

Molecular Evolutionary Genetics Analysis

Ignacio Bitrián Arcas - 717901 Nicolás Lera López - 721808 David Márquez Calavia - 700940

¿Qué es?

 Software de carácter privativo que permite realizar análisis estadísticos de la evolución molecular y la construcción de árboles filogenéticos.

 Desarrollado en 1993 en la Universidad Estatal de Pensilvania.

Características

- Alineamiento y visualización de secuencias
- Métodos de estimación de distancias
- Visualización y métodos de creación de árboles

Características

	Likelihood	Distance	Parsimony	Bayesian	Visual Explorer	Caption Expert
Phylogeny	~	~	~		~	✓
Bootstrap	✓	✓	✓		✓	✓
Distance/Diversity	✓	✓			✓	✓
Model Selection	✓					
Substitution Pattern	✓				🗸 XL	✓
Rate Variation	✓				🗸 XL	✓
Ancestral Sequence			✓	✓	✓	✓
Clock Test	✓	✓			🗸 XL	~
Time Tree	✓	✓			✓	✓
Selection Test	✓	✓			 ✓ 	 ✓
Disease Mutation	✓	~			🗸 XL	✓

Instalación

- Windows
- MacOs
- Ubuntu / Debian
- RedHat
- Otros sistemas Linux

Interfaz gráfica y línea de comandos

Descargar el .exe de la web y seguir los pasos indicados por el asistente.

MacOs (GUI/CLI)

Descargar el .dmg de la web, abrirlo y arrastrar el icono de MEGA a la carpeta de aplicaciones en la ventana emergente.

Descargar el .deb de la web, navegar con una terminal hasta el directorio que lo contenga y ejecutar:

GUI: sudo dpkg -i megax_10.0.5-1_amd64.deb CLI: sudo dpkg -i megax-cc_10.0.5-1_amd64.deb

RedHat(GUI/CLI)

- Descargar el .rpm de la web, navegar con una terminal hasta el directorio que lo contenga y ejecutar:
 - GUI: sudo rpm -ivh megax-10.0.5-1.x86_64.rpm CLI: sudo rpm -ivh megax-cc-10.0.5-1.x86_64.rpm
- En caso de tener una versión anterior descargada, a lo mejor es necesario ejecutar:
- GUI: sudo rpm -ivh --replacefiles megax-10.0.5-1.x86_64.rpm CLI: sudo rpm -ivh --replacefiles megax-cc-10.0.5-1.x86_64.rpm

Descargar el .tar.gz de la web y extraerlo mediante el comando:

tar -zxvf megacc-7.0.26-1.x86_64.tar.gz

Después, mover los binarios y archivos dependientes al directorio que se prefiera.

Windows (GUI)

Descargar el .exe de la web. (https://www.megasoftware.net)

Windows (GUI)

Rellenar perfil.

Country

Spain

I am a....

(Check one or more)

Researcher

Instructor

- Student
- Professor

Other

What kind of institution is ?

Universidad de Zaragoza

It is a...

(Check one or more)

- University/College
- Research Institute
- Industry
- Government

Other

Convertir archivo Fasta a Mega

- File -> Convert File to MEGA
- Abrir archivo fasta con mega y guardar la sesión
 Data -> Save session

Cálculo de distancias

- Distance -> Compute Pairwise Distances

- Opciones:

MX: Analysis Preferences			
Distance Estimation			
Option	Setting		
ANALYSIS			
Scope ightarrow Scope	Pairs of taxa		
ESTIMATE VARIANCE			
Variance Estimation Method $ ightarrow$	None		
No. of Bootstrap Replications $ ightarrow$	Not Applicable		
SUBSTITUTION MODEL			
Substitutions Type $ ightarrow$	Amino acid		
Model/Method $ ightarrow$	p-distance 💌		
RATES AND PATTERNS	No. of differences		
Rates among Sites \rightarrow Gamma Parameter \rightarrow	Poisson model Equal input model Dayhoff model		
Pattern among Lineages $ ightarrow$	Jones-Taylor-Thornton (JTT) model		
DATA SUBSET TO USE			
Gaps/Missing Data Treatment $ ightarrow$	Pairwise deletion		
Site Coverage Cutoff (%) \rightarrow	Not Applicable		
(?) Help (X) Ca	ncel 🕢 ок		

Cálculo de distancias

MX: Pairwise I	Distances (Chloro	plast_Martin.me	eg)					<u>1</u>	
File Display	Average Cap	tion Help							
h. 🗏 🗛 😲	•••• 🖬 🚺	1 1 MEGA +	2						
	1	2	3	4	5	6	7	8	9
1. Synechocys									
2. Odontella	0.4242								
3. Porphyra	0.3312	0.3629							
4. Cyanophora	0.3314	0.4035	0.3230						
5. Euglena	0.5062	0.5025	0.4794	0.4846					
6. Marchantia	0.4390	0.4654	0.4066	0.4010	0.4672				
7. Pinus	0.4621	0.4986	0.4439	0.4383	0.4952	0.2218			
8. Nicotiana	0.4716	0.5088	0.4464	0.4492	0.5009	0.2416	0.2158		
9. Zea	0.4912	0.5240	0.4670	0.4692	0.5099	0.2793	0.2520	0.1484	
10. Oryza	0.4910	0.5248	0.4668	0.4692	0.5094	0.2797	0.2512	0.1467	0.0317

<

[1,1] (Synechocys-Synechocys) / Amino: Poisson correction

>

Construcción de árboles

Por distancias:

- NJ
- UPGMA

Por máxima parsimonia: - MP

NJ

Opciones:

MX: Analysis Preferences					
Phylogeny Reconstruction					
Option	Setting				
ANALYSIS					
Scope $ ightarrow$	All Selected Taxa				
Statistical Method $ ightarrow$	Neighbor-joining				
PHYLOGENY TEST					
Test of Phylogeny $ ightarrow$	None				
No. of Bootstrap Replications $ ightarrow$	Not Applicable				
SUBSTITUTION MODEL					
Substitutions Type $ ightarrow$	Amino acid				
Model/Method $ ightarrow$	Poisson model				
RATES AND PATTERNS					
Rates among Sites $ ightarrow$	Uniform Rates				
Gamma Parameter 🔶	Not Applicable				
Pattern among Lineages $ ightarrow$	Same (Homogeneous)				
DATA SUBSET TO USE					
Gaps/Missing Data Treatment $ ightarrow$	Pairwise deletion				
Site Coverage Cutoff (%) $ ightarrow$	Not Applicable				
SYSTEM RESOURCE USAGE					
Number of Threads $ ightarrow$	Not Applicable				
(?) Help (X) Car	псеі 🕢 ок				

NJ

Árbol generado:

UPGMA

Opciones:

vIX: Analysis Preferences					
Phylogeny Reconstruction					
Option	Setting				
ANALYSIS					
$_{\rm Scope} \rightarrow$	All Selected Taxa				
Statistical Method $ ightarrow$	UPGMA				
PHYLOGENY TEST					
Test of Phylogeny $ ightarrow$	None				
No. of Bootstrap Replications $ ightarrow$	Not Applicable				
SUBSTITUTION MODEL					
Substitutions Type $ ightarrow$	Amino acid				
Model/Method $ ightarrow$	Poisson model				
RATES AND PATTERNS					
Rates among Sites $ ightarrow$	Uniform Rates				
Gamma Parameter 🔶	Not Applicable				
Pattern among Lineages $ ightarrow$	Same (Homogeneous)				
DATA SUBSET TO USE					
Gaps/Missing Data Treatment $ ightarrow$	Pairwise deletion				
Site Coverage Cutoff (%) $ ightarrow$	Not Applicable				
SYSTEM RESOURCE USAGE					
Number of Threads \rightarrow Not Applicable					
(?) Help (X) Cancel () OK					

UPGMA

Árbol generado:

MP

Opciones:

MX: Analysis Preferences				
Phylogeny Reconstruction				
Option	Setting			
ANALYSIS				
Statistical Method -	Maximum Parsimony			
PHYLOGENY TEST				
Test of Phylogeny -	None			
No. of Bootstrap Replications -	Not Applicable			
SUBSTITUTION MODEL				
Substitutions Type -	Amino acid			
DATA SUBSET TO USE				
Gaps/Missing Data Treatment -	Use all sites			
Site Coverage Cutoff (%) -	Not Applicable			
TREE INFERENCE OPTIONS				
MP Search Method -	→ Subtree-Pruning-Regrafting (SPR) 💌			
No. of Initial Trees (random addition) – MP Search level – Max No. of Trees to Retain –	Subtree-Pruning-Regrafting (SPR) Tree-Bisection-Reconnection (TBR) Min-Mini Heuristic Max-mini Branch-&-bound			
SYSTEM RESOURCE USAGE				
Number of Threads -	→ Not Applicable			
(?) Help (X) Can	сеі 🕢 ок			

MP

Árbol generado:

Exportar árboles

- File -> Export Current Tree (Newick)

Home Gallery Documentation - TreeView Support About Dow

Download

A Python framework to work with trees

ETE Toolkit

Phylogenetic tree (newick) viewer

This is an online tool for phylogenetic tree view (newick format) that allows multiple sequence alignments to be shown together with the trees (fasta format). It uses the tree drawing engine implemented in the ETE toolkit, and offers transparent integration with the NCBI taxonomy database. Currently, alignments can be displayed in condensed or block-based format. Leaf names in the newick tree should match those in the fasta alignment.

When pressing "View Tree", a permanent link to your data will also be provided. You can use the link for sharing your images.

Tip: Use NCBI numeric taxids as leaf names (or in the format TaxID.sequenceName) to get on-the-fly translation of species names and lineages.

Paste your tree in newick format: AF443116.1:0.39975 AF449632.1:0.39975 Or upload a newick file: Seleccionar archivo Ningún archivo seleccionado

View tree! Alignment image type: Condensed format 🔹 - 🗹 Resolve taxonomic ids

Share (beta): http://etetoolkit.org/treeview/?treeid=2797015fd210e7025a42658a96f7460b&algid=cc63eff25565074e61475343a6515c14"

Support values are shown in red. (Loading big trees/algs may take a few seconds)

Gallerv TreeView Home Documentation Support About

Download latest v3.1.1

A Python framework to work with trees

ETE Toolkit

Phylogenetic tree (newick) viewer

This is an online tool for phylogenetic tree view (newick format) that allows multiple sequence alignments to be shown together with the trees (fasta format). It uses the tree drawing engine implemented in the ETE toolkit, and offers transparent integration with the NCBI taxonomy database. Currently, alignments can be displayed in condensed or block-based format. Leaf names in the newick tree should match those in the fasta alignment.

When pressing "View Tree", a permanent link to your data will also be provided. You can use the link for sharing your images.

Tip: Use NCBI numeric taxids as leaf names (or in the format TaxID.sequenceName) to get on-the-fly translation of species names and lineages.

Insertar árbol en formato newick

Alignment image type: Condensed format ▼ - 🗹 Resolve taxonomic ids View tree!

Share (beta): http://etetoolkit.org/treeview/?treeid=2797015fd210e7025a42658a96f7460b&algid=cc63eff25565074e61475343a6515c14"

Home Gallery Documentation - TreeView Support About Download

A Python framework to work with trees

ETE Toolkit

Phylogenetic tree (newick) viewer

This is an online tool for phylogenetic tree view (newick format) that allows multiple sequence alignments to be shown together with the trees (fasta format). It uses the tree drawing engine implemented in the ETE toolkit, and offers transparent integration with the NCBI taxonomy database. Currently, alignments can be displayed in condensed or block-based format. Leaf names in the newick tree should match those in the fasta alignment.

When pressing "View Tree", a permanent link to your data will also be provided. You can use the link for sharing your images.

Tip: Use NCBI numeric taxids as leaf names (or in the format TaxID.sequenceName) to get on-the-fly translation of species names and lineages.

Insertar alineamiento en

View tree!

ee! Alignment image type: Condensed format

Resolve taxonomic ids

formato fasta

Share (beta): http://etetoolkit.org/treeview/?treeid=2797015fd210e7025a42658a96f7460b&algid=cc63eff25565074e61475343a6515c14"

Support values are shown in red. (Loading big trees/algs may take a few seconds)

Home Gallery Documentation - TreeView Support About Dow

Download

A Python framework to work with trees

ETE Toolkit

Phylogenetic tree (newick) viewer

This is an online tool for phylogenetic tree view (newick format) that allows multiple sequence alignments to be shown together with the trees (fasta format). It uses the tree drawing engine implemented in the ETE toolkit, and offers transparent integration with the NCBI taxonomy database. Currently, alignments can be displayed in condensed or block-based format. Leaf names in the newick tree should match those in the fasta alignment.

When pressing "View Tree", a permanent link to your data will also be provided. You can use the link for sharing your images.

Tip: Use NCBI numeric taxids as leaf names (or in the format TaxID.sequenceName) to get on-the-fly translation of species names and lineages.

Support values are shown in red. (Loading big trees/algs may take a few second

Do not display alignment

Condensed format

Do not display alignment

Condensed format

aligned blocks

