Bioinformática y Biología molecular

Bioinformática

10-2-16

Elvira Mayordomo

En los periódicos

- La biotecnología, genética y bioinformática en primera plana
- Todo empezó con el descubrimiento de la estructura del DNA por Watson y Crick en 1953
- En los 90 se inició el proyecto del genoma humano y se clonó a la oveja Dolly
- En el 2000 se anunció la secuenciación completa del genoma humano
- En el 2008 comenzó el proyecto de los 1000 genomas
- Ya hemos llegado al "\$1000 genome"?

Secuenciando DNA

- El objetivo es determinar una secuencia de "nucleótidos" que son las piezas que forman el DNA humano, es decir, la molécula que guarda nuestra información genética
- Desde el punto de vista informático buscamos un string hecho con las letras que representan los nucleótidos
- Conocemos métodos para leer estas secuencias desde los 80, pero con longitudes muy restringidas (hoy unos 1000 nucleótidos)
- Nos interesan moléculas de DNA con cientos de miles

Secuenciando DNA ... ¿Cómo?

- Se generan muchas copias de la molécula de DNA que nos interesa
- Rompemos aleatoriamente esas copias en trozos, idealmente pequeños
- Con alta probabilidad esos trozos se solapan entre sí
- Leemos ("secuenciamos") los trozos
- Nos quedan muchos (miles de) trozos que son subsecuencias de la que buscamos, con solapamientos
- No tenemos idea de cómo combinarlos, el orden se ha perdido
- Aquí entra la informática ...

Detalles con mucha importancia

- Queremos derivar modelos formales de problemas biológicos para encontrarles soluciones algorítmicas
- Pero es imposible olvidarnos del problema biológico original porque la formalización siempre es "burda"
- Todos los datos biológicos son inherentemente inexactos

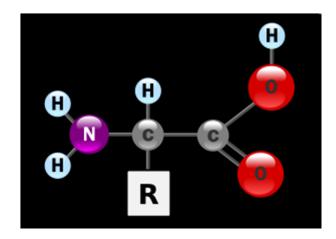
Métodos computacionales en bioinformática

- Gestión de bases de datos
- Estadística
- Algorítmica
- En este curso sobre todo algorítmica. La primera parte y algo del resto de

Algorithmic Aspects of Bioinformatics. Bockenhauer, Bongartz. Springer 2008

Biología molecular ...; Para qué?

- Necesitamos conocimientos básicos de Biología molecular para poder desarrollar y evaluar modelos abstractos y técnicas para manejarlos
- Trataremos las proteínas y los ácidos nucleicos


Proteínas

- La clase de moléculas más importantes de los seres vivos
- Funciones: como encimas (catálisis de procesos metabólicos), en transmisión de señal, mecanismos de defensa, transporte de moléculas, material de construcción

Los aminoácidos forman las proteínas

- Una proteína es una cadena de aminoácidos
- Un aminoácido:

20 aminoácidos

 Según R aparecen 20 aminoácidos distintos que forman parte de las proteínas

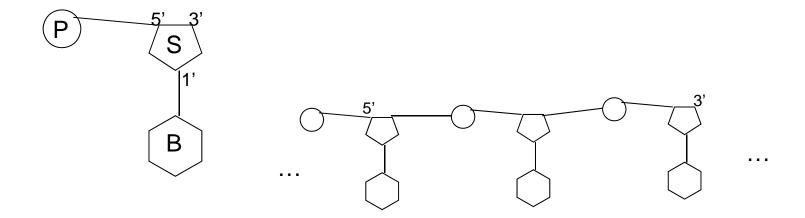
Ala	Val	Leu	Ile	Phe
A	V	L	I	F
(H)	(H)	(H)	(H)	(H)
Pro	Met	Ser	Thr	Cys
P	M	S	T	C
(H)	(H)	(P)	(P)	(P)
Trp	Tyr	Asn	Gln	Asp
W	Y	N	Q	D
(H)	(P)	(P)	(P)	(P)
Glu	Lys	Arg	His	Gly
E	K	R	H	G
(P)	(P)	(P)	(P)	(P)

Proteínas = cadenas de aminoácidos

- Los aminoácidos se unen mediante enlaces peptídicos
- Podemos representar una proteína como una cadena leída de (H²N a COOH)

VHLTPEEK ...

Esto es mucho simplificar, ignorando la estructura espacial ...


Ácidos nucleicos

- Las moléculas más importantes después de las proteínas
- En todos los seres vivos, son las responsables de codificar y almacenar la información genética
- Permiten la transmisión de información genética de una generación a otra
- Tienen una estrecha conexión con las proteínas: los ácidos nucleicos sirven como mapas para la construcción de las proteínas

re.

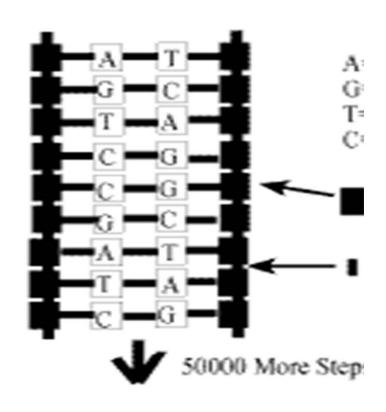
Ácido nucleico= cadena de nucleótidos

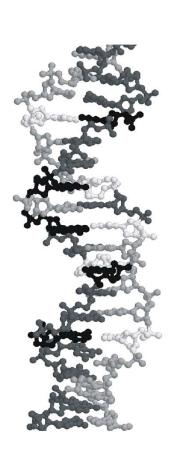
 Cada ácido nucleico está formado por nucleótidos encadenados

Cadenas ...

- La B (base) caracteriza al nucleótido
- Podemos escribir un ácido nucleico como una secuencia de nucleótidos
- Gran simplificación

DNA y RNA

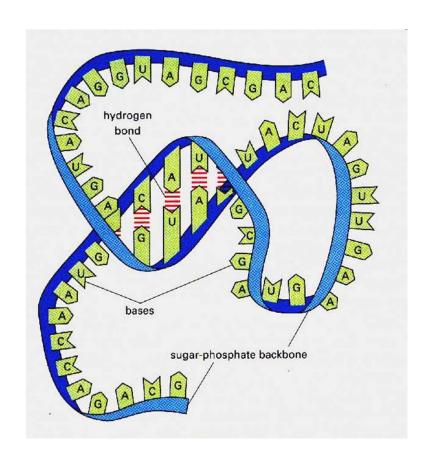

- Los dos tipos de ácidos nucleicos son DNA y RNA
- Se diferencian por los azúcares (S)
- DNA usa cuatro bases A, C, G, T
- RNA usa cuatro bases A, C, G, U



DNA

- Está formado por dos cadenas de nucleótidos
 - □ Complementarias (A-T y C-G)
 - □ Se leen en direcciones opuestas
 - □ En forma de hélice

DNA



RNA

- Normalmente una sola cadena
- Trozos de la misma molécula se unen con otros complementarios lo que da formas diversas

Triple estructura

- Primaria: cadena de nucleótidos
- Secundaria: describe los trozos complementarios que están unidos
- Terciaria: cómo está doblada en el espacio

Cómo escribimos DNA

 Usamos la dirección de lectura de la cadena de "arriba" (de 5' a 3')

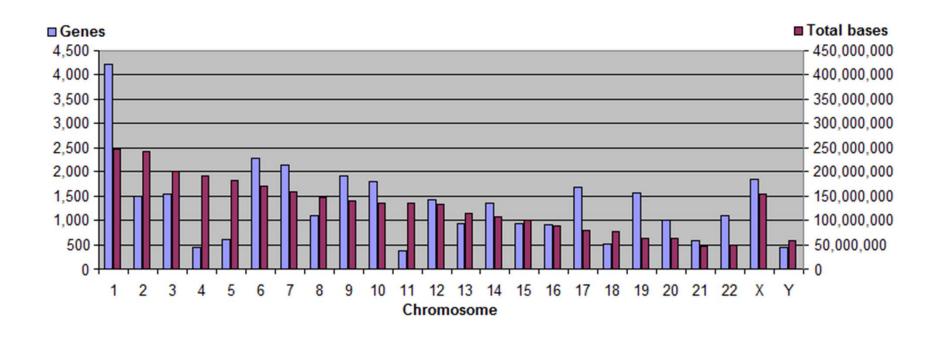
Ejemplo: s=AGACGT es:

```
s: 5' ... AGACGT ... 3'
```

s: 3' ...TCTGCA ... 5'

Longitudes

- Se mide la longitud en pares de bases (bp)
- Se usan las unidades kbp (1000 bp) y mbp (1000 kbp)
- AGACGT tiene 6 bp
- También se usan para RNA

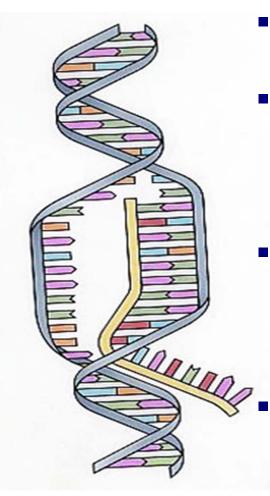


Información hereditaria

- Una región de DNA que codifica una proteína se llama gen
- Una molécula de DNA que tiene varios genes se llama cromosoma
- Los cromosomas suelen aparecer en pares: cromosomas homólogos (uno materno y uno paterno)
- Las células humanas tienen 46 cromosomas
- Toda la información hereditaria de una célula se llama genoma

M

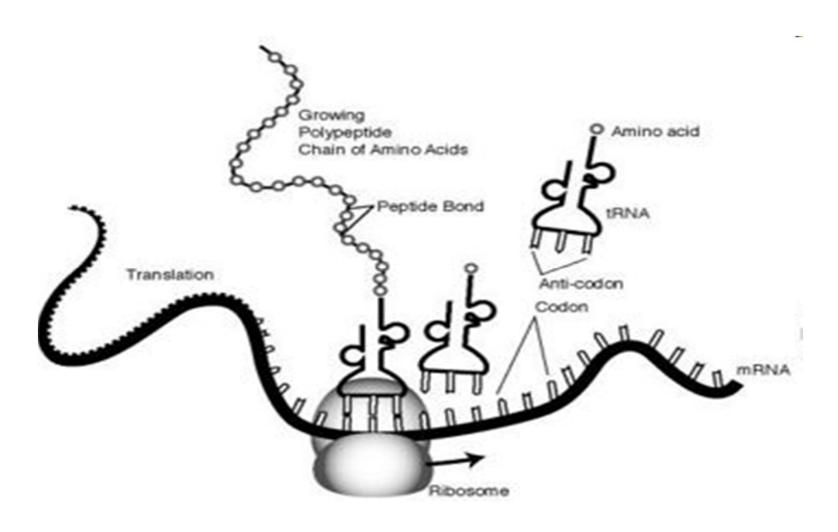
23 pares de cromosomas humanos



Síntesis de proteínas

- El DNA está en el núcleo y las proteínas se sintetizan fuera (en los ribosomas)
- Hay dos pasos: copia y traducción

Transcripción o copia


- Se separan las dos copias de DNA
- Se sintetiza una copia complementaria de RNA (amarillo) sustituyendo T por U
- Sólo se copian algunas zonas (los exones) y no los intrones (¿no relevantes?)
- El resultado es el mRNA (RNA mensajero)

Traducción

- La información del mRNA se convierte en una secuencia de aminoácidos
- Un codón son 3 bases. Cada codón codifica un aminoácido
- También hay codones que codifican STOP

Traducción

Codón-aminoácido

::::	::::::	Second Position							::::		
::::	:: ::::::: U		С		Α		G			:::::	
::::	::::::	code	Amio Acid	code	Amio Acid	code	Amio Acid	code	Amio Acid		::::
U		UUU	⊶ bne i	UCU	ICA ser	UAU	tyr	UGU	cys	U	
	l l	UUC		UCC		UAC		UGC		С	
	"	UUA	leu	UCA		UAA	STOP	UGA	STOP	Α	
		UUG	leu	UCG		UAG	STOP	UGG	trp	G	⊒
Position		CUU	leu	CCU		CAU	his	CGU	ara.	U	
	ا د	cuc		ccc	nro l	CAC		CGC		С	
	CUA	ieu	CCA	рго	CAA	gln	CGA	arg	Α	Third	
		CUG		CCG		CAG	giii	CGG		G	
First P		AUU	ile met	AC U		AAU	asn	AGU	ser	U	Position
		AUC		AC C	thr	AAC		AGC		С	
	Α .	AUA		ACA	""	AAA	lys	AGA	arg	Α	
		AUG		ACG		AAG		AGG		G	
G		GUU	val	GCU	ala	GAU	asp	GGU	gly	U	
	G	GUC		GCC		GAC		GGC		С	
	"	GUA	Vai	GCA		GAA	alu	GGA		Α	
		GUG		GCG		GAG glu	gru	GGG		G	

Aminoácido-codón

Inverse table

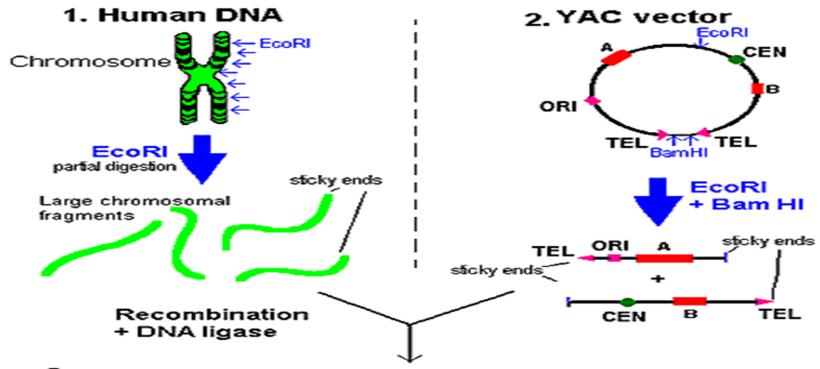
Ala/A	GCU, GCC, GCA, GCG	Leu/L	UUA, UUG, CUU, CUC, CUA, CUG
Arg/R	CGU, CGC, CGA, CGG, AGA, AGG	Lys/K	AAA, AAG
Asn/N	AAU, AAC	Met/M	AUG
Asp/D	GAU, GAC	Phe/F	UUU, UUC
Cys/C	UGU, UGC	Pro/P	CCU, CCC, CCA, CCG
Gln/Q	CAA, CAG	Ser/S	UCU, UCC, UCA, UCG, AGU, AGC
Glu/E	GAA, GAG	Thr/T	ACU, ACC, ACA, ACG
Gly/G	GGU, GGC, GGA, GGG	Trp/W	UGG
His/H	CAU, CAC	Tyr/Y	UAU, UAC
Ile/I	AUU, AUC, AUA	Val/V	GUU, GUC, GUA, GUG
START	AUG	STOP	UAG, UGA, UAA

Algunos datos ...

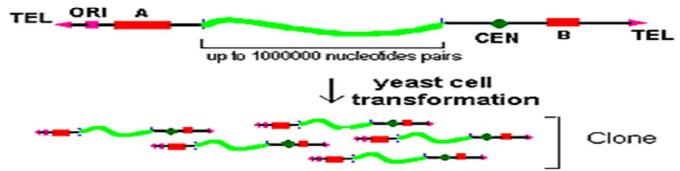
- □ En los humanos el DNA cromosómico es de 3.000 millones de bp (pares de bases)
- □ Contiene relativamente poca información (10-20%)
- Se dice que se ha secuenciado el DNA de un individuo cuando se conocen las zonas que se consideran relevantes (genes y otras)
- □ También hay DNA mitocondrial ...

Técnicas experimentales

■ Leer la sección 2.4


Técnicas experimentales

- "Denaturation": separar las dos hebras del DNA por calor
- Hibridización: asociar bases complementarias o hebras complementarias
- Se puede <u>cortar una doble hebra</u> por un sitio concreto (encimas de restricción)
- Se pueden <u>reunificar</u> después los trozos (ligasa)



Duplicación de DNA: cloning

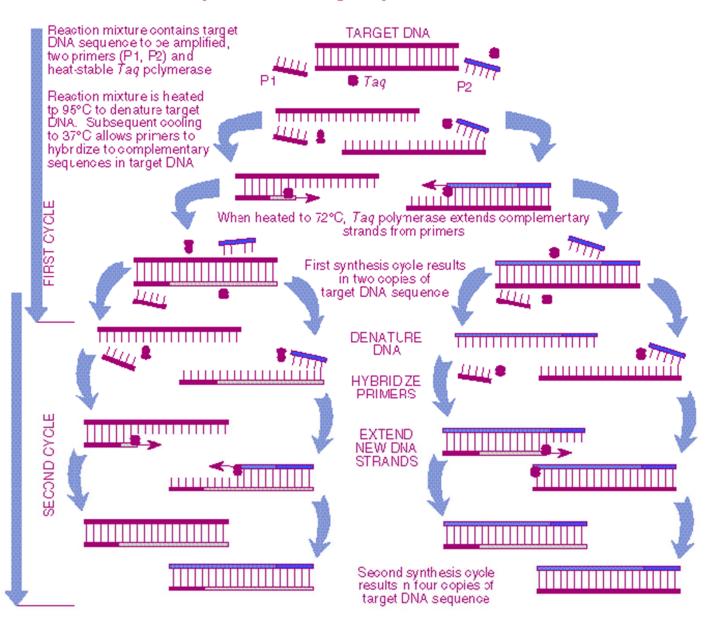
- Para los experimentos una sola molécula de DNA no es suficiente, es necesario un gran número de copias idénticas
- Cloning: se inserta el fragmento a copiar en un organismo "host" (anfitrión), se replica con la reproducción natural y luego se vuelve a extraer
- Los "host" son muy variados, pueden copiar desde 15-50 kbp (bacteria) a varios millones (inserción de cromosomas artificiales)

Yeast artificial chromosome with inserted human DNA.

Cloning into a Yeast Artificial Chromosome (YAC)

Problemas del cloning

- Contaminación con el DNA del host
- Pérdida de fragmentos completos, cuando la inserción tiene efectos letales en el host
- Dos fragmentos no consecutivos pueden unirse en la clonación (clon quimérico)



Duplicación de DNA: PCR

- Polymerase chain reaction
- Necesitamos conocer un fragmento inicial y otro final
- En cada paso duplica el número de copias
- Los errores al principio son muy peligrosos ...

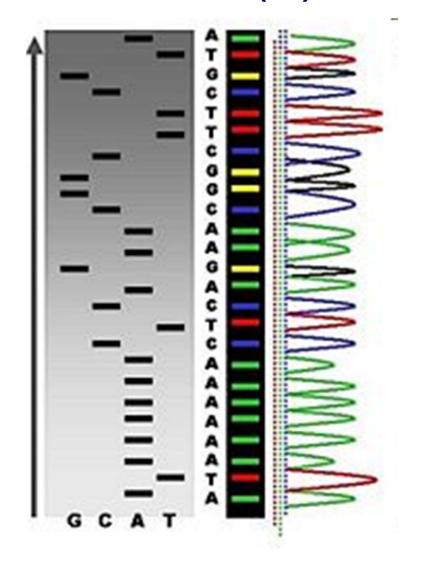
DNA Amplification Using Polymerase Chain Reaction

Source: DNA Science, see Fig. 13.

Gel electrophoresis

- Se trata de <u>separar los fragmentos por tamaño</u>
- Se meten en gel y se aplica un campo eléctrico, la velocidad es inversamente proporcional al tamaño
- Se separan así por longitudes
- Usando trozos de referencia se puede usar para medir la longitud

Secuenciar DNA: chain termination method


- El "chain termination method" se basa en el anterior (gel electrophoresis)
- Tenemos un fragmento de DNA desconocido s, hacemos muchas copias
- Paso 1: conseguir que haya 4 tubos de ensayo A, C, G, T cada uno conteniendo los prefijos de s que terminan en A (C,G,T)

chain termination method (2)

 Paso 2: Colocamos los cuatro tubos de ensayo en paralelo y ordenamos por longitud como antes

. . .

Chain termination method (3)

- Sólo sirve para fragmentos de hasta 1000 bp (más da demasiados errores)
- Puede dar errores de lectura del resultado (llamados errores de secuenciación):
 - □ Inserción
 - Borrado
 - □ Sustitución

Experimentos de hibridización

- Para averiguar si un fragmento desconocido s contiene una secuencia t
- Sintetizamos t' la complementaria de t
- Testeamos si s y t' se unen (hibridizan)

DNA chips

- Para hacer varios experimentos de hibridización en paralelo
- Si queremos saber si s contiene t₁, ..., t_n:
 - □ Colocamos t'₁, ..., t'_n en sitios fijos (DNA chip)
 - □ Hacemos copias etiquetadas de s
 - □ Dejamos que se unan al chip
 - Lavamos las copias de s sueltas y averiguamos las posiciones de hibridización con las etiquetas

DNA chips: errores

- Falsos positivos
- Falsos negativos

Se pueden usar los DNA chips para RNA

• • •

Premios nóbel

- Watson, Crick y Wilkins por el descubrimiento de la estructura del DNA, Medicina 1962
- Mullis por el método PCR, Química 1993

El próximo tema ...

- Notación básica para strings
- El problema de string matching