CMU-CS-R5-185

i arn:d Reférence Manual

DYPAR-: Tutofia

December 1985

Mark Doggs, Jaime Carbonel!, Mation Kee and [ra.Monarch
Department of Compuier Science
Carncgic-Mellon University . .
Schenley Park ‘
- Piusburgh, PA 15213

DEPARTMENT

of o
~OMPUTER SCIENCE

Garnegie-iMellon Umv@a‘ésw

CMU-(5-935-195

DYPAR-I: Tutorial and Reference Manual

Deccimber 1985

Mark Boggs. Jaime Carbonell, Marion Kee and Ira Monarch
Department of Computer Science
Carnegic-Mellon University
Schenley Park
Pitisburgh, PA 15213

Copyright © 1985 Mark Boggs, Jaime Carbonell, Marion Kee & Ira Monarch

This research was supported in part by a grant from Digital Equipment Corporation

R R R e R S UL SR T

n - e TE T arete e
u Y BRI D i e . '
|
| .
‘ .
i
(:)
‘\

TARLLE OF CONTENTS

Table of Conients

One INTRODUCTION

1.1. What is DYPAR-I?
1.2. Objectives of Natural Language Interfaces
1.3. About This Manual
1.4 The Parsing Strategics of DYPAR-I
1.5. Disclaimer and Future Relcases
Two RULES AND OPERATORS

2.1, Patierns and Operators
2.1.1. Some [asic Operators
2.1.2. Variable Assignment

2.2. Rules in DYPAR '
2.2.1. Rewrite Rules
2.2.2. Top-level Rules
2.2.3. Transformation Rules

2.3. Additional Operators
2.3.1. Trerative Operators
2.3.2. Variable Reference Operator
2.3.3, ‘Maich-Undl’ Operators
2.3.4. Unordered Match Operator
2.3.5. Negation and Scan Operators
2.3.6. Wildcard (Niladic) Operators

2.4. Mormphology

2.5. Operator Summnary

Threas BUILDING A "REAL" GRAMMAR

1.1. The Semantic Network
3.1.1. Network Functions
1.2. Groundwork
3.3, Writing the Grammar
3.3.1. Queries
3.3.2. Assertons
3.3.3. Commands
3.3.4. Negation
31.3.5. Transformations
Four VARIABLE ASSIGNMENT
4.1, The Repetitive Variatle
4.1.]. Accessing Inewvars
4.7, Variable Coercion
4.2.1. Map into a Value
42.2. Function Calls

DYPAR Parsing System

—t
) o0 ~) Ch h b B L [R e e

—
— o e bt e e e
L N N N e e = =

L I R S S e i
~ A oo e -]

[N IS I SO SN S
o0 oo 3 ~1 ~J

4.2.3, Exura Variabics
4.2 4, Incwvyars revisited
Five EXTENSIBILITY

5.1, User-Defined Operators
5.2, Predefined Extension Functions
5.3. Simple Extensions
‘5.4, Complex Extensions
SiX INSTALLATION

6.1. Source [Files
6.2. Compiling the Sources
6.3. Installing DYPAR
6.4. Loading DYPAR Grammars
6.4.1. L.oadgra
6.4.2. L.oading Saved Grammars
6.5. Running DYPAR
6.6. Variables to Control Behavior
6.7. Using Dypar
6.7.1. Inputting Sentences

Seven MULTIPLE MATCHES
7.1. Non-IJcterministic Parsing
7.2. Internally Ambiguous Matches
7.3. Externally Ambiguous Matches
7.4. Changing Default Behaviour
7.4.1. Reordering Mecthods
7.4.2. New Strategies
Eight ADVANCED TOPICS
8.1. About This Chapter
8.2. Deterministic Disjunction
8.3. Deterministic Optionality
8.4, Internal Grammar Representation
8.5. Pattern Storage
8.6. Cross-Referencing
8.7. Punctuation in Depth
8.7.1. Debugging Grammars
Appendix A. PUNCTUATION CHARACTERS
Appendix B, DYPAR QUICK REFERENCE GUIDE
Appendix C. SAMPLE GRAMMAR
Appendix D. BNF FOR DYPAR-I--Internal Form
Appendix E. ANSWERS TO EXERCISES
Appendix F. HISTORY & CREDITS
Index

DYPAR Parsing System

TABLE QU CONTENTS

29
- 29
31

31
31
33
34
35

35
35
36
36
36
36
37
37
37
38

41

41
41
41
41
42
42

43
43
43
43
44
45
46
46
46

48

51

55

58

61

67

51°]

LT A R
Sk

i T T EE

gty s TR TR

LIST OF TARLES

L

list of Tables

Table 2-1: Basic DYPAR Grammar Operators
Tabic 2-2: DYPAR Grammar Rule Types

Table 2-3: DYPAR Operator Summary

Table 3-1: Number of Possibic Ways to Match Rules
Tabte A-1: Punctuation Character Mappings

DYPAR Parsing System

~n

Sasigp R

- e 3

iii

p\s]

20
49

DYPAR Parsing System

M A T TR A S W P
Tt mm e S VR S

EXERCISES

N

EXERCESES

Exercise 2-1:
Excreise 2-2:
Excrcise 2-3:
Exercise 2-4:
Excrcise 4-1:
Excrcise 4-2:
Excteise 5-1:
Excreise 5-2:

Exarcises

DYPAR Parsing Systemn

e e s o g -t e

16
16
16
16
30
30
34
34

i
|
\
i
|
‘
|
| .
i
- Lo
e

ISPRODILCTION

One

INTRODUCTION

1.1. What is DYPAR-I?

DYPAR-] is a rule-based natural language interpreter, adaptable to many limited-domain applications such
as data-base query, command intepretation for software systems, and simple cxpert system command and
query tasks. DYPAR-is nor designed to parsc full. unrestricied natural language text: such systems do not
yet exist. Rather. fts primary abjective is o serve as a high level programming ool making it possible for
anyone Lo write a grammar for a specific application. The tutorial portion of this manua! introduces the basic
grammar writing skills. which are subscquently illustrated in a fully worked-out example grammar that serves
as a natral language query and update interface to a simple semantic-network data base. Appendix B, a
reference section includes alt the basic and advanced operators and features of DYPAR-L

DYPAR-] is implemented in FRANZ LISP, and runs under VAX UNIX or VMS/EUNICE A
COMMON LISP implementation has just been completed. DYPAR-] is a proper subsct of ather, more
powerful parsers of the DYPAR family, culminating in the as-yct-unrcleased DYPAR-IV, under
development at Carnegic-Mellon University. DYPAR-I with 2 fair-sized grammar interpreis sentences in real
time on a lightly Joaded YAX-11-780.

1.2. Objectives of Natural Language Interfaces

Human-compuler interaction plays an increasingly significant role in the design of sofiware systems, be
they Al-based expert systems, packaged utilities, data base managers, or interactive help-systems. Natural
language provides a convivial interface requiring Tittle or no user training. providing flexibility of expression,
and allowing the user to focus his or her cognitive energy lowards achicving the underlying task.
Unlortumately. computer interpretation of nawral language has proven a difficult wask. one which has in its
gencral form resisted a comprehensive solution. Restricted forms of namural language, however, have proven

tractable (o computational approaches, such as the methods incorporated in DYPAR-L

The central objeciive in most natural Janguage interfaces is to provide sufficient coverage of those aspects of
natural language pertnent to the range of tasks performed by the underlying system. rather than achieving
full coverage of all natural language. Additional design objectives inciude cfficient perfortnance, some
measure of portability to new domains, conciseness of expression for grammar rules and extensibility of the
grammar. DYPAR-] strives Lo achicve these objectives, and fulfills some of them much belier than previous
language inicrpre(ation syslems. .

There are basically three types of people who work with natural language interfaces: 1) The designers and
implementers of the system itself, 2) The grammar-writers and systern maintainers at the installation site. and
3) The end users. As we noted carlier, it takes virually no special training Lo be an end user of a language
interface: therein lies its primary virtue, Designing and implementing a new natural language interpreteris a
difficull tme-consuming process that requires a high Jevel of expertise. However, writing a grammar for a
new domain or extending the capabilitics in an existng domain requires. first and foremost, the ability 0
write and adapt grammar rules. 1t is preciscly this skill that the present document is designed to impart We
strongly recommend that the reacder oblain hands-on cxperience by working through the examples in the
wtorial and typing some of thern into the sysiem, as well as experimenting with his or her own grammatical
constructs. 1 is a fantastic fecling when a grammar is compieted and the sysiem actually takes instrucyons in

natural language!

1.3. About This Manual

This document is 3 combination wtorial introduction to DYPAR-I and reference manual. To this end,
there are some remarks in the tutorial scction that are meant for those with backgrounds in LISP
programming and ather technical areas. However, the presence of such material shuutd not alarm anyone
who is pot familiar with it it is simply there for the benefii of the more cxperienced. We are conlinuing Lo

DYPAR Parsing Sysiem

LB g Laeemiebe dttaldota Y
ayy -t T T

2 INTRODUCTION

modify the witerial o make itmore understandable t thase who do not have 4 computer science background.
On the other hand, 0 avoid unnecessary distraction for those who do know LIS many explanatory
comments an function names, cic., are contained in footrotes instead of being incorporated into the primary
text. It is strongly sugaesied that serious arunmar-writers who lack a knowledge of ISP pequire some
Familiarity with it Being abie w understand how and why DYPAR docs what it does will gready improve
onc’s comprehension of the scope of 1DYPAR's abilitics. as well as making il casier o write working
grammars, [n other words. the footnotes and other explanations of LISP functions arc intended to be
introduciory in nature, not a blanket substitute for knowing LLISP.

In general, Chapters T'wo and Three of the manual make up the wtorial section, and the rest comprise the
reference manual. The tutorial is essendally self-contained, explaining cach type of grammatical construction
you can build. and showing how it is used in recognizing English input. 'The advanced features discussed in
the reference manual should be used only alter attaining a basic understanding with the witerial part of this
document. Some knowledge of LISP on the reader’s part is assumed in the reference imanuval, and in gencral
arammar debugging is made easier by being able to understand some of the inner workings of DYPAR-L

1.4. The Parsing Strategies of DYPAR-I

DYPAR-1 is a three-strategy parser. Those readers familiar with the natural language literature will
recognize these stralegies as recursive pattern-matching, semantic grammar interpretation and string
transformations. Syntactic generalitics can be capturcd by the transformations. The combination of recursive
pattern matching wi{lh scmantic grammar constructs yiclds a more powerful mechanism than either method
provides in isolation.

Waitl Don't put the tutorial down yet! That last paragraph was meant only te set some context for the
computational linguists among you. You can build grammars and use DYPAR-] without worrying about the
technical jarzon, as we will use a minimal amount of it throughout this decument. And, you nced not be a
linguist to devise your own grammars and cncede thom as DYPAR-T rules.

1.5. Disclaimer and Future Releases

For future releases of DYPAR-L, and newer versions of this document send ARPA mail to
Marion. Kee@CAD.CS.CMU.EDU, or write to:

Marion Kee

Department of Computer Science
Carnegie~Mellon Uriversity
Pittsburgh, PA 15213

Since DYPAR is under active development, neither the authors nor Carnegic-Mellon University guaranteé‘
complete accuracy, performance, or compatibility of any DYPAR release or this manual,

1'l'he newer DYPAR-11 and DYPAR-IV sysiems add recursive case-frame inslantiation at the seniential and noun-phrase levels,

DYPAR Parsing System

e,
.

e

LU IS AND OPERATORS o 3
Two RULES AND OPERATCORS

The Basic Tools

e griamumar writer instructs DYPAR to recognize and interpret English sentences by buiiding grammars,
Kach grammar is q sct of rules interpreted by DYPAR that cnable the system o manipulate a limited sct of

English sentences.” The grammar writer decides which classes of sentences he or she needs to have DYPAR
recognize, and then builds rules that recognize these and others like them. Three distinet types of rules are
used in building a grammar:

e Top-icvel (Production) Rules
e Rewrite (Nonterminal) Rules

o Transformation Rules

Top-level and Transformation rules consist of sentence templates and associated actions that are carried out if
the template matches the user's input. Nonterminal nules are the building blocks which make up the
tempiates. Before examining complete rule structures, iet us look at the basic component of all the rules: the

patiern.

2.1. Patterns and Operators

Most of the natural Janguage parsing systems in existcnce make some use of pattern macching. DYPAR
makes rather substantial use of recursive’ patiern matching. Each DYPAR rule consists of a patternn 2nd an
action. If the paticra is successfully matched, the action-side of the rule is exccuted. In this section we will
focus on the structure and creation of recursive patterns, and in the next scction we will show you how to
write rules using these palterns.

Pawterns are lists, which are composed of ferninal symbols (ie. words, numbers, and punctuation
characters), special operators, and other patterns. Because the pattern is a List, it is enclosed in a set of
parentheses.

(PATTERN)

The DYPAR pattern matcher takes the patterns provided by the grammar writer and matches them gne at a

.

2We will use the word “senlence” rather loosely in this document to mean whalever the person using the system might type, ie. any
set of words, phrases, utterances, or Iull seniénces which have meaning within he application domain. Alse, DYPAR is not limited 10
use with Engiish. With minor modifications, DYPAR-1 cn be used with most Indo-European languages which employ the Roman
alphabet '

3'Rm:ursion is a method of doing semething Tepeatedly. An understanding of recursion is not strictly necessary for the production of
DYPAR grammars, but would be helpful. A recursive procedure gocs #bout solving a problem by simplifying it a fille and then calling
iisell on Lhe simplified version of the problem. The cal to itself is embedded: i.e., the procedure s not over and done with when it calls
fisel? again. {In this way it differs from a procedure that i merely repeated over and over again, a echnique known as iteration). A
recursive function is “on hold"” until it receives the tesulis returned Lo it by this copy of itself. It may then perform additional sieps using
both its own resulls and those returned by the embedded copy. O course. the copy wili also call isell, and 50 on. Both recursive and
iterative procedures inciude canditiens that. when satisficd, will cause the operalion to stop repeating itselll. Otherwise they would goon
repeating ad infinirum. As applied 1o pautern matching, recursion allows pauterns themselves 1o contain other patterns ¢mbedded in
them: the panern matcher will simply call itsedf again for every level of the paltera.

DYPAR Parsing System

P S IRIPIRGER: > ST PR ek Aok oo PN o SRR L LIt S 154 1 L S

-4 RUT ES AND OPERATORS

time. in the urder given, against the user's mpul The special aperators cause the pauern mateher w behave
in subtly dilerent nways (ather than st dght word-for-word matching of input w exminal symbuols in
pattern}. thus aliowing for a greater scope orcxplc:ssmu

2.1.1. Some Basic Operators
‘the simplest patierns arc those containing only terminal symbols. Such patierns must be matched h[cmllv

by the user's input. That is, a pattern like:
(ths athlets) '

will only match "the athlete,” and not "the sportsman,” “the ballplayer,” or "the jock.” I we wish to have the
pattern matcher recognize alt of these inputs interchangeably, we use the disjunction operator, a vertical bar
‘I'. Our new pattern would be:

{the {athlete | sportsman | ballplayar | jock))
and would match both e initial example and all of its variants listed above.

IF we_also wished to recognize inputs where the user neglected to enter the article ("the" in our example) we
could use the optionality operator, a question mark "7, to write the pattern as follows:

(.’itha {athiete | sportsman | .ballptayer | jock))

‘7 has the effect of making the expression immediatcly following it (no space is ieft in between) into an
optional constituent of the overall pattern, It may be used on any single terminal symbol or pattern. This
means that successful matches of the pattern ¢an occur in cases where the optional clement(s) are in the user’s
input. and also when they are not present. Our npew pattern matches everything the sample disjunction
patiern maiched, as well as "athlete,” "sportsman,”™ "ballplayer,” and “jock.”

Notce that in the example above,
(athlets | sportisman | baliplayer | jock)

is an embedded patiern, and has its own set of parentheses, This is to ensure that the ' operator is grouped
unambiguously with its arguments. Most DYPAR operators require such grouping, and the grammar writer
should assume it for any opcrator unless otherwise stated. However, the optionality operator '7 is an
exception to this general rule. There Is no question as to where jts argument begins or ends because it works
onty on whdtcvcr expression follows it. The outer parcntheses in our example are present 0 satisfy the rule
that all patierns must be Jists, not to set off ‘7the’ as a separate operator-argument pair.

Sometimes all the variants that would sarisfy some patiern cannot be specified in advance. For these cases,
DYPAR provides a wildeard operator, represented by a dollar sign *$', which will match any word or numeral
in the mpsut '$' is a special type of operator, one that, unlike *7" and ‘[, does not expect a subpatiern as an
argument’. This type of operator is referred to as a niladic operator. Any DYPAR operator which is prefixed
with the ‘$' character is, by convention, a niladic opcra[or Here is how '§" would be used in a pattern by
jtseif:

(5)

This pattern will matchi any single word. but not groups of more than one word. This example is shown
enclosed in parentheses because al] patterns must be lists. However, when uscd inside another patern, any
niladic operator may stand alone without parentheses, since it 112s no arguments,

4“’]‘1@11 a paltern does not match the input, the maicher stops using that pattern and the templale it was part of, and tries another
template. 1M no (emplate in the grammar matches the sentence, then the parse has [ailed and the parser will print oul a message to that
effect If the enlire sentence is successfully matched by 2 template, the parse succeeds and the parser wiil czrry out the zciion side of the
male comaining that Lemplate. ‘

3A DYPAR subpatlern can be another DYPAR pattern {in which case it is embedded beczuse it is contained within the outer patiern},

or one or more lerminal symbols, or 2 wildeard operator, or some combination thereof. It is called 2 subpatiern simply because it is
inside another pattern. Mest DYPAR operalors take a subpattern as their argument

DYPAR Parsing System

O A L s R T

RULES ANDOIFRATORS 5

Anather operator, ¥ is used o0 aflow (he same patlern W be matched in the user's input an arbitrary
number of doves (including 0). Ty other wards, ™ wlls the mateher w try the pattern over and over amin
antil it is unable to consume any more of the user’s input. Apy operater, such as ", that allows multiple
matches of its patcern argument is called wn iterative operator, ¥ is e same as the Kleene Star used in
Regular Expressions. (If you have never heard of 2 "Kieene Star,” don't worry, Its mathematical properties
are of na relevance here.) * uses the form:

(* (war | famine | disaster))

“I'his pattern would malch “war war war war .. Udisaster war famine,” " famine disaster,” ctc., and of course
nothing at all. The ** operator can be used in conjunction with the "$" operator to atlow matches of arbitrary
aroups of words that would not otherwise be recognized by the matcher,

(* 9

Here our pattesn matches anything that the user could type. and there is no restriction on the aumber of
words matched.

2.1.2. Variable Assighment

Oftentimes it is the casc that we wish to do more than recognize a user's input. We usually want (o
remember something of what was said for laler processing by the sysiem's backend (which, for instance, may
Formulate database query expressions). n DYPAR, a picce of input is saved for further use by assigning it (o
a variable name. This is known as variable assignment, because the variable namc is asstencd the relevant
mput as its value. Then when it is necessary Lo recall the data for some purpose (such as adding. it W a

database). the input thus saved can be called up by using the variable name, a procedure called aecessing the

value of the variable. DYPAR uscs patterns like:
(lvar := PAT)
to assign to the variable ‘Ivar’ whatever part of the user’s input was matched by the pattern ‘PAT. A more
conicreie example is:
(1jeck :» (athlete [sportsman [balipiayar | jock))
which assizns to the variable ‘ljock' as its valuc cither "athleie,” "sportsman,” "baliplayer,” or "jock,”

whichever of these words matched the user’s input. 1f the user does not type any of those words, the variable
is not assigned, as the maich fatls.

In the example above, the patern side of the variable assignment is a subpattern using the disjunction
operator ‘[, [t could also be a single terminal symbol; for example,

{1jock := sportsman)

in which case the variable assignment would only match the word “sportsman”. In fact, the variable
assianment operator's patiern argument can be any subpattern which consumes input’. All of the operators
introduced thus far in the wiorial consume input.

Once a variable has been assigned. the value can be accessed in the LISP environment {and therefore in the
context of a DYPAR rule) by using the variable name. This topic is covered, with examples, in the scctions of
this chapter dealing with DYPAR rules (Section 2.2.2 and Section 2.2.3). There is a special operator, ‘=", for
accessing a variable assignment within a pattern. It is covered in Section 2.3.2. (Those who ar¢ just beginzning
fo learn DYPAR should not feel obliged to refer to these sections untl they encounter them in the normal
course of the tutorial.)

6171:: patiern malcher moves through Lhe user's input (Engalish scm'cnces} one word or number at 2 time, matching each piece of input
to the patterns giver: i by the grammar writer. The matcher keeps track of what it has already maiched by moving a marker (called a
pointer) along the input. When the pointer is moved beyond a word or number in the user’s senlence, the paitern matcher is s3id 1o have
consumed (hat part of the input. Once a piece of input is consumed, it becomes invisible to the pattern mmatcher for the duration of the
malch. Normally Lhe matcher will also forget 2 patlern as sa0n as it matches once, but the ileralive operators allow a patiern 10 be

atched to the input repeatedly.

7For an explanation of what we mean by "o consume input”, sce the footnote on page5.

DYPAR Parsing System

£

L r,

—y

6 RUTTS AND OPFRATORS

e

You may have noticed that the variable names have been prefltxed with the character This iy«
comention adopted i DDYPAR w make variable names stand out (rom terminat symbols in @ gramnar file,
{Oten e variable mune will be otherwise identical o one of the wrminal ssmbols it can stand (or, as i the
"ok example abeve) The U helps w0 avoid conlusion between varjable names and actual words
encountered in the user's input. Chapter 4, beginning on page 27 of this ducument, delves more deeply into
variable assignments and other options a grammar writer has regarding variables and their values.

An important note regarding patierns: All patierns must be written using lower-case letters only! DYPAR
allows upper-casce user input, which it handles by converting it to tower case before matching is attempted.
{Further information on case sensitivity in DYPAR may be found in Scction 2.2.2-0n page 7.)

The set of operators we have just examined should suffice to allow us to move on and look at those rules
which make use of DYPAR patterns. However, it should be noted that the operalors introduced so far arc not
the complete set of operators which DYPAR recognizes. More operators will be inwroduced after the next
section, Table 2-1 recaps the operators that have been discussed se far.

Desired Operation Symbol(s)
Optional Element 1
Disjunct Set |or!
Variable Assignment t=
Wildeard b
Repetition *
(including null) .

Table 2-1: Basic DYPAR Grammar Opcrators

2.2. Rulesin DYPAR

In this section we introduce DYPAR rule syntax. Each rule has a Left Hand Side (LHS) and a Right Hand
Side {RHS) scparated by a svmbol which denotes rule type. Siace the form of the RHS and [LHS of any
particulasr rule may differ with the rule type, we will examine each type of rule individually. Rule types are
surminarized in Table 2-2, on page 9.

2.1. Rewrite Rules)

Rewrite rules define the building biocks of which the other types of rules are composed. A rewrite rule is
used to associate some often used pattern, such as a class of words like articles ("a," "an,” or "the"), with a
symbol (or name for that pattern). We call these symbols noniernninals.

<article> -> (& | an | the)

1n the above example, Carticle>’ is 2 nonierminat whose associated pattern is ‘(a | an | the). The symbot *->'
serves to identify this rule to DYPAR's grammar interpreter as being a rewnte rule. Whenever the pattern
matcher encounters one of these rules, the LHS (in this case Carticle>") is rewritten (or expanded) to be the
patiern associated with (the RHS of) that rule.® You may have noticed that the name of the rewrite rule
("articie") has been surrounded with angle brackets (‘¢ and 7). This is done to easure that there is no
confusion belween nonterminais and literal or terminat symbols (much the same as the justification for the
used to prefix variable names). DYPAR will aot recognize nonterminals unless they are enclosed in angle
brackets! If the brackets are not included, the name wili not be expanded o a pattern; instead, it will be
treated as a terminal symbol

Blmcma]ly the RHS (pattern) of the LHS (rule) is stared as the value of the "rewrite:” propenty of that rule, Thus, the rewrite!
property of <article> would conlain an internalized forra of the patiern {a j an | the).

DYPAR Parsing System

RLI IS AND OFFRATORS 7

Rewrite rules can themselves contain nonterminal symbols in their REISs. We can make up a set of rewrite
rubes (o correspand w the examples we used while introducing the basic eperators: :

¢athlate> ~>» (sportsman | athlete [jock | ballplayer)
Carticley -> (a | en | the)
<jockd =» (?<articled (ljock := <{athlats>))

This rule construction mechanism allows Lthe grammar writer 10 build a hicrarchical base for his top-level
rules. and generally serves as a convenicnt means of avoiding very long and complex patterns. You may have
surmised by now that, through the use of nontenninals, rewrite rules and DYPAR operators can be nested 1o
arbitrary depths inside of cach other. Nonterminals and operators can be used anywhere you wish inside a
patierm.

Sometimes a rewrite fule is used within its own definition. Rewrite rules which reference themselves are
commonly referred (o as recursive rufes. “This is finc as long as the rewsite pattern does not begin with itsclf,
Forinstance:

¢rapeatd -> (& P<rapeatd)

is an acceptable rule that matches one or Imore OCCULTENCes of "a" (although it can be written more efficiently
as (+ 2): sce Section 2.3, on page 10.) However, the pattern:

(bag-repeatd -> (f<bad-rapaat> a)

will not work. The rcason it does not work is that the rewriie pattern for “€bad-repeat>’ begins with itself,
“I¢vad-repear>’. This pattern can never get around (0 matching "a", because it will first try to match “Kbad-
repeat>’, which tries match “)bad-repcaty’, and so on ad infinitum. Patterns like ‘¢bad-repeat>” are called
lefr-recursive patterns. When DYPAR loads a grammar it generates warnings if it detects potentially left-
recursive rewrite rules, and it wilt not try to maich them. This means that if you should happen to write one
by accident it won’t cause the pattern matcher to enter an infinite loop (but it won't work, either.}

2.2.2. Top-level Rules

Top-level rules are central to a gramrmar, because they contain both the pattern scquences (O rgmtch
sentences and the instruciions for whatever action is to be taken when a particular sentence is matched.” The
syntax of a top-level rile is different from that of a rewrite rule. For tap-ievel rules, the LHS is a pattern, and
the RHS is an action to be mken whenever that patiern is successfully matched. ‘The symbeol which significs
dhat a rule is of type top-level is '=>". Patierns used by top-level rules follow the same guidelines we have Jaid
down for rewrite rules, except that in top-level rules the pattern ocCurs in the LHS instcad of the RHS. The
action (RHS) of a top-level rule can be any LISP code which is to be exccuted when that pattern is matched.
(We will cover typical LISP commands in the next chapter.) We haven't defined enough nonterninals yet to
Jet us showcase the typical top-level rule, but a simple example is: :

{is he <jock>)
e 10
(msg "You asked 1f he was a " ljock "7")""

Naotice thar the RHS of the rule can access variable assigninents made in the LHS. One thing this means is
that vou may construct in the RHS a reply to the user which employs the same word he or she used to refer to
a given thing. Also notice that in the R.HS we uscd an upper-case alphabetic character, while we already
warned you that patterns must be written in lower case alphabetic characters. However, messages (0 the user
(which are not evaluated by FRANZ LISP) may contain capital letters, as above.This is because FRANZ

9thn DYPAR-] is used as an integral pari of a mare powerful parsing system, such 25 DYPAR-IY, it is at this level (Lhe senvential
Jevel) that its functions are replaced with thase of the higher-leve! parser. Operators, rewrile tules and even the occasional
transformation fule continue to be used by the more powerful system. ‘

1U‘msg‘ is s FRANZ LISP routine, a macro which prints verbatim that portion of its arpument which is enclosed in double quotes, and
prints the value of any other portion. So 'ljock' evaluates o whatever we sel it toin the LIIS. In this case. that turns out o be whatever

word the user typed in which maiched the nop-terminal called Lathlete>. For example, if the user ped "1s he a baliplayer”, the action
taken by this rute would be to prinl oul to the user “You asked if he was a ballpiayer?”

DYPAR Parsing System

s

S .o e E . . - P N T UL T S T S SR SR RO T
e T A PR g S I e Tt 20 BRARN G TR I T W LN e L et e e Y e e

8 ; RULES AND QPERA TTORS

ISP s case sensitive, which means that it does not recognize the upper-case versivn of a given character s
heing identical to the lower-case versinn, In order to avoid problems with having o differentiute between
capitatized and vncapitalized words wyped by the user, all inpul i converted 1o Tower case before pattern
malching is artempted.

2.2.3. Transformation Rules

T'his type of rule is used to transform certain linguistic constructions into more canonical forms. The
svmbol 12>" tells DYPAR that it is processing a transformation rule. This proves to be a useful means of
simplifying the pattern matcher and semantic grammar application process, especially whea the transformed
constriction can occur in many different contexts. ‘The example we give below is a rule that handles
possessive constructions using "apostrophe s it simplifics them into “of" constructions (e.g.. "John's car”
becomes “car of John™) Although this construction is not generally used in English, it is semantically
equivalent to the more common "apostrophe 5", For purposes of DYPAR parsing. "of" is casier to handle
than "apostrophe s, and in those inslances where "of" is a normal usage {e.g.. "Beuy is the mother of John™)
the same top-level rule can mateh both that usage and the transformed “2postrophe s™ usage. -

For ransformation rules the LHS is a pattern (as it is for top-level rules) and the RHS is a recipe for the
reconstruction of the sentence. The RHS uses calls to LISP to gererate the new senteace. (If you don't know
SP, don't panic. The LISP function "append”™ is by far the most commonly used function for the RHS of

Lansformation rules, and it is the subject of an extensive footnote below.) The following examplc serves 1o

transform possessive constructions (e.g. "Sally's mother”) into "of" constructions (e.g. "mother of Sally™):

{({lbeginning~of-sentsnce := (* §)}

(lpossessor := §)

%apost s

(1possassion 1~ $§)

{1rest-of-sentence := (* $)))

13> :

{append Ibag‘inning-%-sontanca {possession "(of) !possessor
frast-of-santence)

Here the LHS (pattern) consists primarily of a series of varable assignments. whose values are then
accessed by the RHS to reconstruct the sentence in a different order. If you were 1o use this rule in a
srammar, it would reconstruct all inputs containing "apostephe s, If there is no "apostrophe §” in the input,
then the transformation rule fails. For instance, given the sentence “Mary is Sally’s mother, and that is why
tiey look alike.”", DYPAR would match the “apostrophe s" construction in the senience to the "7oapost s”
portion of the pattern. The rest of the pattern would then be matched accordingly: that is, the word 1o which
the "apostrophe s" was attached (‘Saliy’) would become the value of the variable !possessor, and all the words
preceding it {‘AMary is) would become the value of the variable !heginuing-of-sentence. Then the word
immediately following the "apostrophe s (‘mother’) will be the value of !possession, and any words or
~unctuation feft in the sentence (| and that is why they look alike.”) will be the valuc of !rest-ol-sentence.

hen this sentence is reconstructed by the RHS of the rule, it becomes "Mary is mother of Sally, and that is

why they look alike.” Notice that the “apostrophe s" has disappeared entirely. We didn't need to keep it

around. and since it was not assigned to a variable, it was simply maiched and then thrown away by the
patiern-matcher. The fact that the reconstructed sentence may ignore some rules of normal usage is
irrelevant; it is for internal consumpton only, and the meaning is intact.

Transformation rules, then, merely simplify sentences; they do not fill the same functions as top-jevel rules.

111-'RANZ LISP is one of the LISP diatects in which DYPAR & implemented. Tne COMMON LISP version is nol case sensitive.

12‘:1|1pund‘ is a LISP function which stzings together the element(s) of eny number of given lsts into one long list. Here the smaller
lists are represented by variabies (such as possession”), the elements are the wards which Lhe variables stand for and the resulting single
list is the rearranged sentznce. Note Uiat ‘(of} is not 2 varisble. LISP necds Lo recognize it as a list, however, so the word "of is enclosed
in parcntheses. The gnaie mark * in [ront of e parentheses is nccessary to prevent LISP {rom ireating {of) as a function nzme. If you
wrile similar transformation rules, in the RHS you will need to enclose senience elements (words or punctuation) which are not variables
in parentheses, prefaced by a single guole 25 in the above example. Since anything in the original user sentence thal you wish 10 keep can
be assigned a variable name, onky new elements 1o be added in reconstructing the sentence netd special teaiment.

DYPAR Parsing System

('f

RUTES ANDYOPERATORS 9

“The aetion side of a wanstoomation rule merely rearranges e words i the user's inpu 1Y whereas a top-level
rude takes that input (sentence) and performs cerain specific actions according to what the sentencs meant as
4 whole, Soany input (hat is matched and rearranged by a cransformation rule must stll be matched (in its
rransformed version) by a top-level rule.

This example makes use of one more feature of DYPAR:

o DYPAR reads punctuation characters in a special way. -All puncluation characters arc converted
to another [orm at read tme. The symbot "%apost’ is used to represent the character " (referred
0 as apostrophe, acute accent or singlc quote.) Itis important to remember o use the appropriate
DYPAR punctuation symbol when you wish to include a pu nctuation character in a rule, A ble
listing all of the punctuation character o DYPAR symboi mappings is contained in Appendix A,
on page 49. '

Before you go off and write hundreds of transformation nides, a caveat is in order. A transformation rule
should anly be used when it replaces five or more top-level rules. DYPAR will only uy 10 transfonm a
sencence into another form afier all of the twp-level rules have been tried once, and have failed to mateh the
input. This may sound quite time-consuming, but transformation rules (when properly used) can cut down
considerably on the number of top-level rules you will need in a grammar, by making a given top-level rule
work for more versions of asentence. With fewer rules, the grammar will run faster overall,

Transformation rules are cyclic: i.e., the order in which they appear in the grammar files is the order in
which the pattern matcher will try them. 1f one ransformation rule (calt it Rule A) is written such that it will
usa the result of a different transformation rule (we'll call this one Rule B), Rule A should appear after Rule B
in the grammar file. Putting Rule A before Rule B woutd inean that a pass through the transformations will
not make Rule A fire, even though Rule B fires. ™ Rewrite rutes and top-level rules can be placed in any order
the grammar writer desires; they are cross-referenced when the file is loaded and DYPAR will cali them as

nceded.

Rule Type Symbol LHS RHS

Rewrite > {name> pattern

Top-level =2 pattern action

Transformation D pattern sentence
transformation

Tabie 2-2: DYPAR Grammar Rule Types

13However, the grammar writer may add or take away senlance components. For instance, in our example we added the word "of”,
and ook away the "zpast 87,

14For example, our transformation rule Lo change posscssive “aposirophe §" constructions will ransform any “zpostraphe §" it runs
across, in its current form. This means a word such as “she’s”, acluaily a contraction for “she ", will become “of she”, which is not a
desirable result. We could write another transformation rule, which tooked for these "is” contractions {instead of simply for "%apost §™)
and resiructured seriences containing them in an appropriaie way. Thep we would place this rule before the "apostrophe §” rule in the
grammar [file, and it would seplace all the "is” contractions with forms which would not trigger the “apostrophe 8" rule. However, il we
placed the new rule gfier the old one in the grammar file, it would never fire because all the “is™ contractions would have already been
transformed (incorrectiy} by the original rule.

DYPAR Parsing Systerm

7™

- T st T e e T

10| RUIES ANDOPERATONRS)

{
2.3. Additional Operators

In this seetion we introduce the rest of the DYPAR operaters needed to write grammuars, "These aperators.
combined with thuse previously introduced (in Scetion 2.1.1) make up nearly the full sct of DYPAR
opertars. A few operions wre intr 15duccd later on, in the reference manual seetion of this document; most of
them are primarily for internaf use.

2.3.1. lterative Operators

‘The next two operators arc closely related to the ™" operator introduced on page 5. '+ is exactly the same
as ** excepl the pattern must oecur at Jeast once in the user's input. (You may recall that ™ allows matches of
its pattern any number of times, including 0. While ™*' will allow the overall imatch to proceed whether or not
its pattern is present. ‘4" will kill the maich if the first picce of the input it looks at docs not match its

cnibedded pattern.) For instance,

(+ {war | famine | disaster})

would match “war war war war ...", "disaster famine", "disaster”, et., but it would nos match nothing at all.
‘4" can be interpreted as the Kleene Plus used in Regular Expressions. So:

(7{+ {war | famins | disester)))

is equivalent to:

{* (war | famine | disaster))

The other related operator, ‘t°, is used for exponentiation of a pattern. Flere a pattern must oceur a specified
number of tirnes in the user’s input. “t* expects two arguments, the first of which is the rumber of times the
pattern must occur, and the sccond of which s the pattern. Thus:

{+ 2 (war | famine | disaster))

would match “war war,” "war famine,” “war disaster,” "famine war," "famine famine," “famine disaster,”
"disaster war," "disaster famine,” and “disaster disaster,” but not “war” or "disaster disaster disaszer.” ™, '+,

and ‘1" arc the set of iterative DYPAR operators,

2.3.2. Variable Reference Operator

‘=" is the operator used to reference the value of a variable assigned carlicr in the pattern. If we wished
(God knows why) to match inputs like: “sportsman sportsman”™ and "jock jock™; but not like: "sportsman
jock™ and "jock baliplayer”, while still assigning a variable value, we could wriie a pattern.

[{({1Jock <= (athlsts | sportsman | ballplayer | jock)) {= 1jock))

aich would only match if the value assigned to ‘ljock' was repcated immediately in the user's input. Note
that the following pattern will also parse “sportsman sportsiman” or “athlete athlete”, and will assign the same
value to the variable as the pattern above does:

(+ 2 (1jock := (athlete | sportsman | ballplayer | jock}))

However, the two patterns differ when two variants of the disjunct pattern are input. The former patiern does
not parse such input; the later pattera does, remembering only the first value of "ljock’. So if you gave the
input "athlete ballplayer” to the first patiern, you would get back a message that the parse had failed; if you
gave the same input to the second pateern, the maich would succeed and ‘ljock’ would have the value

“athlete”.

15'1'hcse inlernal operators are generated by DYPAR during the cross-reference phase of granumar loading. DYPAR uses themr 1o help
speed up the matching process, and inserts Lhem into the internal-formal form ‘of the grammar. Mare information abou: DYPAR's
internal format may be found in Chapier 8,

DYPAR Parsing System

Loty

RUTES AND OPERATORS ' 11

-2.3.3. ‘Match-Until' Operators - :

The *&u’ operiter consumes input up’ ., but not including, the Tirst suceessful match of its embedded
pattern. tis pattern can be any legal combination of terminal symbols. nonterminals ar operators. For
instance,

¢showd => (show | list] print fout | give)

{&u <show?)

would match the underlined part of "gould vou please show me..". As we will see later, this ability is very
useful when we wish to skip over picces of the user’s input until we reach semething we consider meaningful.
‘&t will fgnore any variable assignments made inside its pattern argument; since it does nut consume the
input which matches its pattern, it cannot assign a variable name to it

The &ui operator is very similar o the ‘&u’ operator, except that it consumes input up.-to and including its
embedded pattern. For instance,

{&ui <show>)

would mateh the underlined part of "could vou please show me .7 Like "&u’, *&ui’ is aseful for skipping
over pieces of user input. It accepts the same broad range of patterns as ‘&u’. ‘&ul’ can be used when you
want to find the meaningful part of the uscr's input. and you don’t know exactly what words that part will
-consist of. If you do know what words arc likely to precede it, and you want 1o ignore them, you can just give
‘&ui' a pattern to match the words preceding the interesting part. It will find those words and consume them
(as weli as consuming any unmatched input before them.) You will then be at the part of the user’s input you
were interested in finding, and can do variable assignments or whatever you wish. (An example of this kind
of use of ‘&ui’ can be found in Section 5.2, under the description of ‘$lisp-function’, beginning on page.32.).

2.3.4. Unordered Match Operator
ILis ofien the case that the uscr has some discretion over the order in which he types certain word groups in

his input. That is, there is eften more than onc way 0 structure what is semantically the same sentence. The
*&c’ operator gives the grammar writer some of this flexibifity. ‘&c’ will match cach of its embedded patterns
in any order they occur in the input. For our example we define two rewrite rules before actually using the
‘&c’ operator:

¢rivery -> {ovar tha river)

{woods> -> (through ths woods)

(<river> &c and &c <woods>)15

This pattern would then match either "over the river and through the woods," or “thirough the waods and
over the river.” The difference between this and the ** operator is that alf of the elements of the pattern miust
oceur once, and only once in the user's input. Think of &c as matching any permutation of its arguments.
Those of vou familiar with case grammars can see the ulity of this operator as it provides a rudimentary case

matching capability.

2.3.5. Negation and Scan Operators
If it is ever the case Lhat we wish 2 match to succeed unless a certain word is present in the input, two closely
related operators are provided. The first is '~". [1s usage is typically;

[~<articia>)

This would mean that at this point in the match (assuming "~<articled” is a pattern element in a larger
paitern) the match will fail if "a," "an,” or “the" is present. The other operator ‘&n’ works exactly the same

way.
(&n <articled)

The differcnce between the two operators is in the effect they have on the matcher’s position in the user's

lsAn allernative fotm for using ‘&’ is (&e (Criver>) (and) ({woods>)).

DYPAR Parsing System

€

.

Far

. . s . - o oA s S TR m ek g
L LI N SR TGN 7 S P Ry WP Lk Vit A PO S L RN Y

12 RLIES ANDQPERATORS

input. '~ consumes the word itis loaking st provided that the word does not maich ils pattern argwment (in
which cuse the overall mateh witl fail, as stated above.) Therefore it is mnst uselul inside of a variable
assigniment statement, such as:

(lward :» ~Carticle>}

This results in ‘lword” being assigned the next word in the input unless it matched <article>’. "&n’ on the
other hand has no cffect ov the position of the matcher. ft is mostly useful for [iltering-out rules in
conjunction with the "&u’ operator,

((&n {Ru <articled)) <sock> . . .)

would cause the matcher to fail if ‘article>” was maiched anywhere in the user's input. [f *Carticle>' does not
occur anywhere i the user’s input, the matcher begins matching Csock>” against the first word of the input.

While the negation operators covered above will kill the mateh if their argument pattesn is present, the &s
operator has 1 - opposite effect. Ttscans the user input for its embedded pactern, and if that pattern is absent,
the match wii iail. 1 °&s’ Minds its pattern, maeching will continue. For instance, the pattern

((&s tima) . .)

will scan the user input for the word "time"; if it finds the word, the match will continue, using the rest of the

‘tern {represented as ™. .."). If "time" is not found in the input, the match will fail immediately, Note that
wis operator does not consume any input, it just scans to see if its pattern is in the as-yet-unmatched part of
the input. 1t will pot move you up to the part of the input where it found the match to its pattern: all it docs is
atlow matching to contimie. This means you must match the pattern in addition to having '&s’ scan for it.
Because it doos not consume input, ‘&s’ is the complement of the ‘&n’ operator (the '~ operator consumes
that portivon of the input which matches its embedded pattern.)

The argument patiern for '&s’ may be made up of any legitimate ierminals or non-terminais in the
grammar, and may include any of the other DYPAR operators. However, using one ‘&s’ inside the argument
of another *&s' is inefficient.

2.3.6. Wildcard (Niladic) Operators
The ‘3r° operator (or remainder wildeard) will match the rest of the inpuwt. 1t is used primarily in
transformation rules to capture what remains of the sentence after the rest of the pattern has matched.

(stap $r)

would match any sentence that began with the word "stop,” no matter which words (including none) compose
the remainder of the sentence. The astute reader will have noticed that both ‘&’ and '$r” can be defined by
either the **' operator or recursive *->' rules. But using '&u’ and 'Sr” dirccily i clearer and much more
efficient.

There is another basic wildcard operator: numeric wildeard, ‘Sn’. ‘$n’ is analagous to '$’ except it matches
only numbers, :

($n)
would be used io match numbers like: "1," "3.14," or "-7."

There are three addidonal wildcard operators described in Section 5.2. However, beginning-level grammars
are not likely to require their use.

2.4. Morphology

The morphology operator. &morph, is used to match a single root word with some set of suffixes™’.
Suppose you were expecting the user’s input to contain information about the reladive size of two objects--for
instance, "The chair on the tight is smaller” or “The chair on the right is the smallest.™ You could write a
pattern

17Prcﬁxes will be implemented in the future.

DYPAR Parsing Sysiem

RHBES AND OPERATORS ' 13

{smaller | smallest)

w0 handle the adjective, hat if you wanted w break down the infermation contiined in cither wurd into the
concept cxpressed by the rool Csmall"y und the concept cxpressed by the ending (compariative o
superlative). you would nced to use an operator that recognized these companents sepavatety, &morph was
ereated to fl1 this need.

‘The grammar writer tells &morph what root word to look for and what suffixes are allowed with the root.
‘I'ne form of a morphotogy pattern is a list whose first element is &morph. “The rest of the pattern consists of
cither one or two tkeyworl pattern’ pairs. For example, a paliern o maich cither the word "smalier” or the
word "smallest” would look tike this:

{amorph :root small :suffix (er | ast))

‘There are two keyword pattern pairs in the example above. The first one is :toot small, where iroot is the
kevword and small is its pattern. The sccond pair is ssuffis (er | est), where :suffix is the keyword, and (er |
est) iy its patiern. Anather keyword, :endings, is a synonym for ssuffix.!® These three {:root. :suffix and
sendings) make up the set of allowable keywords for the ‘&morph’ operater. You can use any DYPAR-I
operator in the pattern argument 1o a keyword, but the most use{ul ones for this purpose are (he disjunction
operator and the variable manipulation operators. With variable assignments, the root of a word and its
ending can be stored separatcly for later use. We will show an cxample of this usage later in this section.

Now that we have explained wvhat ‘&morph’ is for, we will examine how a morphology- pattern is maiched
to a word in the user's input. The pattern matcher at:empts © match the paitern immediately following the
:root keyword to the pussible root words of the current word in tie input. In order to do this matching, the
matcher must find those root words. The matcher’s first step in determining possible root words is to take the
current wosd and check for the following conditions:

o no endings can be taken away
= the word is less than three characters in length

o the word is in the pattern mnaicher's dictionarylg.

If any one of these conditions is met, the current word is considered to be the root word. Otherwise, the
pattern maicher will strip an ending off the word and apply the conditions again, until it gets a word that will
mect one of the requirements. “&morph’ has a list of endings for the various English verb and adjecrive
forms, and for plurals, and will look for these endings on the current word. Any endings stripped from the
input word will be saved for maiching to the pattern(s) foliowing the :endings or isuffix keyword. Should it
be the case that the un(fizered form of the current input word mects one of the above conditions, it will be
martched 'u'nmediatcly.2

If the root word thus obtained does not match the pattern following the :root keyword, the overall match
will fail here. ‘&morph’ knows about spelling rules in English and will automatically take into account such
differences as 'y’ being changed to 'i', or doubled consonants before an ending. No match should fail due to
such spelling changes. Assuming the root does match. the pattern matcher then ties to match the saved list of
endings to the pattern immediately following either the keyword tendings or the keyword :suffix. [fthe match
of ending(s) fails, then the overall match fails.

180nly one of these synenymous Leywords shouid be used in any given morphology patiern.

Alg‘ic matcher's dictionary is explained with the 5d eperator, on page32.

20Ir {he word cxisls in the dictionary in an inflected form (i.e. with one or more endings) that matches the current input, this will
satisfy the dictionary condilion and the current input will be defined as the rool—-whether or not it acwally is the oot form, I this
situation occurs, there will be no ending 10 match to he pattern argument of the :endings keyword. One of Lwo things will then happen:
1: If the patiern argument of the endings keyword is an optional one (e.2., Ned | ing)) the match will still succecd, since il was not
required that the argument to zendings be matched. (Mote. however, thal the input word malched by the pattern araument 1o iroot may
nol actually be the toot) 2: I the pattern argument of the sendingsb keyword is mor optional (c.g., (Tul [iess)), the match will fail, as Lhere
is nothing to malch o this pattem.

DYPAR Parsing System

14 BULES AND OPERATORS

In the case that the grammar writer wishes only 1o check o see i a root word matches, and doesn't ¢are
about whatever endings i may have, the form W use is

(&marph :root small)

When neither :endings nor :suflix is used, then the possible lists of endings generated in the suipping-off
process are not natched against a pattern, If the root word matches, the match will succeed. Conversely, if
for some reason the grammar writer is only concerned with the ending(s) of a particular word in the input, the
form is

(&morph rendings (er | es5t))
or
(&morph :suffix (er | est))

When the :root keyword is not used, then the list of possible root words is generated as above, but is not
matched against a pattern. 1f'&morph’ is used without any keywords it will fail.

Variable assignments are allowed within cach keywerd pattern argument (subpattern), but the variable
reference operator “=" may not be used within one subpattern to access a value assigned within the other

subpattern. (T'here should, in any case, not be any reason to attempt this feat.) Here is an example of the use

“&morph' with a variable assignment to save the root word:
(&morph :root {lwrd := (candy | cook)) :endings (ed | 1ng))

This pattern will match any one of the following user inputs: candied, cooked, candying, and cooking. Note
that it will n10/ match simply "candy" or “cook", as the :endings keyword has a pattern which must be
matched with either "ed™ or "ing". :

2.5. Operator Summary

All of the operators intreduced thus far are summarized in Table 2-3:

DYPAR Parsing System

—
"
[

RULFS AND QPFRATORS

Degired Operation Symbol
Optional Element 7
Disjunct Set | or 1L
Variable Assignment =
Variable Reference =
Wildeard $
Numeric Wildcard &n
Repetition (including nulf) *
Repetition (at least once) +
Repetition {specified number) T
Up-to &u
Up-lo-and-including &ui
Remainder (of input) $r
Scan (rest of input} &s
Unordered &c
Negation{for variable assignment) ~2
Negation{as a filter) &n

' &morph

Morphology

1
Fither af thesc sym bels is sullicient

i
Aceil vatue is 126; use symbo: which has that value,

Table 2-3: DYPAR Operator Summary

DYPAR Pérsing System

- . P I S . . R P, L Sy S puye . Y s et re e am
.. e L R et e SNl meaddblde A n IS I s e e e e A

16 ' RULES AND OPFRATORS

EXERCISES

For information on how to run DYPAR-1 look at scctions 6.4-8.7.1, sarting on page 36 of the manual,
Answers to exercises can be found in Appendix E, starting on page 61

“I'he grammar files you write in doing the exercises must contain & top-level exit rule of the form:
(<axitd (* $)) »> 'exit

Exarcise 2:1: Suppose you asc beginning 10 wrile & natural language interface Lo a dalabase or informalion-retrieval system which
can, for example, represent questions concerning when classes in some schoal meet. 1t turns out that at this school classes can meet from
one 1o five days per week on any day excepl Salurday and Sunday.

2. Comsliuel 2 rewrile nule which represents or covers all the possible days & given class meets and saves this information for tater
processing,

D. Using this rule, write 2 top-level rule which parses questions asking whether classes in the philosphy and compuler science

_Anparunents meel on given days at given times. Suppose that each class can be designaled by a single descriptive word together with a

nber, For example you might write a top-leved rule which recognizes questions jike:

doas phil % meet m w 17
does compsci 201 meet on tu th?

where " w £ can be replaced by any sequence of week days completely writlen oul or abbreviated ina variety of ways.

The aclion 1o be laken on a successfiul match of the pattern on the left hand side of the rule should be a message Lhat shows which days
the guestion specified. The messaze should be dike the one thal forms the action or right hand side of the example rule in section

22.2page 7.

You may use supplementary rewrite ruies to define 2dditional nonterminals as needed to simplify your top-level rule.

Exergise 2-2: Wrile a grammar containing Lwo top-level ules to recognize the diffcrent ways of asking when and where a class meets.
These rules should cover inputs using the words “when” and "where” but also inputs using phrases like "at what tdme", You may name
classes as in Exercise 2-1, The aclion to be taken should be a message indicating which Llype of question was asked.

Exercise 2-3; Wriic a grarmmar conlaining (wo top level rules: one which parses input asking whether a paricular person isina
given class (name classes as above), Lhe other asking whether anvone is in Lhal class. For example, be sure your grammar can parse and
disunguish between the following:

is smith tcking phil 17
is anyone taking phil 17

*ssume that your grammar does not contain a list of all student pames. Also assume that 2 student’s name can be made up of a first and
,t name and a middle name or middle initial. .

Exercise 2-4; a Write a grammar Lhal will parse the following input

doss compsci 10 meet at lpm on m w 7
15 ph41 101 being given tu th at 11:307

b. After you gel your grammar to work on the above input, supplement the grammar Lo cover inpul which beging with words and phrases
that are not essential 1o specifying the query that needs to be perfonned. Some examples are!

Pleasa tell me does....

Will you please say whether...
De you kpow if...

Can you tell me is...

You could use the operator "&u’ and '&ui at the beginning of 10p-level ruié patterns to skip over such phrases. However Lhis way of
dealing with inessential input does not make use of the cross referencer and can significantly slow down parsing speed. Find a way
around Lhis problem and implement it. Do nol worry about the variety of inputs your grammar covers as long as it passes ihe above
examples atong with whaiever inessential words and phrases Lhal might precede them,

DYPAR Parsing System

ik

BUTTDING A “REALT GRAMMAR 17

Three pyILDING A "REAL" GRAMMAR

In this section we will examine a working [YYPAR grammar, and discuss some of the considcrations th%
entered into its construction. 'This grammar™ can be used to experiment with a primitive scmantic neiwork”
and thus get some hands on experience using DYPAR. Our cxample grammar is by no means complete, in
terms of coverage of its domain. 1t is presented more as a model of how to write a grammar, than as an
example of the range of scatences that can be parsed using DYPAR.

3.1. The Semantic Network

The program that interfaces with our grammar is a very simple semantic network. One thing that might
lelp us to specify a grammar (o Ltk w0 the semantic network is an understanding of what that nenwork can
and cannot do. This miglit scem like a rather obvious point, but it docs make a difference. If you don't know
what you want DYPAR to understand, your grammar will not be very useful, Or, more simply, time spent
Jearning the scope of the abilities of the back end is not wasted!

Our network is capable of storing and retricving simple "is-a” relationships (c.g. "Mary is a painter” and
answering "What is Mary?”), traversing an “is-a” hicrarchy (e.g. "Fido is a dog” and "Degs aic canines,"
implics 10 the network that "Fido is a canine"), storing and retricving named property information relating to
some node in the network (e.g. "Bob's pencil is short” and "What do you know about Bob's peneil?™),
deleting information (c.g. “Forget about Bob's pencil.”), altering information {c.g. "Tob’s pencil is long"), and
making some types of inferences (c.g. given "Mary's mother is Sally"-and “The opposite of mother is
daughter,” the system will infer that "The daughter of Sally is Mary.”).

The network alse has some imporiant limitations we might want to keep in mind. It cannot handle multiple
“is-a" relationships (c.e. "John is an Armenian.” and "Johu ic a dentst" are considered contradiciory). or
complex adjectival information (e.g. "Large furry happy brown dog" makes it gag). Jo fact, we didn’t spend a
lot of time working on the network, so it is pretty simple minded. It is, however, good erough to demonstraie
the utility and function of DYPAR in action.

3.1.1. Network Functions
This section bricfly cxamines those LISP functions which are of importance to the person writing a
grammar making use of the scmantic network. These arc the functions that are used in the RHS or action side

of the top-level rules:

ltm-ret (Long Term Memory RETrieval) is used to extract informaticn from the semantic network,

ltm-ret-ail (Long Term Memory RETrieve ALL) extracts all information about a given node from the
semnantic network.

ltm-store (Long Term Memory STOREage) is used to place information into the network.

ltm-forget (I.ong Term Memory FORGET) is the function which deletes nodes from our network.

ltm-spee (Long Term Memory SPECify) decides which interpretation of a sentence should be stored
in the network.

storefile - saves the current state of the network fo a disk file for later restoration.

ldadﬁlc res{orei the state the system was iﬁ“ frorﬁ a brevious]y saved scssion with the semantic
network.

Arhe grammar is reproduced, wilthoul any accompanying (ext, in Appendix C page 55 Al CMU it i contained in
[CAD]/ust/xealibur/grammars/sem. gra. s

27’I‘he source for the semnantic actwork fives in the LISP file {CAD]/use/xeatibur/dyparl/srel.li/semfas

DYPAR Parsing System

S

T R S R . ol L S R

18 ’ BUIEDING A "REALT GRAMMAR

3.2. Groundwork

Now that we live a ides of what the newwork can do, the next step is Lo characterize the way those
capabilitics can be expressed in English sentences. A corpus of example inputs is invaluable for tis task, As
was previously stated. we wish o be able w recognize requests for information, assertion ol new information
10 be stored, and u few simple commands, So our initial input corpus reflects these desires:

Assertions
Kary is a woman.
John's mother is Mary.
The inverse of inother is son.
Fido is a lazy dog.
Sugar is an ingredient of cookies.

Information Requests
What is Mary?
Is Mary a woman?
Who is John's mother?
Is Mary John's mother?
Tell me all that you know about Mary.
What is the inverse of son?

Commands
Save this session.
Louad the number.gra file
Exit the parser.
Forget aboul Mary.

We have informally stated our goals for the grammar in terms of the type of inputs it must recognize. Now
our task is o prepare a sct of sentence emplates that implement these goals. However. before we can do that
we must come up with a more rigorous statement of the types of inputs we need 1o recognize. This is not as
difficult as it might appear. Certain regularicies make themselves apparent from the corpus of examples.

1 " . . . bl
o One class of sentences that we want to parse concerns "is-a" relationships between two obJect5‘3.
o Another class specifies a particular property of an object.

o Questions derived from cither of the two preceding forms can be asked, as well as requests for all
that is known about some object.

o We wish to allow a command for saving the current "staie of the world" in a file for later usage,
and a command to bring one of those stored files into the environment. :

e Explicidy cancelling information is also on our list.

e Most importantly, we need to be able to quit the systerm.”

23We are using the word "object” Lo mean the focus of the input

DYPAR Parsing System

il

BULLING A “REAL" GRAMAMAR 19

3.3. Writing the Grammar

FFirst, we pick ane of the sentence classes and begin Lo write our grammar.

3.3.1. Queries
We will start with one of less complex sentence types: "What is " (e.g. "What is Mary"). The first try

would probably ook like:
{what is §)

That would be fine, except that we forgot to record the value of § for use later on.
(what 1s (lnpam := 3})

That looks Ok for the LHS of the rule. We also need an action haif (RHS) for our rule:
{1tm-ret Inam 'isa: nil ni1)

Sull this rule docsn't cover many of the different ways of asking a question. Perhaps we should define
nonterminals to take the place of “what” and "is" in our rule.

Taking the easier problem first, we define the rewrite rules used to conjugate the verb "be.” For the present
tense our rule is: Co ; : :

¢be-prasenty -> (is | are | be | am)

For both past and future teascs, the forms become more complex. Forexample, "have been,” and "has been”
are both valid instances of "be.” Perhaps we should digress and write the rules for recognition of furms of

"hiave':

{have-presant> ~> (have | has)

¢have-pasid => (7<nave-pressni> had}

¢have-futurs> ~> (will have Thad)

¢have> -y {<havs-presentd | <have-past> | <have-futural)

Now back to "be™:

<be-past> -> {was | were | <have-prasent> bean | had bean}
¢he-futured -> (will bo | will have been)
<hed -> (<be-prasantd> | <be-pastd> | {be~futurae>)

The rewrite rules we have written so far serve to point out the nawrally hicrarchical manner in which a
grammar should be developed. The rules meant (o recognize forms of "be” and “"have" each have
subpatterns to recognize the different tenses of those verbs that we might encounter. If later on, while
defining top-level-rules, it becomes important to recognize only one tense of the verb, we need only. use the
particular subpatiern of the "<be>" rule we require. Whereas, in cases where tense is not important we can
wse the "<be>" nonterminal itself. Our "<bed" rule will maich 11 different forms for expressing the existence

of an "is-a" relationship.

The other area where some grammar primitives are needed is for the recognition of "what" forms. We will
define nonterminals for words or phrases used to begin guestons.

<g-word> -» (what | who | where | when | how] why | how much |
how many | how coms)
{wwwd> -> (what | who [which)

Questions usually occur in more exotic forms, ¢.8. "what's,” or "who is,” We need to define a nonterminal to
recognize the " apestrophe s” attached as 2 suffix to indicate contractions as well as posessives before we can

-handle such instances. Aay fime we wish to include a punctuation character as pait of an expected input, we

must remember that punctuation characters have specific internal names. A purcluation character table can
be found in Appendix A on page 49.
<poss> -> (%apost 3)

1

Now back to "what's" and "who is"

DYPAR Parsing System

v

20 _ : BLUHINNG & REALT GRAMMAR
{what-q> -> ({www> <be-pras>24 | <www> <poss>)
By the way--"<what-g>" can be matched 36 different ways.

There are still a few wayvs of asking for information that we haven't considered yet: "eould vou tell me what
22 can you give me L ete, Words like "could” are refered o by linguists as pusitive modal auxiliuries. We
will write a rule o recognize those words, and then another to attach them 1o the pronoun "you.”

{pos-modal> => (could | would | can)
<potiter => (<pos-modal> you)

Since "me™” and "us™ can be used interchangeably (as far as we're concerned), we should group them together.
<{mg-us> => (me | us)

Next we make us of the rewrite rules we have already defined to build one rewrite rule Lo recognize all of the
ways we have discussed of formatting the initial part of the question. Again, if Jater on it became important to
handle the different query furms in different ways. we need only use the pasticular nonierminal that covers
that type of question. Tuke a few minutes to work through whal cach of the following rules can match.

<info-reqi> => (7<polite> <info-req2> 7<what-g>)

<info-raqey => (tel) <mo-usd> Fahout | give <me-us> | print [type)
Cinfe~reqd> - (<wwwd | 7<polite> {info-reqZd T<wwwd)

{info-req> =-> (<what-q> | <info-raql>)

‘The last four rewrite rules start to add up some pretty impressive numbers for possible ways to maich them.

Nonterminal Possible Matches
{Info-reg> 1122
{info-reql> 1084
{Inforreq2> 8
<Info-req3> 152

Table 3-1: Number of Possible Ways to Match Rules

The top-level rule we were working on earlier would now look like:
P

(¢info-reg> (Inam := §))
>
(1tm-ret Ipam "{sa: nil nil)

‘However, we still haven't covered: "What is the 7" Both the punctation ("7") and the determiner

("the") would be imissed.

"The" is part of the group of words which, when they precede a noun, associate a Quantity with that noun.
These words are called guantifiers. Let us define a set of rewrite rules that recognize quantifiers. First, the
indefinite determiners:

<{eg-an> -> {(a [an)
NOW, some more exotic forms:

<pulk> -> (bulk | majority | greater part) .
<univarsal-quantd ~> (7elmost a1l | 7almost every 7one | each |
most | many | the <bulk> af)

When we put it all together:

MYWmmmeemﬂnwmmmwmﬂ%mwumomnmmawmpmm.MMmﬂBaRMOm_ﬂnMMEMMdMMNemBmd
other errors when writing erammars sce Section 8.7.1, page 46,

DYPAR Parsing System

ST

-

BULL DING A "REAL" GRAMMAR

Ldetd -> (the | <a-an> | <univarsai-quant>}
We solve the punctuation problem with a couple more rewrite rules:

{punct> - (xgmerk | <{dpunct>)
(dpuncty -> (%peried | %aemark)

Going back 10 our top-level rule we plug in the optional determiner., and allow for optional punctuation at
the end of the senience.

(¢info-regd 7<det> (lnam := §) 7{punct>)

.
{(1tm-rst tnam 'isa: a1l nil)

This rule now can match such varied senfences as: "What is Mary?,"” "Could you !l me about the horse.,”
and “Print what's Mary.”
We now move o 1o the more complex question forms, such as: "What is the of " or "Could you

tell me the of _"(c.g. "Could you give mc the color of the horse.™)

{<info-req> t<det> (iprop := $) of ?<dat> (inam := $) ?<punct?)
Eitm-rnt fnam lprop nil ail)

And ten there's: "What ____is____ " (c.g. "What color is the horse?")
{¢info-reqd> (lprop := $) <be-pres> 7<{det> (lInam := $) 7<punctd)
Eitm-rat Inam lprop nil nil}

Anothier form is: "5 a____"(e.g."Isblue acolor?)
(Cbe-pros> 7<det> (lnam := §) 7<a-an? (tval := $) 7<punct>)
Zitm—rst Lnam ‘isa: fvai nil) -

Alsa: "Is the of " (e.g. "1s the color of the horse blue?”)
(<be-pras> 7<deti> (Ipraop := $) of 7<dei> (lnam i+ 5) 7<det> (lval := §)

T¢punct>)

>
(1tm-ret Inam lprop Ival nil}

Yet another form is: "Is the of " (e.g. "Is blue the color of the horse?™). For this example

the prepositions becorne more complex. We mignt as well define rewrite rules for prepositions in general at
this paint. All of this group of nonterminals can be used to locate the beginning of a prepositional phrase in

the input.

Cprpy -» (of | to | for [with)

<prp-gbouty -> (about | on)

¢prp-in> -> (on] in | fnto | onto | inside | within)
¢tof> - (to] of)

Cofory = {of | for)

Now our definition for the top-level form:
(<be-pres> 7<dat> (Ival := §) 7<dei> (iprop = §) <tof> 7ddetd
{lnam = $) 7<punct’)
>
{¥tm-ret {nam Iprop Ival nil)

The last query form we will define is that of requests-for all information about something (i.e. "Tell me all

that you know about " or "What is everything known about " {e.g. "Tell me all you know about

Fido.") We need rewrite rules for "know,” and also for a subset of the gquantifiers rules we've already
defined.

DYPAR Parsing System

¢,
{

PRl

BUH DING A "REATT GRAMNAR

R %]
tos

¢al1> => (811 | everything | what)

{that-do> =-> (that | de)

{known) -> (you <know-have> { ?is known | there is | stored
| in memory)

<know-hava> =) fxnow | have)

The top-level rule:

(<info-reg> <all> 7<that-do> 7<known> <prp-about>
?<def> (nam := $) 7<dpunctd)

nd

(1tm-rot-all lnam)

3.3.2. Assertions
After (inishing one class of sentences we move on 1o the next. There are some subclasses of assertions that

we want (o recognize separately, i.c., there are certain relationships cxpressed in assertions that the semantic
network makes special allowances for,

For sentences like: is a name." (e.e."Minneapolis Is a proper noun.”} we will need rewrite rules to

_recpgnize "naming words.”

{label> -> (word | ierm | name | label}
<dlabsl> -> (?the <label>)
<name> ~> (Tproper name | Tproper noun | token Tmede)

Then we can write our rule. In the action side of the rule both ‘token’ and ‘node-type:” are of special
significance 1o the semantic network,

(7<dlabel> (lnam := $) <be-presd> <{a-an> <{nama> 7<dpunct>)
>
(1tm~store Inam ‘'tokan 'node-type: nil nil)

Synonomy is likewisc a predefined property in the semantic network. First, the rewrite rules:

<zame> -> (what] <samel’)

<{samel> -> {7the same ?thing <{as-that>)
<as-that> -> {as | that)}

<{maans-dcoas> -> (means | doss)

Now we can write the (op level rules to handle sentences like: " is a synonym for M (e.g. "The
word pun is a synonym for the word joke.”)

(7<d1abal> {Inam := §} <be-pres> <{a-an> synonym <ofor)> 7<diabel>
(Ival := §) 7<dpunctd)
-> '
(progn (1tm-store inam lval ‘synonym nil nil)
(msg "Henceforth when you type "
Ipam " 111 dinterpret 1t "
"as " lval 1))

Although the previous rule illustrates that arbitrary LISP code can appear in the RHS of any top-level rule, it
is preferable {for ciarity’s sake) to assert a single LISP function call as the action to be associated with the
pattern. Another form for this type of sentence is; ™ means the same as __ does.” (e.g. "Dog means
the same thing that canine does.")

{7<det> (Inam :» §) means T<(same> {lvat v §) T<{mesns-doos>
7<dpunct>)

>

(1tm~stere Inam Ival 'synonym nil nil)

Now we move back to more generic types of assertions. These are not as simple as they might at first
appear. Ofteniimes there are different ways to interpret an assertion. The semantic network function
ltm-spee is used for such disambiguations, First, though, we wiil examine the unambiguous case, These are
sentences like: "A ____isatypeof S {e.g. "A pig is a kind of animal.") Once again, we need to define

rewrite rules for "type” words.

DYPAR Parsing System

o

s

!
L

DUTLIYING A "REAL" GRAMMAR ' ; (P
AR

Ctypaofd -> (Ctyped> Tof)
<typay = (type | kind | form | instance | oxampla)
And then define the top-ievel rule.

{7<a-an> (Inam :* 3) <ba-pras> ¢a=~any 7<{typeof>
7¢a~an> [lval := §) 7<dpunct>)

)
(1tm-store Inom !val ‘isa: nil nil)
Sentences liker is the of the S (eg “"Blue is the color of the horse.”) are also

unambiguous. Here's the rile for them.

(7¢dat> (1val := 3) <be-pres> 7<{det> (Iprap = ~<typad} of
7¢dot> (lnam := $) ?<dpunct>)

-2

(1tm-store Inom tval Iprop adl nil)

Note the use of the ‘~" operator to avoid a conflict with the last rule.

Our next rule must ask the semantic network to decide what is the proper interpretation of the form:
arc * We could say cither "Dogs are animals,” or "Dogs are furry.” In the first case we arc making an .
is-a ink between "dogs” and "animals.” In the other, the relationship is one of "amount of hair™ associated (

with "dogs." Jtm-spec asks the user to decide on the proper interpretation. ¥
(7<det> (Inam :x S) <be-pras> (Ivorp := §) 7<dpuact>) :
>
{(1tm-spec lnam lvorp n11 nil nil)
Assertions like: is a “ (e.g. "Fido is a fat dog.") are handled by Lhe next rule, which asks
the user for the refationship between “fat™ and "fido.”

(1<gat> (inam := §) <be-pres> C(a~an> {ivorp :=) (lval = $)
7<dpunct>)

-
(progn {1tm-store Inam Ival '1sa: nil nil)
{1tm-spec Isam lvarp nil a4 t})

3.3.3. Commands
When we developed our specification, we included a nuinber of commands the system must be able to

understand, Now we will define some rewrite rules that recognize the different synonyms for the varigus
commands. This saves us the trouble of defining a different top-level rule for each synonym. Note the use of

an optional wildcard in the exit>’ rule.
¢forget> -> (remove | delete | erass | forgat 7about | wipe out) .- {
¢load> -> (load | input | read 7Tin | dskia) o
¢storey -» (save.] store | output [write Toui | dskout | print ?out)
¢axitd =» (ouit { exit | end ?§ session | 7good bya)
¢command> -> ({forget> | <load> | <store> | Caxit>)

We can also make a rewrite rule for the any of the verb forms we have defined so far. This might be used in
a transformation rule to pick up the part of thesinput that is verb separately from the rest of the input

{verbd -» {<command> | <be> | <{info-reg> | <have>)
. "Forget the

[6=3

Oune of the commands we wished to handle was of the form: "Forget the of (3
color of the horse.”)
(1<pos-modal> <(forgetd 7<{det> (iprop := §)- of 7<det> (Inam i« 3}
1<{puncid>)
x>
(1tm-forget Inam Iprop)

This rule is for the load command (c.g."Load the file session.”):

DYPAR Parsing System

e} amArAs ety e e
v a-

[e L e a e g
e g btk i e i A

RE| : BUALIISNG A TREAT T GRANMAR

(7<¢palitey (load> 7the 77i1e (ITH1 1= §) 7<punctd)
=
(toadfile 1T711)

Now a rule for the swore command (e.g."Store the session in the file session.™):

(7<polite> <store> Tthe 7sassion 7<prp-in> Tthe 7file (If11 := §)
7{puncty)

n3

(storafiie I1f11)

And as we intimated carlier, the most important ruie of all, the exit rule {e.g "Exit the parser.™):
{<axtiy Sr) »> 'axit

3.3.4. Negation

While we didn't cover this carlier, it is helpfu! o capture some forms that the back end can't handle, This
rakes the person using the system less frustrated when samething typed in is not understoed. The semantic
newwork doesi't undersiand ncgations, so we write a rue to warn the user of this fact. First, a rewrite rule,
and we might as well write the rewrite rule for affirmation at the same time. [t might become uscful in the

hure,

<napg> -» (no | not | never | none | nothing | Xapost t)
<pos> -» (yes | sure | indesd | cartalnly | ceriain | surely)

{(&u <negr) <neg> 3r)
"> .
(msg "I da not understand nagations yet." (N 1})

3.3.5. Transformations
"Please” is a meaningless word. for purpases of understanding what the sentence means. We can write a
transforrnation rule w fush "please” [rom the input. We could define a class of meaningless noise words and

filter them out as well.
((Is1 :~ (kv pleaso)) pleasa (152 := $r))
.)

(appand 15l [s2)

Other uses for transformation rules are to change from one form of a sentence Lo another which has the
same semantic content, but is a different syntactic construction. The next nule converts sentences of the form:
"Could you tell me what the color of the horse is.” to "Could you tell me what is the color of the horse.” The
"is" is moved so that the top-level rules we defined earlier can recognize the sentence.

({151 = (&Bu <g-word>)) (lq := {g-word>) (152 := (Zu <be>))
(1v := <ba>) 7(lp t~ <punct>)} .

HES]

{nconc Jsi tg Iv Is2 fp)

LIRT] non

This rule expands "what's” to "what is,
((Is1 :» {&u <g-word>)) (Iwl = <g-word>) <poss> (lsZ 1= 8r))
HED]

who's" to " who is," eic.

inconc Isi twl (715t ‘ds) ls2}

Sentences like "Mary's mother is Sally.” are converted lo "Mother of Mary is Sally.”
((Is1 :» {&U § <poss>)) (Iwl := 3) <pessd> (w2 :» $) (152 := $r))
Z&im Is1 w2 (1ist ‘of) lwl 1s2))

This one converts from "Mother of Mary is Sally" to "Sally is mother of Mary.”

DYPAR Parsing System

-

BULLDIENG A "REALT GRAMMAR

(7<daty (twl := 3) (lprp :-= Cprpy) P<detd (w2 = 3) {1v := {vorb>)

(1s2 = 5r))
HE)
{nconc 152 lv lwi lprp lw2)

DYPAR Parsing System

25

e
LA

s ek Gt G g

R RUPPRLE SR

TR
i

YARIABRE E ASSIGNMENT

| ,, - (.‘u' |
! . . .

20

DYPAR Parsing Systern

Tl T T n“uﬁags=gumgﬁ¢ﬂ#

1 PR T

VARLLABE B ASSIGNSENT (‘1\
Cour VARIABLE ASSIGNMENT

e method used t associate a value with a variable that was introduced in Chapter 2 is not always flexible
enough to capture all of the currently pertinent information. This chapter examines the more powerful
variable assignment wols provided with DYPAR.

4.1. The Repetitive Variable

If you were to write a paitern that used the same variable twice:
((ta := forgatten) (ta := value)}

vou would find that only the second value of the variable was available w your backend LISP functions.

Looking at the example, the value of "la” would be “value.” not "forgoten” (provided, of course, tat the

pattern was successfully matched). This type of behavior makes it impossible to use a simple variable A
assianment inside of an iterative pattern (Le. ™, ‘4" 1", will not work with named variables. The same i true {b,
for recursively defined nonterminals.) DYPAR, duocs however, have the capability (o generate new variable

names for you. To do this you must name your variable “*yar*', The generic form for this is:

(v (*var® = ¢variable-value-14st>) 7¢othar-pattern-elaments>)

Tn this cxample the * operator says that the following pattern may occur any pumber of dmes. ‘I'he pattern
. we're talking about consists of a variable assignment statement (using “yar*') and another nonterminal which
we expeet (0 occur i the input, but don’t want to remember, The atom ‘varl” will be assigned the first match
of <variable-value-iisty, “var?' the next malch, eic.. A similar way of utilizing “*var™ would be in the
recursive patern:
ntd> =) (a b (*var* i= (c | d)) 7<atd)

which would match “a” followed by “b™ followed by "¢ or "d" an arbitrary number of imes (e.g. "abcabd
ab o would return varl = "¢, var2 = "d," and var3 = "c¢")

‘The names of the newly generated variables are stored in a variable named ‘‘newvars. The value of the
‘Inewvars’ variable will be the list (var/ var? ...), where the individusl var, arc the variable names that were

generated during the current parse.

4.1.1. Accessing Inewvars .
accoss is a LISP function you can use {0 access the values associated with the DYPAR generated variable o

names stored in 'newvars. This avoids your having (o reference “Inewvars' directly. Tt will return a list of the
variable values in the order they occurred in the user's input. To use access to get al ‘Inewvars’ you must do:

(access Inawvars)

access is meant for use in the RHS of Top-level rules:

{(= (*var* := {red | blue | white | black)) (%comma ?and | and)))
>
(msg "The colers are: " (access Inewvars))

Other methods for accessing 'tnewvars' and making tse of repetitive variable assignments are interspersed
* throughout the rest of this chapter. T

4.2. Variable Coercion

On occasion, you want to assign a variabie some value other than the input segment malched by the current
pattern. This is called variable coercion and Is accomplished via the "&i° operater.

IDYPAR Parsing System

L T S PRI e 7 2 5 LI WS B S PR S PRSC S WD SR Y, SN L T SR

R VARIABLE ASSIGNNENT

el

4.2.1. Mapinto a Value
The & operator s used o allow dilferent kinds of information to be transmitled as the valuc of the

variable named in tie nearest enclnsing varjable agsignment patiern. This is useful for limiting the number of
different values that the backend Tunctions need o be able e process. & lakes two arguments, U first
being the value yor wish o be assigned o the variable when the sccond argument (any valid pattern, usuully
a nonterminal) suceess{ully inatches the input. For instance:

((lvarneme := (&1 true (affirmativo-response>)))

means that ‘lvarname’ will he assigned the value ‘true’ if ihe input maiches <affirmative-response>’, which
could consist of a large number of possible words and phrascs.

<affirmative-rosponsa> - (yes | true | yup | 7absolutaly correct)

In our example the "&i° patiern was a direct sub-pattern of the variable assighment patiern. The smme effect
could be achieved in the following way:

Ctruad -» {(&1 truo <(affirmative-rosponse>))
{(Ivariable :~ <{trued))

‘&i" has meaning only when it is used within ”}E context of variable assignment. An '&i pattern that is not
raught by a ;= will probably cause a LISP error. (This may be fixed in a future release.)

4.2.2. Function Calls _
{_et's take a somewhat closer look at the syntax of patlerns containing “éei”.

{(%1 VALUE PATTERN))

“VALUE' can be cither a list or an atom. When 'VALUE' is an atom the behavior of "&i" is cxactly as
deseribed in the last section. However, when 'VALUE' is a Tist DYPAR looks at the first word in that list to
sce if it is cither the svmbal "&apply’, or the symbot "&funcall’. The occusrence of one of these symbols as
part of "VAJLUE significs that you wish w apply an arbitrary LISP function to seme variables that you
assigned within 'PATTERN'. The generic form for this 1s:

((& (&apply fun-name (v-namsl v-name2 ...)) {var-assigns>))

Here '"VALUE' corresponds to:
{Zapply fun-name (v-namel v-pame ...))
and ‘PATTERN' corresponds to (var-assigns>'. The result of this is that the value returned from the &' is

the value returned from the call 10 ‘fun-name’ with ‘v-namel’, ‘v-name2’, ... as its arguments. This is exactly
what would happen if you used a LISP call like: '

(fun-name v=-namel v-ngme? ...)

as part of the RHS of one of your top-level rules. One thing to keep in mind is that the values of the variables
passed by 'Sapply’ to the function arce always lists themselves. The alternative form ‘& funcall” passes variabie
values o the LISP function a litde bit differently. I7 the varjable value would be passed by “&apply” as a
single element list, ‘&funcall’ will just pass the element itself. Suppose you had vsed the pattern:

({{numbar := %a))

to capture the input fragment "7”, Both ‘&apply’ and the RHS of 2 top-Jevel ruie would perceive the value of
‘Inumber’ to be (7) (i.e the list of "7"). ‘&Rfuncall’, on the other hand, would see the value of ‘Inumber’ as
"7." The distinction between the twa forms is soiely to make it easier to use built in LISP functions that
expect aloms as arguments within ‘&’ patterns. A more concrete example of the use of the ‘&1 function

calling form is: :

25thn we say "caught by”, we mean thal at some level Lhe '&i" patern must be enclosed within a variable assignment. The two
examnles above demonstrate two different ways of accomplishing this. In the second exaraple, the '&i" is more deeply embedded, bul is
s1if part of the variable assignment operalor’s patlern argunient The restriction on this exampte would be that the nonterminal <trued,
since it conwins an "&i. cn ONLY be vsed when cmbedded in the patiern side of 3 variable assignment. Otherwise, if matched it would
cause 2 LISP error. Patierns using "&i’ should not be enclosed within cach other withcul inlervening variable assignment slalements,

DYPAR Parsing System

VARIABEIL ASSIGNNENT 29

((1fraction :« (& (&funcall divide (i1divisor tdividend))
(fraction-ats>))

with the rewrite rule for {raction-clsy being:
¢Fraction-elsy <> ({ldivisor :« §n) %slash (tdividend :» $a))

Here we've choosen ‘&funcall because the 1ISP function divide cxpects atomic arguments, “eslashy’ is the
way that DYPAR reads ¢/, 'The racton-cls> rewrile rule would maich user inpus like: 6/7 or.1/2. The
&0 construct would take the result from “<fraction-cls>™ and convert it to the cquivalent Noating point
fraction. ¢.g. the user input "1/2" would be converied to "5 which would then be assigned as the valuce of
“Ifraction” by the enclosing ©=". This conversion would be accomplished as follows: ‘& funcall” would sce the
variable names “Idivisor and ‘ldividend” and pass the atomic valucs of thage variables {t and 2 respectively) to
e LISP function divide, which would retrn ".5" as its value. This is the value that ‘&i° would return (o be
assigned o ‘Hraclion” by T ="

The variables ‘divisor' and idividend® are thrown away after use, Le, they arc Jocal to the invocation of "&i.
The rule is that any pattern variables referred o within ‘&apply” or ‘& funcall’ go away. They arc not visible to
he RHS. However. any variables that are assigned within PATTERN that are not referred o within an
‘Sapply” or ‘&funcall’ will be available later in the parse.

4.2.3.Extra Variables

Remembering our generic form for "&i™:
({&1 VALUE PATTERM))

Another thing that "&i" will allow you to do is omit the PATTERN argument. This allows vou to set up flags
for your backend functions based on just where in the pattern (or in which pattern) a variable assignment was
successfully completed.

{{&4 VALUE)) .
When this form is encountered. '&i° will return “VALUE'. and alse no! consunie any of the user's input. This
means that you can assign more than one variaole at the same point in the user's input. For example:

{{tname :~ <{first-names> <last-namesd>} (1full-name := (&i t)))
will in addition to associating a first-name/last-name list with “lname’ also sel the variable ‘1full-name’ o ""

when the first part of the patern succeeds. The short ‘&1 form does not have all of the options normally
available for 'VALUE'. Atsome point in the future this form will be extended to aliow you Lo apply functions

and reference DYPAR variables here.

4.2.4. Inewvars revisited
Pazterns of the form:

(Ivar-name := (&1 lnswvars ¢assignment-using=*var=>))

group all of the values of the ™var*" generated :var as the value of ‘lvar-name’. It also makes sure those var
don'l show up in the RHS of your wp-ievel rule. This means you can use a different *var® assignment
sub-pattern in your pattern without getting muitiple generated *var®’ variable groups confused with one

another,
Patterns of the form:
{Ivar-name :~ (&1 (%apply fun-name lnerarE} <*var*-pattarn>))

will assign 10 'lvar-name’ (he value of applying the LISP function “'fun-name’ to the values associated with the
“yar* generated variables, as well as removing the (var from RHS availability.

DYPAR Parsing System

P

R T Nt BB, Yo e A

)
[
EXERCISES

VARTARLE ASSEGNMENT

Exercise 4-1: Suppose it is decitded that the rule rmpresenting yes/na questions regarding meeties times. as 08 wrillen in the aiswer
Lo Baereise 24 in Appendis 1 aee 63, should cover coses in w hich eommas and/ar e word “and” sepiraies the days of the week being
specified. Make the necessary chanpes lo Lhe brammar given as the answer 1o Ixereise 2-4 10 cover Lhese cases.

‘Exe rcise 4.2 Modify the relevanl nonterminal or rewrite rubes and top-level tule that yvou wrole for Lixercise 4-1 so that the
resulling grammar is able W parse input about clock times, Then write a nonterminal that wranslates clock limes such as B:25pm inte
2-hour-lime. Le. 13:25. To (acilile your work, a Lisp function called nllinie is defined below. ‘This function can be used with the &i
aperaior o produce the required translation. Make the olher necessary changes 5o that your prammar can parse the following example,

charreing the ipuled times to 24-hour1ime,
Doas philosophy 1 mest onmw £ at 11:10mm?
The Lisp funciion (ollows:
Function 1o be used with “&i" aperator 1o translate clock-times Lo 24-hous-times.

{(defun rdtima (hr min am-pm)

(and (null min) (setq min G)) i make sure min has a valua

(and (< min 10) (setq min (concat 0 min))) : if min 1s Tass than 10
; stick o zaro {n front

{cond ({null hr) - ; no valus for hr
(115t hr min)) ; gquit with br sti1l empty
((eq am-pm 'am) : 1in the moraing?
(195t hr min)) . ; we're doing 0K, stop.
({end (aq am-pm 'pm} : in the aftarncont?

(not (8g hr 12)}) ; but not Jusi after ncon?

(Tist (+ br 12} min)) ¢ add 12 to hr
:; am=-pm must have been smpty sc assume the middie of the day
{(> hr 7) i high numbers bafore ncon
{1ist hr min))
({< hr B) : law numbars after noon
(Vist (+ hr 12) min)) ; add 12 to hr

(t (1ist nil 1)) })

DYPAR Parsing System

; We should never get hera.

ENTENSHI Y 31

.
mive EXTENSIBILITY

5.1, User-Defined Operators

Eor some DYPAR applications domains, the grammar developer may wish to add operators he/she finds
useful in that domain. This amounts (in a sensc) o customizing DYPAR so that it will handle specific needs

in an cfficient manner. Uscr-defined operators come in two varictics:

o simple extensions (c.g., niladic operators)

e complex excensions

‘These operators are referred (o as extensions because they are actually pointers to exlernai functions® that are
called when the associated symbol is encountered in a patern. The simple cxtensions that are included as a
part of DYPAR arc discussed below. Complex extensions will be dealt with in a later version of this manual.

The procedure for adding new nijadic operators is quite straightforward. You must define 2 ISP function
that takes one argument which will be a list of the unconsumed input. Your function should be a predicate on
the car of its argument {the unconsumed inpus list.) Onc cxample of such an operator could be a function 3g
that returns t for any word beginning with the leiter "q". We will develop this cxarnpie further in Seetion 5.3,
where guidelines arc provided for writing functions that meet your particular needs. First, though, we shall
deseribe some predefined extension functons that are provided with DYPAR.

5. 2. predefined Extension Functions

The code for the functions listed below can be found in the DYPAR file extend.l

The exiernal functions provided with DYPAR can usually be invoked by any one of a group of
synonymous names. The examples provided with this isung are designed not only to demonstrate the use of
these functions but alse o show how using extension eperators can make a grammar more flexible.

$p - will match any punctation character.?’ (Other names for Sp are Spunctuation and Spunct.)
For example, returning to our sampie grammar, a paliern to malch the sentence, "Fred is a jock!”

could look like this:
({Inam := 3) {lga)_?(det) (1Jock = (athlets | jock)) 7$p)

(Note that this patiern will 2lso maitch permuiations such as "Ered has been an athlete.”, "Bill was the
jock”, and so on.) .

Sw - matches any word (Sword is a synonym for Sw.)
Suppose we wanl 10 write a pattern with a variable-binding that will accept any input so jong as itisa
word, but will not accept punctuation characlers or numerals. For instance, (o malch the answer 10 &
specific question (such as, "What is your favorite color?"') you might want (o parse quite diverse replies
jike "Green”, "maroon.”, "My favorite {color] is azure!”, “T tike red the best.”, and so on:

6Sm:h patern invoked functions are occasionally alled “daemons”, since they are invoked by the presence of certain data, mther
than built into Lhe interpreter.

2—)‘/xppcndix A. on page 49, conlains a full listing of the punctuation charagiers recognized by DYPAR. togcther with their Ascii values

and DYPAR symbols.

DYPAR Parsing Systern

A2 FXNTENSIBITY

Ci-my» -» (1] r;sy)z8

<megt> -» (?the best | 7the most)
<proferd> => (1ike | prefor)
<favarite> =-> (Tavorite Pcotor <{bed)

(?<i-my> 7<most> 7<prafer> 7<ravoriier (lval := $w) P<most> ?Sp)
$w is quite useful when it is necessury o differentiate between words and numbers in some input

3d - matches any word in the "dictionary.”
The dictionary is a fist of all the words® (terminal symbols) in a given grammar, including all the
words appearing on the RHS of any rewrite rule. Suppose you wrote a top-tevel rule whose RFS
exceuted a search funcuion that would el you where o a given grammar a certain word appeared.
Then the LHS (pattern) for the rule might look like this:

<find> -» (find | soarch ffor | look Tfor ?Pup}
<whare> -> (whero 7<bo>)
Cera> -> {gremmar | Tgrammar f1)e)

{7<polite> T¢inTo-rog2> {+ (<find> <where>)) (itsrm := §d) 7<bed
in Tthe ?<{gra> (If1lename := 3) ?3p)

This pattern would match requests such as, “"Could you pleasc tell me where [word] is in the file
[filenarne]?”, "Find [word]in [filename}”, "Please look up [word] in the grammar [filename].”

Slisp-function ~- matches words that have function definitions in LLISP.

$hisp-function checks to sce whether of not its input is a LISP {uncton name. This operator can be
used 1o match a funetion name in user input and bind it to a variable: then the value of the variable
could be aceessed by the [HS of the rule and the LISP function cxecuted. or manipulated in whatever
way Uie grammar writer desires. (Another use of $lisp-functon is discussed in Chapter 7, "Advanced
Tapics."y 1f parenthesis arc used in the user input, they must be individually matwclied in the pattern
using %lpuren and %rparen, or an appropriate wildcard.

For example, suppose you were using DYPAR as the language interface to @ witorial program that
teaches people how to do simple arithmetic in LISP. The tutorial has just asked the user,"What LISP
function would vou use o add 3 and 67" (The correct answer is (PLUS 16).) A patiern to match the
user's reply might look Hke this:

((&ut1 X1paren) (!1spfun := $iisp~function) (largl := 3n)
{larg2 :» $n) $r)

This pattern assumes the user will include the parentheses which are properly part of the function and
expioits their presence to find the reievant portions of the input. % 1f there is a.good chance that the
user will type in something that is nos a LISP function in this kind of input, then the pattern should
maie use of aless-specific wildcard (such as $w) instead of $lisp-function. Otherwise the parse would

fail under such circumstances.
Slisp-variable -- matches atoms that have values in LISP.

28 o . .
Remeinber, only lower-case letiers may be used in writing patierns, though upper-case wser inpul is accepled.

29 - . . .
By "word”, we mean plain English words that are present in the grammar Lo match the user's input, whether they are in 4 rewrite
rule or put directly inio a patlern. Nonterminals, operators and variable names are not words in this sense.

0, . . ce .
I this is not assumed, the pallern must be a lot more complex, in erder to match a varicly of anticipated responses and pick oul the
function; for instance:
<func> -> (7T1isp function)
<equals> ~> (7<pas-modal> <be> | Pequals)

<answer)> -> (7{det> (answsr | <{func> | 1t) ?<equalsd}
<usad -> (?{pos-modat> (use | answar))

(?<1-my> 7<use> T<answer> TXiparen (l1spfun :« $1isp-function}
(largl = $n) (larg2 :« $n) %r)

DYPAR Parsing System

PN ENSHILFEY KR

Sligp-variabie checks W see i Ls input is o DYPAR vflable name or (using the ISP function
BOUNIWY Tues asalue, For instance, this aperator will mateh atens which hive heen given values
using the 1.ISP Tunction SIE1Q. o a situation where @ list of information has been bound Lo some
atom using SE1TQ. Slisp-variable coutd be used w match such an atom in the user's imput. The RES of
he rule coutd Lthen go off and retrieve e infarmation, or perform whatever function wits desired by
(he grammar-wriier, As an example. SUpposc you wanted to match uscr input requesting a list of
names. ¢.g.. "Please print the list FileNames”: "could you give me the list Flenmnes?"; "Plcase show
me [<ilenamaes.”, ete..

(dispiay> ~> (got Tme | show Tms | ¢{nfo-req2>

| display | <find> 7me)

(1<pcliter ¢display> Ttho Tiist (Inam := §11sp-variable) 73p)

The '$n" operator introduced earlier is implemented 25 an extension function.

5.3. Simnle Extensions
15

In this section we will provide basic guidelines, and a few cxamples, for defining new operators which are
simple extension functions. Note that if you wish to make extensions using functions that you write yourseil,
they must be contained in a separate file from the grammar, and Uiey must be cxplicitly loaded into the ISP
cnvironmeni before loading the gramimar file.

Now we shall return Lo our hypothetical user-defined operator from Section 5.1, $g. This operator is

1 ar

defined as a predicate on the car of its input, which returns for any word beginning with the letter "q”.
Adding this function Lo our sample grammar, you could malch the input

susan will have the gquilt for us.

witly & paiters: such as
“((Inam :* §) <have? 7¢gety $q <prp> <me-usy 7<punct>)

Following the input 25 it s matched 1o the pattern, we find that by the time we reach $q in the pattern, the

input consists of "quilt for us.” The car of the input is thercfore "quilt”, of which the first atom is “q", which
satisfies the requirements of the operator $q and is matched by it.

$q is an example of a niladic operator written as a simple cxtension, Il consists of a symbol, '$q’, and an
underlying LISP function. The svmbol is associated with the function using the LISP function defprop. Of

course, 5q is a hypothetical function (although the reader may choose to define it as an exercise, s€e
“yercises” at the end of this chapter.) Below is an example which explains the workings of an aciual built-in

~ DYPAR operator, 5p.
The function associated with the symbol ‘$p’ is called ‘recognize-punct’. IUis defined as follows:

{dafun recognize-punct (M
(membar (car 1) tiallpunct))

This function works by checking whether the first element in 1" {the input arerance) is a member (H olohal
list ‘*tallpunct’, a list of all the DYPAR symbols which are cquivalent to Eazunctuation characters.” if the
membership test is successful, the patiern clernent ‘$p' is considered matched. :

The symbol ‘$p’ is attached to its function by means of defprop. The form for this is:

31For an explanation of now DYPAR reads punctualion chamci]z,x;s, sea page 9. See Appendix A, page 49 for a list of punctuation
characters with their DYPAR equivaients.

SP [unction member checks 1o see ifis first

2
3”Notc that this function does not return 't il (member (car 1) talipunet) succeeds. The Ll
[the list, beginaing with the ilem it

arpument 5 an item in the list which is its second argument. i cither relusns atl or a portion 0
carched for. Whal the patiem-matching function looks for is a non-nil argument. so ifmemler succeeds, the list it relums will cause the

patern matcher e consider the match suecessiul. All this means i (hat for purposes of writing simple extensions. zny non-ni} value is as
good asa I valug for your funclion Lo Teturn.

DYPAR Parsing Sysicm

L R R PR T LT
S “,,.r.-..:.'..'--.'rc’ L S T P

4 FNTENSIBN Y

(defprop $p recognize-punct :Tunction)
That is. the symbol *$p* is assigned “recognize-punct™as the valie of its “:function” propesty.

To uid the cross-referencing routine in compiling a grammar, cach extension function sbould have an
associuted “tsymbol” property with a value of cither "8 il the function is poc which is meant to be used on
non-numeric input, or “§n’ for those functions used for numeric inputs,

(defprop $p § :symbol}

The values for the “:symbol” propertics in the above example are solely for the use of the cross-referencer
when an extension function is encountered during the loading of the grammar. If user-defined extension
functions do not have one of these values associated with thein, then the value wili default to °§

To summarize, user-defined simple extension operators should:

o usc a function taking one argument, which acts as a predicate on the car of its input

4]

atlach the symbo! Lo the function using defprop

assign the operator a "isymbol property, cither '$ or ‘$n’, using defprop

-]

¢ have the code contained in a separate file, which is explicitly loaded into the LISP environment
before the gramimar file

5.4. Complex Extensions

The DYPAR operator &i, discussed in Chapter 4 on page 27, is implemnented as a complex extension
functien. Tt will be described here when this section is added in a later version of the manual. (See Chapter 1,
page 2 for information or obtaining newer versions.) Examining the sousce code for &1 in the files extend.]

and xmatcli6.] may help the "do-it-now”™ developer.

EXERCISES

Exercise 5-1; In his chapter we have used a theoretical opetator, $q, as an example of ¢ simple exiension. Sq matches any ward
beginning with (he letler g, Write and (est $q. {You may wanl 1o review the puidelines and look at the ¢ode lor other simple extension

functions thal is contained in the DYPAR [ile extend [}

Exercise 5-2; Wrile a function *Spe’ that matches the punciuation marks period, exclamation point and question mark (' "0 7).
Appendix A, page 49, contzing a tabie of the internal DYPAR symbols for cach punctuation characler.

DYPAR Parsing Systern

—

P L

INSTATTATION

el Dt AN

LR LS - -t 'm e Y e — LYt

i5

SiX INSTALLATION

6.1. Source Files

‘The LISP source code for DYPAR is broken up inte a number of (iles cach dealing with a particular aspect
of the parsing systemn. The fites are: '

AN

a cxtend.| contains extension functions which have been provided with the parser in addition o
those "hard wired" into the pattern mateher,

o fload.] cotvains a fast grammar loader for precompiied grammars.

o oeneral.l contains utility functions used throughout DYPAR,

o macros. contains uility macros used throughout DYPAR.

e readl.] containg DYPAR 170 routines, including the functioq which does punctuation expansion.

o semfns.| contains the semantic network used as a sample backend for illustrative purposes in this
document.

e var.l i$ a file containing global variable initializations.
o xiead.] contains the grammar loader.
e xmatché.l contains the pattern matcher.

o xpar.l contains the DYPAR top-level.

o xrefnew.l contains the DYPAR cross-referencer, which is used to build the discrimination network
DYPAR uses to decide which rule(s) to try. .

e sem.gra contains the sample grammar described in this document

o rundemo.) contains a boot file for starting a DYPAR image with the sem gramimar included as well
as the semantic network from semins.l. 2

e boot.] contains a boot fite for starting up 2 DYPAR image with no preloaded grammar.

o dybanaer.l contains version information and a startup message for using dumplisps of the
DYPAR-I system.

6.2. Compiling the Sources

You should read the file "Readme” which has been shipped with the DYPAR reiease you have.

All of the LISP files compromising DYPAR-I are compilable using version 6.0 of the FRANZ LISP
comnpiler with the CMU environment loaded. You should compile Lhe macros.| fiic before proceeding to any

DYPAR Parsing System

P O ' L S S Lt e Lt o VAL e e B e ALt
- " LM NIRRT Bl Vo £ VR ok e

to

T TR T S PR
EER U TP S A

A T R TR A S AR RN

INGTALLATION

of the others, After macras.) has been compiled, the order in which you compile the rest of the files i
unimpertant.

6.3. Installing DYPAR

Once the sources have been compiled, you need only start up a FRANY LISP tmage. and whei you sce the
LISP prompt do:

{Joad 'rundemo)

or
{(load 'boot)

depending on whether or not you wish to use the sample system and grammar provided with DYPAR
(rundemo.|) or 1o develop your own graminar (boot.l).
If you have disk spacc available on your machine, you might wani o dump a core image of DYPAR and
save (he Lime you would normaily spend waiting for the systern 1o load. To do this type:
(dumplisp dypar)

to the LISP promp[B. (You need not call the dumped image "dypar”, if you prefcr another name for it. A
dumped 1.ISP will preserve everything in the core image: since you have already loaded DYPAR inic the

LISP cnvironment, it will be there no matter what you call the file it is stored in.}
6.4. Loading DYPAR Grammars

6.4.1. Loadgra .
The command used to load a DYPAR gramumar is:

(1cadgra 'grammar-file-nama)

This function calls both the grammar loader and the cross-referencer. You can also give multple file names
to loadgra, in order to load more than cne grammar file:

{Toadgra *filel 'filez 'f{led , . .}

6.4.2. Loading Saved Grammars .
The command described in this section wili not work under VMS, and the UNIX version is not completely

debugeed,

Loading grammars with the loadgra command can be time consuming. Relatively siable grammars can be
loaded more quickly by using the functions savegra and faslgra. To do so enter DYPAR-] and load a

grarnmar. After the grammar has been Joaded, type:
savegra root-Tile~-nama .

and a file called root-file-name.gra.fig will be created. This saves a copy of the cross-referenced grammar
which is more quickly loadable. At any future time this .flg file can be loaded intc a LISP image by typing:

faslgre root-tile-name.flg

33 is works with FRANZ LISP only under UNIX. For FRANZ LISP under VMS, type (savelisp dypas).

" DYPAR Parsing System

P

e e G N e e a3 L

INSTALLATION 37

6.5. Running DYPAR

Onee the DYPAR packaae has been loaded. it can be invoked simply by calling the function “parse’. “PParse’
will prompt the user for an input awempt o mateh that input against its oaded gramusar, and rewrn the
vadue of that parse w its calling funetion (or the wp-level 7 that's where it was called from), “Parse” should be
used if you wish to call the DYPAR system from anothes function.

Another function, 'pirser’, 1 useful for arammar development, or for systems where IDYPAR 15 o be used
as the top-level function. Tt will parse wierances in a loop untit it is explicicly wld w exit. ‘There must be an
exit rule contained in the grmmar for this to work properly:

(exit | quit | 7good bya)
=>
‘oxit

If for some reason you have forgotten Lo include an exit rule, you can bail out by typing an interrupt characier
10 the DYPAR prompt. This will gencrate a LISP error and put you into a break loop.

6.6. Variables to Conirol Behavior

“o ‘Iptrace’ will, when non-nil, enable primitive tracing of the parse in progress. [is default setting is
t; to turn off the tracing, type (sctg ! ptrace nil) before using the parser.

o hailure-Mag’, when non-nil, will cause failed parses to be recorded in a fite in the directory
[CAD)/ use/xealibur/comments. This feawure is only implemcented in the FRANZ LISP version of
DYPAR running under UNIX. Its default setting is nil; to turn it on type (sete Mailure-flag t)M'

6.7. Using Dyoar

This section is a transcript of an actual DYPAR-] scssion. User's input is italicized. A LISP image
containing DYPAR-I has been saved under the name "dyparl”, so our first command (io UNIX) is to run

DYPAR.
Ldvpar!

Weicome to DYPAR
1. -

The next thing we must do now that we have a LiSP prompt is to lecad a prammar inte our environment.
We will use the grammar developed earlier in this document. .

34C:\‘IU_ local capabiiity only en CWTU-CS-CAD,

DYPAR Parsing System

L]
‘.
v

Kb NG ATION

. floendera Senyra)

Loading Gremmar Filo: semZ.gra
::>::>::>::>::>—>->->->->->-)—>->->->~>-)—>->~>—>->~>—>->->->->->—>~>—>
-)->->->->->->->—)~>->“>->-)-)-)~>->-)-)—)->->">->-)">">'>->->-)->-)—)-
>->~>—>—>—>')->->->v>~>->")->-)->~>->u>-)->->->->~>->->->->->->->->->->
myupudu

Samantic Grammar Loadod,

X-rafarancing => top-lovel rules:

RoRRRononnnoooonononnnnonoonononnononoonononoonRonononnnnaonnonRonnnnno
oooonRonnnnonRonnnonnoonnonH0nnnnonnoononRooRoooRoooﬂoooRooRooRonnonooo
nononnnounoRRooooﬂuncnnoooonoonononnoncnooonRononooanooooﬂonnoooonoonn
ounonﬁonnoooonoRonnooonnonnonRononoRnonononnnnonnonnoonoononoonononﬂnnn
nunnnoonnonnnonnunnonnoanonnonnoanononnonnnonnoanonnonnonﬂnonnunﬂnon

nec

X-reforencing ::> transformation rules:
RonoonoonuonononnnnnnnonnonnoooonRooon00000nRoonoonnnoRuunon00nonoonRoo

=)o}

X-referancing --> rowrite rules:
RonoRononoongonnoRoonnoRoRoRofMloRonRnono
"Fo11cw1ng5non-tarmina1s have bean seen, but have no definitions:

{(<find>)

Indexing => top-tevel rules:
Fufel=L=fol=F~L-F-f-F-F-F=F~F~F-f~F-L-L-L~L=F~F=F=F-F-F~F-F-F-F-L-L-L-L
aL=l=f~F-F-Faf=fml-L-L-LuF=FnF=F-F-F=L-t-L=L=L~L=L-F-F=F-F-F-F-F-F-F-F-
LeL=L=L~F=f-F-Frf-F-F=F~Fuf=l-L-L-{-F=F=F-L-L-L-L=-f-L=F-F-F-L-F-F-F-F-L
“l=L-l-F=F-F-F-L-F-L=F~L=F-F=F-f=F=F-F-F-F-F=l~F=L=F~F~F-L-F-F-F-F-F-F-
Fepafol=F~lL-L-L~F=F=F-F=F-L-L~L=L~L-F-F-F=FnF-F-F=F-F~L~L-L-L-L-F-F-F-F
—F~F~f-L~|~FeFeF-F-F=f=FnF=L-L-L-L-L~F-F=F-F-F-F-F-L-lL-L-L-L-L-L-F-Ff~F-
Fefmf=F-F=F~F~L-L-l-L=f=F=F-F-L-L-L-L=t=F-F-F~F-lL-L-L-L-L-F-F-F-F-L-l-L
al-LefmfF=F=F-F=F=F-F-F-F-L-L-L-L-t-F-F-F=F-F-F-F-F-F-F-L-L-L-L-L-F-F-F-
F-F-F~F-{-L-L-L=l~F=F=F-L-L-

Cross~-roferancing Completad.

£

2.

This output provides information about the grammar loading process. First DYPAR loads each rule in the
grammar, printing out a table of the rule-type symbo! associated with zach rule it epcounters in the grammar
file (c.g., 02:DmdmdidddD>0=0=0=0=0=2). When the entire file s loaded, DYPAR prints
"Semantic Grammar Loaded”. and calis the cross-referencer on the rules in thedile. [i works on the top-level
rules first, then the rransformation rules, then the rewrite ruies. After alt the rules have been cross-referenced,
the cross-referencer will rewrn a list of any nonterminals used in the rules which were not defined in a rewrite
rule. In a complete grammar, there should not be any instances of undefinced nonterminals, but in a grammar
which is still under developimens; this information can be very useful. lastly. the sentence emplates in all the
top-level rules arc indexed, using a system which records the first and last elemenis of cach emplate. The
table thus formed is uscd by DYPAR to look up matches for Engtlish inputs: it will only uy 10 match an input
tb those templates whose frst and last elements match the corresponding elements in the input. (This
procedure speeds up the matching process by eliminating the need Lo attempi compicie maiching of every
top-level rule unti) the correet template is found.) When the cross-referencer is finished, it prints the message
“Cross-referencing Completed” and returns a t. Now we are lefiata LISP prompt and can call the parser.

6.7.1. inputting Sentences
Now we can invoke DYPAR and type some sentences to it. During this session the value of the Iptrace

variable was L

35<ﬁnd> is a grawitous undefined nonterminal which was added to our sample grammar in order 1o demenstrate Lhis leature of
DYPAR: see the tex(which follows this cxample for an explanaton,

DYPAR Parsing System

d,—’."»)

£

INSTALTATION

2., purset

You ars talking Lo the top-level Samantic Farser.
English sontances will be parsed in a leop.

+ narv is an archiees
I will try rudes: (rud23 rull® rulld rul9 rull4 rullf rullb rulzc)
Parse 1s:

Rule rulld
Action will bo: {(1tm=-store Inam lval 'dsa: nil nil})
With bindings:

{tval erchitect)

{Inam mary)

Storing sssertion in semantic net: mary 15 an architact.
Inference: the concapt-type of architect is goneric,

+ mary's mother is sally
I will try rudes: {rul23 ruli9 rullb rul® rulld rull6 rulid rul2o)

transforming (mary %apost s mother is sally)
Into ::> (mother of mary 13 sally)}

transforming (mothar of mary s sally)
Into t:2 {sally is mother of mary)
1 will try rules: {(cu123 rull® rulls rul8 ruli4 rull6 .ruild rulz0)

Parse 1s:

Rule ruild
Action will be: {Itm-stora Inam lval Iprop il nil)
With bindings:

(Inam mary)

{Iprop mother)

(Ival saily)

Adding new assertion: the mothaer of mary is sally.

+ (el me all about mary
I will try rules: (ru’8 reld rul2 rul4)
Parse 1s: '

Rule ruid .
Action will be: {1im-ret-a11 lnam)
With bindings:

(Inam mary}

mary 1s an architect.
the mothar of mary is sally.

+ who is mary
I will try rules: (ruld ruld rull ruid) |
Parss 1§! i

Rule rultl
Action will be: (1tm-ret Inem 'isa: nil nil)
With bindings:

{Insm mary)

mary s an architect,

DYPAR Parsing System

39

b

* . e g e LUt b IPeUS IR s ne koA, ae,
! Noa I et B B e U [e EEERT R A . S L

*the fnverse of fustoml i wife .
I will try rules: (rul20 rulis ruli6 rulid rell@)

transforming {the invorso of husband §s wife)
Into 4> {wife is inverse of husband)

D T L T LTI
PERTYCR TR LSOO S S

I will try rules: (rul23 rulig rudis rul9 rulld rullé rulib rulze)

Parsa is:

JRule rullb

Action will be: {1tm-stare Inam fval) prop aid nil)
With bindings:

{Inam husband)

(Iprop 1nverse)

(Ival wife)

Adding now assertion: the inverse of husband 15 wife.

+ marv's husband is bob

I will try rules: (rul23 ruli8 rullb rutd rulld rulld rulld rul20)

transtorming (mary %opost s husband is bob)
Into ::> (hushand of mary 4s bob)

transforming (husband of mary is bab)
Into) (bob is husband of mary)

I will try rules: (rul23 rullg roll5 rculS rulld rullf roelld rul20)

Parsae 1is:

Rule rulib
Action wil] be: (ltm-store lnam Ival iprep ail nil}

\With bindings:
(tnam mary)
{Iprop husband)
(Ival bob)

Adding new assertion: the husband of mary is bab.

Assaritng inverse relation:
Adding new assertion: the wifo of bob 1s mary.

+ exir
I will try rulas: (ruli3)
Parse 1s:

Rule rulll

Action will be: 'sxit
With bindings:

Leaving natural language interface.
Back to LISP.

t
6.

DYPAR Parsing System

A RE ST T

INSTAL T ATION

 den e AT e mga e Ee Fmahem e ber % emer i HERL esimwa bmbbaapininte e amemE o g

AU TIPTEALNTUILES 41

Seven ULTIPLE MATCHES

7 1. Non-Deterministic Parsing

The approach to parsing taken by DYPAR is non-deterministic. What this means is that even when the
parser has found a solution (i.c. successfully matched 2 paucrn) the parser will continue 1o 4y other solution
paths until there arc no more Lo try. That isn't quite as bad as it sounds because the cross-referencer limits the
paths the parser is allowed to try. Hawever, what docs happen is the parser somedimes finds more than one
solution © a parse. A parse with more than one solution is ambiguous. When a single wp-icvel rule can
match a user's input in more than ene way, itis internatly ambiguous, When Lwo or more lop-level rules can
match the same user's input they are externally ambiguous. Multipte matches [or the same input €an also be
referved to as march collisions. —

7.2 Internally Ambiguous Matches

Most of the time the exislence of multiple matches will not have any cffect on the parse, as he variable
bindings will be the same for ail of the solutions. As long as the variable bindings arc the same DYPAR just
removes the redundancy from Lhe parse solution sct. Somerimes. though, the variable values for the solutions
arc different. DYPAR must then decide which solution is the correct one. DYPAR tries to resolve the
conflict using the following collision resolution strategics, stopping when the application of the strategies
reduces the number of sotutions o one:

1. Pick the solution{s) that contains the largest number of variables assigned,
2. Pick the sotution(s) that contains the largest nummber of variables with values other than nil.
1. Pick the solution(s) that contains the largest part of the user's input as the values of variables.

4 Pick the first solution. (This is guarantced to make a choice!)

7.3.Externally Ambiguous Matches

This condition is a lictke more serious than the internal varfety. Here, we have two different top-level rules
(probably with different actions) vying for the same user input. Again, DYPAR trics to make 2 choice as to
which solution is the correct one, The same collision resolution strategics that are used for intlernatly
ambiguous malches are use Lo recover from externally ambiguous matchces, with_the exeeption-ofthelast
sizategy. Instead of picking the first solution, DYPAR wi < the user which of the solutions is the correct

one.

7.4. Changing Default Behaviour

IF this behaviour is unacceptable, DYPAR allows you (0 modify the buil-in coltision resolution mechanism.
There are two ways to do this: You can reorder the way.the existing strategics are used; You can write LISP
fnction(s) describing entirely new collision sTatcey(ics). Both methods are accomplished using the meia
commenlting facility for DYPAR rules. The keyword for internally ambiguous match strategies is:

;internal-strategy

and its use is described below.

DYPAR Parsing System

’ DT, LT el e

S ot i - - .
v N 0 el Dan EASYINA 1 e T T Sl e

Tk A et Tt T LRI 1 et T e L b e AT e W L

42 SMULTH P NMATONES

7.4.1. Reordering Methods

Fach of the existing strategies has o ame,. When you make & mela conmment you simply fist the suategies in
the arder you wish them o be tried, "Fhe nimes of e strategies are, respectively:

o MO8 Vs
& [Mosk-non-nil
+ most-input

« arbitrary
Say for example. that you wish to choose the possibility which consuimed the most input, and otherwise you
don't care. You would place the meta-comment
{:interncl-strategy (most-input arbitrary)})

Just before the pattern definidon for your rule.

7.4.2. New Strategies
For this you shuuld write a LISP function which will make the decision. The dats structure it must chew on

looks like:

((&lvari&b1el valuel) (lvariablez valus2) ...)
SH{(Tvariabial valued) (lvariablez valued) ...)

cm.;:z/...)

e .
Totell DYPAR about your new strategy your meta-comment should look like:
(:internal-stratagy my-function-name)

Nole that when vou rcorder the existing strategies DYPAR is expecting you 1o surround the new list with
parentheses, and when you define your own function you should omit the parentheses around the function
namec when vou gjve it to "internal strategy:”

DYPAR Parsing System

il

-t

ADVASCENTOPKS 43

cight ADVANCED TOPICS

8.1. About This Chapter

~in this chapter we explain more about the inner workings of DYPAR, and introduce three more operators.
l¢ is presuppused Ural the reader knows 1ISP. The topics covered here are those which were aot cxiensive
enough to warrant separale chapters in the reference manual; however, mueh of this material will be helpful
in wriling efficient patierns. The scction on debugging grammars is not meant to be exhaustive, but rather

aive specific cxamples of some general procedures.

8.2. Deterministic Disjunction

One aperator which hasn't been covered yet s the deterministic disjunction operator 1. I syntax IS ihe
same as that of . The difference is that *!* stops after the first sucgessful match of one of its argurnents. It is
casy for someone Lo get into trouble by using ‘11" when he means 1"*% For instance,

(a (o 11 {*3)) d)
will Fait on "a b ¢ d" because the b matches locally, but it fails on the next element in the pattern. Of course:

(e (b] (=) d)

will work. However, ‘Il is more efficient when properly used.

8.3. Deterministic Optionality

The deterministic aptionality operator &o forces an optional clement t be consumed wherever possible. It
works in the same way as ‘7, except that the maich does not branch when a successful mawch is made. In
order to understand the difference between them, we need (o examine how 7" works.

When the pattern argument to 7 succecds, two branches are created, one with the patiern argument
matched to the next section of input. and one with the pattern argument matched to nothing at all. The
second branch has the effect of causing the maich to succeed without consuming any input, even if input
exisled which maiched the pattern argument (o ‘7. Following the first branch, we find the pattern matcher
moving on and attempting to match the next piece of the pattern with the next picce of input while following
the second branch, it auempts to match the next piece of the pautern with the same picce of input it used for
the previous pattern (which contained the "7’ operater.) In most cases, it is the first branch that succeeds in
completing the parse, and the sccond one will fail a¢ this poinL. However, consider the patiem

(?very very much)

If this pattern is matched to the input "very very much”, the first branch of the match is followed through,
and the sccond, since it fails to consume both repetitions of the word "very”, fails. Bur if we match this
pattern (o the input "very much". it will succeed by following the second branch of the match. [f this second
branch did not exisz, the ** operator's pattern argument would cause the word "very" (o be consumed, and
the match would fail when the next. nonoptional, pattern element “very" failed 1o match the next piece of
input. "much”. You can see that this multiple branching is necessary to cause the 7' operator (0 wOrK as it

should under all conditions.

Now we are ready to consider the deterministic optionality operator, ‘&0". Its syntax is the sam¢ as that of
most non-niladic DYPAR-] operators, which means that the operator is enclosed in parentheses along with its

patiern argument;

(&0 vary)

36'!‘ is a synonym for T, as well a5 being used 10 mark vaniable names. See Table 2-2, on page 15,

DYPAR Parsing System

i ADVANCED TOPICS

1 should be noted thal this is aor the syntas used with (he ™7 operator, which simply works on the expression
", or nothing st atl as you would

iminediately following it "The patern abuve witl minch the word "very',
expect from the 7 operator as well, However,
({80 vary) very much)

witl match "very very mueh”. but ot "very much”, The &e very portion of the pattern is forced W consume
the first "very™ (o which it is maiched. and if there is no sccond "very™ Lo be maiched Lo the rest of the

pattern, the match will fail.
The '&o' operator is most useful in constructions such as
((&o word) {lvar i= §))

to ensure that tvar does not end up with same optional constituent as its valuc in an cssentially spurious parse.
With the use of niladic opcrators, and particularly tieir use in conjunction with an iterative operator. Urac
portion of the patiern following a use of *7 might be flexible enough Lo cause buth branches of the match to
succeed, when only the first was intended o succeed. tf there is a variable involved, it could be assigned the
wrong value, In such situations, it is safer Lo use 'do”.

8.4. Internai Grammar Representation

When a grammar rule is read into the LISP environment by the grammar loader, it is converted from the
form used by the grammar writer 10 a more LISP-like syntax. In this section, we will cxplain the meaning of
the internal format, which is what you sec if you examine a rulc or patiern after you load it intc a LISP core

image,
When you have a pattern of the form:
(7an oxampla)
it will be stored as:
((7 an) example)
Complex disjunct patterns liks:
{a | {foo> | b ¢)
would be converted to:
(1 (a) (<Fead) (b c))
Simple disjuncts, e.g.
(a | b] ¢}
are converted 1o:
{&m & b c)

We haven't covered ‘&m' before, because it is an internal operator. Jis purpose is to make e match on a
disjunct set, wherse all of the options are terminal atoms, more efficient

The case operaior ‘&c’ when used in the form:
(Cover> &c and &c <{through>)
gets converted to:
(%c (<over>) (mnd) (<throughd))
Variable assignments change from:

(fcolor := <coler>)

Lo:

{:= lecolor <color?)

DYPAR Parsing System

ADYANCED TOPICS a5

Patterns using the not aperator '~ like;
{~a dog)

CONVEIL LY
({~ a) dog)
invocations of *°, 4t =" %, &t and & retain the same form. The niladic aperaiors 'S, 'Sn°, and

‘$ir' ke no arcuments and also retain the same form. Generally what happens is that any operators which are
expressed in infix form in the grammar file are converted to a prefix notation, and precedence of operators is

macdle explicit.

8.5. Pattern Storage

DPatterns are stored on property lists. LISP steres the information contained in a DYPAR grammar. as well
as that geacrated by the cross-referencer on property lists. ‘This information is accessed using the LISP
function ger. Top-level und transformation rules generaliy usc the [DYPAR-generuted rule name as the key to

which e other infarmation is attached. Information for rewrite rules is altached 1o the LHS (nonterminal) of

the rule. The following properties are used by DYPAR:
o Top-ievel and Transformation Rules:

o pattern: LHS or pattern of the rule
o action: RHS oraction for the rule

« Rewrite Rules:

o rewrite: RHS or pattern

¢ Extension Functions:

o function: name of the function to invoke
o symbol: token to be used by the cross-referencer

e Terminal Symbols; .

o where! Lop-levél rules that this symbol can be the first element for
o lwhere: iop-level rujes that this symbel can be the last clement for

e All Rules:

o first; sct of words that can be the first elements for this rule
o last set of words that can be the last elements for this rule

oopt: flag as to whether this rule can succeed while matching nothing

DYPAR Parsing System

e T T T e e Rk e oL NI} PR LR PR e

46 ADVANCER TOPICS

8.G. Cross-Referencing
PDYPAR uses a lookup wble to decide which rutes might successfully matehy the input ntterance,

o e table iy indexed by terminal symbuls (words) which can start or end a pattern,

o The current word of the input is compared against the tabie entrics for all rules that are currently

active,

o Only those rules that have index entries equal o the current input word receive further processing.

o For cach of Uhese rules tie index entry for its ending words is retrieved and intersected with the
input string.

o Only rules which return non-nil inlersections arc expanded by the maicher for a typical,
moderately-sized grammar,

This forward pruning resuls in a factor of 10 speedup in the performance of the matcher over iterating
through all the rules.

8.7. Punctuation in Depth

DYPAR treats punctuation characters typed by the user in a special way, No punctuation characters are
read in verbatim, They arc converted to special symbols, usually prefixed with a percent "%’ sign.

One reason for specially treating punctuation characters is to avoid conflicts between what the user types
and what LISP thinks of as special characters (such as ;" and "), Alsa, 2 person typing input to a sysiem like
1YYPAR scldom types spaces between punctuation characters and the adjacent words. This approach allows
user inputs like "$450" w be treated as the two words "%dollar 430”, which is much casier to parse. Lf some
of these conversions are found © be intolerable, thev can be turned off by modifying the contents of the

global variable Hdelimiters. so that it doesn't contain thial character.
(setq idelimiters {delete 45 [ldelimiters))
would remove *-' (ascii 45, %dash) from the set of punctuation characters that are normally expanded.

Idelimiters contains a list of the base 10 ascii values of the pertinent punciuation characters. A listof all of .

the punctuation characters affected by DYPAR can be found in Appendix A, on page 49.

8.7.1. Debugging Grammars
It turns out that the grammar described in Chapter 3, starting on page 17, and reproduced without

accompanying text in Appendix C. page 55, has a bug in it. The file loaded above was not the one developed
in the manual, but a very similar onc previously written. This scction describes some LISP functions which
are uscful in lesiing and debugging grammars that are acessible in the LISP image containing DYPAR-L
Thev will be introduced by being uscd to debug the grammar described in the manual.

Suppose that the grammar described in the manual has been loaded into a LISP image containing DYPAR-
I, and the parser has been called. On typing the first input, as shown above, the following resull is obtained:

+ mary is an architect : .
I will try rules: (rull8 rull3 rulll red9 rulil rull2 rulld)

No parses found for:
{mary is an architact)

In fact none of the input in the previous section will be parsed. by the grammar as it is presenily written.
This is somewhat puzzling, since an earlicr version of this grammar was able to parse all of these sentences.

DYPAR Parsing System

ADVANCED TOPICS 47

Whatever errar has been made, it seems to have permeated throvgh much of the grammar. in urder to check
the prammar rules more directly, iU s necessary exit the paeser and get back 1o ISP, Alter doing this it
must be deeided which rule patiern or part thereof should be tested. Testing the op-leve! rule piiern which
should have parsed the fnput tried abme is as apod i phice as any L st The 1LISP Tunctions useful in
debugging grammars are able w identify top-level rules by their numerical place in the grammar fle,
|.ogking at the grammar as reproduced in Appendix C, the top-tevel rules can be counted beginning on page -
55 and ending on page 57, The top-icvel rule 10 be wested is rute 11, 1t appears on page 56, The first siep (o
be taken is 10 see what rule 11 presently looks like. 1t can be accessed by typing ppl ur plist in the following
way with (he following resuit.

b.ppl rulli

rulil

pattarn: ((? <a-an>) (:= Inam 3) ¢ba-prasd <a-an> (T <{typacfd)
(:= lval $) {7 <dpunct>))

action: [1tm-stors !nam Ival 'isa: nil nily

first: 5 '

last: 3

rulll

As can be seen, the rule pattern is in a somewhat different form than the one typed into the grammar file.
This is discussed in Scction 8.4 starting on page 44. [t can also be scen that for the input mary is an architect
only two nonterminals in the rule pattern come into play: <be-pres>® and ‘<a-an>’. Taken together these
should parse the input "is " This can be tested using the LISP function ‘xmatch’ in the following way:

§.(xmatch '{is &} '(<be-pres> {a=-an?))
nil

An entire top-level rule pattern could be tested in this way, cither by typing the pattern as it is printed after
a ppl or by specifying the rule number in the fallowing way:

(xmatch '(mary 1s an architect %period) (get 'ruill 'pattarn:})

ati
Notice that punctuatiop characters cannot appear in ‘xmatch’, only the corresponding special symbol for the
punctuation character. " Getting back to the problem at hand, what has been shown 50 far is that <a-an>’ or
*Che-pres>’ are pot covering the input they are suppuosed o cover. If they are tested separately, only
*Che-pres>’ does not do its job.

7.(xmatch "(a) '{<a-gn>))

((3})
§.(xmatch '(is) '(<be-pres>))

nil

The "((1))" above indicates that one clement has been matched by the pattern. If more clements were
matched, the number would be coerespondingly greater. in any case'the probiem has apw becn narrowed O
~ finding-out what is wrong with ‘Cbe-pres>’. Using a good screen edjtor or even just perusing a printed version
of the grammar will quickly lead to the discovery, that ‘Che-pres>’ has not been defined. Rather, the
nonterminal defined in the grammar file to do this job is ‘Che-present>”. Since '<he-pres>’ has been used
whare 'Che-present>” should have been throughout the grammar file. it becomes understandable why so much
parsable input would not be parsed by the grammar described in the document. After 'Cbe-pres>’ is changed
to ‘Cbe-present>’, the grammar parses nput as it is supposed to.

A primitive tracing mechansim exists, which is enabled by setting the variable !show-cxpanded to € in the
LISP environment, This trace will print nonterminal names as they are expanded, and show at what level of
recursion the expansion took place. (ltcan, of course, be wrned off again by setting the variable to nil.)

Lists of a grammar's top-ievel nies, nonterminals, and transformation rules can be accessed through the
evaluation of the three corresponding s-expressions: 'Mpatrules’, “nonterms’, and “pattrans’. This can be
“helpful in debugging grammars. especially in the case where a grammar file fails to load. ‘This usually occurs
because of a missing or misplaced parenthesis. The grammar file will load into a LISP environment undl it
becomes confused by a missing or misplaced parenthesis. Such a problem can be traced to where the file
stops loading. For example, if top level rule 14 was missing a parenthesis, then typing "!patrules’ would have
the following effect:

’7_835 Seciion 8.7, page 46 and Appendix A, page 46.

DYPAR Parsing System

I B R R

PR

18 R , : ANVANCED TOMUS

9.l1patrules
{rultl rulz ruld ruld ruds rulb rul?7 ruif ruld rull0 rudil rull2 rulid)

DYPAR Parsing System

N o Y T R T

PEEGRES e 2

PLNCTLUATION CHARACTERS

Appendix A |
PUNCTUATION CHARACTERS

49

DYPAR symbhol Character Aseii Yalue

%eolon : 58
%dash - 45!
oslash / 47
fhapost ' 39
%hash # 35
%eomma . 44
Iblparen { 40
%rparen) 41
Postar : * 42
%bguote ‘ 96
%rsbrack { 91
Solsbrack] 93
Tobsiash \ 92
Tovbar | 124
Gscmicolon : 55
%dguote " M
%lcbrack { 123
Jorcbrack } 125
Tlabrack < &0
Zrabrack) 62
%amper & 38
%percent % 37
%doltar b 36
%plus + A3
%equal = 61
%underbar - 95
Jupcaret + 94
Datsign @ 64 -
SDiilde ~ 126
%emark ! 33
%qmark ? 63
%t ™M 132
" %If 1] 10°

%eperiod . 46

i

This canyersion 1§ commonly disabled
2Also known as “carriage reours.”
3

Also known as “linefeed "

Table A-1: Punctuation Character Mappings

DYPAR Parsing System

ey

50

AT e

4 gt

——aV, SEEOWL 2y

DYPAR Parsing System

PDYPAR QUICK RETERENCE GLIDLE

o

SRS G e : R T IR T E

DY PAR QUICK REFFRENCT GUIDE 51

Appendix B
DYPAR QUICK REFERENCE GUIDE

Desired Operation Symbol Function Section

Disjunct List I Match any pattern in a list of 2.1.1
patierns. separated by the
disjunction operator:
(is | are | be | am)
Deterministic il Same as ‘[', but stops 8.2
Disjunction after first successful
march of its arguments:
(is !! are !! be !l am)
Quick Disjunction &m Makes matches on 2.4
disjunct sets containing
terminal atoms:
(&w is are be am)
Optionat Element 1 Opticnally match the pattern 211
immediately following
the optionality operator:
(7{?will have | has} had)
Deterministic ' &0 Same as 7", but match 8.3
Optionality wil] not branch .
when it succeeds:

({&0 thank you) very much)

Repetition * Matches a pattern an arbitrary 2.1.1
(inciuding null) number of times (including O):

(7on (!d‘ays ;= (* (week-days>)))

DYPAR Parsing System

| ?*Tiﬁf"'."!:ﬁ'-i‘f?'“.n’-'ﬁ—‘t!h'f"'!J!.'l"'.ff""‘*"'-‘ R
S S L . AR

I

DYPAR QUACK REFEERESCE GLUIDE

Duesired Qperation Symbol Funetion Seelion
Repetition -+ Saine as ™' but pattern must 231
(at lcast once) mateh at least once:
(?7on (!days := (+ <week-days>)))
Repetition T Maiches a patiern a specified 231
{specified number) number of times:
“(7on (ldays := (t 3 Cweek-days¥)))
Unordered &c Matches each of its embedded 2.34
patterns in any order:
(does compsci 3n meet
{&c
(7on {ldays := (+ <weekdays>)))
(7at {Itime := <hrs-minutesd>)
(tapm := (pm | am)))))
Variable Assignment = Match pattern to right of 2,12
assignment operator and store itin a
variable whose name begins with '1";
(700 (!day := <week-days>))
Variable Reference = Matches a value of a variable 232
assigned ecarlicr in a pattern:
{(a (!'var := (rose | hawk | stone))
is a (= lvar) 1is a (= lvar))
Yariable Repetition *art Recards an arbitrary number 4.1
of matches of different segments of the input '
10 the same patiern:
{((* {*var* := <week-days>)
?%comma 7and})
Variable Coercion &i Maps a set of possible inputs 42.1

into a single valiie which
can be assigned to a variable:

{((lpm := (&i pm

{afternoon | evening | night))))

DYPAR Parsing System

R Bradny Sl e il Balink. ey r sl

Ry o . e a

P R P ittt E LR LU
IUTRITRRLTY Nt

DY AR QUICK BB FRENCEGLUIDE 53
f
Desired Qperation Symbol IFunction Section
Wildcard $ Matches any atom in the input 2.1.1
(a (!var := §)
is a (= lvar) is a (= !var))
Numeric Wildeard Sn Matches only numbers: 2.3.4
(where does compsci Sn meet)
Symbolic Wildcard Sw Matehes any word in the input 5.2
except numbers:
(add 3w Sw to compsci §n)
Dictionary Wildcard 5d Matches any terminal element 5.2
in a given gramumar:
(is $d a terminal element in this grammar)
Remainder Sr Matches the rest of an input 2.3.6
(of inpur) or nothing:
(does compsci $n meet in room Sn 3r)
Up-to &u Matches input upte, but not including 2.3.3
the first successful match of its
embedded pattern:
(where (&u compsci) compsci $n
(&u (meet | meeting))
(meet | meeting) %aqmark)
Up-te-and-including &ui Matches inpui up to and including 2.3.3
the frst successful match of its
embedded pattern;

{where {&ui compsci) 3n
(&ui (meet | meeting)) %gmark)

DYPAR Parsing System

. - -
R T L n e f D oapemnade g
CIFRVRRPRNS TR T PP, P SRR IR SRS A . SO PR -S

e

o T P P YL e N : . g
B RN L R R L

DYPAR QUICK REFERENCE GUITDIE

Desired Qperation Symlinl Function Section
Scan &3 Scans input for its embedded 2.3.5
(docs not move pointer) pattern; matching will continue

if pattern is present and

fail if paticrn is not present:

(&s <weekdays>)
Negation ~ Maiches if embedded pattern 2.3.5
“(moves pointer) docs not mateh and moves pointer

to next clement in the input;

(does compsci &n meet

{(* ~(8n | <week-days>))})

Negation dn Samc as '~', but does not 235
(does not move pointer) move pointer:

(add (&n (7 2 <week-days>))

Sw Sw (&u compsci) compsci Sn §r)

Function Application &apply Applies function 1o 422

variable list;

{tnopunct := (&i (&apply append lnewvars)

(® (rvar* := ~3p) 73p)))

Function Application &funcall Applics function to ‘ 422

variable list:

(tsum := (&1 {&funcall plus lnewvars)

(* (*var* := §n))))

Morphology &morph Malches single root 2.4

words with suffixes:

(&morph :root (duck|prince) :endings 1ing)

DYPAR Parsing System

A—’.'“q_

et

RTRTISIE R Wt AU IS F SACATR RIS o F O T L

SAMPEITGRAMAMALR

Appendix C
 SAMPLE GRAMMAR

<be-presaent> -> (is | are | be | am)

<have-presant> -» [have | has) .

¢have-pasid -> (?<have-pressnt> had)

¢have-futured => (will have Thad)

¢haved ~> (<have-present> | Chave-pestd | <have-futured>)

¢ha-pasty -» (was | were | <have-presant’ beea | had bsan)
¢he-futured => (w111 be | will have baeen)
¢bay -> {<be-present> | <{be-past> | <{be-futurae>)

{q-ward> ~> {what | who | ahora | whan | how | why | how much |
how many | how cema)
www> -> (what | who | which)

{poss> ~> (%apost s)
Cwhat=g> => (<wwwy <be=pres> | <Cwww> <poss>)

(pos-modsl1> -> (could | weudd | can)
¢polite> -> (<pos-modal} you)
<ma-usd> -> (me | us)

{info-reql> -> (?7<polite> (info-req2> ?7¢what-g>)

Cinfo-req2> -> (teli <me-usd 7about | give <me-us> | print | type)
CAnfo-reg2d => (wwwd | 7¢palite> (info-req2d T{www>)

(info-reg> -» (<what-g> | <info-reqld)

<a=-an> -> {a | an)

“<all> =» (a1l | evarythiag | what)

<bulk» -> {bulk | majority | greater part)
{universal-guant> -> {7almost a1l | Talmost every 7one | esch |
most | many | the <bulk> of)

<detd - (the | <o-an> | <universal-quent>)

{punct> -> (%gmark | <dpunctd}
<dpunct> -> (¥periocd | Xemark)

(<Anfo-regd 1<det> (lnam :=-§) T<punct>)

“

(1tm-ret lnam 'isa: ni? nil)

{<info-regq> 7<det> (lprop :~ 3) of ?(det>.(lnam t» 5) T<punctd)

>

(1tm-ret lnam Iprop nii nil)

(¢<info-req3> (lprep := §) <be-pras> 7<det> (inam ;= 5) 7<punct>)

=3

(Ttm-ret Inam lprap nii nil}

(<be-pres> 7<(det> (Inam := §) 7da-en> (lval := §) 7<punct>)

>

(1tm-ret Inam 'fsa: Ival nil)

(<he-pros> 7(deid (lbrop te 5) of 7¢des> (tnam := $) 7<det> (lval := §)
7<punct>)

=>

(1tm=ret Inam lprop lval nil)

DYPAR Parsing System

L

L]

RN T L

56

<prp>» =» {of | te | for | with)

¢prp-about> -> (obout | on}

<prp-iny -> (en | dn | into | onte | inside | within)
{tof> -> (te | of) .

Kofor> ~> (of | for}

(Cbe-pres> 7<detd (tval := §) 7<det> (lprop := 3) <iof> 7<det>
(lnam := §) ¥<punct>)

=2

(1tm-ret Inam Iprop tval nil)

<knownd =2 {you Cknow-have> | 7is known | there is | stored
[in memory}

¢know~havo> ~> (know | have}

{<info-roq> <ali> ?<that-do> ?<known> <{prp-aboutd (iasm i= §)
7<{dpuncty)

.

(Ttm=rot-all Inpm)

{1abel1> ~> {word | term | name |} label}
<diazbe1> -> (Tthe <label>)
<name> -> (7proper name [Tproper noun | token Tmode)

(?7<dlabel> (fnam := §) <be-pres> <a-an> {name> 7<{dpunctd)
oY .
{(1tm-store Inam ‘token ’'node-type: nil nil)

<sama> ~> {what | <samel>)

{samal> -> {?the same Tthing <as-that>)
<es-that> -> (as | that}

{that-do> -> (that | do)

{means-does> -> (means | doas)

(7¢diabel> (lnam := $) <be-pras> <a-and> synonym <cfor> 7<{dYabel>

{Ival = §) ?<dpuncid)
-
(progn (1tm-store Inam Ival 'synonym nil nil)
(msg “"Hancefortih when you type "
Ipam ™ I'31 interpret it "
"ag " ival t})

(?¢det> (fnam :» §) means 7<sama> (lval := §) 7<{means-does>
7{dpunct>)

") ,

(1tm-store inam [val ‘"synonym nil nil)

{typeofy> -> ((type> Tof)
{type> -> (typs | kind | form | instance | examplo)

{?¢a-an> (Inam := §) <be-pres> <{a-an> 7<iypeoi> (lvai 1% 3) 7<dpunct>)

=>
(1tm-store tnam tval 'isa: nil nil)

(7¢dat> (lval := §) <be-pres> 7<det> (lprop :+ §) of 7<det> {lnam ;= §)

7<{dpunct>)
=
{(1tm-store lnam fval Iprop n{l aii)
(7<det> (lnam := $) <be-pres> (lvorp :« §) 7<dpunct’)
">
(1tm-spec lnam {varp nil nfl nil}]
{7¢det> (Inam ;= §) <be-pres> <a-an> (lvarp := $) (lval := §)
7<{dpunct)
=>
(progn (1tm-sters lnam fval 'isa: nil nil)
{1tm-spec lnam Ivorp ni? nil t))

DYPAR Parsing System

SAMPI EGRAMMAR

et e Yt b e I Ay 42 1 S ™ bl D g A LSt L i eI e
. ety Iy T e T i

LR v e . et e

SAMIL I GRAMMAR 57

¢inverse-rold -> (¢inverse? 7<rel> 7name)

¢inverse> =) (inverss | opposite | {packpointar>)

¢backpointery -> (back pointer | back %dosh pointer | backpointer)
¢ral> -5 {ralation | property | attributo | pointor | arc)

¢forgaty -> (remove | deiete | erasa | forgot fabout | wipe out)
¢lesdy -> (lood | input | read ?in | dskin)

¢store) -> (save | store | output | write Tout { dskout | print Tout)
<exitd -> {ouit] exit | end 73 session | 7goed bye)

ccommand> -y (<forgety | <load> | <stored | <axit>)

¢vorbd ~» ({commandd | <ba> | <info-req | <havael)

(7¢pos-modai> <forgat> 7<daty (lprop := 5) 7<prop» of (lnam := 3)
7{punct))

(?tm-forget Inam |prop)

(t¢polite> (load> Tthe 7f1lg (1711 = 5} thperiod)

E:ocdf11e 1£47)

(7<polite> {(store> 7<¢prp-in> Tthe tfila (141 = §) T<punct>)

EZtoref11e if11)

(Coxity 3r) => 'exit

<negd -> {(no | not | never | none | nothing | %apost t)
{pos> -» {yes | sure | indse¢ | certainly | csrtain | surely)

({&w Cnog>) <negd> §r)

=) -

(msg "I do noi understand negations yet.” (M 1))
((ts1 := {&u pleass)) piease (ls2 := sri)

Y

{append 1s1 152)

{(1s1 1= (B <g-word>)) (lq := Ce~wordy) {132 := (&u <bad>))
(ly := <bad) T(ip i~ <punct>)}

&;zonc Is1 lg lv ts2 !p)

{(1s1 := (&u {g-word>)) (lwi := ¢g-wordd>) <poss> (1s2 := 5r))

E;innc 1s1 4wl (st 'is) [s2}

((Is1 := {&u § <possd)} (Iwl := §) <poss> (w2 1= §) (ls2 := §r))

H
(nconc Isi lw2 (11st 'of) Iwl Is2)

(7¢det> (1wl := §) (lprp = <prp>) T<det> (lw2 := §8) {lv = <verbd)
(1s2 1= 3r})

P

(ncone 1s2 Iv Iwl Iprp 1w2)

DYPAR Parsing Sysicm

DYPAR Parsing System

HNTTOR DA PARAT-INTERNATL FORM

e S e TR el

.

Y

BN EOR DYPAR-T-INTERNAT FORM

Appendix D
BNE FOR DYPAR-I--Internal Form

CAPS mecans definition external to BNF
¢angle-brackets> means DNF nonterminal
lower-case means terminal quoted node

{pattern? = nil
{pattern> 1= (<patternly)
{patlernld ;1= <tenn>
<patlernly = <term> {patternl>

Germy = ATOMIC-CONSTANT - terminal (lexical) symbol
termy 1= . onc-place wildcard
{termy 1= $n _ - one-place numetic wildcard
{termp 1= BW : one-place word-only

. wildeard
<termp ;= §d - match any word in pattern

. matcher’s dictionary
term» 1= 3r - match remainder of input
<termd o= NON-TERMINAL * non-term grammar symbot
<lermy i = FUNCTION * hook for user-defined raatch
<term? 1= { t <n>{patierni>) - matches <patiernl> <n> dmes
Cterm) 1= (7 <patternl>) . . optional match
Ctermd 11 = (&o <patrernl>) - deterministic optional match
{lermy = (* <{patternl>) - kleenc *, maich {patternl>

' + 0 or more tmes
Clerm) = + <patternl>) ' kleene +, match {patternl>
' : . .1 or more times

<term 13 = (! <pattern-list) e ; disjunction
<eerm = (1 pattern-lis®) * deterministic disjunction
term) i = (&s {patternl> } : : scan input and continue

- match if <patternl>

: : present

<termy 1: = { &n <patternl>) * fail match if <patternl>

. isnextinputseg
Cerm ;= (~ <patternl>) : fail match if <patiernl>

s mextinput seg,

¢ else CONSWTE NEXL 5¢8
Ctermy 1= (&u <patternl>) - - match until {patternl>
Stermy ;1= { &ui <patternl>) - match through ¢patternl>
Stermy 12 = { &c <pattern-lis>) . - unordered case match
<ermd i = (= VARIABLE-NAME <patternl>) + assign var 1o result of

. match
<erm) ;= (&i VALUE <patterni> } - return YALUE instead

. ofinput seg if
. <patternl> matches

DYPAR Parsing System

59

60

<eermd 1= { Sapply LISP-FUNCTION Cvariable-list>)
<ermd = (= VARIABLE-NAME) '

Cteemd o= (&un <lise)

Ctermy = (&luncall LISP-FUNCTION variable-list>)

<erm» = (&morph <morph-terms>)

<morph-terms> (1= <morph-feem?
<{morph-terms> = <morph-term> <morph-ierms>
{morph-tam 5 = <morph-key-word> {pattern>
<tmorph-key-word> 1= :root] ;endings | :sulfix

ndi=1213].

ATOMIC-CONS TANT
ATOMIC-CONSTANT <list>

<list> ::
<listd i

]

Cpattern-fis0 ;= (<{pattern-listl>)
{pattern-listl> :: = <{pattern>
{pattern-lisel> ;= <{pattern> {pattern-listl>

{variable-listy 1= VARIABLE-NAME
{variable-lise = VARIABLE-NAME {variable-lis&>

Definitions external to BNF

e AR AR B S vyt e el b e 2 8 L e e b o es =t

BN TOR DY PAR-F-INTFRNAL FORM

Lapplics function to var list
s reference previous maich var
> membfinput word, list]

. any paositive integer

ATOMIC-CONSTANT = A LISP atom without a REWRITE: or FUNCTION: property and NOT eq 10

5

NON-TERMINAL ::= A LISP identifier (i.e. a LITATOM) with a REWRITE: property whose value is a
¢patiern> defined above. Recursive pattern definitions are allowed. Pure left recursion,
however, will be detected and will not expand in the matcher,

VARIABLE-NAME ::= A LISP identifier used in output assoc list of bindings as the name referencing the

matched segment {or vaiue retumed by &i).

FUNCTION ::=.A LISP-identifier with 8 FUNCTION: property whose value is the name of 2 1-argument
user-defined FEXPR. This fexpr is used to maich the input at the current location and

must return a value compatible with the matcher.

VALUE 1= A LISP S-expression (or value returned by dapply)

LISP-FUNCTION = A LISP EXPR. MACRO, or LEXPR, which can be a bujl-in function or user-
’ defined. Thisshould return a value that can be meaningfully assigned to a variable.

DYPAR Parsing System

ek

R B EITWACH P TR et et} s bt ko e PN P el TR AW S e d Sl it -

AN SWERS 1O EXFRCISES
Appendix E
ANSWERS TO EXERCISES

NOTE

The answers to quesdons are nat intended to be cxhaustive but rather to cover the main thrust of the

question. 1t would be uschul for the reader 1o try to supplement any of the answers.

Gl

Exercise 21

The following is a grammar {ile which represents a possibic way to answer cxercise 2-1.

-+ rewrite rules for non-tenminals

:+: possible days

¢daysy -y (7on (ldays := (® <disj-days>)))

¢disj-daysy => (<mond> | <tues> | Cwead> | <thursy | <fri>)
¢mond -» {m [mon | mon %paricd | monday}

Stussy - (tu | tuas | tues %period | tuesday)

¢wady -> (w | wed | wed %period | wednesoay)

¢thursd => {&h | thurs | thurs Xperiod | thursday}

¢fri> => (f | fri | fri Xperiod | friday)

representing class names

Celassy ~» (<department> $n)
¢dapartment> -> {phil | compsei)

11 question verbs
Cisgy => (does | s | will)
++« yerbs meaning of similar in meaning to "meet”
¢meet> -> (meet | meats | mesting | take place | takes place | taking
place | occur | occurs | occurring | beld | taught { given)
.-+ auxiliary verb
<auxv> -> (going to [going to be | scheduled | schaduled to
| schqduled to be | be | baing)
115 exit words
Coxity -> {axit | bye | quit | end)

..+ top-level rule

-+ yes/no question regarding meeting times of classes
(<isq> {lelass := (classy) 7<auxy)d <mestd 7%gmark)

n)
{msg "You asked whether " (class " maets an " ldays "."}

s exit rule
(Cexit>) => 'exit

Exercise 2-2

DYPAR Parsing System

Sl e e e et L L TP AT Y TOR T N1

o AL Sla VST = e b st i it e e 2

02 ANSWERS 10O ENERCISYS

The lollowing ts what a grammar file that answers exercise 2-2 might look like,
212 rewrite rules for non-terminats

: words and phrascs asking for meeting time (of a class)

<whed> -> (when i‘?(ut | on) (what | which) <and-time-word>)
¢and~time-word> => ({time-word> 7end ?the 7<{time-word>)
<time-word> -» {time | times | deoy | days | hour | hours)

oy words and phrascs asking for mecting place {of a class)

<whore> -» (whers | 7(at | 4n) (what | which) Cand-place-word>)
<and-place-word> =» {<place-werd> Tand Tthe 7{place-word>)
¢place-word> ~> (placa | room | building | hall)

. representing class names

<classy -> (<department> &n}
{department> -> (phil | compsci)

; verbs meaning or similar in meaning to "meet”
<meet> ~» (meet | meets [meeting | take place | takss place | tsking
place | occur | occurs | occurring [held | taught | given)
i1 auxiliary verbs

Cauxviy -» (does | 1s | wi17)
<auxv2> -> {going to 7bs | scheduled ?to Tbe | be | being)

oo exit words
<exit> => (exit | tye | quit | end)

i1 top-level rules

s when does (class> meet?

{(<when> 74suxvid> (lelass := {class>) 7<auxv2> T<meet> 7¥gmark)
L]
{(msg "vou asked when ™ lclass " meets?")

i+ where does <class> meet?

{<where> ?<auxvi> (lclass i» {classd) 7<auxv2> 7<meet> TXagmark)

">
(msg “"You asked where " lclass " meets?")

e exitrule
- {(<exit>) => 'exit

Exercise 2-3

Here is a grammar which is one possible answer to exercise 2-3. Note, especially, the vse of '~ in <name> and

of '(&n (&u...)) in the first top level rule.
i1 rewrite rules for non-terminals

11 Tepresenting class names

DYPAR Parsing System

«

—,
t -

£

ETTIRRE LY LA LY PR PR S

ANSWERS TO FXERCISES

¢class-var -> (lcless := (c]asé))

¢elassy ~> (<(departmant> 3a)

¢gopsrtmenty => {phil | compsci)
o relative pronoud

(who-thatd => (wha | that)

question verbs
ras-1s-q> -> (has | doas | is | will)

ELR]

-+ verbs meaning o similar in meaning to “registered for”

¢registered-for> -3 (registersd (ia | for) I taking | tak
sarolled (in | for) | in)
=+ auxiliary verbs
cauxvly -» (s | will 7he)
Cauxv2d -y {going to Tha | schedulad 7ta ?he | be)
iy name
¢name-var> => (Iname 1= <named)
{namg> - (~3n T~50 7~3n)
-+ pronouns and pronoun-like plirases meaning arny/some One
<any-some-ona} -> (anyonsa | someons | anybody | somebody
{any | some} (studsnt | persan))
.+; exit words
¢axity -» (exit | bye | guit | end)

-+ top-level rules

1

.-+ rule covering whether 2 particular student in a given class

(L]

{(&n (&u Cany-soma-ong>)) <has-is-q> ¢nama-var?> 7<auxvd
(registered-for> (class-var> 7%gmark)

-

(msg "you asked whather " {name " is ragistersd for " lel

.- rule covering whether there any students in a given class

PR SR I e T T L T e

03

o |

ass)

(<has-1s-q> Tthars {any-some-one? 2¢who-that> TLauxvid 7<auxvady

<registared-for> (class-var> Taqmark)
L

(msg “yow asked whother anyone is registsred for " lelass)

cexit rule
(Kexi1id) => ‘exit

Exercise 2-4

The way around the probiem is to use a iransformation rule to skip over the inessential words and phrases at

the beginning of the given inputs. The following is a gramimar which ¢

2-4 but not much more.
-+« rewrite rules for non-terminals

11

:++ representing class names

¢eiassy -» ((department> Sn}
(departmenty -> (phil | compsci)

. possible days

DYPAR Parsing System

overs the requirements of the exercise

Dhegn ety ee | na e

O ANSWERS TO ENERUISE

¢days> => {ton (ldnys i« (* <dis}-days>}})}

<gisj-days> => (<mon> | (tuesd> | <wedd> | Cthursd | <frid)
<{men» -> {m | mon [mon %paeriod | monday)

<tues> -» {tu | tues | twos X%peried | tuesday)

<wedd -> (w | wed | wed %period | wednesday)

¢thursd -> {th | thurs | thurs %period [thursday)

Kfedd => (f | fri | fri %poriod | friday)

1+ possible hours
<hourd> => (7at (ihr := Sa) Thcolon (imin := 75a) 7<o-clockd
(lam~pm :+ T(<om> | <pm>)})

<amy =-» {am | in the morning)
<pm> => {pm | 1n the (ovening [afterncon) | at night)

{o-clockd> ~-» (o %apost clock}
122 verbs meaning or similar in meuning to "meet”

<moot> -> (most | meets | masting | take plage] takes place
{ taking plece | occur | occurs | occurring

| held | taught | given)

o qugsdon verbs
<1sq> -> (does | 15 | wit1 | whether | if)

o

1oy auxiliary verb
{auxvi> => (does | 1s | will}
Cauxv2> -> (going to Tbs | schedvled fto Tbe | be | being)
;o3 exit words
<axity -> {ex1t | bys | quit] end)
transformation rule to skip over inessential words and phrases

the + operator assures there is input to be skipped over before the
essential input; the essential input is saved in Ifirst-element aad
{r which are passed to the parser for further processing

({+ ~3n {Ifirst-slement := {isq>) (Ir := $r))

12

{nconc Itirst-element Ir)

;4 top-level rules

;3 Queries

13, yes/no question regarding meeting times of classes

> (¢1sg> (telass-nam := {¢lass>) 7<auxvid> ?<aux2> <{meatd> (&c (<hourd)
(<days>)) Txgmark)
(Esg)"You askad 17 ™ lclass<nam " mosets at " Ihr imin lam—pm ldays

3

Exercise 4-1

Here is a likely solution to exercise 4-1.

Two new nonterminals must be defined to handle possible days: |

DYPAR Parsing System

s e L RATRR 8 e B S N e LN A e R LT AT L

ANSWERS 10 ENERCISES hS

¢st~disj-days> -» (° ("var* ;= {d1sj~days>) 7¢conj-syntax>)

(cenj-syntax> => (%comma | and | %comma and).
Then <daysd> has to be madified tw:

<days> -> {Ton {st=disj~days>).
Finally every top-level rule containing !days on the RAS must be changed so that !days is substituted for by
(aceess Inewvars) on the RHS.

Further, additional patterns and modifications must be introduced for 'Cam>” and {pm>":

am> -y {am] (&1 am <am-pat>))

¢am~paty -> (in tho morning)

<pmy => (pm | (&1 pm {pm=-pat>)) .

Cpm-pat> -> (ncon | 1n the {afterncon | avening) | at night)

Alternatively <st-disj-days> could also be defined as:

(st-disj-days> -» ({*var=® := <disj-dnys>) 7¢conj-syntax>
7{st-disj-days>)

Excrcise 4+2

This is an answer to exercise 4-2. First, a new non-terminal must be added to the file given as answer (o
exercise 2-4 under ";;; possible hours.”

<twuﬂty~f0ur-hour-t1ma> -> (Itime := (&1 (&funcall rdtime
' (1he tmin lam=pm)) <hour>))

Then, the non-terminal <hour> must be expanded 1o look like the following:

Chourd - (7at (Ihr := $n) Txcolon (lmin := 75n) 7<o-clockd
{lam=-pm :» 7(am | pm | (&1 am <am-pat>) |
{&1 pm <pm~patd>)}))

The non-terminals <am> and <pm> are no longer necessary in support of <hour>, but <am-pat> and <pm-pat>
stll are.

<twenty-four-hour-time is substituted for ¢hour> in the yes/no question regarding meeting times, and liime
is substituted for thr 'min fap-pm in its RHS. The new top level rule would look like the following:

(isq> (lclass-nam :» <{class>) 7¢auxyl> T<auxv2> <{meet> (&c’
(¢twanty-four-hour-time>) {<days>)) Thamark) :

-

{msg "you asksd whether " lclass-nam " mests at " ltime
(access lnewvars) ".7)

Exercise 5-1

This is the answer to Exercise5-1. There is very little room for vanance in writing an answer Lo this exercise,
so if your answer works it should look a lot like this ope. This answer consists entirely of LISP code which

“should be putinto a file of its own and loaded scparatel'yj from the grammar file.

The cxercise is to write the operator ‘$q’. First. you need to write a function which takes the list of the
unconsumed input string as its argument. (Don't worry about how you will get the list-DYPAR will plug it
in for you when it calls your function.) You need (0 make your function a predicate on the car of this lst:

(defun Sqchack M
(equal (car (sxplode (car 1})) '¢))

DYPAR Parsing System

LT e U e e B

O) ANSWERS TO ENERCISES

EYReRT

This functicn returns a " i g fise letter of e first word of the input string is equal o g, Now you must
attach the function Sgehech w its DYPAR symbol, 'Sq’. You do this using defprop to assign "Sq” a “lunction’
property whose value is "Sqelieek™

(dafprop 3q $gcheck :function}
Finally. you must give Sq a :symbol” property for usc by the cross-referencer. Since 8q is designed to be used
on non-numeric input, the value of the symbol' property is setto '3

(dafprop 3q. § :symbol)

Lxercise 542

This is the answer for Exercise 5-2. Your primary LISP function may vary from the onc given here, but the
auxiliary defprop functions should be identical to the ones below (except that you may have given the primary

function a name other than 'Sspecial-punct’.)
Wrile the primary function:

(defun $special-punct (1) .
(member (car 1} |lsomepunct})

Nsomepunet is a global list, set by using the FRANZ LISP function dv, which is equivalent to a setq. It
contains the special DYPAR symbol equivalents of *.’ *I" and ' This is because all user punctuation input is
converied Lo these symbols when it is read, so in order 1o match the user’s input, the function must employ the

DYPAR symbois:
{dv Ilsomepunct (%period Xemark %gmark}}

Then add the auxiliary functions using defprop:
(defprop $pe Sspecial~punct :function)

(dafprop Sps § :symbol)

IDYPAR Parsing System

R TR B Lt et e E Y

ey

JUSTORY & CREDVLS ' 67

Appendix F
HISTORY & CREDITS

The first version of DYPAR was designed and implemented by Jaime Carbonell in the UCI dialect of LISP
on a TOPSI0 opcrating system in the summer of 1980. A later more sophisticaled version was developed by
Carbonell in the spring of 1981, "This version was translated to FRANZ LISP running under UNIX by Mark
Buegs. who added the cross referencer, and who is cssentially responsibic for making sure the current
implementation is kept in good working order. To this point most of the design considerations have been the
province of Carbonell (with occasional sugacstions from Poggs). and the implementation details have been
the province of Boggs (with significant contributions from Carbonell. including the ariginat pattern matcher).
Steven Romig did some work on the videst version of ERANZ LISP DYPAR which has carricd over to the
nresent version. Boggs and Robert Frederking worked on a DYPAR application grammar for a factory
scheduling system off and on during the last hall of 1981, ‘This srammar served as a testbed for DYPAR
development throughout the following year. It recognized on the order of 2 guarter of a million inpuis. A
spelling corrector written by Frederking, and modificd by Bogas and Steven Minton was added during the
summer of 1932

During the summer of 1982 Carbonell developed yet another version of DYPAR (MCDYPAR) which
contained some new operators. Those operators (‘&u’, ‘&c’, and ‘&m') were converted 0 be non-
deterministic and added e DYPAR by Steve Morrisson and Boggs. During the summer of 1983 at the
instigation of the new members of the project (Ira Monarch. Scott Safier, and Jim Washburn), Boggs added
some new operators {'~', ‘8’ "&n’). Much of the DYPAR source code was rewritten during 1983 by
Carbonell and Boggs so as 10 be both more efficient and more robust. Morrisson added the'&morph’

opecrator.

In the soring of 1984, Safier converted DYPAR to COMMON LISP and added an incremental ¢ross
referencer. Also at that time, Ni¢ Easton {on loan from DEC) added the "&s’ uperator and Marion Kee added
the ‘&ui’ operator. During the summer of 1984 Demetri Silas worked with Boggs and Safier on a better
incremental crass-referencer, which was added to DYPAR in the fall of 1984,

This manual was originally written by Carbonell and Boggs: Ira Monarch added the exercises for Chaprers
2,3, and 4; the exercises for Chapter 5 were writien by Marion Kee. Beth Bvers worked with Boggs on the
tables and on generally cleaning up the manuscript. Kee re-wrote Chapter 5 and Chapter 2, added material in
the other chapters, and improved the index. Steve Morrisson helped to write the section on the operator
‘&morph’ in chapter two. In October 1984, the manual underwent a major review by group members and
others mvolved with the project. Boggs, Carbonell, Monica Cellio, Nic Easton, Kes, Monarch and Morrisson
all made valuable suggestions leading to improvements in the manual,

Chapter 7 was added in the summer of 1985 by Boges and Kee. During the fall of that year, some revisions
were made to the other chapiers to keep abreast of developinents in DYPAR. Kee and Boggs put this'manual
into final CMU technical repost format in [december, 1985,

We would like to thank the Carncgie-Mellon Computer Science community for their subport ang aid
during the development of DYPAR. most specifically Don Kosy and Phil Hayes, for their enlightening
insights into some of the problems of natural language parsing, and Mark Fox and Gary Stwohm of the
Intelligent Systems Lab, for giving us our first real domain. :

DYPAR Parsing System

LTI, e e

DYPAR Parsing System

INDEN

e

o
k.o
L

INDEX

Index

15

It 43
Dallpunct 33
ailure-Nlag 37
‘newvars 27
tpirace 37

5 4,45

Sd 32
Slisp-function 32
Slisp-variable 13
Sn 12, 33,45
$p 3133

- 5r 12,45

Swo 12

&apply 28
&c 11,44
&funcall 28
&i 28,45
&m
&momph 12
&n 11,45
&n 43

&s 12

&u 11,12 45
&uj 11

* 545
=yar* 27

+ 10,45

> 6

7 4,43
+ 10,45

Accessing variables 5,7, 8,10, 27
Ambiguity 4]
Assertions 22

Capital fetlers 6,7,31
Case conversion §
Case sensitivity 7
Case [rame operalor 11
Case operator ¢4
Collision resalution 41

DYPAR Parsing Sysiem

COSMMONLISP 1
Complex extensions 31
Consumed input 5
Crogs-referencing 34, 41, 46
and rule Lypes 38
of nonterminals 38

Dacmons 31
Dcbugging grammars 46
Deterministic disjuretion operator 43
Deterministic aplionality operator 43
[Dictionary 13. 12
Diclionary wildeard 32
Disjunction aperator 4
Delemministic 43

Quick 44

DYPAR
Cross-referencing 38, 46
Debugging grammars 46
Inpuling sentences 38

Installation 36

Loading grammars 36
Parsing stratcgies 2,41

Punctuation 46
Running 37

Source compiling 35

Seuree files 35

User-defined operators 31

Using 37

DYPAR LISP functons 46

access 27
append 8
defprop 33
dumplisp 36
fasigra 36
toadlile 18
loadpra 36
Wm-forget 17
um-ret 17
m-ret-al] 17
Itm-spec 17
ltm-store 17
msg 7

parsc 37
parser 37
plist 47

ppl 47
savegra 36
storefile 18
xmatch 47

DYPAR LISP S-expressions

Hnonterms 47
Hpatrules 47
llpaitrans 47

Exil nonterminal 37

4 s bt LT T St A PR

]

R et ikt

70

Papanculiation 10

Eantensinn lusetions 3,48
Comples exlensions 1
Simple oviensions 31

iiuiernal ambiguity 41

[Forced malch 4

Fraciions 2%

FRANZ LISP 1,7.30
Compiler 35

Global list 33
Global variables
ltdelimiters 46

Input pointer $
Inputling sentences 38
latcrnal ambiguity 41
Internal operators 44
lierative operators 5, 10

and variable assignment 27

Klevne plus 10
Kleene star 5

Left recursion 7

LIS 6

LISP environment 5, 33

LISP function pointers 21

LISP source code 35

Lisp-fupction wildcard 32

Ligp-variable widlcard 33

Loading grammars 36
and cross-referencer 33

Lower-case letters 6,7, 31

Maich collisions 41
Morphology operator 12
Multiple grammar files 36
Multiple parses 41

Naming conventions
for rewrile rules &
for niladic operators 4
[or variables 6
Natura) language interfaces 1
Negation
and varizble assignment 12
25 afiller 12
Negalion operator 11
Nesting 7
Newwork LISP functions 17
Niladic operators 4, 12, 31,45
Non-deterministic parsing 41
Nonlerminal symbols 6
and cross-referencer 38
Numeric wildeard 12, 33

Operators 3,10
Case 44

Deterministic disjunciion 43
eterministic optionality 43
Dictionary wildeard 32
Disjuncton 4
Exponentiation 10
General wildcard 4
lierative 5. 10
Lisp-lfunction wildeard 12
Lisp-variable wildeard 33
Morphology 12
Neeation 11
Niladic 4, 31,45
Not 44
MNumeric wildeard 12, 33
Oopticnality 4
Punciuation wildeacd 31, 33
Quick disjunction 44
Remainder wildeard 32
Repetition 5,10
Sein 12
Unordered match 11
Upto 11,12
Up-to-and-including 11
Variable assignment 5
Varable coorcion 28
Varable reference 10
Word wildeard 32
Oplionality operator 4, 43
Deterministic 43
Ordering of rules 9

Parser 3,7, 41, 47

Paliern matcher 3,5, 7
and &morph operatgr 13
and rewrite rules 6
Recursion of 3

Pattern storage 45

Patterns 3

Positive modal auxifiaries 20

Production rules 7

Propeny lists 45

Puncruatiea characters 9, 31, 33, 46

Punctuation wildeard 31, 33

Quantifiers 20
Queres 19
Quick disjunction operator 44

Recursion
Definition 3
Lefi recursion 7
of pattern matcher 3
ol rewnite rules 7,27

Remainder wildeard 12
and transformation ruies 12

Repetition 5, 10

Rewrile rules 3,6
Command synonyms 23
Cross-relerencing of 38
Dictionary contents 32

DYPAR Parsing Systern

INEX

P

e

INDIEX

Grrors 7
Negation 24
Nesling 7
Crdering (in a file) 9
Recursive 7,27
SelF-referencing 7, 27
RIS 6.17,32
Rule types
and cross-referencing 38
Ordering (in a file) 9
Rewrite 6
Top-level 7
Transformalion 8
Rules 15
Cyelic 9

Sample session 37
Saved grammars 36
Scan operator 12
Semantic network 17
Simple extensions 31
Subpatterns 4
Synonomy 22

Template 3

Templawes 3,38

Terminal atoms 44
Tennina! symbols 3, 4, 6, 32
Top-lavel nules 3,7

and ansformation mujes @

Cross-referencing of 38

functions used in RHS 17, 27

Ordering (ina file) 9

Transformadon rules 3,8, 24

and Sr operator 12
Cross-referencing of 18
Ordering (in a file) ¢

UNIX 1,37

Unordered malch operatar 11

Up-lo aperator 11, 12
and &n 12

Up-to-and-inciuding operator 11

Upper-case letiers 6,7, 31
User-defined aperators 31

Varjable assignment 5, 10

Accessing values 5,7, 8,10, 27

and &i operator 28
and &u operator 11
and &ui operator 11

L e PO L I S b A B IR D M

Mehavior controt 37
Coorcion 28
VAX 1

Wildcard nperatars
Dictionary 32
General 4
Ligp-funciion 32
Lisp-variable 33
Numeric 12,33
Puncluation 31, 33
Remainder 12
Word 32

Word wildcard 32

| 4

- 11,44

and iterative operators 27
" and morphology operalor 14

and muldple parses 41

and negation 12
Variable coercion operator 28
Varizble reference operator 10

and morphology operator 14
Variables

var* 27

DYPAR Parsing System

71

W

Wi . s

DYPAR symbol Character Ascii Value

Jocolon ; ‘45581
%dash -
Tslash / 47
Toapost ’ 39
Tohash # - 35
%comma , 44
Flparen (40
%rparen) 41
Tostar * 42
%bquote ‘ 96
Jrsbrack [9]
Colsbrack] 93
Tobslash \ 92
Tvbar | 124
%scimicolon) | 5?
- %dquote " 34
Pplchrack { 123
%orcbrack 3 125
Tolabrack < &0
hrabrack > 62
Toamper & 38
Tpercent % 37
%dollar $ 36
Toplus + 43
%equal = 61
Counderbar — 95
Supcarel T 04
Yatsign @ A
%Lilde -~ 126
Yoemark ,l) 3_:)
%qmark ! .132
Tocr S tM ' 133
Glf 1) 10
Toperied : 46
This convemsicn is commanly cisabled

2-!..‘..._., -

e
‘ “ i

{

FLHNL T e

ANSWERS TO ENURCISES 6l

—_—

Anpendix E
ANSWERS TO EXERCISES

NOTE

The answers Lo questons are not intended (0 be exhaustive but rather to cover the main thrust of the
question. 1¢would be useful for the reader to try to supplementany of he answers.

[Lxercise 2-1

The following is a grammar file which represents a passible way Lo answer exereise 2-1.

;+; rewrite rules for non-terminals (, e o vdan ‘Jﬂ“t«.ﬂ/{‘;/{@
pay 1

. - . w2 e t I Uiy J

-1 possible days o N Ch Vel Yan o ..

P) é*!{&y&‘i’ G . f}t _

Cays> => {Ton (ldays i+ (*.(disj-days>))) Youlu (u i bles U QﬂL&f&b[au. e
<disj-days> -> {<mond> | (tues> | <wedd P Cthurs> | <frid) ke o wh Rowe Din o .
<aond -» (m | mon { mon Zperiod | monday) e, U o= A X W_rv
Ctuesd - {tu } tuos | twos #poriod | tuosday) o L s st

<wodd ~> {w | wog | wed Xperiod | wodnosday)
Cthursd -> (th | thurs | thurs Xpariod | thursday)
rrdy - (T] Tri | Tri Xperiod | fricay)

.1 representing class names

(XN

¢elassd => (<dopartmont> $n)
Cdapartmont> -> (phil | compsci)
- question verbs
Cisgy - (doss | 1s | will)
-+ yerbs meaning or similar in meaning to “meel”
¢mogt> ~> (moet | mesis | meeting | take placs | takss placs | taking

place | oceur | occurs | occurring | held | taught | given)

-+ auxiliary verd

LN

Cauxv> -> (gofng to | going to be | schaduled | scheduled to
| scheduled to be | be | being)

=+ exit words /'}w wS 7/
<oxit> -» (exit | bye [quit | ond) C‘:}{[)/[""M’S*;jk‘ !
11 top-level rule e {0 ,{,_,Vag>

++ ves/no queston regarding meeting Umes of classes.

(<1$q> (1class := {class?) 2¢auxyd <mastd 7xgqmark)
EDS .

(msg "You asked whether * lclass * neets Oﬁ " leéli !
eexit ruje -4 Lacoitd EWUC&MB
(Cax1td) => 'sxit LJ
' AY4 L I
- Exercise 2-2 Cdc&?w@ﬂ—’ l’/E SV o FZJA by,
L/Q}va,b :

MVDADR Darcing Quatam -

- . Pt ar “
'
.
i’
o
|
Taaet
.
.
k »
- e ™ o vt e MR WM L . . v .

aa

ANSWERS TO EXERCISIS

The Tollewing is whata grammar file at answers exercise 2-2 might look like.
corewrite niles for non-terminals

- words and phrases asking for mecting time (of a class)

<whond = (Qhun | 7{ot | on) (what | which} <and-time-word>)
<and-time~word> -> (<timo-word> Tand 7tha ?{time-word>)
<timo-word> =) {(time | times | dey | days | hour | hours)

“+ words and phrases asking for meeting place (of 4 class)

¢whored => (whara | 7(st | 1n) (what | which) <and-place-word))
Cand-glace~word> -> (<place-word> Tand Tihe 7¢placa-word>)
¢pioca-word> -> [(ptoco } room | building | hall)

_inrepresenting class names
(classy =» ({dapartment> $n)
<departmant> -2 (ph1l | compsct)

+= yerbs meaning or similar in meaning to "meet”

(moatd -> (meet | meots | meeting | take place | tokes place | taking
plece | occur | occurs | occurring | held | teught | given)

oauxiliary verbs

Cauxviy -» (does | is | will) -

Cguxv2y -> (going to Tbe | scheduied 7to 7be | bo | being)
11 exit words

Coxitd ~> (exit | tyo | guit | end)

5 op-level rules

= when does <classy mecel?

(¢whony- 7<ouxvid> (!class := (class>) 7Lauxvey T¢maot> TAgmark)
R L) .
i (msg "Yeu asked when " lclass " moetsi")

:+ where docs (class> meet?

(Cwharad 7<auxvi> (lcless

-2
(msg "You asked where " lclass " moets?”)

s Celassy) 7<auxv2y T<most> 7Xgmark)

2oexit rule
(Coxdtd) => 'oxit

Exercise 2-3

Here is a grammar which is one possible answer Lo cxercise 2-3. Note, especially, the usc o
of "(&n (&u...)) in the first lop level ruie, '

- rewrite rules for non-terminals

"1, representing class names

F'~'in <name> and

R e

ANSWIRS T EXERCISES 63

(ST

¢class~var -> (lcless tn <c\asﬁ>)
(clossy -» {<dopartmontd> 3a)
(6epartmantd -2 (phil | compsci)

1o relatve pronoun
¢who-thaty =) {#he | that]

“1 question verbs
¢has-1s-g> -» (hos | doss | is | wiil)

.-+ yerbs meaning or sirnilar in meaning w "registered for”

(rogistorad-fory -> (registerod (in | for) | teking | tako
anrolled (in | for) | 1n)
= guxiliary verbs

Cauxvly => (s | wil1 7be)
Cauxv2) ~> (going to 7bo | scheduled 7to Tbe | be)

s hame

¢namo-var> => (lname = <named)
¢namad -> (~3n 7~8n 7~3n)

:+» pronouns and pronoun-like plirases meaning any/some one

> => {anyone | somaona | snybody | samebody |

{any-somng=~ona
(any | some) (student i person))

<+ exitwords

11

Cexity -3 {exii | bye | quit | end)
.2 lop-level rules
- rule covering whether 2 particular student in a given class

((&n (&v ¢any-soma=0n0>)) ¢has-15-q> <{name-var> 7<auxy>
¢rogistorad-for? (elass-vary Trgmark)
>

{msg "you asked whother ™ Inams " 1s registarad for 7 lclass)

- rule covering whether there any siudents in a given class

((has—is-q) Tthare <any-s5cme-ang> 7¢who-thatd T<auxvl> 7{auxyvid
(registerod-for? (class-vard> Tremark)
=)

(msg " l¢lass)

"yoy asked whaihor anyong {s ragistered for

ceexit rule
(<exitd) =2 "exit

E.\:ércisc 24

nuial words and phrases at

<formation rule to skip over the inesse
irements of the excrcise

The way around the probiem is 1o 52 2 [rans
the beginning of the given inputs. Tne following is a grammar whici covers the requ

2:4 bul not much mare.
=+ rewrite rules for non-terminals

-+ representing class names

1

Celassd -> (<doportment> S$n)
¢department> -> (phi) | compsci)

possible cays

DVPAR Parsing Sysiem

Tt i it i

e T
actlt Al

BrEE s jbiE

/
i
{_" .
1 -
»

Tk 2. e ~ B ol I
g

ST
- ANSWERS TO EXERUISES

l s %imﬁ ﬁ“ﬂh;ydd&i?))
¢days> -» (ton (ldays :+ (* <disj-days>)))
¢disj-daysy -» (<men? | Ctues> | Cwodd> | Cthursy | <frid)
¢mond =» (m | mon | mon %poriod | monday)

Ctupsy -» (tu | tues | tues tpariod | tuesday)

Cwody =) (w | wod | wet Zpariod | wodnosday)

¢thursy ~> {th | thurs | thurs sporiod | thursday)

<rri> > (f] Tri | fri ¥poriod | friday)

1 possible hours

Chourd = {78t (ikr = Sn) Ticolon (Imin 1= 750) 7¢a-clock?
(lam-pm = T{<am> | <pr¥)))

<amd -» {am | in the morning)
<pm> -» (pm | ip the (avening | eftornoon) | at night)

Co~clockd -» (o %apest clock)

- verbs meaning or similar in meaning to "meet”

¢mootd -> (maat | meets | meating | toke place | tokes place
| taking placs | occur | eccurs | pccurring
| hold | taught | given)

o guestion verbs

<isg> -> (dogs | is fowill | whethaf] i)

- auxiliary verb

<auxvly = {doas | is | will)

Cauxv2y -» (going to 7be | schoduled 7to 7be | be | being}

s exit words
Caxity = (exit | bye | gquit | end)
transformation rule to skip over inessential words and phrases

the + operator assures there is input to be 'skipped over before the
essential input; the essential input is saved in !first-element and
i which are passed to the parser for further processing

£(+ -0 (ifirst-aloment := ¢sgd) (Ir o= ST)L

]
(nconc [first-slgmont Ir) ’ 2 Eg}’/
AL
2+ top-level rules o Far
; v

Y s M -\J' \5}\ ((‘H—})
o queries : A
B P ol n
. bhf,.f~-f~.
1 yes/no quesdon regarding meetng Umes of classes 'O\jb/'-\ E

;) \ 3
{<isg> (lclass—nom :- ¢classy) T<auxv1d 7¢pux2) <mastd> (&c {(<hour>) s
{<days>)}) T5gmark)

-y . .
(msg "You askod if 7 lclass-nam " meets at " 10r jmin lem=-pm ldays

n.n)

TExercise 4-1

Here is a likely solution to exercise 4-1.

~Two new nonterminals must be defined to handle possible days:

e oA s g
et b

5

. .. - .. L A . .

R

ANSWERS 1O ENERCISES G5
(st-gisi-daysd => (* (*vor® i ¢dis)-daysd) 7¢conj-syniax>)
Cconj-syntax> => (Rcomma | and | Xcomma and).

‘Ihen <duys> his 1o be modificd (e
¢daysy -» (Ton {st-gisi-doys>).

[Finally every top-ievel rule containine 'days on the RHS must be changed so that tdays is substituted for hy
(aceess Mewsars) on the RS, '

)
B

Further, additonal patleons and modifications must be inwroduced for 'Cam>' and i

camd -» (em | (Ei 8m Cam-pat>}))

{am=-poty =7 (in thae marning) v

¢pmy -> (pm | (&1 pm (pm-pat?))

¢pm-pat> -> {noon | in the (aftornoon | evening) | at night)

Alternasively ¢st-disj-daysd could also be defined as:

¢st-disj-days> -» (("var® i~ (disi~days?) ?7¢eoni-syntaxd
7¢st-disj~days>)

Exercise 42

This ic an answer (o exercisc 4-2. First, a new non-terminal must be added to he file given as answer (0

cxercise 2-4 under 5 possible hours.”

¢twonty-Tour-hour-time> =2 (1time 1= (&1 (afuncell rdtima
{i6r tmin am-pm)) <hour>))

Then, the non-iceminal <liour> must be expanded o look like the following:
Chourd - (78t (lhe i Sn) Txcolon (Imin := 73n) 7¢o-clocky

{lam-pm :« T(am | pm | {&i am Cam-pat>) | !

(i pm <pA-pat?)))) '

nger necessary in support of ¢hourd, but <am-pat> and Cpm-put?

The non-terminals <am> and <pm> are Ao 1o
still are.

<nwenty-lour-hour-time is substituted for <hour> in the

i subsdtuced for thr lmin lap-pm in its RHS. The new LoD

.(i§q> (lc]ass-nam‘:-'<c1uss)) 2¢aurvly TCauxvad> <meetd (&C
(<Lwanty—four-huur—tima)) (<days>)) 7rgmark)

>
{msg "you asked whather
{access Inewvars) ".")

yes/no queston regarding meeting Umes, and !time

jevel rule would look likc_Lhc following:

" Jeless-nam 7 maots at " itims

Excrcise 5-1

Thnis is the answer © Exercises-1. There (s very littfe room for vamance in writing an aaswer 0 this exercise,
so if your -answcer works it should look a lot like this one. This answer consists entirely of LISP code which
“chould be put into a file of its own and loadec separately from the grammar file. i

The cxercise is to write the operalor 'Sq. First you need 10 write a function which takes the list of the
¢ as its arsument. (Don't warry about how you will get the list--DVPAR will plug it

unconsumed input sUing
in for you when it calls your funclion.) You need Lo make your Funciion a predicate on the car of this list:

(defun Sqchack (1) .
(equal (car (oxplode (car 1})) "))

"'e““.‘.“ﬂf g

vt o Pt - PR
C e P e R e P AT

—_—

s

T —
R
: ol vt

KD ik

L

iy et

LGS IR e T BT B

it (AL Py S AT

Lo T e RIS NS A oy e R S

L - A
ol e

[tk R e R T
it afe s 4

: . ANSWIRS TO ENERCIRES

This Tunction returns 1 "Il the first lewer of dhe frstword of the inputstring is cqual to 7g". Now you must
attach the funciion Sgeheek © its DYPAR symbol. 'Sy’ You do this using defprop Lo assign ™5q" “Tunction’
property whose value is “Sqelieck”

{defprop $q Sqcheck :function)
Finally, you must give Sq a "isymhol’ property for use by the cross-referencer, Since Sq is desighed W be used
an aon-numeric input, the value of the isymbol” property is setto S

(defprop 5q, § :symbal)

Excreise 5-2

This is the answer for Exercise $-2. Your primary LISP function may vary from the one given here, but the
- ~uxiliary defprop functions should be identical to tye ones below (except that you may have given the primaty

_anction a name other than ‘Sspecial-punct’.)

Write the primary function:

(dofun $speciai-purct (1)
(membar (car 1) !lsomepunct))

somepunct is a global-list, set by using the FRANZ LISP function dy, which is equivaient to a setq. It

contains the special DYPAR symbol equivatents of ' 'V and ™7 This is becausc all user punctuation input is
converted o tiese symbols when it is read, so in order to match the user 's input, the function must employ the

DYPAR symbols:
(dv Ilsomopunct (X%period Xamark Lamark)}

Then add the auxiliary functions using delprop:
(defprop $pe Sspacial-punct :function)

(dafprop Spo 5 :symboi)

TR

£ S hOaT b e D

s S T L T e L o L b e e L L BB e e Gl s e e e e e e e O L E

""\!

L

