:
Rationale, Design, and Preliminary Experiendethnical Report, TR-128:Boftware Engineering Research
Center, Purdue University, Oct. 1992.

[34] S. Duri, U. Buy, R. Devarapalli, and S. Shatz, "Using State Space Reduction MethBaadtowckAnalysis
in Ada Tasking," Int. Symp. on SoftwareTesting and Analysis Boston, Mass., June 1993, pp. 51-60
(Reprinted inACM Software Engineering Notégol. 18, No. 3, 1993).

[35] A. Valmari andM. Tienari,"An ImprovedFailuresEquivalencefor Finite-StateSystemswith a Reduction
Algorithm," Proceedingsof the 11th IFIP Working Group 6.1 Symposiumon Protocol Specification,
Testing and VerificationStockholm, Sweden, North-Holland Pub., June 1991, pp. 3-18.

23

Ad E Ada net Net Reducti
a FETS _ i ucti on
Speci fication - i(Pe”I net) (NRT Tool)
!
[)
[)
User .
Queries
—_—
Bl DS | nvari ant
- Cal cul ati ons
Response
Reachabi lity
G aph
Tool s

Fig 1.1 The TOTAL Toolkit Architectul

ack_entry Operator_4

select_23

t23,124 ,16,t7,115,t16,t28,t29

ack_entry_Pump_25 k_entry_Customer_29

t13,t25,t26,t4,
t5,t32,t33,t21

accept_7

t9,t30,t31,t10,t2,t3,t17,t18,
t8,119,t12,t32,t33,t21

accept_13

O

Fig 2.3 Fully Reduced Net Model of the Gas Station Program at Des

24

() entry

entry_begin

<'> wait_ack

ack_accept

ack entry

entry_end

(a) An Entry Cal

Note for Labels:

i is the entry call statement

number; | is the accept
statement number.

ack_entry

entry_ex_j i

ack_accept

accept
Q

accept

accept
body

-accept

@D
>
L S

accept_done

(b) An Accept witt
Accept Body

<'> entry

entry_begin =

ack

<'> wait_ack

ack_entry accept

accept

accept

entry_ex_j i body

end-accept

accept_done

| accept

entry_end

(c) A Rendezvou

Fig 2.1 Net Structures for Entry Call Statements and Accept State

(O begi n-21- Qper at or
begi n- 2- Qust omer t20

O . I oop- 22
t21
C Dloop-3
t2
sel g

entry-Qoerator-4 ()
(O

t3 t23 () begi n- 11- Punp

O t11

hai t - ack- Qper/fat or - 4 | oop- 12)
@ t12 \
aek2s C) accept-13
entry-ex- 24 @
. t13
wai t - ack-
()

ack- accept - Punp- 25
end- accept - 26

(D

ack-accept - Qpeyator-4()

1—t10 ta

tS

t 26 () accept - 14
CQ

énd- sel ect - 31
t32
(P entry-punp-5 C D end- | oop- 32

()-ack-ent ry- Punp-5

C Jwai t - ack- Punp-5 t14
t6 C) accept-15

t

t7 t15 1

entry- Qperat or- 16
k Purp- 6
ack-entry- -
y-rinp t16

@) vai t - ack- Punp- 6
ackf ent ry- Qper at
ack- accept - Punp- 6

wai t -
entry-ex-15-6 (@) ack-
Qper at o!\- 16

accept -7

\

end- | oop- 8

Label Abbreviation:

aeO4: ack-entry-Operator-4

ack-accept - Qperator-1
aeP25: ack-entry-Pump-25 pt-Cp

end- accept - 17

Fig 2.2 Original Ada Net of the G&s

CHatinmn NrAaAaranms A+ NAAAIAAL

g

Fig 3.1 Post-Fusion of Transitio

Fig 3.3 Serial-Fusion of Transitio

27

(O begin_2 T: () begin_6_T: () begin_11_T:

9
entry T2 : () entry_T2_1.
t
2 t10

entry_ex_7_‘

wait_ack T2 <'>

ack_accept T2

end Tz

Fig 4.1 (a) Original Ada Net of Example -

begin_2_T: begin_11_T:
begin 6 T:

end_T1 end_T: end_T?

Fig 4.1 (b) The Reduced Net of Fig 4.1

28

g (another accept-place)

p (an accept-place)

Fig 4.2 Redundancy of an Accept-PI

begin 2 T1 begin 6 T2 begin_11 T3

totot, togat
124 537 th tetlotiotgtys

end T2

end T1 end T3

Fig 4.3 Further Reduced Net of Example

29

begin_2 Customer

begin_21 Operator

t1,t2,t3
select_23
ack_entry Operator_4

ack_entiy Pump>

t23,t24 t6,t7,t15,t16,t28,t29

ack_entry Pump_25

begin_11 Pump / entry_Customer_29

t13,t25,t126,t4,
t5,t32,t33,t21 accept_?
t9,t30,t31,t10,t2,t3,t17,t18,
t8,t19,t12,t32,t33,t21

t11,t12

accept_13

Fig 6.1 A Reduced Net Model From Fig

@ T1 -@ T2 .@L.@

STATES: TRANSITIONS:
0: select_23,ack_entry_Operator T1: t23,t124

accept_13 T2: t13,t25,t26,t4,15,t32,t33,t.
1: ack_entry_Pump_25,accept_1 T3: t14,16,t7,t16,t28,t29

2. ack_entry Pump_5,select 23
3. ack_entry_Customer_29

Fig 6.2 The Reachability Graph of the Reduced Net (Fig

3C

