
© 2008 Quest Software, Inc. ALL RIGHTS RESERVED.

SQL Tuning via Toad

Tips for Optimizing SQL Performance

2

Bert Scalzo …
Database Expert & Product Architect for Quest Software

Oracle Background:
• Worked with Oracle databases for over two decades (starting with version 4)
• Work history includes time at both “Oracle Education” and “Oracle Consulting”

Academic Background:
• Several Oracle Masters certifications
• BS, MS and PhD in Computer Science
• MBA (general business)
• Several insurance industry designations

Key Interests:
• Data Modeling
• Database Benchmarking
• Database Tuning & Optimization
• "Star Schema" Data Warehouses
• Oracle on Linux – and specifically: RAC on Linux

Articles for:
• Oracle’s Technology Network (OTN)
• Oracle Magazine,
• Oracle Informant
• PC Week (eWeek)

Articles for:
• Dell Power Solutions

Magazine
• The Linux Journal
• www.linux.com
• www.orafaq.com

3

Books by Bert …

Coming in 2009 …

Also: FREE
Toad e-Book
for Toad 10…

Topics …
• Pre-Reqs

– Correct Toad vs. Oracle Database Server version
– Correct Oracle SQL*Net Client networking version
– SQL Tuning Approach – much more than just explain plans and run times

• Explain Plans
– Setup and effective use of the ”Explain Plan”
– Be careful, Explain Plan costs can sometimes not be the best way to pick

the winner - sometimes (auto) trace is required to be 100% sure
– Some guidelines on how to best or at least more easily read SQL explain

plans - which is the general starting point for any SQL tuning attempt
• SQL Tuning Rules

– Some Guidelines i.e. (“Golden Rules”) – just the tip of the iceberg
• Efficient and fast selects & sub selects
• Dealing with large tables
• Parallel Hints

Pinning SQL in Memory
• Efficient SQL queries that use a lot of AND conditionals or sub-queries
• How to avoid full-table scans

• Is There a Better (i.e. more productive) Way to Tune SQL
– SQL Optimzier – automate all the above (and much more)

Oct 98 Jun 99 Feb 00 Dec 00 Apr 01 Dec 01 Apr 02 Oct 02 May 03

v5
Quest
Buys

v6.1
70+

screens

v6.3
PL/SQL

Debugger,
SQL

Modeler

v6.5
DBA

Module

v7.0
Toad

Reports

v7.2
Script Mgr,

SQL*Loader
Wizard

v7.3
HTML Schema
Doc Generator,
Command Line

Support

v7.4
Project

Manager,
QSR Script

Runner

v7.5
Team Coding,
Adv data types

in data grids

Nov 03

Jul 04 Jun 05 Oct 05 Oct 06 Jun 07 Nov 07 Apr 08

v7.6
Session
Brower,

New
Toolbars

V8.0
XML Support,
Code Xpert,

Script
Debugger,

Rebranded:
Toad for Oracle

v8.5
JIT (external)
Debugging,

Citrix support,
RAC support,

Enhanced
10g support

v8.6
Query Builder,

New Toad
“Fast” Reports,
Master-Detail

Browser

v9.0
Single Merged
Tabbed Editor,

New & Improved
Code Xpert,

Oracle OEM’s
ASM/ADDM/AWR
Mgrs and Reports

v9.1
Policy Mgr,

Action Recall,
Toad Tips,

Vista Support

v9.5
Stats Pack
Browser,

11g Support,
PL/SQL Profiler,

Code Xpert
Batch Mode,
SQL Opt 7.2
Integration

v9.6
Debugger

to Standard,
HC Vulnerability

Assessment,
Improved DB

Browser
TDM Integration

Oracle 8i

Sep 08

v9.7
App Designer,

Trace File
Browser,

New Formatter,
RMAN support,
Toad for Data

Analysis

Toad vs. Oracle Product Release History
Oracle 9i

Oracle 10g R2 Oracle 11g

Oracle 9i R2 Oracle 10g8.1.7.4

9.2.0.8 10.2.0.4 11.0.1.7

Summary:

Oracle 9i >= Toad 9.0 Oracle 10g >= Toad 9.6 Oracle 11g >= Toad 9.7

Oracle Client / Server Interoperability Support
(See Metalink Document 207303.1)

Toad may work with
older client talking to
newer databases -
but there might be
data type issues

1. Always start by knowing (i.e. being able to say in English) what the query does

2. For queries involving more than 2 tables, a data model can be a handy road map

3. Explain plan costs alone may well lead you astray – sometimes the costs can lie

4. Sometimes equal execution times don’t necessarily equate to equivalent
solutions

5. You should always include (auto) trace information to divine among all the above

6. Sole reliance on automatic SQL optimization and tuning tools can be suboptimal

7. You must add human intuition and insight to the optimization process for success

Seven Steps for SQL Tuning Success Explain Plans
• Explain Plans are the standard Oracle mechanism to peek into the possible

“internal algorithm” the database engine might execute for the query (think of
it as sort of like program pseudo-code)

• Explain Plans generally require an Oracle “plan table” to hold the explain plan
intermediate results
– Three Options here:

• Central “plan table” for all users to share – managed by DBA
• “Plan table” per schema – but be careful if users all login the same
• “Plan table” per session -

• When doing explain plans manually
– Method #1

• EXPLAIN FOR SELECT * FROM emp;
• SELECT … FROM plan_table WHERE … (fairly complex SQL)

– Method #2
• EXPLAIN FOR SELECT * FROM emp;
• SELECT * FROM table(DBMS_XPLAN.DISPLAY(PLAN_TABLE));

The consistent gets and
physical reads are direct
measures of the true work
performed – and thus often
more meaningful than a
simple explain plan cost

The explain plan shown by the
session browser is what Oracle
actually did for the query run by
the chosen session – this can
be different than what explain
thought it might be in the editor

SQL GuidelinesSQL Guidelines

Rule #1: Watch Indexed WHERE Conditions

Assume address index has columns (city, state)

•non-leading index column references may not use indexes
•where state = 'TX' [Depends Oracle on Version]
•where city = 'DALLAS' [Index Used]
•where state = 'TX' and city = 'DALLAS' [Index Used]

•NOT, != and <> disable index use
•where state not in ('TX', 'FL','OH') [Index Not used]
•where state != 'TX' [Index Not used]

•NULL value references almost never use indexes (one exception - bitmaps)
•where state IS NULL [Index Not used]
•where state IS NOT NULL [Index Not used]

•expression references can never use indexes
•where substr(city,1,3) = 'DAL' [Index Not used]
•where city like 'DAL%' [Index Used]
•where city || state = 'DALLASTX' [Index Not used]
•where city = 'DALLAS' and state = 'TX‘ [Index Used]
•where salary * 12 >= 24000 [Index Not used]
•where salary >= 2000 [Index Used]

SQL GuidelinesSQL Guidelines

Rule #2: Watch Non-Indexed WHERE Conditions
•Oracle evaluates Non-Indexed conditions linked by “AND” bottom up

•Bad: select * from address where
areacode = 972 and
type_nr = (select seq_nr from code_table where type = ‘HOME’)

•Good: select * from address where
type_nr = (select seq_nr from code_table where type = ‘HOME’) and
areacode = 972

•Oracle evaluates Non-Indexed conditions linked by “OR” top down

•Bad: select * from address where
type_nr = (select seq_nr from code_table where type = ‘HOME’) or
areacode = 972

•Good: select * from address where
areacode = 972 or
type_nr = (select seq_nr from code_table where type = ‘HOME’)

SQL GuidelinesSQL Guidelines

Rule #3: Order Table in the FROM Clause (pre-10g)

•important under rule based optimizer, and won't hurt under cost based optimizer

•order FROM clauses in descending order of table sizes based upon row counts

•for example

•select * from larger table, smaller table

•select * from larger table, smaller table, smallest table

•select * from larger table, smaller table, associative table

Note – rule based optimizer only (pre-10g)

SQL GuidelinesSQL Guidelines

Rule #4: Consider IN or UNION in place of OR
•if columns are not indexed, stick with OR

•if columns are indexed, use IN or UNION in place of OR

•IN example
•Bad: select * from address where

state = 'TX‘ or
state = 'FL‘ or
state = 'OH‘

•Good: select * from address where
state in ('TX','FL','OH')

•UNION example
•Bad: select * from address where

state = ‘TX’ or
areacode = 972

•Good: select * from address where
state = ‘TX’

union
select * from address where

areacode = 972

SQL GuidelinesSQL Guidelines

Rule #5: Weigh JOIN versus EXISTS Sub-Query

•use table JOIN instead of EXISTS sub-query

•when the percentage of rows returned from the outer sub-query is high

select e.name, e.phone, e.mailstop
from employee e, department d
where e.deptno = d.deptno

and d.status = ‘ACTIVE’

•use EXISTS sub-query instead of table JOIN

•when the percentage of rows returned from the outer sub-query is low

select e.name, e.phone, e.mailstop
from employee e
where e.deptno in (select d.deptno

from department d
where d.status != ‘ACTIVE’)

SQL GuidelinesSQL Guidelines

Rule #6: Consider EXISTS in place of DISTINCT

•avoid joins that use DISTINCT, use EXISTS sub-query instead

•Bad: select distinct deptno, deptname from emp, dept where
emp.deptno = dept.deptno

•Good: select deptno, deptname from dept where
exists (select ‘X’ from emp where

emp.deptno = dept.deptno)

Note – only has to find one match

SQL GuidelinesSQL Guidelines

Rule #7: Consider NOT EXISTS in place of NOT IN

•avoid sub-queries that use NOT IN, use NOT EXISTS instead

•Bad: select * from emp where
deptno not in (select deptno from dept where

deptstatus = ‘A’)

•Good: select * from emp where
not exists (select ‘X’ from dept where

deptstatus = ‘A’ and
dept.deptno = emp.deptno)

Note – only has to find one non-match

SQL GuidelinesSQL Guidelines

Rule #8: Ordering Via the WHERE Clause

•a dummy WHERE clause referencing an indexed column will

•retrieve all records in ascending order (descending for 8i descending index)

•not perform a costly sort operation

•Bad: select * from address
order by city

•Good: select * from address where
city > ‘’

SQL GuidelinesSQL Guidelines

Rule #9: Use PL/SQL to reduce network traffic

•Utilize PL/SQL to group related SQL commands and thereby reduce network traffic

•Bad:
select city_name, state_code

into :v_city, :v_sate
from zip_codes where zip_code = ‘75022’;

insert into customer (‘Bert Scalzo’,’75022’, :v_city, v_state);

•Good:
begin

select city_name, state_code
into :v_city, :v_sate
from zip_codes where zip_code = ‘75022’;

insert into customer (‘Bert Scalzo’,’75022’, :v_city, v_state);
end;
/

SQL GuidelinesSQL Guidelines

Rule #10: Partition Large Tables and Indexes

•Partition Elimination

•Partition-Wise Join (requires Parallel too)

•NOTE: Do not expect that merely partitioning will solve
some major performance problem, it should merely make
an incremental improvement to a non-partitioned explain
plan. Read that as partitioning can make an already good
explain plan even better.

Partitioning Benefits: Opinion (Mine)
• Manageability 40%
• Availability 20%
• Capacity Management 20%
• Performance 20%

• Don’t over-sell/over-expect the performance aspect

• Need to experiment for best approach for a database

• Better to take longer at the start to get right, because
very often it’s far too expensive to change afterwards

24

Why to
Partition

Partition Pruning (Restriction Based)

25

• From Docs: In partition pruning, the optimizer analyzes FROM and
WHERE clauses in SQL statements to eliminate unneeded partitions
when building the partition access list. This enables Oracle Database to
perform operations only on those partitions that are relevant ...

• “Divide and Conquer” for performance
– Sometimes can yield order of magnitude improvement
– But once again, best not to oversell and/or over-expect

• Some Potential Issues to be aware of:
– SQL*Plus Auto-Trace can sometimes miss partition pruning

– “Old Style” Explain Plans via simple SELECT has issues too

– Best to always use DBMS_XPLAN and/or SQL_TRACE

Partition-Wise Join (Multi-Object Based)

26

• From Docs: Partition-wise joins reduce query response time by
minimizing the amount of data exchanged among parallel execution
servers when joins execute in parallel. This significantly reduces
response time & improves the use of both CPU & memory resources.

• Different Flavors:
– Full – Single to Single
– Full – Composite to Single
– Full – Composite to Composite
– Partial – Single
– Partial – Composite

• Indexing Strategy Counts
– Local Prefixed/Non-Prefixed
– Global

All of these
affect the

explain plan

Picture Worth 1000 Words (from Docs)

27

Simple Mantra: Subdivide the work into equally paired
chunks, then perform all that work using many parallel
processes

Make sure not to over-allocate
CPU’s – remember there will
also be concurrent workload

Partitioning History (from Oracle 11G training+)

28

Oracle 7 Partition Views – really more of a cheat
Oracle 5 Before Tablespaces – we had partitions

Partitioning Options – Part 1

29

IOT’s can be partitioned as
well in later versions of Oracle,
so the basic choices are even
more complex than this…

Partitioning Options – Part 2

30

Prior to 11G: Oracle White Paper: 2007 Partitioning in Oracle Database 11g

Partitioning Options – Part 3

31

Post 11G: Oracle White Paper: 2007 Partitioning in Oracle Database 11g

Very
exciting

new
options…

| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |

SELECT STATEMENT		1	154	34		
SORT GROUP BY		1	154	34		
HASH JOIN		1	154	29		
TABLE ACCESS BY INDEX ROWID	DW_ORDER	1	95	17		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP MERGE						
BITMAP KEY ITERATION						
TABLE ACCESS BY INDEX ROWID	DW_PERIOD	1	51	2		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP INDEX SINGLE VALUE	DW_PERIOD_B03					
BITMAP INDEX SINGLE VALUE	DW_PERIOD_B12					
BITMAP INDEX RANGE SCAN	DW_ORDER_B1					
BITMAP MERGE						
BITMAP KEY ITERATION						
TABLE ACCESS BY INDEX ROWID	DW_LOCATION	1	46	2		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP INDEX SINGLE VALUE	DW_LOCATION_B03					
BITMAP INDEX SINGLE VALUE	DW_LOCATION_B41					
BITMAP INDEX RANGE SCAN	DW_ORDER_B2					
BITMAP MERGE						
BITMAP KEY ITERATION						
TABLE ACCESS BY INDEX ROWID	DW_PRODUCT	17	1K	10		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B03					
BITMAP OR						
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14					
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14					
BITMAP INDEX RANGE SCAN	DW_ORDER_B3					
TABLE ACCESS BY INDEX ROWID	DW_PRODUCT	17	1K	10		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B03					
BITMAP OR						
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14					
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14					

Non-Partitioned, Non-Parallel explain plan

| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |

SELECT STATEMENT		1	154	35		
SORT GROUP BY		1	154	35		
SORT GROUP BY		1	154	35		
HASH JOIN		1	154	30		
PARTITION RANGE ALL					1	10
TABLE ACCESS BY LOCAL INDEX ROWID	DW_ORDER_PART	0	20	18	1	10
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP MERGE						
BITMAP KEY ITERATION						
SORT BUFFER						
TABLE ACCESS BY INDEX ROWID	DW_PERIOD	1	51	2		
BITMAP CONVERSION TO ROWID						
BITMAP AND						
BITMAP INDEX SINGLE VALU	DW_PERIOD_B03					
BITMAP INDEX SINGLE VALU	DW_PERIOD_B12					
BITMAP INDEX RANGE SCAN	DW_ORDER_PART_B1				1	10
BITMAP MERGE						
BITMAP KEY ITERATION						
SORT BUFFER						
TABLE ACCESS BY INDEX ROWID	DW_LOCATION	1	46	2		
BITMAP CONVERSION TO ROWID						
BITMAP AND						
BITMAP INDEX SINGLE VALU	DW_LOCATION_B03					
BITMAP INDEX SINGLE VALU	DW_LOCATION_B41					
BITMAP INDEX RANGE SCAN	DW_ORDER_PART_B2				1	10
BITMAP MERGE						
BITMAP KEY ITERATION						
SORT BUFFER						
TABLE ACCESS BY INDEX ROWID	DW_PRODUCT	17	1K	10		
BITMAP CONVERSION TO ROWID						
BITMAP AND						
BITMAP INDEX SINGLE VALU	DW_PRODUCT_B03					
BITMAP OR						
BITMAP INDEX SINGLE VAL	DW_PRODUCT_B14					
BITMAP INDEX SINGLE VAL	DW_PRODUCT_B14					
BITMAP INDEX RANGE SCAN	DW_ORDER_PART_B3				1	10
TABLE ACCESS BY INDEX ROWID	DW_PRODUCT	17	1K	10		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B03					
BITMAP OR						
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14					
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14					

Partitioned, Non-Parallel explain plan

SQL GuidelinesSQL Guidelines

Rule #11: Serial Explain Plans, then Parallel (maybe)

•Parallel Full Table Scan

•Parallel Index Scan

•Parallel Fast Full Scan (FFS Index Scan)

•NOTE: Do not expect that merely parallelizing will solve
some major performance problem, it should merely make
an incremental improvement to a non-paralell (i.e. serial)
explain plan. Read that as parallel can make an already
good explain plan even better.

•Parallel processing is controlled as follows:

•Query has /*+parallel*/ hint
•Some shops do NOT favor hints

•What if database version changes
•What happens if statistics change
•Other questionable future scenarios

•Cannot add hints to pre-canned applications

•Object (table or index) has parallel degree

•Database instance parameter for parallel

•For RAC, parallel can also span the RAC nodes too

| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |

SELECT STATEMENT		1	154	34		
SORT GROUP BY		1	154	34		
HASH JOIN		1	154	29		
TABLE ACCESS BY INDEX ROWID	DW_ORDER	1	95	17		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP MERGE						
BITMAP KEY ITERATION						
TABLE ACCESS BY INDEX ROWID	DW_PERIOD	1	51	2		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP INDEX SINGLE VALUE	DW_PERIOD_B03					
BITMAP INDEX SINGLE VALUE	DW_PERIOD_B12					
BITMAP INDEX RANGE SCAN	DW_ORDER_B1					
BITMAP MERGE						
BITMAP KEY ITERATION						
TABLE ACCESS BY INDEX ROWID	DW_LOCATION	1	46	2		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP INDEX SINGLE VALUE	DW_LOCATION_B03					
BITMAP INDEX SINGLE VALUE	DW_LOCATION_B41					
BITMAP INDEX RANGE SCAN	DW_ORDER_B2					
BITMAP MERGE						
BITMAP KEY ITERATION						
TABLE ACCESS BY INDEX ROWID	DW_PRODUCT	17	1K	10		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B03					
BITMAP OR						
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14					
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14					
BITMAP INDEX RANGE SCAN	DW_ORDER_B3					
TABLE ACCESS BY INDEX ROWID	DW_PRODUCT	17	1K	10		
BITMAP CONVERSION TO ROWIDS						
BITMAP AND						
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B03					
BITMAP OR						
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14					
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14					

Non-Partitioned, Non-Parallel explain plan

--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		1	154	34					
SORT GROUP BY		1	154	34	2,03	P->S	QC (RANDOM)		
SORT GROUP BY		1	154	34	2,02	P->P	HASH		
HASH JOIN		1	154	29	2,02	PCWP			
TABLE ACCESS BY INDEX ROWID	DW_ORDER	1	95	17	2,01	P->P	HASH		
BITMAP CONVERSION TO ROWIDS									
BITMAP AND									
BITMAP MERGE									
BITMAP KEY ITERATION									
TABLE ACCESS BY INDEX ROWID	DW_PERIOD	1	51	2					
BITMAP CONVERSION TO ROWIDS									
BITMAP AND									
BITMAP INDEX SINGLE VALUE	DW_PERIOD_B03								
BITMAP INDEX SINGLE VALUE	DW_PERIOD_B12								
BITMAP INDEX RANGE SCAN	DW_ORDER_B1								
BITMAP MERGE									
BITMAP KEY ITERATION									
TABLE ACCESS BY INDEX ROWID	DW_LOCATION	1	46	2					
BITMAP CONVERSION TO ROWIDS									
BITMAP AND									
BITMAP INDEX SINGLE VALUE	DW_LOCATION_B03								
BITMAP INDEX SINGLE VALUE	DW_LOCATION_B41								
BITMAP INDEX RANGE SCAN	DW_ORDER_B2								
BITMAP MERGE									
BITMAP KEY ITERATION									
TABLE ACCESS BY INDEX ROWID	DW_PRODUCT	17	1K	10					
BITMAP CONVERSION TO ROWIDS									
BITMAP AND									
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B03								
BITMAP OR									
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14								
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14								
BITMAP INDEX RANGE SCAN	DW_ORDER_B3								
TABLE ACCESS BY INDEX ROWID	DW_PRODUCT	17	1K	10	2,00	S->P	HASH		
BITMAP CONVERSION TO ROWIDS									
BITMAP AND									
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B03								
BITMAP OR									
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14								
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14								
--

Non-Partitioned, Parallel explain plan

--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		1	154	34					
SORT GROUP BY		1	154	34	5,03	P->S	QC (RANDOM)		
SORT GROUP BY		1	154	34	5,02	P->P	HASH		
HASH JOIN		1	154	29	5,02	PCWP			
PARTITION RANGE ALL					5,02	PCWP		1	10
TABLE ACCESS BY LOCAL INDEX ROWID	DW_ORDER_PART	0	20	18	5,01	P->P	HASH	1	10
BITMAP CONVERSION TO ROWIDS									
BITMAP AND									
BITMAP MERGE									
BITMAP KEY ITERATION									
SORT BUFFER									
TABLE ACCESS BY INDEX ROWID	DW_PERIOD	1	51	2					
BITMAP CONVERSION TO ROWID									
BITMAP AND									
BITMAP INDEX SINGLE VALU	DW_PERIOD_B03								
BITMAP INDEX SINGLE VALU	DW_PERIOD_B12								
BITMAP INDEX RANGE SCAN	DW_ORDER_PART_B1							1	10
BITMAP MERGE									
BITMAP KEY ITERATION									
SORT BUFFER									
TABLE ACCESS BY INDEX ROWID	DW_LOCATION	1	46	2					
BITMAP CONVERSION TO ROWID									
BITMAP AND									
BITMAP INDEX SINGLE VALU	DW_LOCATION_B03								
BITMAP INDEX SINGLE VALU	DW_LOCATION_B41								
BITMAP INDEX RANGE SCAN	DW_ORDER_PART_B2							1	10
BITMAP MERGE									
BITMAP KEY ITERATION									
SORT BUFFER									
TABLE ACCESS BY INDEX ROWID	DW_PRODUCT	17	1K	10					
BITMAP CONVERSION TO ROWID									
BITMAP AND									
BITMAP INDEX SINGLE VALU	DW_PRODUCT_B03								
BITMAP OR									
BITMAP INDEX SINGLE VAL	DW_PRODUCT_B14								
BITMAP INDEX SINGLE VAL	DW_PRODUCT_B14								
BITMAP INDEX RANGE SCAN	DW_ORDER_PART_B3							1	10
TABLE ACCESS BY INDEX ROWID	DW_PRODUCT	17	1K	10	5,00	S->P	HASH		
BITMAP CONVERSION TO ROWIDS									
BITMAP AND									
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B03								
BITMAP OR									
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14								
BITMAP INDEX SINGLE VALUE	DW_PRODUCT_B14								
--

Partitioned, Parallel explain plan

SQL GuidelinesSQL Guidelines

Rule #12: Use ANSI 99 JOIN Syntax – ALWAYS !!!

•Oracle proprietary (+) syntax has problems:
•Cannot do a FULL JOIN efficiently

•See slides that follow the next
•Outer JOIN syntax prone to user error

•You must specify (+) in the WHERE clause for both
•The JOIN condition(s)
•All other references to that table (source of many mistakes)

Both syntaxes work (i.e. no
error), so you better know
what you’re trying to do !!!

I could go on and list probably another two dozen or so
“Best Practices” SQL Tuning and Optimization rules,
but you should already be seeing my point – there is a
lot of tuning stuff to remember while trying to get your
job done.

You should focus on being effective – i.e. the SQL does
what the business and/or user requirements mandate.

You should let Toad handle making you SQL efficient !!!

SQL Optimizer knows all this and much, much more:
developers can press just two buttons to get their
SQL statements automatically and 100% fully
tuned!

Wow – this is becoming overwhelming

