

Oracle® PL/SQL™

by Example

FOURTH EDITION

This page intentionally left blank

Oracle® PL/SQL™

by Example

FOURTH EDITION

BENJAMIN ROSENZWEIG
ELENA SILVESTROVA RAKHIMOV

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco • New York •
Toronto • Montreal • London • Munich • Paris • Madrid • Cape Town • Sydney •

Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
800-382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/ph

Library of Congress Cataloging-in-Publication Data

Rosenzweig, Benjamin.
Oracle PL/SQL by example / Benjamin Rosenzweig, Elena Silvestrova Rakhimov.

p. cm.
ISBN 0-13-714422-9 (pbk. : alk. paper) 1. PL/SQL (Computer program language) 2. Oracle

(Computer file) 3. Relational databases. I. Rakhimov, Elena Silvestrova. II. Title.
QA76.73.P258R68 2008
005.75’6—dc22

2008022398

Copyright © 2009 Pearson Education, Inc. All rights reserved. Printed in the United States of America.
This publication is protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise.

For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671 3447

ISBN-13: 978-0-137-14422-8
ISBN-10: 0-137-14422-9

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan

First printing August 2008

Editor-in-Chief: Mark Taub
Acquisitions Editor: Trina MacDonald
Development Editor: Songlin Qiu
Managing Editor: Kristy Hart
Project Editor: Todd Taber
Copy Editor: Gayle Johnson
Indexer: Erika Millen
Proofreader: Debbie Williams
Technical Reviewers: Oleg Voskoboynikov,
Shahdad Moradi
Publishing Coordinator: Olivia Basegio
Cover Designer: Chuti Prasertsith
Composition: Nonie Ratcliff

www.informit.com/ph

To my parents, Rosie and Sandy Rosenzweig, for their
love and support. —Benjamin Rosenzweig

To Sean. —Elena Silvestrova Rakhimov

This page intentionally left blank

Acknowledgments xiv

About the Authors xv

Introduction xvii

CHAPTER 1 PL/SQL Concepts 1
LAB 1.1 PL/SQL in Client/Server Architecture 2

1.1.1 Use PL/SQL Anonymous Blocks 8
1.1.2 Understand How PL/SQL Gets Executed 10

LAB 1.2 PL/SQL in SQL*Plus 12
1.2.1 Use Substitution Variables 16
1.2.2 Use the DBMS_OUTPUT.PUT_LINE Statement 17

Chapter 1 Try It Yourself 19

CHAPTER 2 General Programming Language
Fundamentals 21

LAB 2.1 PL/SQL Programming Fundamentals 22
2.1.1 Make Use of PL/SQL Language Components 23
2.1.2 Make Use of PL/SQL Variables 24
2.1.3 Handle PL/SQL Reserved Words 26
2.1.4 Make Use of Identifiers in PL/SQL 27
2.1.5 Make Use of Anchored Datatypes 28
2.1.6 Declare and Initialize Variables 31
2.1.7 Understand the Scope of a Block, Nested Blocks, and Labels 34

Chapter 2 Try It Yourself 37

CHAPTER 3 SQL in PL/SQL 39
LAB 3.1 Making Use of DML in PL/SQL 40

3.1.1 Use the Select INTO Syntax for Variable Initialization 41
3.1.2 Use DML in a PL/SQL Block 42
3.1.3 Make Use of a Sequence in a PL/SQL Block 44

LAB 3.2 Making Use of SAVEPOINT 45
3.2.1 Make Use of COMMIT, ROLLBACK, and SAVEPOINT

in a PL/SQL Block 48

Chapter 3 Try It Yourself 51

Contents

CHAPTER 4 Conditional Control: IF Statements 53
LAB 4.1 IF Statements 54

4.1.1 Use the IF-THEN Statement 58
4.1.2 Use the IF-THEN-ELSE Statement 62

LAB 4.2 ELSIF Statements 65
4.2.1 Use the ELSIF Statement 69

LAB 4.3 Nested IF Statements 74
4.3.1 Use Nested IF Statements 76

Chapter 4 Try It Yourself 80

CHAPTER 5 Conditional Control: CASE Statements 81
LAB 5.1 CASE Statements 82

5.1.1 Use the CASE Statement 89
5.1.2 Use the Searched CASE Statement 91

LAB 5.2 CASE Expressions 96
5.2.1 Use the CASE Expression 100

LAB 5.3 NULLIF and COALESCE Functions 103
5.3.1 The NULLIF Function 107
5.3.2 Use the COALESCE Function 109

Chapter 5 Try It Yourself 112

CHAPTER 6 Iterative Control: Part I 113
LAB 6.1 Simple Loops 114

6.1.1 Use Simple Loops with EXIT Conditions 118
6.1.2 Use Simple Loops with EXIT WHEN Conditions 120

LAB 6.2 WHILE Loops 124
6.2.1 Use WHILE Loops 128

LAB 6.3 Numeric FOR Loops 132
6.3.1 Use Numeric FOR Loops with the IN Option 137
6.3.2 Use Numeric FOR Loops with the REVERSE Option 139

Chapter 6 Try It Yourself 142

CHAPTER 7 Iterative Control: Part II 143
LAB 7.1 The CONTINUE Statement 144

7.1.1 Use the CONTINUE Statement 146
7.1.2 Use the CONTINUE WHEN Condition 152

viii Contents

LAB 7.2 Nested Loops 154
7.2.1 Use Nested Loops 157

Chapter 7 Try It Yourself 161

CHAPTER 8 Error Handling and Built-in Exceptions 163
LAB 8.1 Handling Errors 164

8.1.1 Understand the Importance of Error Handling 167

LAB 8.2 Built-in Exceptions 169
8.2.1 Use Built-in Exceptions 174

Chapter 8 Try It Yourself 178

CHAPTER 9 Exceptions 179
LAB 9.1 Exception Scope 180

9.1.1 Understand the Scope of an Exception 183

LAB 9.2 User-Defined Exceptions 188
9.2.1 Use User-Defined Exceptions 193

LAB 9.3 Exception Propagation 197
9.3.1 Understand How Exceptions Propagate 203
9.3.2 Reraise Exceptions 206

Chapter 9 Try It Yourself 209

CHAPTER 10 Exceptions: Advanced Concepts 211
LAB 10.1 RAISE_APPLICATION_ERROR 212

10.1.1 Use RAISE_APPLICATION_ERROR 215

LAB 10.2 EXCEPTION_INIT Pragma 217
10.2.1 USE the EXCEPTION_INIT Pragma 219

LAB 10.3 SQLCODE and SQLERRM 222
10.3.1 Use SQLCODE and SQLERRM 225

Chapter 10 Try It Yourself 227

CHAPTER 11 Introduction to Cursors 229
LAB 11.1 Cursor Manipulation 230

11.1.1 Make Use of Record Types 234
11.1.2 Process an Explicit Cursor 235
11.1.3 Make Use of Cursor Attributes 240
11.1.4 Put It All Together 242

Contents ix

LAB 11.2 Using Cursor FOR Loops and Nested Cursors 246
11.2.1 Use a Cursor FOR Loop 247
11.2.2 Process Nested Cursors 247

Chapter 11 Try It Yourself 252

CHAPTER 12 Advanced Cursors 253
LAB 12.1 Using Parameters with Cursors and Complex Nested Cursors 254

12.1.1 Use Parameters in a Cursor 255
12.1.2 Use Complex Nested Cursors 255

LAB 12.2 FOR UPDATE and WHERE CURRENT Cursors 258
12.2.1 For UPDATE and WHERE CURRENT Cursors 258

CHAPTER 13 Triggers 263
LAB 13.1 What Triggers Are 264

13.1.1 Understand What a Trigger Is 272
13.1.2 Use BEFORE and AFTER Triggers 274

LAB 13.2 Types of Triggers 277
13.2.1 Use Row and Statement Triggers 283
13.2.2 Use INSTEAD OF Triggers 285

Chaper 13 Try It Yourself 290

CHAPTER 14 Compound Triggers 291
LAB 14.1 Mutating Table Issues 292

14.1.1 Understand Mutating Tables 296

LAB 14.2 Compound Triggers 300
14.2.1 Understand Compound Triggers 306

Chapter 14 Try It Yourself 313

CHAPTER 15 Collections 315
LAB 15.1 PL/SQL Tables 316

15.1.1 Use Associative Arrays 326
15.1.2 Use Nested Tables 330

LAB 15.2 Varrays 334
15.2.1 Use Varrays 338

LAB 15.3 Multilevel Collections 342
15.3.1 Use Multilevel Collections 344

Chapter 15 Try It Yourself 348

x Contents

CHAPTER 16 Records 349
LAB 16.1 Record Types 350

16.1.1 Use Table-Based and Cursor-Based Records 358
16.1.2 Use User-Defined Records 362

LAB 16.2 Nested Records 367
16.2.1 Use Nested Records 369

LAB 16.3 Collections of Records 373
16.3.1 Use Collections of Records 374

Chapter 16 Try It Yourself 378

CHAPTER 17 Native Dynamic SQL 379
LAB 17.1 EXECUTE IMMEDIATE Statements 380

17.1.1 Use the EXECUTE IMMEDIATE Statement 387

LAB 17.2 OPEN-FOR, FETCH, and CLOSE Statements 392
17.2.1 Use OPEN-FOR, FETCH, and CLOSE Statements 395

Chapter 17 Try It Yourself 401

CHAPTER 18 Bulk SQL 403
LAB 18.1 The FORALL Statement 404

18.1.1 Use the FORALL Statement 413

LAB 18.2 The BULK COLLECT Clause 422
18.2.1 Use the BULK COLLECT Statement 428

Chapter 18 Try It Yourself 437

CHAPTER 19 Procedures 439
LAB 19.1 Creating Procedures 441

19.1.1 Create Procedures 441
19.1.2 Query the Data Dictionary for Information on Procedures 443

LAB 19.2 Passing Parameters into and out of Procedures 444
19.2.1 Use IN and OUT Parameters with Procedures 445

Chapter 19 Try It Yourself 447
Part 1 447
Part 2 447

Contents xi

CHAPTER 20 Functions 449
LAB 20.1 Creating and Using Functions 450

20.1.1 Create Stored Functions 451
20.1.2 Make Use of Functions 452
20.1.3 Invoke Functions in SQL Statements 453
20.1.4 Write Complex Functions 454

Chapter 20 Try It Yourself 455

CHAPTER 21 Packages 457
LAB 21.1 The Benefits of Using Packages 458

21.1.1 Create Package Specifications 460
21.1.2 Create Package Bodies 462
21.1.3 Call Stored Packages 464
21.1.4 Create Private Objects 465
21.1.5 Create Package Variables and Cursors 469

LAB 21.2 Cursor Variables 471
21.2.1 Make Use of Cursor Variables 475

LAB 21.3 Extending the Package 480
21.3.1 Extend the Package 480

Chapter 21 Try It Yourself 493

CHAPTER 22 Stored Code 495
LAB 22.1 Gathering Information About Stored Code 496

22.1.1 Get Stored Code Information from the Data Dictionary 496
22.1.2 Enforce the Purity Level with the RESTRICT_REFERENCES

Pragma 500
22.1.3 Overload Modules 506

Chapter 22 Try It Yourself 512

CHAPTER 23 Object Types in Oracle 513
LAB 23.1 Object Types 514

23.1.1 Use Object Types 522
23.1.2 Use Object Types with Collections 526

LAB 23.2 Object Type Methods 531
23.2.1 Use Object Type Methods 544

Chapter 23 Try It Yourself 554

xii Contents

CHAPTER 24 Oracle Supplied Packages 555
LAB 24.1 Making Use of Oracle Supplied Packages to Profile PL/SQL, Access Files,

and Schedule Jobs 556
24.1.1 Access Files with UTL_FILE 563
24.1.2 Schedule Jobs with DBMS_JOB 563
24.1.3 Submit Jobs 564

LAB 24.2 Making Use of Oracle-Supplied Packages to Generate an Explain
Plan and Create HTML Pages 568

24.2.1 Generate an Explain Plan with DBMS_XPLAN 572

LAB 24.3 Creating Web Pages with the Oracle Web Toolkit 578
24.3.1 Create an HTML Page with the Oracle Web Toolkit 594

APPENDIX A PL/SQL Formatting Guide 597

APPENDIX B Student Database Schema 601

APPENDIX C ANSI SQL Standards 607

APPENDIX D Answers to the Try It Yourself Sections 613

INDEX 705

1) Visit www.informit.com/title/0137144229 to learn how to register this product and gain
access to additional content.

2) To register this product and gain access to bonus content, go to www.informit.com/register to
sign in and enter the ISBN. After you register the product, a link to the additional content will
be listed on your Account page, under Registered Products.

Contents xiii

www.informit.com/title/0137144229
www.informit.com/register

ACKNOWLEDGMENTS

Benjamin Rosenzweig: I would like to thank my coauthor, Elena Silvestrova Rakhimov, for
being a wonderful and knowledgeable colleague to work with. I would also like to thank
Douglas Scherer for giving me the opportunity to work on this book, as well as for providing
constant support and assistance through the entire writing process. I am indebted to the team at
Prentice Hall, which includes Trina MacDonald, Songlin Qiu, Todd Taber, Shahdad Moradi, and
Oleg Voskoboynikov. Their contributions, suggestions, and edits helped improve our original
manuscript and make the book what it is today. Finally, I would like to thank my many friends
and family, especially Edward Clarin and Edward Knopping, for helping me through the long
process of putting the whole book together, which included many late nights and weekends.

Elena Silvestrova Rakhimov: My contribution to this book reflects the help and advice of many
people. I am particularly indebted to my coauthor, Benjamin Rosenzweig, for making this project
a rewarding and enjoyable experience. Special thanks to Trina MacDonald, Songlin Qiu, Todd
Taber, and many others at Prentice Hall who diligently worked to bring this book to market.
Thanks to Shahdad Moradi and Oleg Voskoboynikov for their valuable comments and sugges-
tions. Most importantly, to my family, whose excitement, enthusiasm, inspiration, and support
encouraged me to work hard to the very end, and were exceeded only by their love.

ABOUT THE AUTHORS

Benjamin Rosenzweig is a software development manager at Misys Treasury & Capital Markets,
where he has worked since 2002. Prior to that he was a principal consultant for more than three
years at Oracle Corporation in the Custom Development Department. His computer experience
ranges from creating an electronic Tibetan–English dictionary in Kathmandu, Nepal, to supporting
presentation centers at Goldman Sachs and managing a trading system at TIAA-CREF. Rosenzweig
has been an instructor at the Columbia University Computer Technology and Application program
in New York City since 1998. In 2002 he was awarded the Outstanding Teaching Award from the
chair and director of the CTA program. He holds a B.A. from Reed College and a certificate in data-
base development and design from Columbia University. His previous books with Prentice Hall are
Oracle Forms Developer: The Complete Video Course (ISBN: 0-13-032124-9) and Oracle Web
Application Programming for PL/SQL Developers (ISBN: 0-13-047731-1).

Elena Silvestrova Rakhimov has more than 15 years of experience in database development
in a wide spectrum of enterprise and business environments, ranging from nonprofit organiza-
tions to Wall Street. She currently works at Alea Software, where she serves as Senior Developer
and Team Lead. Her determination to stay hands-on notwithstanding, Rakhimov has managed
to excel in the academic arena, having taught relational database programming at Columbia
University’s highly esteemed Computer Technology and Applications program. She was educated
in database analysis and design at Columbia University and in applied mathematics at Baku State
University in Azerbaijan. She currently resides in Vancouver, Canada.

This page intentionally left blank

INTRODUCTION
PL/SQL New Features in Oracle 11g

Oracle 11g has introduced a number of new features and improvements for PL/SQL. This intro-
duction briefly describes features not covered in this book and points you to specific chapters
for features that are within scope of this book. The list of features described here is also available
in the “What’s New in PL/SQL?” section of the PL/SQL Language Reference manual offered as
part of Oracle help available online.

The new PL/SQL features and enhancements are as follows:

. Enhancements to regular expression built-in SQL functions

. SIMPLE_INTEGER, SIMPLE_FLOAT, and SIMPLE_DOUBLE datatypes

. CONTINUE statement

. Sequences in PL/SQL expressions

. Dynamic SQL enhancements

. Named and mixed notation in PL/SQL subprogram invocations

. Cross-session PL/SQL function result cache

. More control over triggers

. Compound triggers

. Database resident connection pool

. Automatic subprogram inlining

. PL/Scope

. PL/SQL hierarchical profiler

. PL/SQL native compiler generates native code directly

Enhancements to Regular Expression Built-In SQL Functions
In this release Oracle has introduced a new regular expression built-in function,
REGEXP_COUNT. It returns the number of times a specified search pattern appears in a
source string.

FOR EXAMPLE

SELECT
REGEXP_COUNT ('Oracle PL/SQL By Example Updated for Oracle 11g',

'ora', 1, 'i')
FROM dual;

REGEXP_COUNT('ORACLEPL/SQLBYEXAMPLEUPDATEDFORORACLE11G','ORA',1,'I')
--

2

The REGEXP_COUNT function returns how many times the search pattern 'ora' appears in
the source string 'Oracle PL/SQL...' 1 indicates the position of the source string where the
search begins, and 'i' indicates case-insensitive matching.

The existing regular expression built-in functions, REGEXP_INSTR and REGEXP_SUBSTR, have
a new parameter called SUBEXPR. This parameter represents a subexpression in a search pattern.
Essentially it is a portion of a search pattern enclosed in parentheses that restricts pattern
matching, as illustrated in the following example.

FOR EXAMPLE

SELECT
REGEXP_INSTR ('Oracle PL/SQL By Example Updated for Oracle 11g',

'((ora)(cle))', 1, 2, 0, 'i')
FROM dual;

REGEXP_INSTR('ORACLEPL/SQLBYEXAMPLEUPDATEDFORORACLE11G',...)
--

38

The REGEXP_INSTR function returns the position of the first character in the source string
'Oracle PL/SQL…' corresponding to the second occurrence of the first subexpression 'ora'
in the seach pattern (ora)(cle). 1 indicates the position of the source string where the search
begins, 2 indicates the occurrence of the subexpression in the source string, 0 indicates that the
position returned corresponds to the position of the first character where the match occurs, and
'i' indicates case-insensitive matching and REGEXP_SUBSTR.

SIMPLE_INTEGER, SIMPLE_FLOAT, and SIMPLE_DOUBLE
Datatypes
These datatypes are predefined subtypes of the PLS_INTEGER, BINARY_FLOAT, and
BINARY_DOUBLE, respectively. As such, they have the same range as their respective base types.
In addition, these subtypes have NOT NULL constraints.

xviii Introduction

These subtypes provide significant performance improvements over their respective base types
when the PLSQL_CODE_TYPE parameter is set to NATIVE. This is because arithmetic opera-
tions for these subtypes are done directly in the hardware layer. Note that when
PLSQL_CODE_TYPE is set to INTERPRETED (the default value), the performance gains are
significantly smaller. This is illustrated by the following example.

FOR EXAMPLE

SET SERVEROUTPUT ON
DECLARE

v_pls_value1 PLS_INTEGER := 0;
v_pls_value2 PLS_INTEGER := 1;

v_simple_value1 SIMPLE_INTEGER := 0;
v_simple_value2 SIMPLE_INTEGER := 1;

-- Following are used for elapsed time calculation
-- The time is calculated in 100th of a second
v_start_time NUMBER;
v_end_time NUMBER;

BEGIN
-- Perform calculations with PLS_INTEGER
v_start_time := DBMS_UTILITY.GET_TIME;

FOR i in 1..50000000 LOOP
v_pls_value1 := v_pls_value1 + v_pls_value2;

END LOOP;

v_end_time := DBMS_UTILITY.GET_TIME;
DBMS_OUTPUT.PUT_LINE ('Elapsed time for PLS_INTEGER: '||

(v_end_time - v_start_time));

-- Perform the same calculations with SIMPLE_INTEGER
v_start_time := DBMS_UTILITY.GET_TIME;

FOR i in 1..50000000 LOOP
v_simple_value1 := v_simple_value1 + v_simple_value2;

END LOOP;

v_end_time := DBMS_UTILITY.GET_TIME;
DBMS_OUTPUT.PUT_LINE ('Elapsed time for SIMPLE_INTEGER: '||

(v_end_time - v_start_time));
END;

Introduction xix

xx Introduction

This script compares the performance of the PLS_INTEGER datatype with its subtype
SIMPLE_INTEGER via a numeric FOR loop. Note that for this run the PLSQL_CODE_TYPE
parameter is set to its default value, INTERPRETED.

Elapsed time for PLS_INTEGER: 147
Elapsed time for SIMPLE_INTEGER: 115

PL/SQL procedure successfully completed.

CONTINUE Statement
Similar to the EXIT statement, the CONTINUE statement controls loop iteration. Whereas the
EXIT statement causes a loop to terminate and passes control of the execution outside the loop,
the CONTINUE statement causes a loop to terminate its current iteration and passes control to
the next iteration of the loop. The CONTINUE statement is covered in detail in Chapter 7,
“Iterative Control—Part 2.”

Sequences in PL/SQL Expressions
Prior to Oracle 11g, the sequence pseudocolumns CURRVAL and NEXTVAL could be accessed
in PL/SQL only through queries. Starting with Oracle 11g, these pseudocolumns can be accessed
via expressions. This change not only improves PL/SQL source code, it also improves runtime
performance and scalability.

FOR EXAMPLE

CREATE SEQUENCE test_seq START WITH 1 INCREMENT BY 1;

Sequence created.

SET SERVEROUTPUT ON
DECLARE

v_seq_value NUMBER;
BEGIN

v_seq_value := test_seq.NEXTVAL;
DBMS_OUTPUT.PUT_LINE ('v_seq_value: '||v_seq_value);

END;

This script causes an error when executed in Oracle 10g:

v_seq_value := test_seq.NEXTVAL;
*

ERROR at line 4:
ORA-06550: line 4, column 28:
PLS-00357: Table,View Or Sequence reference 'TEST_SEQ.NEXTVAL' not
allowed in this context
ORA-06550: line 4, column 4:
PL/SQL: Statement ignored

and it completes successfully when executed in Oracle 11g:

v_seq_value: 1

PL/SQL procedure successfully completed.

Consider another example that illustrates performance improvement when the PL/SQL expres-
sion is used to manipulate sequences:

FOR EXAMPLE

SET SERVEROUTPUT ON
DECLARE

v_seq_value NUMBER;

-- Following are used for elapsed time calculation
v_start_time NUMBER;
v_end_time NUMBER;

BEGIN
-- Retrieve sequence via SELECT INTO statement
v_start_time := DBMS_UTILITY.GET_TIME;

FOR i in 1..10000 LOOP
SELECT test_seq.NEXTVAL
INTO v_seq_value
FROM dual;

END LOOP;

v_end_time := DBMS_UTILITY.GET_TIME;
DBMS_OUTPUT.PUT_LINE

('Elapsed time to retrieve sequence via SELECT INTO: '||
(v_end_time-v_start_time));

-- Retrieve sequence via PL/SQL expression
v_start_time := DBMS_UTILITY.GET_TIME;

FOR i in 1..10000 LOOP
v_seq_value := test_seq.NEXTVAL;

END LOOP;

v_end_time := DBMS_UTILITY.GET_TIME;
DBMS_OUTPUT.PUT_LINE

('Elapsed time to retrieve sequence via PL/SQL expression: '||
(v_end_time-v_start_time));

END;

Elapsed time to retrieve sequence via SELECT INTO: 52
Elapsed time to retrieve sequence via PL/SQL expression: 43

PL/SQL procedure successfully completed.

Introduction xxi

Dynamic SQL Enhancements
In this version, Oracle has introduced a number of enhancements to the native dynamic SQL
and DBMS_SQL package.

Native dynamic SQL enables you to generate dynamic SQL statements larger than 32K. In other
words, it supports the CLOB datatype. Native dynamic SQL is covered in detail in Chapter 17,
“Native Dynamic SQL.”

The DBMS_SQL package now supports all datatypes that native dynamic SQL supports. This
includes the CLOB datatype. In addition, two new functions, DBMS_SQL.TO_REFCURSOR and
DBMS_SQL.TO_CURSOR_NUMBER, enable you to switch between the native dynamic SQL
and DBMS_SQL package.

Named and Mixed Notation in PL/SQL Subprogram
Invocations
Prior to Oracle 11g, a SQL statement invoking a function had to specify the parameters in posi-
tional notation. In this release, mixed and named notations are allowed as well. Examples of
positional, named, and mixed notations can be found in Chapter 21, “Packages,” and Chapter
23, “Object Types in Oracle.”

Consider the following example:

FOR EXAMPLE

CREATE OR REPLACE FUNCTION test_function
(in_val1 IN NUMBER, in_val2 IN VARCHAR2)

RETURN VARCHAR2
IS
BEGIN

RETURN (in_val1||' - '||in_val2);
END;

Function created.

SELECT
test_function(1, 'Positional Notation') col1,
test_function(in_val1 => 2, in_val2 => 'Named Notation') col2,
test_function(3, in_val2 => 'Mixed Notation') col3
FROM dual;

COL1 COL2 COL3
----------------------- ------------------ ------------------
1 - Positional Notation 2 - Named Notation 3 - Mixed Notation

Note that mixed notation has a restriction: positional notation may not follow named notation.
This is illustrated by the following SELECT:

xxii Introduction

SELECT
test_function(1, 'Positional Notation') col1,
test_function(in_val1 => 2, in_val2 => 'Named Notation') col2,
test_function(in_val1 => 3, 'Mixed Notation') col3
FROM dual;

test_function(in_val1 => 3, 'Mixed Notation') col3
*

ERROR at line 4:
ORA-06553: PLS-312: a positional parameter association may not follow
a named association

Cross-Session PL/SQL Function Result Cache
A result-cached function is a function whose parameter values and result are stored in the cache.
This means that when such a function is invoked with the same parameter values, its result is
retrieved from the cache instead of being computed again. This caching mechanism is known as
single-session caching because each session requires its own copy of the cache where function
parameters and its results are stored.

Starting with Oracle 11, the caching mechanism for result-cached functions has been expanded
to cross-session caching. In other words, the parameter values and results of the result-cached
function are now stored in the shared global area (SGA) and are available to any session. Note
that when an application is converted from single-session caching to cross-session caching, it
requires more SGA but considerably less total system memory.

Consider the following example, which illustrates how a result-cached function may be created:

FOR EXAMPLE

-- Package specification
CREATE OR REPLACE PACKAGE test_pkg AS

-- User-defined record type
TYPE zip_record IS RECORD

(zip VARCHAR2(5),
city VARCHAR2(25),
state VARCHAR2(2));

-- Result-cached function
FUNCTION get_zip_info (in_zip NUMBER) RETURN zip_record
RESULT_CACHE;

END test_pkg;
/

-- Package body
CREATE OR REPLACE PACKAGE BODY test_pkg AS

-- Result-cached function

Introduction xxiii

FUNCTION get_zip_info (in_zip NUMBER) RETURN zip_record
RESULT_CACHE
RELIES_ON (ZIPCODE)
IS

rec zip_record;
BEGIN

SELECT zip, city, state
INTO rec
FROM zipcode
WHERE zip = in_zip;
RETURN rec;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RETURN null;
END get_zip_info;

END test_pkg;
/

Note the use of the RESULT_CACHE and RELIES_ON clauses. RESULT_CACHE specifies that
the function is a result-cached function, and RELIES_ON specifies any tables and/or views that
the function results depend on.

More Control over Triggers
Starting with Oracle 11g, the CREATE OR REPLACE TRIGGER clause may include ENABLE,
DISABLE, and FOLLOWS options. The ENABLE and DISABLE options allow you to create a
trigger in the enabled or disabled state, respectively. The FOLLOWS option allows you to specify
the order in which triggers fire. Note that the FOLLOWS option applies to triggers that are
defined on the same table and fire at the same timing point. Triggers are covered in detail in
Chapter 13, “Triggers.”

Compound Triggers
A compound trigger is a new type of trigger that allows you to combine different types of trig-
gers into one trigger. Specifically, you can combine the following:

. A statement trigger that fires before the firing statement

. A row trigger that fires before each row that the firing statement affects

. A row trigger that fires after each row that the firing statement affects

. A statement trigger that fires after the firing statement

This means that a single trigger may fire at different times when a transaction occurs. Compound
triggers are covered in detail in Chapter 14, “Compound Triggers.”

xxiv Introduction

Database Resident Connection Pool
Database Resident Connection Pool (DRCP) provides a connection pool that is shared by various
middle-tier processes. The new package, DBMS_CONNECTION_POOL, enables database
administrators to start and stop DRCP and configure its parameters.

Automatic Subprogram Inlining
The PL/SQL compiler translates PL/SQL code into machine code. Starting with Oracle 10g, the
PL/SQL compiler can use the performance optimizer when compiling PL/SQL code. The perfor-
mance optimizer enables the PL/SQL compiler to rearrange PL/SQL code to enhance performance.
The optimization level used by the PL/SQL compiler is controlled by the PLSQL_OPTIMIZE_
LEVEL parameter. Its values range from 0 to 2, where 2 is the default value. This means that the
PL/SQL compiler performs optimization by default.

Starting with Oracle 11g, the PL/SQL compiler can perform subprogram inlining. Subprogram
inlining substitutes a subprogram invocation with an actual copy of the called subprogram. This
is achieved by specifying PRAGMA INLINE or setting the PLSQL_OPTIMIZE_LEVEL parameter
to a new value, 3. When PLSQL_OPTIMIZE_LEVEL is set to 3, the PL/SQL compiler performs
automatic subprogram inlining where appropriate. However, in some instances, the PL/SQL
compiler may choose not to perform subprogram inlining because it believes it is undesirable.

The use of PRAGMA INLINE is illustrated in the following example. Note that in this example,
PLSQL_OPTIMIZE_LEVEL has been set to its default value, 2.

FOR EXAMPLE

SET SERVEROUTPUT ON
DECLARE

v_num PLS_INTEGER := 1;
v_result PLS_INTEGER;

-- Following are used for elapsed time calculation
v_start_time NUMBER;
v_end_time NUMBER;

-- Define function to test PRAGMA INLINE
FUNCTION test_inline_pragma

(in_num1 IN PLS_INTEGER, in_num2 IN PLS_INTEGER)
RETURN PLS_INTEGER
IS
BEGIN

RETURN (in_num1 + in_num2);
END test_inline_pragma;

BEGIN
-- Test function with INLINE PRAGMA enabled
v_start_time := DBMS_UTILITY.GET_TIME;

FOR i in 1..10000000 LOOP

Introduction xxv

PRAGMA INLINE (test_inline_pragma, 'YES');
v_result := test_inline_pragma (1, i);

END LOOP;

v_end_time := DBMS_UTILITY.GET_TIME;
DBMS_OUTPUT.PUT_LINE

('Elapsed time when PRAGMA INLINE enabled: '||
(v_end_time-v_start_time));

-- Test function with PRAGMA INLINE disabled
v_start_time := DBMS_UTILITY.GET_TIME;

FOR i in 1..10000000 LOOP
PRAGMA INLINE (test_inline_pragma, 'NO');
v_result := test_inline_pragma (1, i);

END LOOP;

v_end_time := DBMS_UTILITY.GET_TIME;
DBMS_OUTPUT.PUT_LINE

('Elapsed time when INLINE PRAGMA disabled: '||
(v_end_time-v_start_time));

END;

Elapsed time when PRAGMA INLINE enabled: 59
Elapsed time when PRAGMA INLINE disabled: 220

PL/SQL procedure successfully completed.

Note that PRAGMA INLINE affects every call to the specified subprogram when PRAGMA
INLINE is placed immediately before one of the following:

. Assignment

. Call

. Conditional

. CASE

. CONTINUE-WHEN

. EXECUTE IMMEDIATE

. EXIT-WHEN

. LOOP

. RETURN

xxvi Introduction

PL/Scope
PL/Scope gathers and organizes data about user-defined identifiers used in PL/SQL code. This
tool is used primarily in interactive development environments such as SQL Developer or
Jdeveloper rather than directly in PL/SQL.

PL/SQL Hierarchical Profiler
PL/SQL hierarchical profiler enables you to profile PL/SQL applications. In other words, it
gathers statistical information about the application such as execution times for SQL and
PL/SQL, the number of calls to a particular subprogram made by the application, and the
amount of time spent in the subprogram itself.

The hierarchical profiler is implemented via the Oracle-supplied package DBMS_HPROF, which
is covered in Chapter 24, “Oracle Supplied Packages.”

PL/SQL Native Compiler Generates Native Code Directly
In this version of Oracle, the PL/SQL native compiler can generate native code directly.
Previously, PL/SQL code was translated into C code, which then was translated by the C
compiler into the native code. In some cases, this improves performance significantly. The
PL/SQL compiler type is controlled via the PLSQL_CODE_TYPE parameter, which can be set to
either INTERPRETED (the default value) or NATIVE.

Introduction xxvii

This page intentionally left blank

C H A P T E R 1

PL/SQL Concepts

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. PL/SQL in client/server architecture

. PL/SQL in SQL*Plus

PL/SQL stands for Procedural Language Extension to SQL. PL/SQL extends SQL
by adding programming structures and subroutines available in any high-level
language. In this chapter, you will see examples that illustrate the syntax and
rules of the language.

PL/SQL is used for both server-side and client-side development. For example,
database triggers (code that is attached to tables, as discussed in Chapter 13,
“Triggers”) on the server side and logic behind an Oracle Developer tool on the
client side can be written using PL/SQL. In addition, PL/SQL can be used to
develop applications for browsers such as Netscape and Internet Explorer when
used in conjunction with the Oracle Application Server and the PL/SQL Web
Development Toolkit.

L A B 1 . 1

PL/SQL in Client/Server
Architecture

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use PL/SQL anonymous blocks

. Understand how PL/SQL gets executed

Many Oracle applications are built using client/server architecture. The Oracle database resides
on the server. The program that makes requests against this database resides on the client
machine. This program can be written in C, Java, or PL/SQL.

Because PL/SQL is just like any other programming language, it has syntax and rules that deter-
mine how programming statements work together. It is important for you to realize that PL/SQL
is not a stand-alone programming language. PL/SQL is a part of the Oracle RDBMS, and it can
reside in two environments, the client and the server. As a result, it is very easy to move PL/SQL
modules between server-side and client-side applications.

In both environments, any PL/SQL block or subroutine is processed by the PL/SQL engine,
which is a special component of many Oracle products. Some of these products are Oracle
server, Oracle Forms, and Oracle Reports. The PL/SQL engine processes and executes any
PL/SQL statements and sends any SQL statements to the SQL statement processor. The SQL
statement processor is always located on the Oracle server. Figure 1.1 illustrates the PL/SQL
engine residing on the Oracle server.

When the PL/SQL engine is located on the server, the whole PL/SQL block is passed to
the PL/SQL engine on the Oracle server. The PL/SQL engine processes the block according to
Figure 1.1.

When the PL/SQL engine is located on the client, as it is in Oracle Developer Tools, the PL/SQL
processing is done on the client side. All SQL statements that are embedded within the PL/SQL
block are sent to the Oracle server for further processing. When the PL/SQL block contains no
SQL statements, the entire block is executed on the client side.

Using PL/SQL has several advantages. For example, when you issue a SELECT statement in
SQL*Plus against the STUDENT table, it retrieves a list of students. The SELECT statement you
issued at the client computer is sent to the database server to be executed. The results of this

L A B 1.1
2

execution are then sent back to the client. As a result, you see rows displayed on your client
machine.

L A B 1.1PL/SQL in Client/Server Architecture

3

PL/SQL Block

PL/SQL and SQL Statements

SQL Statements

PL/SQL Statement Processor

PL/SQL Engine

SQL Statement Processor

Oracle Server

PL/SQL Block
PL/SQL

Statements

FIGURE 1.1
The PL/SQL engine and Oracle server

Now, assume that you need to issue multiple SELECT statements. Each SELECT statement is a
request against the database and is sent to the Oracle server. The results of each SELECT state-
ment are sent back to the client. Each time a SELECT statement is executed, network traffic is
generated. Hence, multiple SELECT statements result in multiple round-trip transmissions,
adding significantly to the network traffic.

When these SELECT statements are combined into a PL/SQL program, they are sent to the
server as a single unit. The SELECT statements in this PL/SQL program are executed at the
server. The server sends the results of these SELECT statements back to the client, also as a
single unit. Therefore, a PL/SQL program encompassing multiple SELECT statements can be
executed at the server and have the results returned to the client in one round trip. This obvi-
ously is a more efficient process than having each SELECT statement executed independently.
This model is illustrated in Figure 1.2.

Figure 1.2 compares two applications. The first application uses four independent SQL state-
ments that generate eight trips on the network. The second application combines SQL state-
ments into a single PL/SQL block. This PL/SQL block is then sent to the PL/SQL engine. The
engine sends SQL statements to the SQL statement processor and checks the syntax of PL/SQL
statements. As you can see, only two trips are generated on the network.

FIGURE 1.2
PL/SQL in client/server architecture

In addition, applications written in PL/SQL are portable. They can run in any environment that
Oracle can run in. Because PL/SQL does not change from one environment to the next, differ-
ent tools can use a PL/SQL script.

PL/SQL BLOCK STRUCTURE

A block is the most basic unit in PL/SQL. All PL/SQL programs are combined into blocks. These
blocks can also be nested within each other. Usually, PL/SQL blocks combine statements that
represent a single logical task. Therefore, different tasks within a single program can be sepa-
rated into blocks. As a result, it is easier to understand and maintain the logic of the program.

PL/SQL blocks can be divided into two groups: named and anonymous. Named PL/SQL blocks
are used when creating subroutines. These subroutines are procedures, functions, and packages.
The subroutines then can be stored in the database and referenced by their names later. In addi-
tion, subroutines such as procedures and functions can be defined within the anonymous
PL/SQL block. These subroutines exist as long as this block executes and cannot be referenced
outside the block. In other words, subroutines defined in one PL/SQL block cannot be called by
another PL/SQL block or referenced by their names later. Subroutines are discussed in Chapters
19 through 21. Anonymous PL/SQL blocks, as you probably can guess, do not have names. As
a result, they cannot be stored in the database and referenced later.

PL/SQL blocks contain three sections: the declaration section, the executable section, and the
exception-handling section. The executable section is the only mandatory section of the block.

L A B 1.1
4

PL/SQL in Client/Server Architecture

Application Using
SQL

SQL Statement
Processor

SQL
Statements and

Their Result Sets

Client
Side

Server
Side

Application Using
PL/SQL

PL/SQL Engine

Block of SQL
Statements and

Their Result Sets

The declaration and exception-handling sections are optional. As a result, a PL/SQL block has
the following structure:

DECLARE
Declaration statements

BEGIN
Executable statements

EXCEPTION
Exception-handling statements

END;

DECLARATION SECTION

The declaration section is the first section of the PL/SQL block. It contains definitions of PL/SQL
identifiers such as variables, constants, cursors, and so on. PL/SQL identifiers are covered in
detail throughout this book.

FOR EXAMPLE

DECLARE
v_first_name VARCHAR2(35);
v_last_name VARCHAR2(35);
c_counter CONSTANT NUMBER := 0;

This example shows a declaration section of an anonymous PL/SQL block. It begins with the
keyword DECLARE and contains two variable declarations and one constant declaration. The
names of the variables, v_first_name and v_last_name, are followed by their datatypes
and sizes. The name of the constant, c_counter, is followed by the keyword CONSTANT, its
datatype, and a value assigned to it. Notice that a semicolon terminates each declaration.

EXECUTABLE SECTION

The executable section is the next section of the PL/SQL block. This section contains executable
statements that allow you to manipulate the variables that have been declared in the declaration
section.

FOR EXAMPLE

BEGIN
SELECT first_name, last_name
INTO v_first_name, v_last_name
FROM student
WHERE student_id = 123;

DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||
v_last_name);

END;

L A B 1.1PL/SQL in Client/Server Architecture

5

This example shows the executable section of the PL/SQL block. It begins with the keyword
BEGIN and contains a SELECT INTO statement from the STUDENT table. The first and last
names for student ID 123 are selected into two variables: v_first_name and v_last_name.
(Chapter 3, “SQL in PL/SQL,” contains a detailed explanation of the SELECT INTO statement.)
Then the values of the variables, v_first_name and v_last_name, are displayed on the
screen with the help of the DBMS_OUTPUT.PUT_LINE statement. This statement is covered in
greater detail later in this chapter. The end of the executable section of this block is marked by
the keyword END.

BY THE WAY

The executable section of any PL/SQL block always begins with the keyword BEGIN and ends with
the keyword END.

EXCEPTION-HANDLING SECTION

The exception-handling section is the last section of the PL/SQL block. This section contains
statements that are executed when a runtime error occurs within the block. Runtime errors
occur while the program is running and cannot be detected by the PL/SQL compiler. When a
runtime error occurs, control is passed to the exception-handling section of the block. The error
is then evaluated, and a specific exception is raised or executed. This is best illustrated by the
following example.

FOR EXAMPLE

BEGIN
SELECT first_name, last_name
INTO v_first_name, v_last_name
FROM student
WHERE student_id = 123;

DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||
v_last_name);

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no student with '||
'student id 123');

END;

This example shows the exception-handling section of the PL/SQL block. It begins with the
keyword EXCEPTION. The WHEN clause evaluates which exception must be raised. In this
example, there is only one exception, called NO_DATA_FOUND, and it is raised when the
SELECT INTO statement does not return any rows. If there is no record for student ID 123 in
the STUDENT table, control is passed to the exception-handling section, and the DBMS_
OUTPUT.PUT_LINE statement is executed. Chapters 8, 9, and 10 contain more detailed expla-
nations of the exception-handling section.

L A B 1.1
6

PL/SQL in Client/Server Architecture

You have seen examples of the declaration section, executable section, and exception-handling
section. Consider combining these examples into a single PL/SQL block.

FOR EXAMPLE

DECLARE
v_first_name VARCHAR2(35);
v_last_name VARCHAR2(35);

BEGIN
SELECT first_name, last_name
INTO v_first_name, v_last_name
FROM student
WHERE student_id = 123;

DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||
v_last_name);

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no student with '||
'student id 123');

END;

HOW PL/SQL GETS EXECUTED

Every time an anonymous PL/SQL block is executed, the code is sent to the PL/SQL engine on
the server, where it is compiled. A named PL/SQL block is compiled only at the time of its
creation, or if it has been changed. The compilation process includes syntax checking, binding,
and p-code generation.

Syntax checking involves checking PL/SQL code for syntax or compilation errors. A syntax error
occurs when a statement does not exactly correspond to the syntax of the programming
language. Errors such as a misspelled keyword, a missing semicolon at the end of the statement,
or an undeclared variable are examples of syntax errors.

After the programmer corrects syntax errors, the compiler can assign a storage address to
program variables that are used to hold data for Oracle. This process is called binding. It allows
Oracle to reference storage addresses when the program is run. At the same time, the compiler
checks references to the stored objects such as table names or column names in the SELECT
statement, or a call to a named PL/SQL block.

Next, p-code is generated for the PL/SQL block. P-code is a list of instructions to the PL/SQL
engine. For named blocks, p-code is stored in the database, and it is used the next time the
program is executed. As soon as the process of compilation has completed successfully, the
status of a named PL/SQL block is set to VALID, and it is also stored in the database. If the
compilation process was unsuccessful, the status of a named PL/SQL block is set to INVALID.

L A B 1.1PL/SQL in Client/Server Architecture

7

▼

DID YOU KNOW?

Successful compilation of the named PL/SQL block does not guarantee successful execution of this
block in the future. At the time of execution, if any one of the stored objects referenced by the block
is not present in the database or is inaccessible to the block, execution fails. At such time, the status
of the named PL/SQL block is changed to INVALID.

L A B 1 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

1.1.1 Use PL/SQL Anonymous Blocks

Answer the following questions:

A) Why it is more efficient to combine SQL statements into PL/SQL blocks?

ANSWER: It is more efficient to use SQL statements within PL/SQL blocks because network
traffic can be decreased significantly, and an application becomes more efficient as well.

When a SQL statement is issued on the client computer, the request is made to the database on
the server, and the result set is sent back to the client. As a result, a single SQL statement causes
two trips on the network. If multiple SELECT statements are issued, the network traffic can quickly
increase significantly. For example, four SELECT statements cause eight network trips. If these
statements are part of the PL/SQL block, still only two network trips are made, as in the case of a
single SELECT statement.

B) What are the differences between named and anonymous PL/SQL blocks?

ANSWER: Named PL/SQL blocks can be stored in the database and referenced later by their
names. Because anonymous PL/SQL blocks do not have names, they cannot be stored in the data-
base and referenced later.

For the next two questions, consider the following code:

DECLARE
v_name VARCHAR2(50);
v_total NUMBER;

BEGIN
SELECT i.first_name||' '||i.last_name, COUNT(*)
INTO v_name, v_total
FROM instructor i, section s
WHERE i.instructor_id = s.instructor_id
AND i.instructor_id = 102

GROUP BY i.first_name||' '||i.last_name;

DBMS_OUTPUT.PUT_LINE
('Instructor '||v_name||' teaches '||v_total||' courses');

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no such instructor');
END;

L A B 1.1
8

Lab 1.1 Exercises

BY THE WAY

The SELECT statement in the preceding example is supported by multiple versions of Oracle.
However, starting with Oracle 9i, the new ANSI 1999 SQL standard is supported as well, and the
SELECT statement can be modified as follows according to this new standard:

SELECT i.first_name||' '||i.last_name, COUNT(*)
INTO v_name, v_total
FROM instructor i
JOIN section s
ON (i.instructor_id = s.instructor_id)

WHERE i.instructor_id = 102
GROUP BY i.first_name||' '||i.last_name;

Notice that the FROM clause contains only one table, INSTRUCTOR. Following the FROM clause is the
JOIN clause that lists the second table, SECTION. Next, the ON clause lists the join condition between
the two tables:

i.instructor_id = s.instructor_id

which has been moved from the WHERE clause.

You will find detailed explanations and examples of the statements using the new ANSI 1999 SQL
standard described in Appendix C,“ANSI SQL Standards,” and in the Oracle help. Throughout this
book we will try to provide examples illustrating both standards; however, our main focus will
remain on PL/SQL features rather than SQL.

C) Based on the code example provided, describe the structure of a PL/SQL block.

ANSWER: PL/SQL blocks contain three sections: the declaration section, the executable section,
and the exception-handling section. The executable section is the only mandatory section of the
PL/SQL block.

The declaration section holds definitions of PL/SQL identifiers such as variables, constants, and
cursors. The declaration section starts with the keyword DECLARE:

DECLARE
v_name VARCHAR2(50);
v_total NUMBER;

It contains definitions of two variables,v_name and v_total.

The executable section, shown next in bold, holds executable statements. It starts with the
keyword BEGIN and ends with the keyword END:

BEGIN
SELECT i.first_name||' '||i.last_name, COUNT(*)
INTO v_name, v_total
FROM instructor i, section s
WHERE i.instructor_id = s.instructor_id
AND i.instructor_id = 102

GROUP BY i.first_name||' '||i.last_name;

DBMS_OUTPUT.PUT_LINE
('Instructor '||v_name||' teaches '||v_total||' courses');

EXCEPTION

L A B 1.1Lab 1.1 Exercises

9

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE ('There is no such instructor');

END;

It contains a SELECT INTO statement that assigns values to the variables v_name and v_total.
It also contains a DBMS_OUTPUT.PUT_LINE statement that displays the variables’ values on the
screen.

The exception-handling section of the PL/SQL block contains statements that are executed only if
runtime errors occur in the PL/SQL block:

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no such instructor');

It also contains the DBMS_OUTPUT.PUT_LINE statement that is executed when the runtime error
NO_DATA_FOUND occurs.

D) What happens when the runtime error NO_DATA_FOUND occurs in the PL/SQL block just shown?

ANSWER: When a runtime error occurs in the PL/SQL block, control is passed to the exception-
handling section of the block. The exception NO_DATA_FOUND is evaluated then with the help of
the WHEN clause.

When the SELECT INTO statement does not return any rows:

SELECT i.first_name||' '||i.last_name, COUNT(*)
INTO v_name, v_total
FROM instructor i, section s

WHERE i.instructor_id = s.instructor_id
AND i.instructor_id = 102

GROUP BY i.first_name||' '||i.last_name;

control of execution is passed to the exception-handling section of the block. Next, the
DBMS_OUTPUT.PUT_LINE statement associated with the exception NO_DATA_FOUND is
executed. As a result, the message “There is no such instructor” is displayed on the screen.

1.1.2 Understand How PL/SQL Gets Executed

Answer the following questions:

A) What happens when an anonymous PL/SQL block is executed?

ANSWER: When an anonymous PL/SQL block is executed, the code is sent to the PL/SQL engine
on the server, where it is compiled.

B) What steps are included in the compilation process of a PL/SQL block?

ANSWER: The compilation process includes syntax checking, binding, and p-code generation.

Syntax checking involves checking PL/SQL code for compilation errors. After syntax errors have
been corrected, a storage address is assigned to the variables that are used to hold data for
Oracle. This process is called binding. Next, p-code is generated for the PL/SQL block. P-code is a
list of instructions to the PL/SQL engine. For named blocks, p-code is stored in the database, and it
is used the next time the program is executed.

L A B 1.1
10

Lab 1.1 Exercises

C) What is a syntax error?

ANSWER: A syntax error occurs when a statement does not correspond to the syntax rules of the
programming language. An undefined variable and a misplaced keyword are examples of syntax
errors.

D) How does a syntax error differ from a runtime error?

ANSWER: A syntax error can be detected by the PL/SQL compiler. A runtime error occurs while
the program is running and cannot be detected by the PL/SQL compiler.

A misspelled keyword is an example of a syntax error. For example, this script:

BEIN
DBMS_OUTPUT.PUT_LINE ('This is a test');

END;

contains a syntax error. Try to find it.

A SELECT INTO statement returning no rows is an example of a runtime error. This error can be
handled with the help of the exception-handling section of the PL/SQL block.

L A B 1.1Lab 1.1 Exercises

11

L A B 1 . 2

PL/SQL in SQL*Plus

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use substitution variables

. Use the DBMS_OUTPUT.PUT_LINE statement

SQL*Plus is an interactive tool that allows you to type SQL or PL/SQL statements at the
command prompt. These statements are then sent to the database. After they are processed, the
results are sent back from the database and are displayed on the screen. However, there are some
differences between entering SQL and PL/SQL statements.

Consider the following example of a SQL statement:

FOR EXAMPLE

SELECT first_name, last_name
FROM student;

The semicolon terminates this SELECT statement. Therefore, as soon as you type the semicolon
and press Enter, the result set is displayed.

Now, consider the example of the PL/SQL block used in the previous lab:

FOR EXAMPLE

DECLARE
v_first_name VARCHAR2(35);
v_last_name VARCHAR2(35);

BEGIN
SELECT first_name, last_name
INTO v_first_name, v_last_name
FROM student
WHERE student_id = 123;

DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||
v_last_name);

EXCEPTION
WHEN NO_DATA_FOUND THEN

L A B 1.2
12

DBMS_OUTPUT.PUT_LINE ('There is no student with '||
'student id 123');

END;
.
/

Two additional lines at the end of the block contain . and /. The . marks the end of the PL/SQL
block and is optional. The / executes the PL/SQL block and is required.

When SQL*Plus reads a SQL statement, it knows that the semicolon marks the end of the state-
ment. Therefore, the statement is complete and can be sent to the database. When SQL*Plus
reads a PL/SQL block, a semicolon marks the end of the individual statement within the block.
In other words, it is not a block terminator. Therefore, SQL*Plus needs to know when the block
has ended. As you can see here, this can be done with a period and a slash.

SUBSTITUTION VARIABLES

We noted earlier that PL/SQL is not a stand-alone programming language. It exists only as a tool
within the Oracle programming environment. As a result, it does not really have capabilities to
accept input from a user. However, SQL*Plus allows a PL/SQL block to receive input informa-
tion with the help of substitution variables. Substitution variables cannot be used to output
values, because no memory is allocated for them. SQL*Plus substitutes a variable before the
PL/SQL block is sent to the database. Substitution variables usually are prefixed by the
ampersand (&) or double ampersand (&&) characters. Consider the following example:

FOR EXAMPLE

DECLARE
v_student_id NUMBER := &sv_student_id;
v_first_name VARCHAR2(35);
v_last_name VARCHAR2(35);

BEGIN
SELECT first_name, last_name
INTO v_first_name, v_last_name
FROM student
WHERE student_id = v_student_id;

DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||
v_last_name);

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no such student');
END;

When this example is executed, the user is asked to provide a value for the student ID. The
student’s name is then retrieved from the STUDENT table if there is a record with the given
student ID. If there is no record with the given student ID, the message from the exception-
handling section is displayed on the screen.

L A B 1.2PL/SQL in SQL*Plus

13

The preceding example uses a single ampersand for the substitution variable. When a single
ampersand is used throughout the PL/SQL block, the user is asked to provide a value for each
occurrence of the substitution variable. Consider the following example:

FOR EXAMPLE

BEGIN
DBMS_OUTPUT.PUT_LINE ('Today is '||'&sv_day');
DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'&sv_day');

END;

This example produces the following output:

Enter value for sv_day: Monday
old 2: DBMS_OUTPUT.PUT_LINE ('Today is '||'&sv_day');
new 2: DBMS_OUTPUT.PUT_LINE ('Today is '||'Monday');
Enter value for sv_day: Tuesday
old 3: DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'&sv_day');
new 3: DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'Tuesday');
Today is Monday
Tomorrow will be Tuesday

PL/SQL procedure successfully completed.

DID YOU KNOW?

When a substitution variable is used in the script, the output produced by the program contains the
statements that show how the substitution was done. For example, consider the following lines of
output produced by the preceding example:

old 2: DBMS_OUTPUT.PUT_LINE ('Today is '|| '&sv_day');
new 2: DBMS_OUTPUT.PUT_LINE ('Today is '|| 'Monday');

If you do not want to see these lines displayed in the output produced by the script, use the SET
command option before you run the script:

SET VERIFY OFF;

Then the output is as follows:

Enter value for sv_day: Monday
Enter value for sv_day: Tuesday
Today is Monday
Tomorrow will be Tuesday

PL/SQL procedure successfully completed.

You probably noticed that the substitution variable sv_day appears twice in the preceding
example. As a result, when this example is run, the user is asked twice to provide a value for the
same variable. Now, consider an altered version of the example (changes are shown in bold):

L A B 1.2
14

PL/SQL in SQL*Plus

FOR EXAMPLE

BEGIN
DBMS_OUTPUT.PUT_LINE ('Today is '||'&&sv_day');
DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'&sv_day');

END;

In this example, the substitution variable sv_day is prefixed by a double ampersand in the first
DBMS_OUTPUT.PUT_LINE statement. As a result, this version of the example produces differ-
ent output:

Enter value for sv_day: Monday
old 2: DBMS_OUTPUT.PUT_LINE ('Today is '||'&&sv_day');
new 2: DBMS_OUTPUT.PUT_LINE ('Today is '||'Monday');
old 3: DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'&sv_day');
new 3: DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'Monday');
Today is Monday
Tomorrow will be Monday

PL/SQL procedure successfully completed.

From this output, it is clear that the user is asked only once to provide the value for the substi-
tution variable sv_day. As a result, both DBMS_OUTPUT.PUT_LINE statements use the value
of Monday entered by the user.

When a substitution variable is assigned to the string (text) datatype, it is a good practice to
enclose it in single quotes. You cannot always guarantee that a user will provide text informa-
tion in single quotes. This practice will make your program less error-prone. It is illustrated in
the following code fragment:

FOR EXAMPLE

v_course_no VARCHAR2(5) := '&sv_course_no';

As mentioned earlier, substitution variables usually are prefixed by the ampersand (&) or double
ampersand (&&) characters. These are default characters that denote substitution variables. A
special SET command option available in SQL*Plus allows you to change the default character
(&) to any other character or disable the substitution variable feature. This SET command has
the following syntax:

SET DEFINE character

or

SET DEFINE ON

or

SET DEFINE OFF

L A B 1.2PL/SQL in SQL*Plus

15

▼

The first SET command option changes the prefix of the substitution variable from an amper-
sand to another character. This character cannot be alphanumeric or white space. The second
(ON option) and third (OFF option) control whether SQL*Plus looks for substitution variables.
In addition, the ON option changes back the value of the character to the ampersand.

DBMS_OUTPUT.PUT_LINE

You already have seen some examples of how the DBMS_OUTPUT.PUT_LINE statement can be
used. This statement displays information on the screen. It is very helpful when you want to see
how your PL/SQL block is executed. For example, you might want to see how variables change
their values throughout the program, in order to debug it.

DBMS_OUTPUT.PUT_LINE is a call to the procedure PUT_LINE. This procedure is a part of
the DBMS_OUTPUT package that is owned by the Oracle user SYS.

DBMS_OUTPUT.PUT_LINE writes information to the buffer for storage. When a program has
been completed, the information from the buffer is displayed on the screen. The size of the
buffer can be set between 2,000 and 1,000,000 bytes. Before you can see the output printed on
the screen, one of the following statements must be entered before the PL/SQL block:

SET SERVEROUTPUT ON;

or

SET SERVEROUTPUT ON SIZE 5000;

The first SET statement enables the DBMS_OUTPUT.PUT_LINE statement; the default value for
the buffer size is used. The second SET statement not only enables the DBMS_OUTPUT.
PUT_LINE statement, but also changes the buffer size from its default value to 5,000 bytes.

Similarly, if you do not want the DBMS_OUTPUT.PUT_LINE statement to display information
on the screen, you can issue the following SET command prior to the PL/SQL block:

SET SERVEROUTPUT OFF;

L A B 1 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

1.2.1 Use Substitution Variables

In this exercise, you calculate the square of a number. The value of the number is provided with the help
of a substitution variable. Then the result is displayed on the screen.

Create the following PL/SQL script:

-- ch01_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_num NUMBER := &sv_num;
v_result NUMBER;

L A B 1.2
16

Lab 1.2 Exercises

BEGIN
v_result := POWER(v_num, 2);
DBMS_OUTPUT.PUT_LINE ('The value of v_result is: '||

v_result);
END;

Execute the script, and then answer the following questions:

A) If the value of v_num is equal to 10, what output is printed on the screen?

ANSWER: The output should look like the following:

Enter value for v_num: 10
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 10;
The value of v_result is: 100

PL/SQL procedure successfully completed.

The first line of the output asks you to provide a value for the substitution variable sv_num. The
actual substitution is shown in lines 2 and 3. In the second line, you can see the original statement
from the PL/SQL block. In the third line, you can see the same statement with the substitution
value. The next line shows the output produced by the DBMS_OUTPUT.PUT_LINE statement.
Finally, the last line informs you that your PL/SQL block was executed successfully.

B) What is the purpose of using a substitution variable?

ANSWER: A substitution variable allows the PL/SQL block to accept information provided by the
user at the time of execution. Substitution variables are used for input purposes only. They cannot
be used to output values for a user.

C) Why is it considered a good practice to enclose substitution variables in single quotes for string
datatypes?

ANSWER: A program cannot depend wholly on a user to provide text information in single
quotes. Enclosing a substitution variable in single quotes helps a program be less error-prone.

1.2.2 Use the DBMS_OUTPUT.PUT_LINE Statement

In this exercise, you determine the day of the week based on today’s date. You then display the results on
the screen.

Create the following PL/SQL script:

-- ch01_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_day VARCHAR2(20);
BEGIN

v_day := TO_CHAR(SYSDATE, 'Day');
DBMS_OUTPUT.PUT_LINE ('Today is '||v_day);

END;

L A B 1.2Lab 1.2 Exercises

17

Execute the script, and then answer the following questions:

A) What is printed on the screen?

ANSWER: The output should look like the following:

Today is Friday

PL/SQL procedure successfully completed.

In this example, SQL*Plus does not ask you to enter the value of the v_day variable, because no
substitution variable is used. The value of v_day is computed with the help of the TO_CHAR and
SYSDATE functions. Then it is displayed on the screen with the help of the DBMS_OUTPUT.PUT_
LINE statement.

B) What is printed on the screen if the statement SET SERVEROUTPUT OFF is issued? Why?

ANSWER: If the statement SET SERVEROUTPUT OFF is issued prior to the execution of the
PL/SQL block, no output is printed on the screen. The output looks like the following:

PL/SQL procedure successfully completed.

DID YOU KNOW?

When substitution variables are used, the user is prompted to enter the value for the variable
regardless of the SERVEROUTPUT setting. The prompt for the user is provided by SQL*Plus and does
not depend on the option chosen for SERVEROUTPUT.

C) How would you change the script to display the time of day as well?

ANSWER: The script should look similar to the following one. Changes are shown in bold.

-- ch01_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_day VARCHAR2(20);
BEGIN

v_day := TO_CHAR(SYSDATE, 'Day, HH24:MI');
DBMS_OUTPUT.PUT_LINE ('Today is '|| v_day);

END;

The statement shown in bold has been changed to display the time of day as well. The output
produced by this PL/SQL block is as follows:

Today is Sunday , 20:39

PL/SQL procedure successfully completed.

L A B 1.2
18

Lab 1.2 Exercises

▼ T R Y I T Y O U R S E L F

In this chapter, you have learned about PL/SQL concepts. You’ve explored PL/SQL block structure, substi-
tution variables, and the DBMS_OUTPUT.PUT_LINE statement. Here are a few exercises that will help you
test the depth of your understanding:

1) To calculate the area of a circle, you must square the circle’s radius and then multiply it by π. Write
a program that calculates the area of a circle. The value for the radius should be provided with the
help of a substitution variable. Use 3.14 for the value of π. After the area of the circle is calculated,
display it on the screen.

2) Rewrite the script ch01_2b.sql, version 2.0. In the output produced by the script, extra spaces
appear after the day of the week. The new script should remove these extra spaces.

Here’s the current output:

Today is Sunday , 20:39

The new output should have this format:

Today is Sunday, 20:39

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

Try it Yourself 19

This page intentionally left blank

C H A P T E R 2

General Programming
Language Fundamentals

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. PL/SQL programming fundamentals

In the Introduction and Chapter 1, “PL/SQL Concepts,” you learned about the
difference between machine language and a programming language. You have
also learned how PL/SQL is different from SQL and about the PL/SQL basic block
structure. This is similar to learning the history behind a foreign language and in
what context it is used. To use the PL/SQL language, you have to learn the
keywords, what they mean, and when and how to use them. First, you will
encounter the different types of keywords and then their full syntax. Then you
will expand on simple block structure with an exploration of scope and nesting
blocks.

L A B 2 . 1

PL/SQL Programming
Fundamentals

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Make use of PL/SQL language components

. Make use of PL/SQL variables

. Handle PL/SQL reserved words

. Make use of identifiers in PL/SQL

. Make use of anchored datatypes

. Declare and initialize variables

. Understand the scope of a block, nested blocks, and labels

Most languages have only two sets of characters: numbers and letters. Some languages, such as
Hebrew and Tibetan, have specific characters for vowels that are not placed inline with conso-
nants. Other languages, such as Japanese, have three character types: one for words originally
taken from the Chinese language, another set for native Japanese words, and a third for other
foreign words. To speak any foreign language, you have to begin by learning these character
types. Then you learn how to make words from these character types. Finally, you learn the parts
of speech, and you can begin talking. You can think of PL/SQL as being a more-complex
language, because it has many character types and many types of words or lexical units that are
made from these character types. As soon as you learn these, you can begin learning the struc-
ture of the PL/SQL language.

CHARACTER TYPES

The PL/SQL engine accepts four types of characters: letters, digits, symbols (*, +, –, =, and so
on), and white space. When elements from one or more of these character types are joined, they
create a lexical unit (these lexical units can be a combination of character types). The lexical
units are the words of the PL/SQL language. First you need to learn the PL/SQL vocabulary, and
then you will move on to the syntax, or grammar. Soon you can start talking in PL/SQL.

L A B 2.1
22

▼

BY THE WAY

Although PL/SQL can be considered a language, don’t try talking to your fellow programmers in
PL/SQL. For example, at a dinner table of programmers, if you say,“BEGIN, LOOP FOR PEAS IN PLATE
EXECUTE EAT PEAS, END LOOP, EXCEPTION WHEN BROCCOLI FOUND EXECUTE SEND TO PRESIDENT
OF THE UNITED STATES, END EAT PEAS,” you may not be considered human. This type of language is
reserved for Terminators and the like.

LEXICAL UNITS

A language such as English contains different parts of speech. Each part of speech, such as a verb
or noun, behaves in a different way and must be used according to specific rules. Likewise, a
programming language has lexical units that are the building blocks of the language. PL/SQL
lexical units fall within one of the following five groups:

. Identifiers must begin with a letter and may be up to 30 characters long. See a PL/SQL
manual for a more detailed list of restrictions. Generally, if you stay with characters,
numbers, and avoid reserved words, you will not run into problems.

. Reserved words are words that PL/SQL saves for its own use (such as BEGIN, END, and
SELECT).

. Delimiters are characters that have special meaning to PL/SQL, such as arithmetic opera-
tors and quotation marks.

. Literals are values (character, numeric, or Boolean [true/false]) that are not identifiers.
123, “Declaration of Independence,” and FALSE are examples of literals.

. Comments can be either single-line comments (--) or multiline comments (/* */).

See Appendix A, “PL/SQL Formatting Guide,” for details on formatting.

In the following exercises, you will practice putting these units together.

L A B 2 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

2.1.1 Make Use of PL/SQL Language Components

Now that you know the character types and the lexical units, this is equivalent to knowing the alphabet
and how to spell words.

A) Why does PL/SQL have so many different types of characters? What are they used for?

ANSWER: The PL/SQL engine recognizes different characters as having different meanings and
therefore processes them differently. PL/SQL is neither a pure mathematical language nor a
spoken language, yet it contains elements of both. Letters form various lexical units such as identi-
fiers or keywords. Mathematic symbols form lexical units called delimiters that perform an opera-
tion. Other symbols, such as /*, indicate comments that are ignored by the PL/SQL engine.

L A B 2.1Lab 2.1 Exercises

23

B) What are the PL/SQL equivalents of a verb and a noun in English? Do you speak PL/SQL?

ANSWER: A noun is similar to the lexical unit called an identifier. A verb is similar to the lexical
unit called a delimiter. Delimiters can simply be quotation marks, but others perform a function
such as multiplication (*). You do “speak PL/SQL” to the Oracle server.

2.1.2 Make Use of PL/SQL Variables

Variables may be used to hold a temporary value. The syntax is as follows:

Syntax : variable-name data type [optional default assignment]

Variables may also be called identifiers. You need to be familiar with some restrictions when naming vari-
ables: Variables must begin with a letter and may be up to 30 characters long. Consider the following
example, which contains a list of valid identifiers:

FOR EXAMPLE

v_student_id
v_last_name
V_LAST_NAME
apt_#

Note that the identifiers v_last_name and V_LAST_NAME are considered identical because
PL/SQL is not case-sensitive.

Next, consider an example of illegal identifiers:

FOR EXAMPLE

X+Y
1st_year
student ID

Identifier X+Y is illegal because it contains a + sign. This sign is reserved by PL/SQL to denote an addi-
tion operation; it is called a mathematical symbol. Identifier 1st_year is illegal because it starts with a
number. Finally, identifier student ID is illegal because it contains a space.

Next, consider another example:

FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

first&last_names VARCHAR2(30);
BEGIN

first&last_names := 'TEST NAME';
DBMS_OUTPUT.PUT_LINE(first&last_names);

END;

L A B 2.1
24

Lab 2.1 Exercises

In this example, you declare a variable called first&last_names. Next, you assign a value to this
variable and display the value on the screen. When run, the example produces the following output:

Enter value for last_names: Elena
old 2: first&last_names VARCHAR2(30);
new 2: firstElena VARCHAR2(30);
Enter value for last_names: Elena
old 4: first&last_names := 'TEST NAME';
new 4: firstElena := 'TEST NAME';
Enter value for last_names: Elena
old 5: DBMS_OUTPUT.PUT_LINE(first&last_names);
new 5: DBMS_OUTPUT.PUT_LINE(firstElena);
TEST NAME
PL/SQL procedure successfully completed.

Consider the output produced. Because an ampersand (&) is present in the name of the variable
first&last_names, a portion of the variable is considered to be a substitution variable (you
learned about substitution variables in Chapter 1). In other words, the PL/SQL compiler treats the portion
of the variable name after the ampersand (last_names) as a substitution variable. As a result, you are
prompted to enter the value for the last_names variable every time the compiler encounters it.

It is important to realize that although this example does not produce any syntax errors, the variable
first&last_names is still an invalid identifier, because the ampersand character is reserved for
substitution variables. To avoid this problem, change the name of the variable from first&last_
names to first_and_last_names. Therefore, you should use an ampersand in the name of a
variable only when you use it as a substitution variable in your program. It is also important to consider
what type of program you are developing and that is running your PL/SQL statements. This would be
true if the program (or PL/SQL block) were executed by SQL*Plus. Later, when you write stored code, you
would not use the ampersand, but you would use parameters.

BY THE WAY

If you are using Oracle SQL Developer, you need to click the leftmost button, Enable DBMS Output,
before running this script.

FOR EXAMPLE

-- ch02_1a.sql
SET SERVEROUTPUT ON
DECLARE

v_name VARCHAR2(30);
v_dob DATE;
v_us_citizen BOOLEAN;

BEGIN
DBMS_OUTPUT.PUT_LINE(v_name||'born on'||v_dob);

END;

A) If you ran this example in a SQL*Plus or Oracle SQL Developer, what would be the result?

ANSWER: Assuming that SET SERVEROUTPUT ON had been issued, you would get only born
on. The reason is that the variables v_name and v_dob have no values.

L A B 2.1Lab 2.1 Exercises

25

B) Run the example and see what happens. Explain what is happening as the focus moves from one
line to the next.

ANSWER: Three variables are declared. When each one is declared, its initial value is null.
v_name is set as a VARCHAR2 with a length of 30,v_dob is set as a character type date, and
v_us_citizen is set to BOOLEAN. When the executable section begins, the variables have no
values. Therefore, when DBMS_OUTPUT is told to print their values, it prints nothing.

You can see this if you replace the variables as follows: Instead of v_name, use
COALESCE(v_name, 'No Name'), and instead of v_dob, use COALESCE(v_dob,
'01-Jan-1999').

The COALESCE function compares each expression to NULL from the list of expressions and
returns the value of the first non-null expression. In this case, it compares the v_name variable
and ‘No Name’ string to NULL and returns the value of ‘No Name’. This is because the v_name
variable has not been initialized and as such is NULL. The COALESCE function is covered in
Chapter 5,“Conditional Control: CASE Statements.”

Then run the same block, and you get the following:

No Name born on 01-Jan-1999

To make use of a variable, you must declare it in the declaration section of the PL/SQL block. You
have to give it a name and state its datatype. You also have the option to give your variable an
initial value. Note that if you do not assign a variable an initial value, it is NULL. It is also possible to
constrain the declaration to “not null,” in which case you must assign an initial value. Variables
must first be declared, and then they can be referenced. PL/SQL does not allow forward refer-
ences. You can set the variable to be a constant, which means that it cannot change.

2.1.3 Handle PL/SQL Reserved Words

Reserved words are ones that PL/SQL saves for its own use (such as BEGIN, END, and SELECT). You cannot
use reserved words for names of variables, literals, or user-defined exceptions.

FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

exception VARCHAR2(15);
BEGIN

exception := 'This is a test';
DBMS_OUTPUT.PUT_LINE(exception);

END;

A) What would happen if you ran this PL/SQL block? Would you receive an error message? If so, what
would it say?

ANSWER: In this example, you declare a variable called exception. Next, you initialize this
variable and display its value on the screen.

This example illustrates an invalid use of reserved words. To the PL/SQL compiler,“exception” is a
reserved word that denotes the beginning of the exception-handling section. As a result, it cannot
be used to name a variable. Consider the huge error message that this tiny example produces:

exception VARCHAR2(15);
*

ERROR at line 2:

L A B 2.1
26

Lab 2.1 Exercises

ORA-06550: line 2, column 4:
PLS-00103: Encountered the symbol "EXCEPTION" when
expecting one of the following:
begin function package pragma procedure subtype type use
<an identifier> <a double-quoted delimited-identifier>
cursor
form current
The symbol "begin was inserted before "EXCEPTION"
to continue.
ORA-06550: line 4, column 4:
PLS-00103: Encountered the symbol "EXCEPTION" when
expecting one of the following:
begin declare exit for goto if loop mod null pragma
raise
return select update while <an identifier>
<a double-quoted delimited-identifier> <a bin
ORA-06550: line 5, column 25:
PLS-00103: Encountered the symbol "EXCEPTION" when
expecting one of the following:
() - + mod not null others <an identifier>
<a double-quoted delimited-identifier> <a bind variable>
avg
count current exists max min prior sql s
ORA-06550: line 7, column 0:
PLS-00103: Encountered the symbol "end-of-file" when
expecting one of the following:
(begin declare end exception exit for goto if loop

Here is a question you should ask yourself: If you did not know that the word “exception” is a
reserved word, do you think you would attempt to debug the preceding script after seeing this
error message? I know I wouldn’t.

2.1.4 Make Use of Identifiers in PL/SQL

Take a look at the use of identifiers in the following example:

FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

v_var1 VARCHAR2(20);
v_var2 VARCHAR2(6);
v_var3 NUMBER(5,3);

BEGIN
v_var1 := 'string literal';
v_var2 := '12.345';
v_var3 := 12.345;
DBMS_OUTPUT.PUT_LINE('v_var1: '||v_var1);
DBMS_OUTPUT.PUT_LINE('v_var2: '||v_var2);
DBMS_OUTPUT.PUT_LINE('v_var3: '||v_var3);

END;

L A B 2.1Lab 2.1 Exercises

27

In this example, you declare and initialize three variables. The values that you assign to them are literals.
The first two values,'string literal' and '12.345', are string literals because they are
enclosed in single quotes. The third value,12.345, is a numeric literal. When run, the example produces
the following output:

v_var1: string literal
v_var2: 12.345
v_var3: 12.345
PL/SQL procedure successfully completed.

Consider another example that uses numeric literals:

FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

v_var1 NUMBER(2) := 123;
v_var2 NUMBER(3) := 123;
v_var3 NUMBER(5,3) := 123456.123;

BEGIN
DBMS_OUTPUT.PUT_LINE('v_var1: '||v_var1);
DBMS_OUTPUT.PUT_LINE('v_var2: '||v_var2);
DBMS_OUTPUT.PUT_LINE('v_var3: '||v_var3);

END;

A) What would happen if you ran this PL/SQL block?

ANSWER: In this example, you declare and initialize three numeric variables. The first declaration
and initialization (v_var1 NUMBER(2) := 123) causes an error because the value 123
exceeds the specified precision. The second variable declaration and initialization (v_var2
NUMBER(3) := 123) does not cause any errors because the value 123 corresponds to the
specified precision. The last declaration and initialization (v_var3 NUMBER(5,3) :=
123456.123) causes an error because the value 123456.123 exceeds the specified preci-
sion. As a result, this example produces the following output:

ORA-06512: at line 2 ORA-06502: PL/SQL: numeric or value
error: number precision too large
ORA-06512: at line 2

2.1.5 Make Use of Anchored Datatypes

The datatype that you assign to a variable can be based on a database object. This is called an anchored
declaration because the variable’s datatype is dependent on that of the underlying object. It is wise to
make use of anchored datatypes when possible so that you do not have to update your PL/SQL when
the datatypes of base objects change. The syntax is as follows:

Syntax: variable_name type-attribute%TYPE

The type is a direct reference to a database column.

L A B 2.1
28

Lab 2.1 Exercises

FOR EXAMPLE

-- ch02_2a.sql
SET SERVEROUTPUT ON
DECLARE

v_name student.first_name%TYPE;
v_grade grade.numeric_grade%TYPE;

BEGIN
DBMS_OUTPUT.PUT_LINE(NVL(v_name, 'No Name ')||

' has grade of '||NVL(v_grade, 0));
END;

A) In this example, what is declared? State the datatype and value.

ANSWER: The variable v_name is declared with the identical datatype as the column
first_name from the database table STUDENT. In other words, the v_name variable is
defined as VARCHAR2(25). Additionally, the variable v_grade is declared with the identical
datatype as the column grade_numeric from the database table GRADE . That is to say, the
v_grade_numeric variable is defined as NUMBER(3). Each variable has a value of NULL.

THE MOST COMMON DATATYPES

When you’re a programmer, it is important to know the major datatypes that you can use in a
programming language. They determine the various options you have when solving a programmatic
problem. Also, you need to keep in mind that some functions work on only certain datatypes. The
following are the major datatypes in Oracle that you can use in your PL/SQL:

VARCHAR2(maximum_length)

. Stores variable-length character data.

. Takes a required parameter that specifies a maximum length up to 32,767 bytes.

. Does not use a constant or variable to specify the maximum length; an integer literal must
be used.

. The maximum width of a VARCHAR2 database column is 4,000 bytes.

CHAR[(maximum_length)]

. Stores fixed-length (blank-padded if necessary) character data.

. Takes an optional parameter that specifies a maximum length up to 32,767 bytes.

. Does not use a constant or variable to specify the maximum length; an integer literal must be
used. If the maximum length is not specified, it defaults to 1.

. The maximum width of a CHAR database column is 2,000 bytes; the default is 1 byte.

NUMBER[(precision, scale)]

. Stores fixed or floating-point numbers of virtually any size.

. The precision is the total number of digits.

. The scale determines where rounding occurs.

. It is possible to specify precision and omit scale, in which case scale is 0 and only integers are
allowed.

L A B 2.1Lab 2.1 Exercises

29

. Constants or variables cannot be used to specify the precision and scale; integer literals must
be used.

. The maximum precision of a NUMBER value is 38 decimal digits.

. The scale can range from 0 to 127. For instance, a scale of 2 rounds to the nearest hundredth
(3.456 becomes 3.46).

. The scale can be negative, which causes rounding to the left of the decimal point. For
example, a scale of –3 rounds to the nearest thousandth (3,456 becomes 3,000). A scale of
0 rounds to the nearest whole number. If you do not specify the scale, it defaults to 0.

BINARY_INTEGER

. Stores signed integer variables.

. Compares to the NUMBER datatype. BINARY_INTEGER variables are stored in binary format, which
takes up less space.

. Calculations are faster.

. Can store any integer value in the range –2,147,483,747 to 2,147,483,747.

. This datatype is used primarily to index a PL/SQL table. This is explained in more depth
in Chapter 15,“Collections.”You cannot create a column in a regular table of
binary_integer type.

DATE

. Stores fixed-length date values.

. Valid dates for DATE variables are January 1, 4712 BC to December 31, 9999 AD.

. When stored in a database column, date values include the time of day in seconds since midnight.
The date portion defaults to the first day of the current month; the time portion defaults to
midnight.

. Dates are actually stored in binary format and are displayed according to the default format.

TIMESTAMP

. This datatype is an extension of the DATE datatype. It stores fixed-length date values with a preci-
sion down to a fraction of a second, with up to nine places after the decimal (the default is six). An
example of the default for this datatype is 12-JAN-2008 09.51.44.000000 PM.

. The WITH TIME ZONE or WITH LOCAL TIME ZONE option allows the TIMESTAMP to be related
to a particular time zone. Then this is adjusted to the time zone of the database. For example,
this would allow a global database to have an entry in London and New York recorded as
being the same time, even though it would be displayed as noon in New York and 5 p.m. in
London.

BOOLEAN

. Stores the values TRUE and FALSE and the nonvalue NULL. Recall that NULL stands for a missing,
unknown, or inapplicable value.

. Only the values TRUE and FALSE and the nonvalue NULL can be assigned to a BOOLEAN variable.

. The values TRUE and FALSE cannot be inserted into a database column.

L A B 2.1
30

Lab 2.1 Exercises

LONG

. Stores variable-length character strings.

. The LONG datatype is like the VARCHAR2 datatype, except that the maximum length of a LONG
value is 2 gigabytes (GB).

. You cannot select a value longer than 4,000 bytes from a LONG column into a LONG variable.

. LONG columns can store text, arrays of characters, or even short documents. You can reference
LONG columns in UPDATE, INSERT, and (most) SELECT statements, but not in expressions, SQL
function calls, or certain SQL clauses, such as WHERE, GROUP BY, and CONNECT BY.

LONG RAW

. Stores raw binary data of variable length up to 2GB.

LOB (large object)

. The four types of LOBs are BLOB, CLOB, NCLOB, and BFILE. These can store binary objects, such as
image or video files, up to 4GB in length.

. A BFILE is a large binary file stored outside the database. The maximum size is 4GB.

ROWID

. Internally, every Oracle database table has a ROWID pseudocolumn, which stores binary values
called rowids.

. Rowids uniquely identify rows and provide the fastest way to access particular rows.

. Use the ROWID datatype to store rowids in a readable format.

. When you select or fetch a rowid into a ROWID variable, you can use the function ROWIDTOCHAR,
which converts the binary value into an 18-byte character string and returns it in that format.

. Extended rowids use base 64 encoding of the physical address for each row. The encoding
characters are A to Z, a to z, 0 to 9, +, and /. ROWID is as follows: OOOOOOFFFBBBBBBRRR. Each
component has a meaning. The first section, OOOOOO, signifies the database segment. The
next section, FFF, indicates the tablespace-relative datafile number of the datafile that
contains the row. The following section, BBBBBB, is the data block that contains the row. The
last section, RRR, is the row in the block (keep in mind that this may change in future versions
of Oracle).

2.1.6 Declare and Initialize Variables

In PL/SQL, variables must be declared in order to be referenced. This is done in the initial declarative
section of a PL/SQL block. Remember that each declaration must be terminated with a semicolon.
Variables can be assigned using the assignment operator :=. If you declare a variable to be a constant, it
retains the same value throughout the block; to do this, you must give it a value at declaration.

Type the following into a text file, and run the script from a SQL*Plus or Oracle SQL Developer session:

-- ch02_3a.sql
SET SERVEROUTPUT ON
DECLARE

v_cookies_amt NUMBER := 2;
v_calories_per_cookie CONSTANT NUMBER := 300;

BEGIN
DBMS_OUTPUT.PUT_LINE('I ate ' || v_cookies_amt ||

L A B 2.1Lab 2.1 Exercises

31

' cookies with ' || v_cookies_amt *
v_calories_per_cookie || ' calories.');

v_cookies_amt := 3;
DBMS_OUTPUT.PUT_LINE('I really ate ' ||

v_cookies_amt
|| ' cookies with ' || v_cookies_amt *
v_calories_per_cookie || ' calories.');

v_cookies_amt := v_cookies_amt + 5;
DBMS_OUTPUT.PUT_LINE('The truth is, I actually ate '

|| v_cookies_amt || ' cookies with ' ||
v_cookies_amt * v_calories_per_cookie

|| ' calories.');
END;

A) What will the output be for this script? Explain what is being declared and what the value of the
variable is throughout the scope of the block.

ANSWER: The server output will be as follows:

I ate 2 cookies with 600 calories.
I really ate 3 cookies with 900 calories.
The truth is, I actually ate 8 cookies with 2400 calories.
PL/SQL procedure successfully completed.

Initially the variable v_cookies_amt is declared as a NUMBER with a value of 2, and the vari-
able v_calories_per_cookie is declared as a CONSTANT NUMBER with a value of 300.
(Because it is declared as a CONSTANT, it does not change its value.) In the course of the proce-
dure, the value of v_cookies_amt is later set to 3, and then finally it is set to its current value,
3 plus 5, thus becoming 8.

FOR EXAMPLE

-- ch02_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_lname VARCHAR2(30);
v_regdate DATE;
v_pctincr CONSTANT NUMBER(4,2) := 1.50;
v_counter NUMBER := 0;
v_new_cost course.cost%TYPE;
v_YorN BOOLEAN := TRUE;

BEGIN
DBMS_OUTPUT.PUT_LINE(v_counter);
DBMS_OUTPUT.PUT_LINE(v_new_cost);

END;

B) In the preceding example, add the following expressions to the beginning of the procedure
(immediately after the BEGIN). Then explain the values of the variables at the beginning and end
of the script.

v_counter := NVL(v_counter, 0) + 1;
v_new_cost := 800 * v_pctincr;

L A B 2.1
32

Lab 2.1 Exercises

PL/SQL variables are held together with expressions and operators. An expression is a sequence of
variables and literals, separated by operators. These expressions are then used to manipulate and
compare data and perform calculations.

Expressions are composed of a combination of operands and operators. An operand is an argu-
ment to the operator; it can be a variable, a constant, or a function call. An operator is what speci-
fies the action (+, **, /, OR, and so on).

You can use parentheses to control the order in which Oracle evaluates an expression. Continue to
add the following to your SQL script:

v_counter := ((v_counter + 5)*2) / 2;
v_new_cost := (v_new_cost * v_counter)/4;

ANSWER: The modified version of the script should look similar to the following:

-- ch02_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_lname VARCHAR2(30);
v_regdate DATE;
v_pctincr CONSTANT NUMBER(4,2) := 1.50;
v_counter NUMBER := 0;
v_new_cost course.cost%TYPE;
v_YorN BOOLEAN := TRUE;

BEGIN
v_counter := NVL(v_counter, 0) + 1;
v_new_cost := 800 * v_pctincr;

DBMS_OUTPUT.PUT_LINE(v_counter);
DBMS_OUTPUT.PUT_LINE(v_new_cost);

v_counter := ((v_counter + 5)*2) / 2;
v_new_cost := (v_new_cost * v_counter)/4;

DBMS_OUTPUT.PUT_LINE(v_counter);
DBMS_OUTPUT.PUT_LINE(v_new_cost);

END;

Initially the variable v_lname is declared as a datatype VARCHAR2 with a length of 30 and a
value of NULL. The variable v_regdate is declared as a datatype date with a value of NULL. The
variable v_pctincr is declared as a CONSTANT NUMBER with a length of 4, a precision of 2,
and a value of 1.15. The variable v_counter is declared as a NUMBER with a value of 0. The vari-
able v_YorN is declared as a variable of the BOOLEAN datatype and has a value of TRUE.

The output of the procedure will be as follows (make sure you have entered SET SERVEROUTPUT
ON earlier in your SQL*Plus session):

1
1200
PL/SQL procedure successfully completed.

When the executable section is complete, the variable v_counter changes from NULL to 1.
The value of v_new_cost changes from NULL to 1200 (800 * 1.50).

Note that a common way to find out the value of a variable at different points in a block is to add
a DBMS_OUTPUT.PUT_LINE(v_variable_name); throughout the block.

L A B 2.1Lab 2.1 Exercises

33

C) What will the values of the variables be at the end of the script?

ANSWER: The value of v_counter changes from 1 to 6, which is ((1 + 5) * 2)/2. The value of
new_cost goes from 1200 to 1800, which is (1200 * 6)/4. The output from running this proce-
dure is as follows:

6
1800
PL/SQL procedure successfully completed.

OPERATORS (DELIMITERS): THE SEPARATORS IN AN EXPRESSION

When you’re a programmer, it is important to know the operators that you can use in a program-
ming language. They determine your various options for solving a programmatic problem. The
following are the operators you can use in PL/SQL:

. Arithmetic (** , * , / , + , –)

. Comparison (=, <>, !=, <, >, <=, >=, LIKE, IN, BETWEEN, IS NULL, IS NOT NULL, NOT IN)

. Logical (AND, OR, NOT)

. String (||, LIKE)

. Expressions

. Operator precedence

. ** , NOT

. +, – (arithmetic identity and negation) *, /, +, –, || =, <>, !=, <=

. >=, <, >, LIKE, BETWEEN, IN, IS NULL

. AND (logical conjunction)

. OR (logical inclusion)

2.1.7 Understand the Scope of a Block, Nested Blocks, and Labels

When you use variables in a PL/SQL block, you must understand their scope. This allows you to under-
stand how and when you can use variables. It also helps you debug the programs you write. The
opening section of your PL/SQL block contains the declaration section. This is where you declare the
variables that the block will use.

SCOPE OF A VARIABLE
The scope, or existence, of structures defined in the declaration section is local to that block. The block
also provides the scope for exceptions that are declared and raised. Exceptions are covered in more
detail in Chapters 8, 9, and 10.

The scope of a variable is the portion of the program in which the variable can be accessed, or where the
variable is visible. It usually extends from the moment of declaration until the end of the block in which
the variable was declared. The visibility of a variable is the part of the program where the variable can be
accessed.

BEGIN -- outer block
BEGIN -- inner block

...;
END; -- end of inner block

END; -- end of outer block

L A B 2.1
34

Lab 2.1 Exercises

LABELS AND NESTED BLOCKS
Labels can be added to a block to improve readability and to qualify the names of elements that exist
under the same name in nested blocks. The name of the block must precede the first line of executable
code (either the BEGIN or DECLARE), as follows:

FOR EXAMPLE

-- ch02_4a.sql
SET SERVEROUTPUT ON

<< find_stu_num >>
BEGIN

DBMS_OUTPUT.PUT_LINE('The procedure
find_stu_num has been executed.');

END find_stu_num;

The label optionally appears after END. For commenting purposes, you may use either -- or /*, and */.
Blocks can be nested in the main section or in an exception handler. A nested block is a block that is
placed fully within another block. This has an impact on the scope and visibility of variables. The scope of
a variable in a nested block is the period when memory is being allocated for the variable. It extends
from the moment of declaration until the END of the nested block from which it was declared. The visi-
bility of a variable is the part of the program where the variable can be accessed.

FOR EXAMPLE

-- ch02_4b.sql
SET SERVEROUTPUT ON
<< outer_block >>
DECLARE

v_test NUMBER := 123;
BEGIN

DBMS_OUTPUT.PUT_LINE
('Outer Block, v_test: '||v_test);

<< inner_block >>
DECLARE

v_test NUMBER := 456;
BEGIN

DBMS_OUTPUT.PUT_LINE
('Inner Block, v_test: '||v_test);

DBMS_OUTPUT.PUT_LINE
('Inner Block, outer_block.v_test: '||
Outer_block.v_test);

END inner_block;
END outer_block;

This example produces the following output:

Outer Block, v_test: 123
Inner Block, v_test: 456
Inner Block, outer_block.v_test: 123

L A B 2.1Lab 2.1 Exercises

35

A) If the following example were run in SQL*Plus, what do you think would be displayed?

-- ch02_5a.sql
SET SERVEROUTPUT ON
DECLARE

e_show_exception_scope EXCEPTION;
v_student_id NUMBER := 123;

BEGIN
DBMS_OUTPUT.PUT_LINE('outer student id is '

||v_student_id);
DECLARE
v_student_id VARCHAR2(8) := 125;

BEGIN
DBMS_OUTPUT.PUT_LINE('inner student id is '

||v_student_id);
RAISE e_show_exception_scope;

END;
EXCEPTION

WHEN e_show_exception_scope
THEN

DBMS_OUTPUT.PUT_LINE('When am I displayed?');
DBMS_OUTPUT.PUT_LINE('outer student id is '

||v_student_id);
END;

ANSWER: The following would result:

outer student id is 123
inner student id is 125
When am I displayed?
outer student id is 123
PL/SQL procedure successfully completed.

B) Now run the example and see if it produces what you expected. Explain how the focus moves
from one block to another in this example.

ANSWER: The variable e_Show_Exception_Scope is declared as an exception type in the
declaration section of the block. There is also a declaration of the variable called v_student_
id of datatype NUMBER that is initialized to the number 123. This variable has a scope of the
entire block, but it is visible only outside the inner block. When the inner block begins, another
variable,v_student_id, is declared. This time it is of datatype VARCHAR2(8) and is initialized
to 125. This variable has scope and visibility only within the inner block. The use of DBMS_OUTPUT
helps show which variable is visible. The inner block raises the exception e_Show_
Exception_Scope; this means that the focus moves out of the execution section and into
the exception section. The focus looks for an exception named e_Show_Exception_Scope.
Because the inner block has no exception with this name, the focus moves to the outer block’s
exception section and finds the exception. The inner variable v_student_id is now out of
scope and visibility. The outer variable v_student_id (which has always been in scope) now
regains visibility. Because the exception has an IF/THEN construct, it executes the DBMS_ OUTPUT
call. This is a simple use of nested blocks. Later in the book you will see more-complex examples.
After you learn about exception handling in Chapters 8, 9, and 10, you will see that there is greater
opportunity to make use of nested blocks.

L A B 2.1
36

Lab 2.1 Exercises

▼ T R Y I T Y O U R S E L F

Before starting the following projects, take a look at the formatting guidelines in Appendix A. Make your
variable names conform to the standard. At the top of the declaration section, put a comment stating
which naming standard you are using.

1) Write a PL/SQL block

A) That includes declarations for the following variables:

A VARCHAR2 datatype that can contain the string ‘Introduction to Oracle PL/SQL’

A NUMBER that can be assigned 987654.55, but not 987654.567 or 9876543.55

A CONSTANT (you choose the correct data type) that is auto-initialized to the value ‘603D’

A BOOLEAN

A DATE data type autoinitialized to one week from today

B) In the body of the PL/SQL block, put a DBMS_OUTPUT.PUT_LINE message for each of the
variables that received an autoinitialization value.

C) In a comment at the bottom of the PL/SQL block, state the value of your NUMBER data
type.

2) Alter the PL/SQL block you created in Project 1 to conform to the following specifications:

A) Remove the DBMS_OUTPUT.PUT_LINE messages.

B) In the body of the PL/SQL block, write a selection test (IF) that does the following (use a
nested IF statement where appropriate):

I) Checks whether the VARCHAR2 you created contains the course named ‘Introduction
to Underwater Basketweaving’.

II) If it does, put a DBMS_OUTPUT.PUT_LINE message on the screen that says so.

III) If it does not, test to see if the CONSTANT you created contains the room number
603D.

IV) If it does, put a DBMS_OUTPUT.PUT_LINE message on the screen that states the
course name and the room number that you’ve reached in this logic.

V) If it does not, put a DBMS_OUTPUT.PUT_LINE message on the screen that states that
the course and location could not be determined.

C) Add a WHEN OTHERS EXCEPTION that puts a DBMS_OUTPUT.PUT_LINE message on the
screen that says that an error occurred.

The projects in this section are meant to have you use all the skills you have acquired throughout
this chapter. The answers to these projects can be found in Appendix D and on this book’s companion
Web site.

Try it Yourself 37

This page intentionally left blank

C H A P T E R 3

SQL in PL/SQL

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Making use of DML in PL/SQL

. Making use of SAVEPOINT

This chapter is a collection of some fundamental elements of using SQL state-
ments in PL/SQL blocks. In the preceding chapter, you initialized variables with
the := syntax. This chapter introduces the method of using a SQL select state-
ment to update the value of a variable. These variables can then be used in data
manipulation (DML) statements (Insert, Delete, or Update). Additionally, this
chapter demonstrates how you can use a sequence in your DML statements
within a PL/SQL block, much as you would in a stand-alone SQL statement.

A transaction in Oracle is a series of SQL statements that the programmer has
grouped into a logical unit. A programmer chooses to do this to maintain data
integrity. Each application (SQL*Plus, Oracle SQL Developer, Procedure Builder,
and so forth) maintains a single database session for each instance of a user login.
The changes to the database that have been executed by a single application
session are not actually “saved” to the database until a COMMIT occurs. Work
within a transaction up to and just before the commit can be rolled back; after a
commit has been issued, work within that transaction cannot be rolled back.
Note that those SQL statements should be either committed or rejected as a
group.

To exert transaction control, a SAVEPOINT can be used to break down large
PL/SQL statements into individual units that are easier to manage. This chapter
covers the basic elements of transaction control so that you will know how to
manage your PL/SQL code by using COMMIT, ROLLBACK, and principally
SAVEPOINT.

L A B 3 . 1

Making Use of DML in PL/SQL

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use the SELECT INTO syntax for variable initialization

. Use DML in a PL/SQL block

. Make use of a sequence in a PL/SQL block

VARIABLE INITIALIZATION WITH SELECT INTO

PL/SQL has two main methods of giving value to variables in a PL/SQL block. The first one,
which you learned about in Chapter 1, “PL/SQL Concepts,” is initialization with the := syntax.
In this lab you will learn how to initialize a variable with a select statement by using the SELECT
INTO syntax.

A variable that has been declared in the declaration section of the PL/SQL block can later be
given a value with a select statement. The syntax is as follows:

SELECT item_name
INTO variable_name
FROM table_name;

It is important to note that any single row function can be performed on the item to give the
variable a calculated value.

FOR EXAMPLE

-- ch03_1a.sql
SET SERVEROUTPUT ON
DECLARE

v_average_cost VARCHAR2(10);
BEGIN

SELECT TO_CHAR(AVG(cost), '$9,999.99')
INTO v_average_cost
FROM course;

DBMS_OUTPUT.PUT_LINE('The average cost of a '||
'course in the CTA program is '||
v_average_cost);

END;

L A B 3.1
40

▼

In this example, a variable is given the value of the average cost of a course in the course table.
First, the variable must be declared in the declaration section of the PL/SQL block. In this
example, the variable is given the datatype of VARCHAR2(10) because of the functions used on
the data. The same select statement that would produce this outcome in SQL*Plus is as follows:

SELECT TO_CHAR(AVG(cost), '$9,999.99')
FROM course;

The TO_CHAR function is used to format the cost; in doing this, the number datatype is
converted to a character datatype. As soon as the variable has a value, it can be displayed to the
screen in SQL*Plus using the PUT_LINE procedure of the DBMS_OUTPUT package.

L A B 3 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

3.1.1 Use the Select INTO Syntax for Variable Initialization

A) Execute the script ch03_1a.sql. What is displayed on the SQL*Plus screen? Explain the results.

ANSWER: You see the following result:

The average cost of a course in the CTA program is $1,198.33
PL/SQL procedure successfully completed.

In the declaration section of the PL/SQL block, the variable v_average_cost is declared as a
VARCHAR2. In the executable section of the block, this variable is given the value of the average
cost from the course table by means of the SELECT INTO syntax. The SQL function TO_CHAR is
issued to format the number. The DBMS_OUTPUT is then used to show the result to the screen.

B) Take the same PL/SQL block, and place the line with the DBMS_OUTPUT before the SELECT INTO
statement. What is displayed on the SQL*Plus screen? Explain what the value of the variable is at
each point in the PL/SQL block.

ANSWER: You see the following result:

The average cost of a course in the CTA program is
PL/SQL procedure successfully completed.

The variable v_average_cost is set to NULL when it is first declared. Because the
DBMS_OUTPUT is placed before the variable is given a value, the output for the variable is NULL.
After the SELECT INTO, the variable is given the same value as in the original block described in
question A, but it is not displayed because there is no other DBMS_OUTPUT line in the PL/SQL
block.

Data Definition Language (DDL) is not valid in a simple PL/SQL block. (More-advanced techniques
such as procedures in the DBMS_SQL package enable you to make use of DDL.) However, DML is
easily achieved either by use of variables or by simply putting a DML statement into a PL/SQL
block. Here is an example of a PL/SQL block that UPDATEs an existing entry in the zip code table:

L A B 3.1Lab 3.1 Exercises

41

FOR EXAMPLE

-- ch03_2a.sql
DECLARE

v_city zipcode.city%TYPE;
BEGIN

SELECT 'COLUMBUS'
INTO v_city
FROM dual;

UPDATE zipcode
SET city = v_city

WHERE ZIP = 43224;
END;

It is also possible to insert data into a database table in a PL/SQL block, as shown in the following
example:

FOR EXAMPLE

-- ch03_3a.sql
DECLARE

v_zip zipcode.zip%TYPE;
v_user zipcode.created_by%TYPE;
v_date zipcode.created_date%TYPE;

BEGIN
SELECT 43438, USER, SYSDATE
INTO v_zip, v_user, v_date
FROM dual;

INSERT INTO zipcode
(ZIP, CREATED_BY ,CREATED_DATE, MODIFIED_BY,
MODIFIED_DATE
)
VALUES(v_zip, v_user, v_date, v_user, v_date);

END;

BY THE WAY

SELECT statements in PL/SQL that return no rows or too many rows cause an error that can be
trapped by using an exception. You will learn more about handling exceptions in Chapters 8, 9,
and 10.

3.1.2 Use DML in a PL/SQL Block

Write a PL/SQL block that inserts a new student in the STUDENT table. Use your own information for the
data.

-- ch03_4a.sql
DECLARE

v_max_id number;
BEGIN

L A B 3.1
42

Lab 3.1 Exercises

SELECT MAX(student_id)
INTO v_max_id
FROM student;

INSERT into student
(student_id, last_name, zip,
created_by, created_date,
modified_by, modified_date,
registration_date
)
VALUES (v_max_id + 1, 'Rosenzweig',

11238, 'BROSENZ ', '01-JAN-99',
'BROSENZ', '01-JAN-99', '01-JAN-99'
);

END;

To generate a unique ID, the maximum student_id is selected into a variable and then is incre-
mented by 1. It is important to remember in this example that there is a foreign key on the zip item in
the student table. This means that the zip code you choose to enter must be in the ZIPCODE table.

USING AN ORACLE SEQUENCE
An Oracle sequence is an Oracle database object that can be used to generate unique numbers. You can
use sequences to automatically generate primary key values.

ACCESSING AND INCREMENTING SEQUENCE VALUES
After a sequence has been created, you can access its values in SQL statements with these
pseudocolumns:

. CURRVAL returns the current value of the sequence.

. NEXTVAL increments the sequence and returns the new value.

The following statement creates the sequence ESEQ:

FOR EXAMPLE

CREATE SEQUENCE eseq
INCREMENT BY 10

The first reference to ESEQ.NEXTVAL returns 1. The second returns 11. Each subsequent reference returns
a value 10 greater than the preceding one.

(Even though you are guaranteed unique numbers, you are not guaranteed contiguous numbers. In
some systems this may be a problem, such as when you generate invoice numbers.)

DRAWING NUMBERS FROM A SEQUENCE
Beginning with Oracle v7.3, you can insert a sequence value directly into a table without first selecting it.
(Previously you had to use the SELECT INTO syntax and put the new sequence number into a variable
before inserting the variable.)

The following example uses a table called test01. First the table test01 is created, and then the sequence
test_seq, and then the sequence is used to populate the table.

L A B 3.1Lab 3.1 Exercises

43

FOR EXAMPLE

-- ch03_3a.sql
CREATE TABLE test01 (col1 number);
CREATE SEQUENCE test_seq

INCREMENT BY 5;
BEGIN

INSERT INTO test01
VALUES (test_seq.NEXTVAL);

END;
/

Select * FROM test01;

In the last exercise for this lab, you will make use of all the material covered so far in this chapter.

3.1.3 Make Use of a Sequence in a PL/SQL Block

Write a PL/SQL block that inserts a new student in the STUDENT table. Use your own information
for the data. Create two variables that are used in the SELECT statement. Get the USER and
SYSDATE for the variables. Finally, use the existing student_id_seq sequence to generate a
unique ID for the new student.

ANSWER: The following is one example of how this could be handled:

-- ch03_5a.sql
DECLARE

v_user student.created_by%TYPE;
v_date student.created_date%TYPE;

BEGIN
SELECT USER, sysdate
INTO v_user, v_date
FROM dual;

INSERT INTO student
(student_id, last_name, zip,
created_by, created_date, modified_by,
modified_date, registration_date
)
VALUES (student_id_seq.nextval, 'Smith',

11238, v_user, v_date, v_user, v_date,
v_date
);

END;

In the declaration section of the PL/SQL block, two variables are declared. They are both set to be
datatypes within the student table using the %TYPE method of declaration. This ensures that the
datatypes match the columns of the tables into which they will be inserted. The two variables
v_user and v_date are given values from the system by means of SELECT INTO. The value of
student_id is generated by using the next value of the student_id_seq sequence.

L A B 3.1
44

L A B 3 . 2

Making Use of SAVEPOINT

L A B O B J E C T I V E S
After this lab, you will be able to

. Make use of COMMIT, ROLLBACK, and SAVEPOINT in a PL/SQL block

Transactions are a means to break programming code into manageable units. Grouping transac-
tions into smaller elements is a standard practice that ensures that an application saves only
correct data. Initially, any application must connect to the database to access the data. When a
user issues DML statements in an application, the changes are not visible to other users until a
COMMIT or ROLLBACK has been issued. Oracle guarantees a read-consistent view of the data.
Until that point, all data that has been inserted or updated is held in memory and is available
only to the current user. The rows that have been changed are locked by the current user and
are not available for other users to update until the locks have been released. A COMMIT or
ROLLBACK statement releases these locks. Transactions can be controlled more readily by
marking points of the transaction with the SAVEPOINT command.

. COMMIT makes events within a transaction permanent.

. ROLLBACK erases events within a transaction.

Additionally, you can use a SAVEPOINT to control transactions. Transactions are defined in the
PL/SQL block from one SAVEPOINT to another. The use of the SAVEPOINT command allows
you to break your SQL statements into units so that in a given PL/SQL block, some units can be
committed (saved to the database) and some can be rolled back (undone), and so forth.

BY THE WAY

Note that there is a distinction between a transaction and a PL/SQL block. The start and end of a
PL/SQL block do not necessarily mean the start and end of a transaction.

To demonstrate the need for transaction control, we will examine a two-step data-manipulation
process. For example, suppose that the fees for all courses in the Student database that had a
prerequisite course needed to be increased by 10 percent. At the same time, all courses that did
not have a prerequisite needed to be decreased by 10 percent. This is a two-step process. If one
step was successful but the second step was not, the data concerning course cost would be
inconsistent in the database. Because this adjustment is based on a change in percentage, there
would be no way to track what part of this course adjustment was successful and what was not.

L A B 3.2
45

In the next example, you see one PL/SQL block that performs two updates on the cost item in
the course table. In the first step (this code is commented to emphasize each update), the cost
is updated with a cost that is 10 percent less whenever the course does not have a prerequisite.
In the second step, the cost is increased by 10 percent when the course has a prerequisite.

FOR EXAMPLE

-- ch03_6a.sql
BEGIN
-- STEP 1

UPDATE course
SET cost = cost - (cost * 0.10)

WHERE prerequisite IS NULL;
-- STEP 2

UPDATE course
SET cost = cost + (cost * 0.10)

WHERE prerequisite IS NOT NULL;
END;

Let’s assume that the first update statement succeeds, but the second update statement fails
because the network went down. The data in the course table is now inconsistent, because
courses with no prerequisite have had their cost reduced, but courses with prerequisites have
not been adjusted. To prevent this sort of situation, statements must be combined into a trans-
action. So, either both statements will succeed, or both statements will fail.

A transaction usually combines SQL statements that represent a logical unit of work. The trans-
action begins with the first SQL statement issued after the previous transaction, or the first SQL
statement issued after you connect to the database. The transaction ends with the COMMIT or
ROLLBACK statement.

COMMIT

When a COMMIT statement is issued to the database, the transaction has ended, and the follow-
ing results are true:

. All work done by the transaction becomes permanent.

. Other users can see changes in data made by the transaction.

. Any locks acquired by the transaction are released.

A COMMIT statement has the following syntax:

COMMIT [WORK];

The word WORK is optional and is used to improve readability. Until a transaction is commit-
ted, only the user executing that transaction can see changes in the data made by his or her
session.

Suppose User A issues the following command on a STUDENT table that exists in another
schema but that has a public synonym of student:

L A B 3.2
46

Making Use of SAVEPOINT

FOR EXAMPLE

-- ch03_6a.sql
INSERT INTO student

(student_id, last_name, zip, registration_date,
created_by, created_date, modified_by,
modified_date
)
VALUES (student_id_seq.nextval, 'Tashi', 10015,

'01-JAN-99', 'STUDENTA', '01-JAN-99',
'STUDENTA', '01-JAN-99'
);

Then User B enters the following command to query a table known by its public synonym
STUDENT, while logged on to his session:

SELECT *
FROM student
WHERE last_name = 'Tashi';

Then User A issues the following command:

COMMIT;

If User B enters the same query again, he doesn’t see the same results.

In this next example, there are two sessions: User A and User B. User A inserts a record into the
STUDENT table. User B queries the STUDENT table but does not get the record that was
inserted by User A. User B cannot see the information because User A has not committed the
work. When User A commits the transaction, User B, upon resubmitting the query, sees the
records inserted by User A.

ROLLBACK

When a ROLLBACK statement is issued to the database, the transaction has ended, and the
following results are true:

. All work done by the transaction is undone, as if it hadn’t been issued.

. Any locks acquired by the transaction are released.

A ROLLBACK statement has the following syntax:

ROLLBACK [WORK];

The WORK keyword is optional and is available for increased readability.

SAVEPOINT

The ROLLBACK statement undoes all the work done by the user in a specific transaction. With
the SAVEPOINT command, however, only part of the transaction can be undone. The SAVE-
POINT command has the following syntax:

SAVEPOINT name;

L A B 3.2Making Use of SAVEPOINT

47

▼

The word name is the SAVEPOINT’s name. As soon as a SAVEPOINT is defined, the program
can roll back to the SAVEPOINT. A ROLLBACK statement, then, has the following syntax:

ROLLBACK [WORK] to SAVEPOINT name;

When a ROLLBACK to SAVEPOINT statement is issued to the database, the following results
are true:

. Any work done since the SAVEPOINT is undone. The SAVEPOINT remains active, however, until
a full COMMIT or ROLLBACK is issued. It can be rolled back to again if desired.

. Any locks and resources acquired by the SQL statements since the SAVEPOINT are released.

. The transaction is not finished, because SQL statements are still pending.

L A B 3 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

3.2.1 Make Use of COMMIT, ROLLBACK, and SAVEPOINT in a PL/SQL Block

Log into the STUDENT schema and enter the following text exactly as it appears here. (Optionally, you
can write the PL/SQL block in a text file and then run the script from the SQL*Plus prompt.)

-- ch03_7a.sql
BEGIN

INSERT INTO student
(student_id, Last_name, zip, registration_date,
created_by, created_date, modified_by,
modified_date

)
VALUES (student_id_seq.nextval, 'Tashi', 10015,

'01-JAN-99', 'STUDENTA', '01-JAN-99',
'STUDENTA','01-JAN-99'

);
SAVEPOINT A;
INSERT INTO student

(student_id, Last_name, zip, registration_date,
created_by, created_date, modified_by,
modified_date

)
VALUES (student_id_seq.nextval, 'Sonam', 10015,

'01-JAN-99', 'STUDENTB','01-JAN-99',
'STUDENTB', '01-JAN-99'
);

SAVEPOINT B;
INSERT INTO student
(student_id, Last_name, zip, registration_date,
created_by, created_date, modified_by,
modified_date

)
VALUES (student_id_seq.nextval, 'Norbu', 10015,

L A B 3.2
48

Lab 3.2 Exercises

'01-JAN-99', 'STUDENTB', '01-JAN-99',
'STUDENTB', '01-JAN-99'
);

SAVEPOINT C;
ROLLBACK TO B;

END;

A) If you tried to issue the following command, what would you expect to see, and why?

SELECT *
FROM student
WHERE last_name = 'Norbu';

ANSWER: You would not be able to see any data, because the ROLLBACK to (SAVEPOINT) B has
undone the last insert statement where the student ‘Norbu’ was inserted.

B) Try issuing this command. What happens, and why?

ANSWER: When you issue this command, you get the message no rows selected.

Three students were inserted in this PL/SQL block: first, Tashi in SAVEPOINT A, and then Sonam in
SAVEPOINT B, and finally Norbu in SAVEPOINT C. Then, when the command ROLLBACK to B was
issued, the insertion of Norbu was undone.

C) Now issue the following command:

ROLLBACK to SAVEPOINT A;

What happens?

ANSWER: The insert in SAVEPOINT B is undone. This deletes the insert of Sonam, who was
inserted in SAVEPOINT B.

D) If you were to issue the following, what would you expect to see?

SELECT last_name
FROM student
WHERE last_name = 'Tashi';

ANSWER: You would see the data for Tashi.

E) Issue the command, and explain your findings.

ANSWER: You see one entry for Tashi, as follows:

LAST_NAME

Tashi

Tashi was the only student successfully entered into the database. The ROLLBACK to SAVEPOINT A
undid the insert statement for Norbu and Sonam.

BY THE WAY

SAVEPOINT is often used before a complicated section of the transaction. If this part of the transac-
tion fails, it can be rolled back, allowing the earlier part to continue.

L A B 3.2Lab 3.2 Exercises

49

DID YOU KNOW?

It is important to note the distinction between transactions and PL/SQL blocks. When a block starts,
this does not mean that the transaction starts. Likewise, the start of the transaction need not coin-
cide with the start of a block.

A Single PL/SQL block can contain multiple transactions, as shown in this example:

FOR EXAMPLE

DECLARE
v_Counter NUMBER;

BEGIN
v_counter := 0;
FOR i IN 1..100
LOOP

v_counter := v_counter + 1;
IF v_counter = 10
THEN

COMMIT;
v_counter := 0;

END IF;
END LOOP;

END;

In this example, as soon as the value of v_counter becomes equal to 10, the work is committed. So, a
total of 10 transactions are contained in this one PL/SQL block.

L A B 3.2
50

Lab 3.2 Exercises

▼ T R Y I T Y O U R S E L F

In this chapter, you’ve learned how to use numerous SQL techniques in a PL/SQL block. First, you learned
how to use SELECT INTO to generate values for a variable. Then you learned the various DML methods,
including the use of a sequence. Finally, you learned how to manage transactions by using SAVEPOINTs.
Complete the following projects by writing the code for each step, running it, and going on to the
next step.

1) Create a table called CHAP4 with two columns; one is ID (a number) and the other is NAME, which
is a VARCHAR2(20).

2) Create a sequence called CHAP4_SEQ that increments by units of 5.

3) Write a PL/SQL block that does the following, in this order:

A) Declares two variables: one for v_name and one for v_id. The v_name variable can be
used throughout the block to hold the name that will be inserted; realize that the value will
change in the course of the block.

B) The block inserts into the table the name of the student who is enrolled in the most classes
and uses a sequence for the ID. Afterward there is SAVEPOINT A.

C) The student with the fewest classes is inserted. Afterward there is SAVEPOINT B.

D) The instructor who is teaching the most courses is inserted in the same way. Afterward
there is SAVEPOINT C.

E) Using a SELECT INTO statement, hold the value of the instructor in the variable v_id.

F) Undo the instructor insertion by using rollback.

G) Insert the instructor teaching the fewest courses, but do not use the sequence to generate
the ID. Instead, use the value from the first instructor, whom you have since undone.

H) Insert the instructor teaching the most courses, and use the sequence to populate his or
her ID.

Add DBMS_OUTPUT throughout the block to display the values of the variables as they change.
(This is good practice for debugging.)

The answers to these projects can be found in Appendix D and on this book’s companion Web site.

Try it Yourself 51

This page intentionally left blank

C H A P T E R 4

Conditional Control:
IF Statements

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. IF statements

. ELSIF statements

. Nested IF statements

In almost every program you write, you need to make decisions. For example, if
it is the end of the fiscal year, bonuses must be distributed to the employees
based on their salaries. To compute employee bonuses, a program needs a condi-
tional control. In other words, it needs to employ a selection structure.

Conditional control allows you to control the program’s flow of the execution
based on a condition. In programming terms, this means that the statements in
the program are not executed sequentially. Rather, one group of statements or
another is executed, depending on how the condition is evaluated.

PL/SQL has three types of conditional control: IF, ELSIF, and CASE statements.
This chapter explores the first two types and shows you how they can be nested
inside one another. CASE statements are discussed in the next chapter.

L A B 4 . 1

IF Statements

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use the IF-THEN statement

. Use the IF-THEN-ELSE statement

An IF statement has two forms: IF-THEN and IF-THEN-ELSE. An IF-THEN statement allows
you to specify only one group of actions to take. In other words, this group of actions is taken
only when a condition evaluates to TRUE. An IF-THEN-ELSE statement allows you to specify
two groups of actions. The second group of actions is taken when a condition evaluates to
FALSE or NULL.

IF-THEN STATEMENTS

An IF-THEN statement is the most basic kind of a conditional control; it has the following
structure:

IF CONDITION THEN
STATEMENT 1;
...
STATEMENT N;

END IF;

The reserved word IF marks the beginning of the IF statement. Statements 1 through N are a
sequence of executable statements that consist of one or more standard programming structures.
The word CONDITION between the keywords IF and THEN determines whether these state-
ments are executed. END IF is a reserved phrase that indicates the end of the IF-THEN
construct.

Figure 4.1 shows this flow of logic.

When an IF-THEN statement is executed, a condition is evaluated to either TRUE or FALSE. If
the condition evaluates to TRUE, control is passed to the first executable statement of the
IF-THEN construct. If the condition evaluates to FALSE, control is passed to the first executable
statement after the END IF statement.

L A B 4.1
54

FIGURE 4.1
IF-THEN statement

Consider the following example. Two numeric values are stored in the variables v_num1 and
v_num2. You need to arrange their values so that the smaller value is always stored in v_num1
and the larger value is always stored in v_num2.

FOR EXAMPLE

DECLARE
v_num1 NUMBER := 5;
v_num2 NUMBER := 3;
v_temp NUMBER;

BEGIN
-- if v_num1 is greater than v_num2 rearrange their values
IF v_num1 > v_num2 THEN

v_temp := v_num1;

L A B 4.1IF Statements

55

start IF

end IF

is condition true

execute statements

Yes

No

next statement

v_num1 := v_num2;
v_num2 := v_temp;

END IF;

-- display the values of v_num1 and v_num2
DBMS_OUTPUT.PUT_LINE ('v_num1 = '||v_num1);
DBMS_OUTPUT.PUT_LINE ('v_num2 = '||v_num2);

END;

In this example, condition v_num1 > v_num2 evaluates to TRUE because 5 is greater than 3.
Next, the values are rearranged so that 3 is assigned to v_num1 and 5 is assigned to v_num2.
This is done with the help of the third variable, v_temp, which is used for temporary storage.

This example produces the following output:

v_num1 = 3
v_num2 = 5

PL/SQL procedure successfully completed.

IF-THEN-ELSE STATEMENT

An IF-THEN statement specifies the sequence of statements to execute only if the condition
evaluates to TRUE. When this condition evaluates to FALSE, there is no special action to take,
except to proceed with execution of the program.

An IF-THEN-ELSE statement enables you to specify two groups of statements. One group of
statements is executed when the condition evaluates to TRUE. Another group of statements is
executed when the condition evaluates to FALSE. This is indicated as follows:

IF CONDITION THEN
STATEMENT 1;

ELSE
STATEMENT 2;

END IF;
STATEMENT 3;

When CONDITION evaluates to TRUE, control is passed to STATEMENT 1; when CONDITION
evaluates to FALSE, control is passed to STATEMENT 2. After the IF-THEN-ELSE construct has
completed, STATEMENT 3 is executed. Figure 4.2 illustrates this flow of logic.

DID YOU KNOW?

You should use the IF-THEN-ELSE construct when trying to choose between two mutually exclusive
actions. Consider the following example:

DECLARE
v_num NUMBER := &sv_user_num;

BEGIN
-- test if the number provided by the user is even
IF MOD(v_num,2) = 0 THEN

DBMS_OUTPUT.PUT_LINE (v_num||

L A B 4.1
56

IF Statements

' is even number');
ELSE

DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');
END IF;
DBMS_OUTPUT.PUT_LINE ('Done');

END;

For any given number, only one of the DBMS_ OUTPUT.PUT_LINE statements is executed. Hence, the
IF-THEN-ELSE construct enables you to specify two and only two mutually exclusive actions.

When run, this example produces the following output:

Enter value for v_user_num: 24
old 2: v_num NUMBER := &v_user_num;
new 2: v_num NUMBER := 24;
24 is even number
Done

PL/SQL procedure successfully completed.

L A B 4.1IF Statements

57

start IF

end IF

is condition true

execute statement 1

Yes No

next statement

execute statement 2

FIGURE 4.2
IF-THEN-ELSE statement

▼

NULL CONDITION

In some cases, a condition used in an IF statement can be evaluated to NULL instead of TRUE
or FALSE. For the IF-THEN construct, the statements are not executed if an associated condi-
tion evaluates to NULL. Next, control is passed to the first executable statement after END IF.
For the IF-THEN-ELSE construct, the statements specified after the keyword ELSE are executed
if an associated condition evaluates to NULL.

FOR EXAMPLE

DECLARE
v_num1 NUMBER := 0;
v_num2 NUMBER;

BEGIN
IF v_num1 = v_num2 THEN

DBMS_OUTPUT.PUT_LINE ('v_num1 = v_num2');
ELSE

DBMS_OUTPUT.PUT_LINE ('v_num1 != v_num2');
END IF;

END;

This example produces the following output:

v_num1 != v_num2

PL/SQL procedure successfully completed.

The condition

v_num1 = v_num2

is evaluated to NULL because a value is not assigned to the variable v_num2. Therefore, vari-
able v_num2 is NULL. Notice that the IF-THEN-ELSE construct is behaving as if the condition
evaluated to FALSE, and the second DBMS_ OUTPUT.PUT_LINE statement is executed.

L A B 4 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

4.1.1 Use the IF-THEN Statement

In this exercise, you use the IF-THEN statement to test whether the date provided by the user falls on the
weekend (in other words, if the day is Saturday or Sunday).

Create the following PL/SQL script:

-- ch04_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');

L A B 4.1
58

Lab 4.1 Exercises

v_day VARCHAR2(15);
BEGIN

v_day := RTRIM(TO_CHAR(v_date, 'DAY'));

IF v_day IN ('SATURDAY', 'SUNDAY') THEN
DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');

END IF;

--- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

To test this script fully, execute it twice. For the first run, enter 09-JAN-2008, and for the second run,
enter 13-JAN-2008. Execute the script, and then answer the following questions:

A) What output is printed on the screen (for both dates)?

ANSWER: The first output produced for the date is 09-JAN-2008. The second output produced
for the date is 13-JAN-2008.

Enter value for sv_user_date: 09-JAN-2008
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('09-JAN-2008', 'DD-MON-YYYY');
Done...

PL/SQL procedure successfully completed.

When the value of 09-JAN-2008 is entered for v_date, the day of the week is determined for the
variable v_day with the help of the functions TO_CHAR and RTRIM. Next, the following condition
is evaluated:

v_day IN ('SATURDAY', 'SUNDAY')

Because the value of v_day is ‘WEDNESDAY’, the condition evaluates to FALSE. Then, control is
passed to the first executable statement after END IF. As a result,Done... is displayed on the
screen:

Enter value for sv_user_date: 13-JAN-2008
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('13-JAN-2008', 'DD-MON-YYYY');
13-JAN-08 falls on weekend
Done...

PL/SQL procedure successfully completed.

As in the previous run, the value of v_day is derived from the value of v_date. Next, the condi-
tion of the IF-THEN statement is evaluated. Because it evaluates to TRUE, the statement after the
keyword THEN is executed. Therefore,13-JAN-2008 falls on weekend is displayed on the
screen. Next, control is passed to the last DBMS_OUTPUT.PUT_LINE statement, and Done... is
displayed on the screen.

B) Explain why the output produced for the two dates is different.

ANSWER: The first date, 09-JAN-2008, is a Wednesday. As a result, the condition v_day IN
('SATURDAY,' 'SUNDAY') does not evaluate to TRUE. Therefore, control is transferred to
the statement after END IF, and Done... is displayed on the screen.

L A B 4.1Lab 4.1 Exercises

59

The second date, 13-JAN-2008, is a Sunday. Because Sunday falls on a weekend, the condition eval-
uates to TRUE, and the message 13-JAN-2008 falls on weekend is displayed on the
screen. Next, the last DBMS_OUTPUT.PUT_LINE statement is executed, and Done... is displayed
on the screen.

Remove the RTRIM function from the assignment statement for v_day as follows:

v_day := TO_CHAR(v_date, 'DAY');

Run the script again, entering 13-JAN-2008 for v_date.

C) What output is printed on the screen? Why?

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch04_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
v_day VARCHAR2(15);

BEGIN
v_day := TO_CHAR(v_date, 'DAY');

IF v_day IN ('SATURDAY', 'SUNDAY') THEN
DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');

END IF;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

This script produces the following output:

Enter value for sv_user_date: 13-JAN-2008
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('13-JAN-2008', 'DD-MON-YYYY');
Done...

PL/SQL procedure successfully completed.

In the original example, the variable v_day is calculated with the help of the statement
RTRIM(TO_CHAR(v_date, 'DAY')). First, the function TO_CHAR returns the day of the
week, padded with blanks. The size of the value retrieved by the function TO_CHAR is always 9
bytes. Next, the RTRIM function removes trailing spaces.

In the statement

v_day := TO_CHAR(v_date, 'DAY')

the TO_CHAR function is used without the RTRIM function. Therefore, trailing blanks are not
removed after the day of the week has been derived. As a result, the condition of the IF-THEN
statement evaluates to FALSE even though the given date falls on the weekend, and control is
passed to the last DBMS_ OUTPUT.PUT_LINE statement.

L A B 4.1
60

Lab 4.1 Exercises

D) Rewrite this script using the LIKE operator instead of the IN operator so that it produces the same
results for the dates specified earlier.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch04_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
v_day VARCHAR2(15);

BEGIN
v_day := RTRIM(TO_CHAR(v_date, 'DAY'));

IF v_day LIKE 'S%' THEN
DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');

END IF;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

Saturday and Sunday are the only days of the week that start with S. As a result, there is no need
to spell out the names of the days or specify any additional letters for the LIKE operator.

E) Rewrite this script using the IF-THEN-ELSE construct. If the date specified does not fall on the
weekend, display a message to the user saying so.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch04_1d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE

v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
v_day VARCHAR2(15);

BEGIN
v_day := RTRIM(TO_CHAR(v_date, 'DAY'));

IF v_day IN ('SATURDAY', 'SUNDAY') THEN
DBMS_OUTPUT.PUT_LINE (v_date||' falls on weekend');

ELSE
DBMS_OUTPUT.PUT_LINE

(v_date||' does not fall on the weekend');
END IF;

-- control resumes here
DBMS_OUTPUT.PUT_LINE('Done...');

END;

To modify the script, the ELSE part was added to the IF statement. The rest of the script has not
been changed.

L A B 4.1Lab 4.1 Exercises

61

4.1.2 Use the IF-THEN-ELSE Statement

In this exercise, you use the IF-THEN-ELSE statement to check how many students are enrolled in course
number 25, section 1. If 15 or more students are enrolled, section 1 of course number 25 is full.
Otherwise, section 1 of course number 25 is not full, and more students can register for it. In both cases,
a message should be displayed to the user, indicating whether section 1 is full. Try to answer the ques-
tions before you run the script. After you have answered the questions, run the script and check your
answers. Note that the SELECT INTO statement uses the ANSI 1999 SQL standard.

Create the following PL/SQL script:

-- ch04_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_total NUMBER;
BEGIN

SELECT COUNT(*)
INTO v_total
FROM enrollment e
JOIN section s USING (section_id)
WHERE s.course_no = 25
AND s.section_no = 1;

-- check if section 1 of course 25 is full
IF v_total >= 15 THEN

DBMS_OUTPUT.PUT_LINE
('Section 1 of course 25 is full');

ELSE
DBMS_OUTPUT.PUT_LINE

('Section 1 of course 25 is not full');
END IF;
-- control resumes here

END;

Notice that the SELECT INTO statement uses an equijoin. The join condition is listed in the JOIN clause,
indicating columns that are part of the primary key and foreign key constraints. In this example, column
SECTION_ID of the ENROLLMENT table has a foreign key constraint defined on it. This constraint refer-
ences column SECTION_ID of the SECTION table, which, in turn, has a primary key constraint defined on it.

BY THE WAY

You will find detailed explanations and examples of the statements using the new ANSI 1999 SQL
standard in Appendix C and in the Oracle help. Throughout this book we try to provide examples
illustrating both standards; however, our main focus is PL/SQL features rather than SQL.

Try to answer the following questions, and then execute the script:

A) What DBMS_OUTPUT.PUT_LINE statement is displayed if 15 students are enrolled in section 1 of
course number 25?

ANSWER: If 15 or more students are enrolled in section 1 of course number 25, the first
DBMS_OUTPUT.PUT_LINE statement is displayed on the screen.

L A B 4.1
62

Lab 4.1 Exercises

The condition

v_total >= 15

evaluates to TRUE, and as a result, the statement

DBMS_OUTPUT.PUT_LINE ('Section 1 of course 25 is full');

is executed.

B) What DBMS_OUTPUT.PUT_LINE statement is displayed if three students are enrolled in section 1
of course number 25?

ANSWER: If three students are enrolled in section 1 of course number 25, the second
DBMS_OUTPUT.PUT_LINE statement is displayed on the screen.

The condition

v_total >= 15

evaluates to FALSE, and the ELSE part of the IF-THEN-ELSE statement is executed. As a result, the
statement

DBMS_OUTPUT.PUT_LINE ('Section 1 of course 25 is not full');

is executed.

C) What DBMS_OUTPUT.PUT_LINE statement is displayed if there is no section 1 for course
number 25?

ANSWER: If there is no section 1 for course number 25, the ELSE part of the IF-THEN-ELSE state-
ment is executed. So the second DBMS_OUTPUT.PUT_LINE statement is displayed on the screen.

The COUNT function used in the SELECT statement:

SELECT COUNT(*)
INTO v_total
FROM enrollment e
JOIN section s USING (section_id)
WHERE s.course_no = 25
AND s.section_no = 1;

returns 0. The condition of the IF-THEN-ELSE statement evaluates to FALSE. Therefore, the ELSE
part of the IF-THEN-ELSE statement is executed, and the second DBMS_OUTPUT.PUT_LINE state-
ment is displayed on the screen.

D) How would you change this script so that the user provides both course and section numbers?

ANSWER: Two additional variables must be declared and initialized with the help of the substi-
tution variables as follows. The script should look similar to the following. Changes are shown
in bold.

-- ch04_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_total NUMBER;
v_course_no CHAR(6) := '&sv_course_no';
v_section_no NUMBER := &sv_section_no;

BEGIN
SELECT COUNT(*)
INTO v_total
FROM enrollment e

L A B 4.1Lab 4.1 Exercises

63

JOIN section s USING (section_id)
WHERE s.course_no = v_course_no
AND s.section_no = v_section_no;

-- check if a specific section of a course is full
IF v_total >= 15 THEN

DBMS_OUTPUT.PUT_LINE
('Section 1 of course 25 is full');

ELSE
DBMS_OUTPUT.PUT_LINE

('Section 1 of course 25 is not full');
END IF;
-- control resumes here

END;

E) How would you change this script so that if fewer than 15 students are enrolled in section 1 of
course number 25, a message appears indicating how many students can still enroll?

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch04_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_total NUMBER;
v_students NUMBER;

BEGIN
SELECT COUNT(*)
INTO v_total
FROM enrollment e
JOIN section s USING (section_id)
WHERE s.course_no = 25
AND s.section_no = 1;

-- check if section 1 of course 25 is full
IF v_total >= 15 THEN

DBMS_OUTPUT.PUT_LINE
('Section 1 of course 25 is full');

ELSE
v_students := 15 - v_total;
DBMS_OUTPUT.PUT_LINE (v_students||

' students can still enroll into section 1'||
' of course 25');

END IF;
-- control resumes here

END;

Notice that if the IF-THEN-ELSE statement evaluates to FALSE, the statements associated with the
ELSE part are executed. In this case, the value of the variable v_total is subtracted from 15. The
result of this operation indicates how many more students can enroll in section 1 of course
number 25.

L A B 4.1
64

Lab 4.1 Exercises

L A B 4 . 2

ELSIF Statements

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use the ELSIF statement

An ELSIF statement has the following structure:

IF CONDITION 1 THEN
STATEMENT 1;

ELSIF CONDITION 2 THEN
STATEMENT 2;

ELSIF CONDITION 3 THEN
STATEMENT 3;

...
ELSE

STATEMENT N;
END IF;

The reserved word IF marks the beginning of an ELSIF construct. CONDITION 1 through
CONDITION N are a sequence of the conditions that evaluate to TRUE or FALSE. These condi-
tions are mutually exclusive. In other words, if CONDITION 1 evaluates to TRUE, STATEMENT
1 is executed, and control is passed to the first executable statement after the reserved phrase
END IF. The rest of the ELSIF construct is ignored. When CONDITION 1 evaluates to FALSE,
control is passed to the ELSIF part and CONDITION 2 is evaluated, and so forth. If none of the
specified conditions yields TRUE, control is passed to the ELSE part of the ELSIF construct. An
ELSIF statement can contain any number of ELSIF clauses. Figure 4.3 shows this flow of logic.

Figure 4.3 shows that if condition 1 evaluates to TRUE, statement 1 is executed, and control is
passed to the first statement after END IF. If condition 1 evaluates to FALSE, control is passed
to condition 2. If condition 2 yields TRUE, statement 2 is executed. Otherwise, control is passed
to the statement following END IF, and so forth. Consider the following example.

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_num;

BEGIN
IF v_num < 0 THEN

DBMS_OUTPUT.PUT_LINE (v_num||' is a negative number');

L A B 4.2
65

ELSIF v_num = 0 THEN
DBMS_OUTPUT.PUT_LINE (v_num||' is equal to zero');

ELSE
DBMS_OUTPUT.PUT_LINE (v_num||' is a positive number');

END IF;
END;

L A B 4.2
66

ELSIF Statements

start ELSIF

end IF

is condition 1 true

execute statement 1

Yes

No

next statement

execute statement 2

is condition 2 true Yes

No

FIGURE 4.3
ELSIF statement

The value of v_num is provided at runtime and is evaluated with the help of the ELSIF state-
ment. If the value of v_num is less than 0, the first DBMS_ OUTPUT.PUT_LINE statement
executes, and the ELSIF construct terminates. If the value of v_num is greater than 0, both
conditions

v_num < 0

and

v_num = 0

evaluate to FALSE, and the ELSE part of the ELSIF construct executes.

Assume that the value of v_num equals 5 at runtime. This example produces the following
output:

Enter value for sv_num: 5
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 5;
5 is a positive number

PL/SQL procedure successfully completed.

DID YOU KNOW?

Consider the following information about an ELSIF statement:

. Always match an IF with an END IF.

. There must be a space between END and IF. If the space is omitted, the compiler produces the
following error:

ERROR at line 22:
ORA-06550: line 22, column 4:
PLS-00103: Encountered the symbol ";" when
expecting one of the following: if

As you can see, this error message is not very clear, and it can take you some time to correct it,
especially if you have not encountered it before.

. There is no second E in ELSIF.

. Conditions of an ELSIF statement must be mutually exclusive. These conditions are evaluated
in sequential order, from the first to the last. When a condition evaluates to TRUE, the remain-
ing conditions of the ELSIF statement are not evaluated. Consider this example of an ELSIF
construct:

IF v_num >= 0 THEN
DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

ELSIF v_num =< 10 THEN
DBMS_OUTPUT.PUT_LINE ('v_num is less than 10');

ELSE
DBMS_OUTPUT.PUT_LINE

('v_num is less than ? or greater than ?');
END IF;

Assume that the value of v_num is equal to 5. Both conditions of the ELSIF statement can evaluate
to TRUE because 5 is greater than 0, and 5 is less than 10. However, when the first condition,v_num
>= 0, evaluates to TRUE, the rest of the ELSIF construct is ignored.

For any value of v_num that is greater than or equal to 0 and less than or equal to 10, these condi-
tions are not mutually exclusive. Therefore, the DBMS_OUTPUT.PUT_LINE statement associated with
the ELSIF clause does not execute for any such value of v_num. For the second condition,v_num
<= 10, to yield TRUE, the value of v_num must be less than 0.

How would you rewrite this ELSIF construct to capture any value of v_num between 0 and 10 and
display it on the screen with a single condition?

When using an ELSIF construct, it is not necessary to specify what action should be taken if
none of the conditions evaluates to TRUE. In other words, an ELSE clause is not required in the
ELSIF construct. Consider the following example:

L A B 4.2ELSIF Statements

67

▼

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_num;

BEGIN
IF v_num < 0 THEN

DBMS_OUTPUT.PUT_LINE (v_num||' is a negative number');
ELSIF v_num > 0 THEN

DBMS_OUTPUT.PUT_LINE (v_num||' is a positive number');
END IF;
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

As you can see, no action is specified when v_num is equal to 0. If the value of v_num is equal
to 0, both conditions evaluate to FALSE, and the ELSIF statement does not execute. When a
value of 0 is specified for v_num, this example produces the following output:

Enter value for sv_num: 0
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 0;
Done...

PL/SQL procedure successfully completed.

DID YOU KNOW?

You probably noticed that for all IF statement examples, the reserved words IF, ELSIF, ELSE, and END
IF are entered on a separate line and are aligned with the word IF. In addition, all executable state-
ments in the IF construct are indented. The format of the IF construct makes no difference to the
compiler; however, the meaning of the formatted IF construct becomes obvious to us.

This IF-THEN-ELSE statement:

IF x = y THEN v_txt := 'YES'; ELSE v_txt :=
'NO'; END IF;

is equivalent to

IF x = y THEN
v_txt := 'YES';

ELSE
v_txt := 'NO';

END IF;

The formatted version of the IF construct is easier to read and understand.

L A B 4 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

L A B 4.2
68

Lab 4.2 Exercises

4.2.1 Use the ELSIF Statement

In this exercise, you use an ELSIF statement to display a letter grade for a student registered for a specific
section of course number 25.

Create the following PL/SQL script:

-- ch04_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_student_id NUMBER := 102;
v_section_id NUMBER := 89;
v_final_grade NUMBER;
v_letter_grade CHAR(1);

BEGIN
SELECT final_grade
INTO v_final_grade
FROM enrollment
WHERE student_id = v_student_id
AND section_id = v_section_id;

IF v_final_grade BETWEEN 90 AND 100 THEN
v_letter_grade := 'A';

ELSIF v_final_grade BETWEEN 80 AND 89 THEN
v_letter_grade := 'B';

ELSIF v_final_grade BETWEEN 70 AND 79 THEN
v_letter_grade := 'C';

ELSIF v_final_grade BETWEEN 60 AND 69 THEN
v_letter_grade := 'D';

ELSE
v_letter_grade := 'F';

END IF;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||

v_letter_grade);

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no such student or section');
END;

Note that you may need to change the values for the variables v_student_id and
v_section_id as you see fit to test some of your answers.

Try to answer the following questions, and then execute the script:

A) What letter grade is displayed on the screen:

i) if the value of v_final_grade is equal to 85?

i i) if the value of v_final_grade is NULL?

i i i) if the value of v_final_grade is greater than 100?

L A B 4.2Lab 4.2 Exercises

69

ANSWER:

i) If the value of v_final_grade is equal to 85, the value “B” of the letter grade is
displayed on the screen.

The conditions of the ELSIF statement are evaluated in sequential order. The first condition:

v_final_grade BETWEEN 90 AND 100

evaluates to FALSE, and control is passed to the first ELSIF part of the ELSIF statement. Then,
the second condition:

v_final_grade BETWEEN 80 AND 89

evaluates to TRUE, and the letter “B” is assigned to the variable v_letter_grade.
Control is then passed to the first executable statement after END IF, and the message

Letter grade is: B

is displayed on the screen.

i i) If the value of v_final_grade is NULL, value “F” of the letter grade is displayed on the
screen.

If the value of the v_final_grade is undefined or NULL, all conditions of the ELSIF
statement evaluate to NULL (notice that they do not evaluate to FALSE). As a result, the
ELSE part of the ELSIF statement is executed, and letter “F” is assigned to the
v_letter_grade.

i i i) If the value of v_final_grade is greater than 100, value “F” of the letter grade is
displayed on the screen.

The conditions specified for the ELSIF statement cannot handle a value of
v_final_grade greater than 100. Therefore, any student who should receive a letter
grade of A+ will instead receive a letter grade of “F.” After the ELSIF statement has termi-
nated,The letter grade is: F is displayed on the screen.

B) How would you change this script so that the message v_final_grade is null is
displayed on the screen if v_final_grade is NULL?

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch04_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_student_id NUMBER := 102;
v_section_id NUMBER := 89;
v_final_grade NUMBER;
v_letter_grade CHAR(1);

BEGIN
SELECT final_grade
INTO v_final_grade
FROM enrollment
WHERE student_id = v_student_id
AND section_id = v_section_id;

IF v_final_grade IS NULL THEN
DBMS_OUTPUT.PUT_LINE('v_final_grade is null');

ELSIF v_final_grade BETWEEN 90 AND 100 THEN
v_letter_grade := 'A';

L A B 4.2
70

Lab 4.2 Exercises

ELSIF v_final_grade BETWEEN 80 AND 89 THEN
v_letter_grade := 'B';

ELSIF v_final_grade BETWEEN 70 AND 79 THEN
v_letter_grade := 'C';

ELSIF v_final_grade BETWEEN 60 AND 69 THEN
v_letter_grade := 'D';

ELSE
v_letter_grade := 'F';

END IF;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||

v_letter_grade);

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no such student or section');
END;

One more condition has been added to the ELSIF statement. The condition

v_final_grade BETWEEN 90 AND 100

becomes the first ELSIF condition. Now, if the value of v_final_grade is NULL, the message
v_final_grade is null is displayed on the screen. However, no value is assigned to the
variable v_letter_grade. The message Letter grade is: is displayed on the screen as
well.

C) How would you change this script so that the user provides the student ID and section ID?

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch04_3c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_student_id NUMBER := &sv_student_id;
v_section_id NUMBER := &sv_section_id;
v_final_grade NUMBER;
v_letter_grade CHAR(1);

BEGIN
SELECT final_grade
INTO v_final_grade
FROM enrollment
WHERE student_id = v_student_id
AND section_id = v_section_id;

IF v_final_grade BETWEEN 90 AND 100 THEN
v_letter_grade := 'A';

ELSIF v_final_grade BETWEEN 80 AND 89 THEN
v_letter_grade := 'B';

ELSIF v_final_grade BETWEEN 70 AND 79 THEN
v_letter_grade := 'C';

ELSIF v_final_grade BETWEEN 60 AND 69 THEN
v_letter_grade := 'D';

L A B 4.2Lab 4.2 Exercises

71

ELSE
v_letter_grade := 'F';

END IF;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||

v_letter_grade);

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no such student or section');
END;

D) How would you change the script to define a letter grade without specifying the upper limit of
the final grade? In the statement v_final_grade BETWEEN 90 and 100, number 100 is
the upper limit.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch04_3d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE

v_student_id NUMBER := 102;
v_section_id NUMBER := 89;
v_final_grade NUMBER;
v_letter_grade CHAR(1);

BEGIN
SELECT final_grade
INTO v_final_grade
FROM enrollment
WHERE student_id = v_student_id
AND section_id = v_section_id;

IF v_final_grade >= 90 THEN
v_letter_grade := 'A';

ELSIF v_final_grade >= 80 THEN
v_letter_grade := 'B';

ELSIF v_final_grade >= 70 THEN
v_letter_grade := 'C';

ELSIF v_final_grade >= 60 THEN
v_letter_grade := 'D';

ELSE
v_letter_grade := 'F';

END IF;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||

v_letter_grade);

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no such student or section');
END;

L A B 4.2
72

Lab 4.2 Exercises

In this example, no upper limit is specified for the variable v_final_grade because the
BETWEEN operator has been replaced with the >= operator. Thus, this script can handle a value of
v_final_grade that is greater than 100. Instead of assigning letter “F” to v_letter_
grade (in version 1.0 of the script), the letter “A” is assigned to the variable v_letter_grade.
As a result, this script produces more accurate results.

L A B 4.2Lab 4.2 Exercises

73

L A B 4 . 3

Nested IF Statements

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use nested IF statements

You have encountered different types of conditional controls: the IF-THEN statement, the IF-
THEN-ELSE statement, and the ELSIF statement. These types of conditional controls can be
nested inside one another. For example, an IF statement can be nested inside an ELSIF, and vice
versa. Consider the following:

FOR EXAMPLE

DECLARE
v_num1 NUMBER := &sv_num1;
v_num2 NUMBER := &sv_num2;
v_total NUMBER;

BEGIN
IF v_num1 > v_num2 THEN

DBMS_OUTPUT.PUT_LINE ('IF part of the outer IF');
v_total := v_num1 - v_num2;

ELSE
DBMS_OUTPUT.PUT_LINE ('ELSE part of the outer IF');
v_total := v_num1 + v_num2;

IF v_total < 0 THEN
DBMS_OUTPUT.PUT_LINE ('Inner IF');
v_total := v_total * (-1);

END IF;

END IF;
DBMS_OUTPUT.PUT_LINE ('v_total = '||v_total);

END;

The IF-THEN-ELSE statement is called an outer IF statement because it encompasses the
IF-THEN statement (shown in bold). The IF-THEN statement is called an inner IF statement
because it is enclosed by the body of the IF-THEN-ELSE statement.

L A B 4.3
74

Assume that the values for v_num1 and v_num2 are –4 and 3, respectively. First, the condition

v_num1 > v_num2

of the outer IF statement is evaluated. Because –4 is not greater than 3, the ELSE part of the
outer IF statement is executed. As a result, the message

ELSE part of the outer IF

is displayed, and the value of v_total is calculated. Next, the condition

v_total < 0

of the inner IF statement is evaluated. Because that value of v_total is equal to –l, the condi-
tion yields TRUE, and the message

Inner IF

is displayed. Next, the value of v_total is calculated again. This logic is demonstrated by the
output that the example produces:

Enter value for sv_num1: -4
old 2: v_num1 NUMBER := &sv_num1;
new 2: v_num1 NUMBER := -4;
Enter value for sv_num2: 3
old 3: v_num2 NUMBER := &sv_num2;
new 3: v_num2 NUMBER := 3;
ELSE part of the outer IF
Inner IF
v_total = 1

PL/SQL procedure successfully completed.

LOGICAL OPERATORS

So far in this chapter, you have seen examples of different IF statements. All of these examples
used test operators, such as >, <, and =, to test a condition. Logical operators can be used to
evaluate a condition as well. In addition, they allow a programmer to combine multiple condi-
tions into a single condition if such a need exists.

FOR EXAMPLE

DECLARE
v_letter CHAR(1) := '&sv_letter';

BEGIN
IF (v_letter >= 'A' AND v_letter <= 'Z') OR

(v_letter >= 'a' AND v_letter <= 'z')
THEN

DBMS_OUTPUT.PUT_LINE ('This is a letter');
ELSE

DBMS_OUTPUT.PUT_LINE ('This is not a letter');

IF v_letter BETWEEN '0' and '9' THEN

L A B 4.3Nested IF Statements

75

▼

DBMS_OUTPUT.PUT_LINE ('This is a number');
ELSE

DBMS_OUTPUT.PUT_LINE ('This is not a number');
END IF;

END IF;
END;

In this example, the condition

(v_letter >= 'A' AND v_letter <= 'Z') OR
(v_letter >= 'a' AND v_letter <= 'z')

uses the logical operators AND and OR. Two conditions:

(v_letter >= 'A' AND v_letter <= 'Z')

and

(v_letter >= 'a' AND v_letter <= 'z')

are combined into one with the help of the OR operator. It is also important to understand the
purpose of the parentheses. In this example, they are only used to improve readability, because
the AND operator takes precedence over the OR operator.

When the symbol ? is entered at runtime, this example produces the following output:

Enter value for sv_letter: ?
old 2: v_letter CHAR(1) := '&sv_letter';
new 2: v_letter CHAR(1) := '?';
This is not a letter
This is not a number

PL/SQL procedure successfully completed.

L A B 4 . 3 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

4.3.1 Use Nested IF Statements

In this exercise, you use nested IF statements. This script converts the value of a temperature from one
system to another. If the temperature is supplied in Fahrenheit, it is converted to Celsius, and vice versa.

Create the following PL/SQL script:

-- ch04_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_temp_in NUMBER := &sv_temp_in;
v_scale_in CHAR := '&sv_scale_in';

L A B 4.3
76

Lab 4.3 Exercises

v_temp_out NUMBER;
v_scale_out CHAR;

BEGIN
IF v_scale_in != 'C' AND v_scale_in != 'F' THEN

DBMS_OUTPUT.PUT_LINE ('This is not a valid scale');
ELSE

IF v_scale_in = 'C' THEN
v_temp_out := ((9 * v_temp_in) / 5) + 32;
v_scale_out := 'F';

ELSE
v_temp_out := ((v_temp_in - 32) * 5) / 9;
v_scale_out := 'C';

END IF;
DBMS_OUTPUT.PUT_LINE ('New scale is: '||v_scale_out);
DBMS_OUTPUT.PUT_LINE ('New temperature is: '||v_temp_out);

END IF;
END;

Execute the script, and then answer the following questions:

A) What output is printed on the screen if the value of 100 is entered for the temperature, and the
letter “C” is entered for the scale?

ANSWER: The output should look like the following:

Enter value for sv_temp_in: 100
old 2: v_temp_in NUMBER := &sv_temp_in;
new 2: v_temp_in NUMBER := 100;
Enter value for sv_scale_in: C
old 3: v_scale_in CHAR := '&sv_scale_in';
new 3: v_scale_in CHAR := 'C';
New scale is: F
New temperature is: 212

PL/SQL procedure successfully completed.

After the values for v_temp_in and v_scale_in have been entered, the condition

v_scale_in != 'C' AND v_scale_in != 'F'

of the outer IF statement evaluates to FALSE, and control is passed to the ELSE part of the outer IF
statement. Next, the condition

v_scale_in = 'C'

of the inner IF statement evaluates to TRUE, and the values of the variables v_temp_out and
v_scale_out are calculated. Control is then passed back to the outer IF statement, and the
new value for the temperature and the scale are displayed on the screen.

B) Try to run this script without providing a value for the temperature. What message is displayed on
the screen? Why?

ANSWER: If the value for the temperature is not entered, the script does not compile.

The compiler tries to assign a value to v_temp_in with the help of the substitution variable.
Because the value for v_temp_in has not been entered, the assignment statement fails, and
the following error message is displayed:

L A B 4.3Lab 4.3 Exercises

77

Enter value for sv_temp_in:
old 2: v_temp_in NUMBER := &sv_temp_in;
new 2: v_temp_in NUMBER := ;
Enter value for sv_scale_in: C
old 3: v_scale_in CHAR := '&sv_scale_in';
new 3: v_scale_in CHAR := 'C';

v_temp_in NUMBER := ;
*

ERROR at line 2:
ORA-06550: line 2, column 27:
PLS-00103: Encountered the symbol ";" when expecting one of the
following:
(- + mod not null <an identifier>
<a double-quoted delimited-identifier> <a bind variable> avg
count current exists max min prior sql stddev sum variance
cast <a string literal with character set specification>
<a number> <a single-quoted SQL string>
The symbol "null" was substituted for ";" to continue.

You have probably noticed that even though the mistake seems small and insignificant, the error
message is fairly long and confusing.

C) Try to run this script providing an invalid letter for the temperature scale, such as “V.”What
message is displayed on the screen, and why?

ANSWER: If an invalid letter is entered for the scale, the message This is not a valid
scale is displayed on the screen.

The condition of the outer IF statement evaluates to TRUE. As a result, the inner IF statement is not
executed, and the message This is not a valid scale is displayed on the screen.

Assume that letter “V” was typed by mistake. This example produces the following output:

Enter value for sv_temp_in: 45
old 2: v_temp_in NUMBER := &sv_temp_in;
new 2: v_temp_in NUMBER := 45;
Enter value for sv_scale_in: V
old 3: v_scale_in CHAR := '&sv_scale_in';
new 3: v_scale_in CHAR := 'V';
This is not a valid scale

PL/SQL procedure successfully completed.

D) Rewrite this script so that if an invalid letter is entered for the scale,v_temp_out is initialized to
0 and v_scale_out is initialized to C.

ANSWER: The script should look similar to the following. Changes are shown in bold. Notice that
the two final DBMS_OUTPUT.PUT_LINE statements have been moved from the body of the outer
IF statement.

-- ch04_4b.sql, version 2.0
DECLARE

v_temp_in NUMBER := &sv_temp_in;
v_scale_in CHAR := '&sv_scale_in';
v_temp_out NUMBER;
v_scale_out CHAR;

L A B 4.3
78

Lab 4.3 Exercises

BEGIN
IF v_scale_in != 'C' AND v_scale_in != 'F' THEN

DBMS_OUTPUT.PUT_LINE ('This is not a valid scale');
v_temp_out := 0;
v_scale_out := 'C';

ELSE
IF v_scale_in = 'C' THEN

v_temp_out := ((9 * v_temp_in) / 5) + 32;
v_scale_out := 'F';

ELSE
v_temp_out := ((v_temp_in - 32) * 5) / 9;
v_scale_out := 'C';

END IF;
END IF;
DBMS_OUTPUT.PUT_LINE ('New scale is: '||v_scale_out);
DBMS_OUTPUT.PUT_LINE ('New temperature is: '||v_temp_out);

END;

The preceding script produces the following output:

Enter value for sv_temp_in: 100
old 2: v_temp_in NUMBER := &sv_temp_in;
new 2: v_temp_in NUMBER := 100;
Enter value for sv_scale_in: V
old 3: v_scale_in CHAR := '&sv_scale_in';
new 3: v_scale_in CHAR := 'V';
This is not a valid scale.
New scale is: C
New temperature is: 0

PL/SQL procedure successfully completed.

L A B 4.3Lab 4.3 Exercises

79

▼ T R Y I T Y O U R S E L F

In this chapter you’ve learned about different types of IF statements. You’ve also learned that all these
different IF statements can be nested inside one another. Here are some exercises that will help you test
the depth of your understanding:

1) Rewrite ch04_1a.sql. Instead of getting information from the user for the variable v_date, define
its value with the help of the function SYSDATE. After it has been determined that a certain day
falls on the weekend, check to see if the time is before or after noon. Display the time of day
together with the day.

2) Create a new script. For a given instructor, determine how many sections he or she is teaching. If
the number is greater than or equal to 3, display a message saying that the instructor needs a
vacation. Otherwise, display a message saying how many sections this instructor is teaching.

3) Execute the following two PL/SQL blocks, and explain why they produce different output for the
same value of the variable v_num. Remember to issue the SET SERVEROUTPUT ON command
before running this script.

-- Block 1
DECLARE

v_num NUMBER := NULL;
BEGIN

IF v_num > 0 THEN
DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

ELSE
DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');

END IF;
END;

-- Block 2
DECLARE

v_num NUMBER := NULL;
BEGIN

IF v_num > 0 THEN
DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

END IF;
IF NOT (v_num > 0) THEN

DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');
END IF;

END;

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

80 Try it Yourself

C H A P T E R 5

Conditional Control: CASE
Statements

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. CASE statements

. CASE expressions

. NULLIF and COALESCE functions

In the preceding chapter, you explored the concept of conditional control via IF
and ELSIF statements. In this chapter, you will continue by examining different
types of CASE statements and expressions. You will also learn how to use
NULLIF and COALESCE functions that are considered an extension of CASE.

L A B 5 . 1

CASE Statements

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use the CASE statement

. Use the searched CASE statement

A CASE statement has two forms: CASE and searched CASE. A CASE statement allows you to
specify a selector that determines which group of actions to take. A searched CASE statement
does not have a selector; it has search conditions that are evaluated in order to determine which
group of actions to take.

CASE STATEMENTS

A CASE statement has the following structure:

CASE SELECTOR
WHEN EXPRESSION 1 THEN STATEMENT 1;
WHEN EXPRESSION 2 THEN STATEMENT 2;
...
WHEN EXPRESSION N THEN STATEMENT N;
ELSE STATEMENT N+1;

END CASE;

The reserved word CASE marks the beginning of the CASE statement. A selector is a value that
determines which WHEN clause should be executed. Each WHEN clause contains an EXPRES-
SION and one or more executable statements associated with it. The ELSE clause is optional. It
works much like the ELSE clause used in the IF-THEN-ELSE statement. END CASE is a
reserved phrase that indicates the end of the CASE statement. Figure 5.1 shows the flow of logic
from the preceding structure of the CASE statement.

Note that the selector is evaluated only once, and the WHEN clauses are evaluated sequentially.
The value of an expression is compared to the value of the selector. If they are equal, the state-
ment associated with a particular WHEN clause is executed, and subsequent WHEN clauses are
not evaluated. If no expression matches the value of the selector, the ELSE clause is executed.

L A B 5.1
82

L A B 5.1CASE Statements

83

start CASE

evaluate the selector

execute statement N+1

end

next statement

does expression 1
match selector

does expression 2
match selector

execute statement 2

execute statement 1

Yes

Yes

No

No

FIGURE 5.1
CASE statement

Recall the example of the IF-THEN-ELSE statement used in the preceding chapter:

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_user_num;

BEGIN
-- test if the number provided by the user is even
IF MOD(v_num,2) = 0 THEN

DBMS_OUTPUT.PUT_LINE (v_num||' is even number');

FOR EXAMPLE (continued)

ELSE
DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');

END IF;
DBMS_OUTPUT.PUT_LINE ('Done');

END;

Consider the new version of the same example with the CASE statement instead of the
IF-THEN-ELSE statement:

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_user_num;
v_num_flag NUMBER;

BEGIN
v_num_flag := MOD(v_num,2);

-- test if the number provided by the user is even
CASE v_num_flag

WHEN 0 THEN
DBMS_OUTPUT.PUT_LINE (v_num||’ is even number’);

ELSE
DBMS_OUTPUT.PUT_LINE (v_num||’ is odd number’);

END CASE;
DBMS_OUTPUT.PUT_LINE ('Done’);

END;

In this example, a new variable, v_num_flag, is used as a selector for the CASE statement. If
the MOD function returns 0, the number is even; otherwise, it is odd. If v_num is assigned the
value of 7, this example produces the following output:

Enter value for sv_user_num: 7
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 7;
7 is odd number
Done

PL/SQL procedure successfully completed.

SEARCHED CASE STATEMENTS

A searched CASE statement has search conditions that yield Boolean values: TRUE, FALSE, or
NULL. When a particular search condition evaluates to TRUE, the group of statements associ-
ated with this condition is executed. This is indicated as follows:

CASE
WHEN SEARCH CONDITION 1 THEN STATEMENT 1;
WHEN SEARCH CONDITION 2 THEN STATEMENT 2;

L A B 5.1
84

CASE Statements

...
WHEN SEARCH CONDITION N THEN STATEMENT N;
ELSE STATEMENT N+1;

END CASE;

When a search condition evaluates to TRUE, control is passed to the statement associated with
it. If no search condition yields TRUE, statements associated with the ELSE clause are executed.
Note that the ELSE clause is optional. Figure 5.2 shows the flow of logic from the preceding
structure of the searched CASE statement.

L A B 5.1CASE Statements

85

start CASE

execute statement N+1

end

next statement

is search condition 1 true

is search condition 2 true

execute statement 2

execute statement 1

Yes

Yes

No

No

FIGURE 5.2
Searched CASE statement

Consider the modified version of the example that you have seen previously in this lab:

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_user_num;

BEGIN
-- test if the number provided by the user is even
CASE

WHEN MOD(v_num,2) = 0 THEN
DBMS_OUTPUT.PUT_LINE (v_num||' is even number');

ELSE
DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');

END CASE;
DBMS_OUTPUT.PUT_LINE ('Done');

END;

Notice that this example is almost identical to the previous example.

In the previous example, the variable v_num_flag was used as a selector, and the result of the
MOD function was assigned to it. The value of the selector was then compared to the value of
the expression. In this example, you are using a searched CASE statement, so no selector is
present. The variable v_num is used as part of the search conditions, so there is no need to
declare the variable v_num_flag. This example produces the same output when the same
value is provided for v_num:

Enter value for sv_user_num: 7
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 7;
7 is odd number
Done

PL/SQL procedure successfully completed.

DIFFERENCES BETWEEN CASE AND SEARCHED CASE STATEMENTS

It is important to note the differences between CASE and searched CASE statements. You have
seen that the searched CASE statement does not have a selector. In addition, its WHEN clauses
contain search conditions that yield a Boolean value similar to the IF statement, not expressions
that can yield a value of any type except a PL/SQL record, an index-by-table, a nested table, a
vararray, BLOB, BFILE, or an object type. You will encounter some of these types in future chap-
ters. Consider the following two code fragments based on the examples you have seen earlier in
this chapter:

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_user_num;
v_num_flag NUMBER;

L A B 5.1
86

CASE Statements

BEGIN
v_num_flag := MOD(v_num,2);

-- test if the number provided by the user is even
CASE v_num_flag

WHEN 0 THEN
DBMS_OUTPUT.PUT_LINE (v_num||' is even number');

...
And

DECLARE
v_num NUMBER := &sv_user_num;

BEGIN
-- test if the number provided by the user is even
CASE

WHEN MOD(v_num,2) = 0 THEN
...

In the first code fragment, v_num_flag is the selector. It is a PL/SQL variable that has been
defined as NUMBER. Because the value of the expression is compared to the value of the selec-
tor, the expression must return a similar datatype. The expression 0 contains a number, so its
datatype is also numeric. In the second code fragment, each searched expression evaluates to
TRUE or FALSE, just like conditions of an IF statement.

Next, consider an example of a CASE statement that generates a syntax error because the
datatype returned by the expressions does not match the datatype assigned to the selector:

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_num;
v_num_flag NUMBER;

BEGIN
CASE v_num_flag

WHEN MOD(v_num,2) = 0 THEN
DBMS_OUTPUT.PUT_LINE (v_num||' is even number');

ELSE
DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');

END CASE;
DBMS_OUTPUT.PUT_LINE ('Done');

END;

In this example, the variable v_num_flag has been defined as a NUMBER. However, the result
of each expression yields a Boolean datatype. As a result, this example produces the following
syntax error:

Enter value for sv_num: 7
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 7;

L A B 5.1CASE Statements

87

CASE v_num_flag
*

ERROR at line 5:
ORA-06550: line 5, column 9:
PLS-00615: type mismatch found at 'V_NUM_FLAG' between CASE
operand and WHEN operands
ORA-06550: line 5, column 4:
PL/SQL: Statement ignored

Consider a modified version of this example in which v_num_flag is defined as a Boolean
variable:

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_num;
v_num_flag Boolean;

BEGIN
CASE v_num_flag

WHEN MOD(v_num,2) = 0 THEN
DBMS_OUTPUT.PUT_LINE (v_num||' is even number');

ELSE
DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');

END CASE;
DBMS_OUTPUT.PUT_LINE ('Done');

END;

If v_num is assigned a value of 7 again, this example produces the following output:

Enter value for sv_num: 7
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 7;
7 is odd number
Done

PL/SQL procedure successfully completed.

At first glance this seems to be the output you would expect. However, consider the output
produced by this example when a value of 4 is assigned to the variable v_num:

Enter value for sv_num: 4
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 4;
4 is odd number
Done

PL/SQL procedure successfully completed.

Notice that the second run of the example produces incorrect output even though it does not
generate any syntax errors. When the value 4 is assigned to the variable v_num, the expression

L A B 5.1
88

CASE Statements

▼

MOD(v_num,2) = 0 yields TRUE, and it is compared to the selector v_num_flag. However,
v_num_flag has not been initialized to any value, so it is NULL. Because NULL does not equal
TRUE, the statement associated with the ELSE clause is executed.

L A B 5 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

5.1.1 Use the CASE Statement

In this exercise, you use the CASE statement to display the name of a day on the screen based on the
day’s number in the week. In other words, if the number of the day of the week is 3, it is Tuesday.

Create the following PL/SQL script:

-- ch05_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
v_day VARCHAR2(1);

BEGIN
v_day := TO_CHAR(v_date, 'D');
CASE v_day

WHEN '1' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Sunday');

WHEN '2' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Monday');

WHEN '3' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');

WHEN '4' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');

WHEN '5' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Thursday');

WHEN '6' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Friday');

WHEN '7' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Saturday');

END CASE;
END;

Execute the script, and then answer the following questions:

A) If the value of v_date is 15-JAN-2008, what output is printed on the screen?

ANSWER: The output should look like the following:

Enter value for sv_user_date: 15-JAN-2008
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('15-JAN-2008', 'DD-MON-YYYY');
Today is Tuesday

PL/SQL procedure successfully completed.

L A B 5.1Lab 5.1 Exercises

89

When the value of 15-JAN-2008 is entered for v_date, the number of the day of the week is
determined for the variable v_day with the help of the TO_CHAR function. Next, each expression
of the CASE statement is compared sequentially to the value of the selector. Because the value of
the selector is 3, the DBMS_OUTPUT.PUT_LINE statement associated with the third WHEN clause is
executed. As a result, the message Today is Tuesday is displayed on the screen. The rest of
the expressions are not evaluated, and control is passed to the first executable statement after
END CASE.

B) How many times is the CASE selector v_day evaluated?

ANSWER: The CASE selector v_day is evaluated only once. However, the WHEN clauses are
checked sequentially. When the value of the expression in the WHEN clause equals the value of
the selector, the statements associated with the WHEN clause are executed.

C) Rewrite this script using the ELSE clause in the CASE statement.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch05_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
v_day VARCHAR2(1);

BEGIN
v_day := TO_CHAR(v_date, 'D');
CASE v_day

WHEN '1' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Sunday');

WHEN '2' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Monday');

WHEN '3' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');

WHEN '4' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');

WHEN '5' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Thursday');

WHEN '6' THEN
DBMS_OUTPUT.PUT_LINE ('Today is Friday');

ELSE
DBMS_OUTPUT.PUT_LINE (‘Today is Saturday');

END CASE;
END;

Notice that the last WHEN clause has been replaced by the ELSE clause. If 19-JAN-2008 is
provided at runtime, the example produces the following output:

Enter value for sv_user_date: 19-JAN-2008
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('19-JAN-2008', 'DD-MON-YYYY');
Today is Saturday

PL/SQL procedure successfully completed.

None of the expressions listed in the WHEN clauses is equal to the value of the selector because
the date 19-JAN-2008 falls on Saturday, which is the seventh day of the week. As a result, the ELSE
clause is executed, and the message Today is Saturday is displayed on the screen.

L A B 5.1
90

Lab 5.1 Exercises

D) Rewrite this script using the searched CASE statement.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch05_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
BEGIN

CASE
WHEN TO_CHAR(v_date, 'D') = '1' THEN

DBMS_OUTPUT.PUT_LINE ('Today is Sunday');
WHEN TO_CHAR(v_date, 'D') = '2' THEN

DBMS_OUTPUT.PUT_LINE ('Today is Monday');
WHEN TO_CHAR(v_date, 'D') = '3' THEN

DBMS_OUTPUT.PUT_LINE ('Today is Tuesday');
WHEN TO_CHAR(v_date, 'D') = '4' THEN

DBMS_OUTPUT.PUT_LINE ('Today is Wednesday');
WHEN TO_CHAR(v_date, 'D') = '5' THEN

DBMS_OUTPUT.PUT_LINE ('Today is Thursday');
WHEN TO_CHAR(v_date, 'D') = '6' THEN

DBMS_OUTPUT.PUT_LINE ('Today is Friday');
WHEN TO_CHAR(v_date, 'D') = '7' THEN

DBMS_OUTPUT.PUT_LINE ('Today is Saturday');
END CASE;

END;

Notice that in the new version of the example there is no need to declare the variable v_day
because the searched CASE statement does not need a selector. The expression that you used to
assign a value to the variable v_day is now used as part of the searched conditions. When run,
this example produces output identical to the output produced by the original version:

Enter value for sv_user_date: 15-JAN-2008
old 2: v_date DATE := TO_DATE('&sv_user_date', 'DD-MON-YYYY');
new 2: v_date DATE := TO_DATE('15-JAN-2002', 'DD-MON-YYYY');
Today is Tuesday

PL/SQL procedure successfully completed.

5.1.2 Use the Searched CASE Statement

In this exercise, you modify the script ch04_3d.sql used in the preceding chapter. The original script uses
the ELSIF statement to display a letter grade for a student registered for a specific section of course
number 25. The new version uses a searched CASE statement to achieve the same result. Try to answer
the questions before you run the script. After you have answered the questions, run the script and check
your answers. Note that you may need to change the values for the variables v_student_id and
v_section_id as you see fit to test some of your answers.

Create the following PL/SQL script:

-- ch05_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_student_id NUMBER := 102;
v_section_id NUMBER := 89;

L A B 5.1Lab 5.1 Exercises

91

v_final_grade NUMBER;
v_letter_grade CHAR(1);

BEGIN
SELECT final_grade
INTO v_final_grade
FROM enrollment
WHERE student_id = v_student_id
AND section_id = v_section_id;

CASE
WHEN v_final_grade >= 90 THEN v_letter_grade := 'A';
WHEN v_final_grade >= 80 THEN v_letter_grade := 'B';
WHEN v_final_grade >= 70 THEN v_letter_grade := 'C';
WHEN v_final_grade >= 60 THEN v_letter_grade := 'D';
ELSE v_letter_grade := 'F';

END CASE;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

END;

Try to answer the following questions, and then execute the script:

A) What letter grade is displayed on the screen:

I) if the value of v_final_grade is equal to 60?

II) if the value of v_final_grade is greater than 60 and less than 70?

III) if the value of v_final_grade is NULL?

ANSWER:

I) If the value of v_final_grade is equal to 60, value “D” of the letter grade is displayed
on the screen.

The searched conditions of the CASE statement are evaluated in sequential order. The
searched condition

WHEN v_final_grade >= 60 THEN

yields TRUE, and as a result, letter “D” is assigned to the variable v_letter_grade.
Control is then passed to the first executable statement after END IF, and the message
Letter grade is: D is displayed on the screen.

II) If the value of v_final_grade is greater than 60 and less than 70, value “D” of the letter
grade is displayed on the screen.

If the value of v_final_grade falls between 60 and 70, the searched condition

WHEN v_final_grade >= 70 THEN

yields FALSE because the value of the variable v_final_grade is less than 70. However,
the next searched condition

WHEN v_final_grade >= 60 THEN

of the CASE statement evaluates to TRUE, and letter “D” is assigned to the variable
v_letter_grade.

III) If the value of v_final_grade is NULL, value “F” of the letter grade is displayed on the
screen.

L A B 5.1
92

Lab 5.1 Exercises

All searched conditions of the CASE statement evaluate to FALSE because NULL cannot be
compared to a value. Such a comparison always yields FALSE, and as a result, the ELSE
clause is executed.

B) How would you change this script so that the message There is no final grade is
displayed if v_final_grade is null? In addition, make sure that the message Letter
grade is: is not displayed on the screen.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch05_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_student_id NUMBER := &sv_student_id;
v_section_id NUMBER := 89;
v_final_grade NUMBER;
v_letter_grade CHAR(1);

BEGIN
SELECT final_grade
INTO v_final_grade
FROM enrollment
WHERE student_id = v_student_id
AND section_id = v_section_id;

CASE -- outer CASE
WHEN v_final_grade IS NULL THEN

DBMS_OUTPUT.PUT_LINE ('There is no final grade.');
ELSE

CASE -- inner CASE
WHEN v_final_grade >= 90 THEN v_letter_grade := 'A';
WHEN v_final_grade >= 80 THEN v_letter_grade := 'B';
WHEN v_final_grade >= 70 THEN v_letter_grade := 'C';
WHEN v_final_grade >= 60 THEN v_letter_grade := 'D';
ELSE v_letter_grade := 'F';

END CASE;
-- control resumes here after inner CASE terminates
DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

END CASE;
-- control resumes here after outer CASE terminates

END;

To achieve the desired results, you nest CASE statements inside one another, as you did with IF
statements in the preceding chapter. The outer CASE statement evaluates the value of the variable
v_final_grade. If the value of v_final_grade is NULL, the message There is no
final grade. is displayed on the screen. If the value of v_final_grade is not NULL, the
ELSE part of the outer CASE statement is executed.

Notice that to display the letter grade only when there is a final grade, you have associated the
statement

DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

with the ELSE clause of the outer CASE statement. This guarantees that the message Letter
grade... is displayed on the screen only when the variable v_final_grade is not NULL.

L A B 5.1Lab 5.1 Exercises

93

To test this script fully, you have also introduced a substitution variable. This enables you to run
the script for the different values of v_student_id. For the first run, enter a value of 136, and
for the second run, enter a value of 102.

The first output displays the message There is no final grade. and does not display the
message Letter grade...:

Enter value for sv_student_id: 136
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 136;
There is no final grade.

PL/SQL procedure successfully completed.

The second run produces output similar to the output produced by the original version:

Enter value for sv_student_id: 102
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 102;
Letter grade is: A

PL/SQL procedure successfully completed.

C) Rewrite this script, changing the order of the searched conditions as shown here. Execute the
script and explain the output produced.

CASE
WHEN v_final_grade >= 60 THEN v_letter_grade := 'D';
WHEN v_final_grade >= 70 THEN v_letter_grade := 'C';
WHEN v_final_grade >= 80 THEN ...
WHEN v_final_grade >= 90 THEN ...
ELSE ...

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch05_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_student_id NUMBER := 102;
v_section_id NUMBER := 89;
v_final_grade NUMBER;
v_letter_grade CHAR(1);

BEGIN
SELECT final_grade
INTO v_final_grade
FROM enrollment
WHERE student_id = v_student_id
AND section_id = v_section_id;

CASE
WHEN v_final_grade >= 60 THEN v_letter_grade := 'D';
WHEN v_final_grade >= 70 THEN v_letter_grade := 'C';
WHEN v_final_grade >= 80 THEN v_letter_grade := 'B';

L A B 5.1
94

Lab 5.1 Exercises

WHEN v_final_grade >= 90 THEN v_letter_grade := 'A';
ELSE v_letter_grade := 'F';

END CASE;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

END;

This script produces the following output:

Letter grade is: D

PL/SQL procedure successfully completed.

The first searched condition of the CASE statement evaluates to TRUE, because the value of
v_final_grade equals 92, and it is greater than 60.

You learned earlier that the searched conditions are evaluated sequentially. Therefore, the state-
ments associated with the first condition that yields TRUE are executed, and the rest of the
searched conditions are discarded. In this example, the searched condition

WHEN v_final_grade >= 60 THEN

evaluates to TRUE, and the value of “D” is assigned to the variable v_letter_grade. Then
control is passed to the first executable statement after END CASE, and the message Letter
grade is: D is displayed on the screen. For this script to assign the letter grade correctly, the
CASE statement may be modified as follows:

CASE
WHEN v_final_grade < 60 THEN v_letter_grade := 'F';
WHEN v_final_grade < 70 THEN v_letter_grade := 'D';
WHEN v_final_grade < 80 THEN v_letter_grade := 'C';
WHEN v_final_grade < 90 THEN v_letter_grade := 'B';
WHEN v_final_grade < 100 THEN v_letter_grade := 'A';

END CASE;

However, there is a small problem with this CASE statement. What do you think happens when
v_final_grade is greater than 100?

DID YOU KNOW?

With the CASE constructs, as with the IF constructs, a group of statements that is executed generally
depends on the order in which its condition is listed.

L A B 5.1Lab 5.1 Exercises

95

L A B 5 . 2

CASE Expressions

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use CASE expressions

In Chapter 2, “General Programming Language Fundamentals,” you encountered various
PL/SQL expressions. You will recall that the result of an expression yields a single value that is
assigned to a variable. In a similar manner, a CASE expression evaluates to a single value that
then may be assigned to a variable.

A CASE expression has a structure almost identical to a CASE statement. Thus, it also has two
forms: CASE and searched CASE. Consider an example of a CASE statement used in the preced-
ing lab:

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_user_num;
v_num_flag NUMBER;

BEGIN
v_num_flag := MOD(v_num,2);

-- test if the number provided by the user is even
CASE v_num_flag

WHEN 0 THEN
DBMS_OUTPUT.PUT_LINE (v_num||' is even number');

ELSE
DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');

END CASE;
DBMS_OUTPUT.PUT_LINE ('Done');

END;

Consider the new version of the same example, with the CASE expression instead of the CASE
statement. Changes are shown in bold.

L A B 5.2
96

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_user_num;
v_num_flag NUMBER;
v_result VARCHAR2(30);

BEGIN
v_num_flag := MOD(v_num,2);

v_result :=
CASE v_num_flag

WHEN 0 THEN v_num||' is even number'
ELSE v_num||' is odd number'

END;
DBMS_OUTPUT.PUT_LINE (v_result);
DBMS_OUTPUT.PUT_LINE ('Done');

END;

In this example, a new variable, v_result, is used to hold the value returned by the CASE
expression. If v_num is assigned the value of 8, this example produces the following output:

Enter value for sv_user_num: 8
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 8;
8 is even number
Done

PL/SQL procedure successfully completed.

It is important to note some syntax differences between a CASE statement and a CASE expres-
sion. Consider the following code fragments:

CASE Statement CASE Expression
CASE v_num_flag CASE v_num_flag

WHEN 0 THEN WHEN 0 THEN
DBMS_OUTPUT.PUT_LINE v_num||' is even number'ELSE

(v_num||' is even number');
ELSE ELSE

DBMS_OUTPUT.PUT_LINE (v_num||' is odd number');
v_num||' is odd number'

END CASE; END;

In the CASE statement, the WHEN and ELSE clauses each contain a single executable statement.
Each executable statement is terminated by a semicolon. In the CASE expression, the WHEN
and ELSE clauses each contain an expression that is not terminated by a semicolon. One semi-
colon is present after the reserved word END, which terminates the CASE expression. Finally,
the CASE statement is terminated by the reserved phrase END CASE.

L A B 5.2CASE Expressions

97

Next, consider another version of the previous example, with the searched CASE expression:

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_user_num;
v_result VARCHAR2(30);

BEGIN
v_result :=

CASE
WHEN MOD(v_num,2) = 0 THEN v_num||' is even number'
ELSE v_num||' is odd number'

END;
DBMS_OUTPUT.PUT_LINE (v_result);
DBMS_OUTPUT.PUT_LINE ('Done');

END;

In this example, there is no need to declare the variable v_num_flag because the searched
CASE expression does not need a selector value, and the result of the MOD function is incor-
porated into the search condition. When run, this example produces output identical to the
previous version:

Enter value for sv_user_num: 8
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 8;
8 is even number
Done

PL/SQL procedure successfully completed.

You learned earlier that a CASE expression returns a single value that is then assigned to a vari-
able. In the examples you saw earlier, this assignment operation was accomplished via the
assignment operator, :=. You may recall that there is another way to assign a value to a PL/SQL
variable—via a SELECT INTO statement. Consider an example of the CASE expression used in
a SELECT INTO statement:

FOR EXAMPLE

DECLARE
v_course_no NUMBER;
v_description VARCHAR2(50);
v_prereq VARCHAR2(35);

BEGIN
SELECT course_no, description,

CASE
WHEN prerequisite IS NULL THEN

'No prerequisite course required'
ELSE TO_CHAR(prerequisite)

L A B 5.2
98

CASE Expressions

END prerequisite
INTO v_course_no, v_description, v_prereq
FROM course
WHERE course_no = 20;

DBMS_OUTPUT.PUT_LINE ('Course: '||v_course_no);
DBMS_OUTPUT.PUT_LINE ('Description: '||v_description);
DBMS_OUTPUT.PUT_LINE ('Prerequisite: '||v_prereq);

END;

This example displays the course number, a description, and the number of a prerequisite
course on the screen. Furthermore, if a given course does not have a prerequisite course, a
message saying so is displayed on the screen. To achieve the desired results, a CASE expression
is used as one of the columns in the SELECT INTO statement. Its value is assigned to the vari-
able v_prereq. Notice that there is no semicolon after the reserved word END of the CASE
expression.

This example produces the following output:

Course: 20
Description: Intro to Information Systems
Prerequisite: No prerequisite course required

PL/SQL procedure successfully completed.

Course 20 does not have a prerequisite course. As a result, the searched condition

WHEN prerequisite IS NULL THEN

evaluates to TRUE, and the value No prerequisite course required is assigned to the
variable v_prereq.

It is important to note why the function TO_CHAR is used in the ELSE clause of the CASE
expression:

CASE
WHEN prerequisite IS NULL THEN

'No prerequisite course required'
ELSE TO_CHAR(prerequisite)

END

A CASE expression returns a single value and thus a single datatype. Therefore, it is important
to ensure that regardless of what part of a CASE expression is executed, it always returns the
same datatype. In the preceding CASE expression, the WHEN clause returns the VARCHAR2
datatype. The ELSE clause returns the value of the PREREQUISITE column of the COURSE
table. This column has been defined as NUMBER, so it is necessary to convert it to the string
datatype.

When the TO_CHAR function is not used, the CASE expression causes the following syntax
error:

L A B 5.2CASE Expressions

99

▼

ELSE prerequisite
*

ERROR at line 9:
ORA-06550: line 9, column 19:
PL/SQL: ORA-00932: inconsistent datatypes
ORA-06550: line 6, column 4:
PL/SQL: SQL Statement ignored

L A B 5 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

5.2.1 Use the CASE Expression

In this exercise, you modify the script ch05_2a.sql. Instead of using a searched CASE statement, you use a
searched CASE expression to display a letter grade for a student registered for a specific section of
course number 25.

Answer the following questions:

A) Modify the script ch05_2a.sql. Substitute the searched CASE expression for the CASE statement,
and assign the value returned by the expression to the variable v_letter_grade.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch05_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_student_id NUMBER := 102;
v_section_id NUMBER := 89;
v_final_grade NUMBER;
v_letter_grade CHAR(1);

BEGIN
SELECT final_grade
INTO v_final_grade
FROM enrollment
WHERE student_id = v_student_id
AND section_id = v_section_id;

v_letter_grade :=
CASE

WHEN v_final_grade >= 90 THEN 'A'
WHEN v_final_grade >= 80 THEN 'B'
WHEN v_final_grade >= 70 THEN 'C'
WHEN v_final_grade >= 60 THEN 'D'
ELSE 'F'

END;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

END;

L A B 5.2
100

Lab 5.2 Exercises

In the original version of the script (ch05_2a.sql), you used a searched CASE statement to assign a
value to the variable v_letter_grade as follows:

CASE
WHEN v_final_grade >= 90 THEN v_letter_grade := 'A';
WHEN v_final_grade >= 80 THEN v_letter_grade := 'B';
WHEN v_final_grade >= 70 THEN v_letter_grade := 'C';
WHEN v_final_grade >= 60 THEN v_letter_grade := 'D';
ELSE v_letter_grade := 'F';

END CASE;

Notice that the variable v_letter_grade is used as part of the CASE statement. In the new
version of the script, the CASE expression

CASE
WHEN v_final_grade >= 90 THEN 'A'
WHEN v_final_grade >= 80 THEN 'B'
WHEN v_final_grade >= 70 THEN 'C'
WHEN v_final_grade >= 60 THEN 'D'
ELSE 'F'

END;

does not contain any references to the variable v_letter_grade. Each search condition is
evaluated. As soon as a particular condition evaluates to TRUE, its corresponding value is returned
and then assigned to the variable v_letter_grade.

B) Run the script you just created, and explain the output produced.

ANSWER: The output should look similar to the following:

Letter grade is: A

PL/SQL procedure successfully completed.

The SELECT INTO statement returns a value of 92 that is assigned to the variable v_final_
grade. As a result, the first searched condition of the CASE expression evaluates to TRUE and
returns a value of A. This value is then assigned to the variable v_letter_grade and is
displayed on the screen via the DBMS_OUTPUT.PUT_LINE statement.

C) Rewrite the script you created in part A) so that the result of the CASE expression is assigned to
the v_letter_grade variable via a SELECT INTO statement.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch05_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_student_id NUMBER := 102;
v_section_id NUMBER := 89;
v_letter_grade CHAR(1);

BEGIN
SELECT CASE

WHEN final_grade >= 90 THEN 'A'
WHEN final_grade >= 80 THEN 'B'
WHEN final_grade >= 70 THEN 'C'
WHEN final_grade >= 60 THEN 'D'

L A B 5.2Lab 5.2 Exercises

101

ELSE 'F'
END

INTO v_letter_grade
FROM enrollment
WHERE student_id = v_student_id
AND section_id = v_section_id;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Letter grade is: '||v_letter_grade);

END;

In the previous version of the script, the variable v_final_grade was used to hold the value
of the numeric grade:

SELECT final_grade
INTO v_final_grade
FROM enrollment
WHERE student_id = v_student_id
AND section_id = v_section_id;

The CASE expression used this value to assign the proper letter grade to the variable
v_letter_grade:

CASE
WHEN v_final_grade >= 90 THEN 'A'
WHEN v_final_grade >= 80 THEN 'B'
WHEN v_final_grade >= 70 THEN 'C'
WHEN v_final_grade >= 60 THEN 'D'
ELSE 'F'

END;

In the current version of the script, the CASE expression is used as part of the SELECT INTO state-
ment. As a result, the CASE expression can use the column FINAL_GRADE:

CASE
WHEN final_grade >= 90 THEN 'A'
WHEN final_grade >= 80 THEN 'B'
WHEN final_grade >= 70 THEN 'C'
WHEN final_grade >= 60 THEN 'D'
ELSE 'F'

END

as part of the searched conditions to assign a value to the variable v_letter_grade.

L A B 5.2
102

Lab 5.2 Exercises

L A B 5.3
103

L A B 5 . 3

NULLIF and COALESCE
Functions

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use the NULLIF function

. Use the COALESCE function

The NULLIF and COALESCE functions are defined by the ANSI 1999 standard as “CASE abbre-
viations.” Both functions can be used as a variation on the CASE expression.

THE NULLIF FUNCTION

The NULLIF function compares two expressions. If they are equal, the function returns NULL;
otherwise, it returns the value of the first expression. NULLIF has the following structure:

NULLIF (expression1, expression2)

If expression1 is equal to expression2, NULLIF returns NULL. If expression1 does not equal expres-
sion2, NULLIF returns expression1. Note that the NULLIF function does the opposite of the NVL
function. If the first expression is NULL, NVL returns the second expression. If the first expres-
sion is not NULL, NVL returns the first expression.

The NULLIF function is equivalent to the following CASE expression:

CASE
WHEN expression1 = expression2 THEN NULL
ELSE expression1

END

Consider the following example of NULLIF:

FOR EXAMPLE

DECLARE
v_num NUMBER := &sv_user_num;
v_remainder NUMBER;

FOR EXAMPLE (continued)

BEGIN
-- calculate the remainder and if it is zero return NULL
v_remainder := NULLIF(MOD(v_num,2),0);
DBMS_OUTPUT.PUT_LINE ('v_remainder: '||v_remainder);

END;

This example is somewhat similar to an example you saw earlier in this chapter. A value is
assigned to the variable v_num at runtime. Then this value is divided by 2, and its remainder is
compared to 0 via the NULLIF function. If the remainder equals 0, the NULLIF function returns
NULL; otherwise, it returns the remainder. The value returned by the NULLIF function is stored
in the variable v_remainder and is displayed on the screen via the DBMS_OUTPUT.PUT_
LINE statement. When run, the example produces the following output:

For the first run, 5 is assigned to the variable v_num:

Enter value for sv_user_num: 5
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 5;
v_remainder: 1

PL/SQL procedure successfully completed.

For the second run, 4 is assigned to the variable v_num:

Enter value for sv_user_num: 4
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := 4;
v_remainder:

PL/SQL procedure successfully completed.

In the first run, 5 is not divisible by 2, so the NULLIF function returns the value of the remain-
der. In the second run, 4 is divisible by 2, so the NULLIF function returns NULL as the value
of the remainder.

WATCH OUT!

The NULLIF function has a restriction: You cannot assign a literal NULL to expression1. You learned
about literals in Chapter 2. Consider another output produced by the preceding example. For this
run, the variable v_num is assigned NULL:

Enter value for sv_user_num: NULL
old 2: v_num NUMBER := &sv_user_num;
new 2: v_num NUMBER := NULL;
v_remainder:

PL/SQL procedure successfully completed.

L A B 5.3
104

NULLIF and COALESCE Functions

When NULL is assigned to the variable v_num, both the MOD and NULLIF functions return NULL.
This example does not produce any errors, because the literal NULL is assigned to the variable
v_num, and it is not used as the first expression of the NULLIF function. Next, consider this modified
version of the preceding example:

DECLARE
v_remainder NUMBER;

BEGIN
-- calculate the remainder and if it is zero return NULL
v_remainder := NULLIF(NULL,0);
DBMS_OUTPUT.PUT_LINE ('v_remainder: '||v_remainder);

END;

In the previous version of this example, the MOD function is used as expression1. In this version, the
literal NULL is used in place of the MOD function, and as a result, this example produces the follow-
ing syntax error:

v_remainder := NULLIF(NULL,0);
*

ERROR at line 5:
ORA-06550: line 5, column 26:
PLS-00619: the first operand in the NULLIF expression must not be NULL
ORA-06550: line 5, column 4:
PL/SQL: Statement ignored

THE COALESCE FUNCTION

The COALESCE function compares each expression to NULL from the list of expressions and
returns the value of the first non-null expression. The COALESCE function has the following
structure:

COALESCE (expression1, expression2, ..., expressionN)

If expression1 evaluates to NULL, expression2 is evaluated. If expression2 does not evaluate to
NULL, the function returns expression2. If expression2 also evaluates to NULL, the next expres-
sion is evaluated. If all expressions evaluate to NULL, the function returns NULL.

Note that the COALESCE function is like a nested NVL function:

NVL(expression1, NVL(expression2, NVL(expression3,...)))

The COALESCE function can also be used as an alternative to a CASE expression. For example,

COALESCE (expression1, expression2)

is equivalent to

CASE
WHEN expression1 IS NOT NULL THEN expression1
ELSE expression2

END

L A B 5.3NULLIF and COALESCE Functions

105

If more than two expressions need to be evaluated,

COALESCE (expression1, expression2, ..., expressionN)

is equivalent to

CASE
WHEN expression1 IS NOT NULL THEN expression1
ELSE COALESCE (expression2, ..., expressionN)

END

which in turn is equivalent to

CASE
WHEN expression1 IS NOT NULL THEN expression1
WHEN expression2 IS NOT NULL THEN expression2
...
ELSE expressionN

END

Consider the following example of the COALESCE function:

FOR EXAMPLE

SELECT e.student_id, e.section_id, e.final_grade, g.numeric_grade,
COALESCE(e.final_grade, g.numeric_grade, 0) grade

FROM enrollment e, grade g
WHERE e.student_id = g.student_id
AND e.section_id = g.section_id
AND e.student_id = 102
AND g.grade_type_code = 'FI';

This SELECT statement returns the following output:

STUDENT_ID SECTION_ID FINAL_GRADE NUMERIC_GRADE GRADE
---------- ---------- ----------- ------------- ----------

102 86 85 85
102 89 92 92 92

The value of GRADE equals the value of the NUMERIC_GRADE in the first row. The
COALESCE function compares the value of FINAL_GRADE to NULL. If it is NULL, the value
of NUMERIC_GRADE is compared to NULL. Because the value of NUMERIC_GRADE is not
NULL, the COALESCE function returns the value of NUMERIC_GRADE. The value of GRADE
equals the value of FINAL_GRADE in the second row. The COALESCE function returns the
value of FINAL_GRADE because it is not NULL.

The COALESCE function shown in the preceding example is equivalent to the following NVL
statement and CASE expressions:

NVL(e.final_grade, NVL(g.numeric_grade, 0))

CASE
WHEN e.final_grade IS NOT NULL THEN e.final_grade

L A B 5.3
106

NULLIF and COALESCE Functions

▼

ELSE COALESCE(g.numeric_grade, 0)
END

and

CASE
WHEN e.final_grade IS NOT NULL THEN e.final_grade
WHEN g.numeric_grade IS NOT NULL THEN g.numeric_grade
ELSE 0

END

L A B 5 . 3 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

5.3.1 The NULLIF Function

In this exercise, you will modify the following script. Instead of using the searched CASE expression, you
use the NULLIF function. Note that the SELECT INTO statement uses the ANSI 1999 SQL standard.

BY THE WAY

You will find detailed explanations and examples of the statements using the new ANSI 1999 SQL
standard in Appendix C and in Oracle help. Throughout this book we try to provide you with exam-
ples illustrating both standards; however, our main focus is on PL/SQL features rather than SQL.

-- ch05_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_final_grade NUMBER;
BEGIN

SELECT CASE
WHEN e.final_grade = g.numeric_grade THEN NULL
ELSE g.numeric_grade

END
INTO v_final_grade
FROM enrollment e
JOIN grade g
ON (e.student_id = g.student_id
AND e.section_id = g.section_id)

WHERE e.student_id = 102
AND e.section_id = 86
AND g.grade_type_code = 'FI';

DBMS_OUTPUT.PUT_LINE ('Final grade: '||v_final_grade);
END;

In the preceding script, the value of the final grade is compared to the value of the numeric grade. If
these values are equal, the CASE expression returns NULL. In the opposite case, the CASE expression

L A B 5.3Lab 5.3 Exercises

107

returns the numeric grade. The result of the CASE expression is then displayed on the screen via the
DBMS_OUTPUT.PUT_LINE statement.

Answer the following questions:

A) Modify script ch05_4a.sql. Substitute the NULLIF function for the CASE expression.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch05_4b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_final_grade NUMBER;
BEGIN

SELECT NULLIF(g.numeric_grade, e.final_grade)
INTO v_final_grade
FROM enrollment e
JOIN grade g
ON (e.student_id = g.student_id
AND e.section_id = g.section_id)

WHERE e.student_id = 102
AND e.section_id = 86
AND g.grade_type_code = 'FI';

DBMS_OUTPUT.PUT_LINE ('Final grade: '||v_final_grade);
END;

In the original version of the script, you used the CASE expression to assign a value to the variable
v_final_grade as follows:

CASE
WHEN e.final_grade = g.numeric_grade THEN NULL
ELSE g.numeric_grade

END

The value stored in the column FINAL_GRADE is compared to the value stored in the column
NUMERIC_GRADE. If these values are equal, NULL is assigned to the variable v_final_grade;
otherwise, the value stored in the column NUMERIC_GRADE is assigned to the variable
v_final_grade.

In the new version of the script, you substitute the CASE expression with the NULLIF function as
follows:

NULLIF(g.numeric_grade, e.final_grade)

It is important to note that the NUMERIC_GRADE column is referenced first in the NULLIF function.
You will recall that the NULLIF function compares expression1 to expression2. If expression1 equals
expression2, the NULLIF function returns NULL. If expression1 does not equal expression2, the
NULLIF function returns expression1. To return the value stored in the column NUMERIC_GRADE,
you must reference it first in the NULLIF function.

B) Run the modified version of the script, and explain the output produced.

ANSWER: The output should look similar to the following:

Final grade: 85

PL/SQL procedure successfully completed.

L A B 5.3
108

Lab 5.3 Exercises

The NULLIF function compares values stored in the columns NUMERIC_GRADE and FINAL_GRADE.
Because the column FINAL_GRADE is not populated, the NULLIF function returns the value stored
in the column NUMERIC_GRADE. This value is assigned to the variable v_final_grade and is
displayed on the screen with the help of the DBMS_OUTPUT.PUT_LINE statement.

C) Change the order of columns in the NULLIF function. Run the modified version of the script, and
explain the output produced.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch05_4c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_final_grade NUMBER;
BEGIN

SELECT NULLIF(e.final_grade, g.numeric_grade)
INTO v_final_grade
FROM enrollment e
JOIN grade g
ON (e.student_id = g.student_id
AND e.section_id = g.section_id)

WHERE e.student_id = 102
AND e.section_id = 86
AND g.grade_type_code = 'FI';

DBMS_OUTPUT.PUT_LINE ('Final grade: '||v_final_grade);
END;

The example produces the following output:

Final grade:

PL/SQL procedure successfully completed.

In this version of the script, the columns NUMERIC_GRADE and FINAL_GRADE are listed in the
opposite order, as follows:

NULLIF(e.final_grade, g.numeric_grade)

The value stored in the column FINAL_GRADE is compared to the value stored in the column
NUMERIC_GRADE. Because these values are not equal, the NULLIF function returns the value of
the column FINAL_GRADE. This column is not populated, so NULL is assigned to the variable
v_final_grade.

5.3.2 Use the COALESCE Function

In this exercise, you modify the following script. Instead of using the searched CASE expression, you use
the COALESCE function.

-- ch05_5a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_num1 NUMBER := &sv_num1;
v_num2 NUMBER := &sv_num2;
v_num3 NUMBER := &sv_num3;
v_result NUMBER;

BEGIN

L A B 5.3Lab 5.3 Exercises

109

v_result := CASE
WHEN v_num1 IS NOT NULL THEN v_num1
ELSE

CASE
WHEN v_num2 IS NOT NULL THEN v_num2
ELSE v_num3

END
END;

DBMS_OUTPUT.PUT_LINE ('Result: '||v_result);
END;

In the preceding script, the list consisting of three numbers is evaluated as follows: If the value of the first
number is not NULL, the outer CASE expression returns the value of the first number. Otherwise, control
is passed to the inner CASE expression, which evaluates the second number. If the value of the second
number is not NULL, the inner CASE expression returns the value of the second number; in the opposite
case, it returns the value of the third number.

The preceding CASE expression is equivalent to the following two CASE expressions:

CASE
WHEN v_num1 IS NOT NULL THEN v_num1
WHEN v_num2 IS NOT NULL THEN v_num2
ELSE v_num3

END

CASE
WHEN v_num1 IS NOT NULL THEN v_num1
ELSE COALESCE(v_num2, v_num3)

END

Answer the following questions:

A) Modify script ch05_5a.sql. Substitute the COALESCE function for the CASE expression.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch05_5b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_num1 NUMBER := &sv_num1;
v_num2 NUMBER := &sv_num2;
v_num3 NUMBER := &sv_num3;
v_result NUMBER;

BEGIN
v_result := COALESCE(v_num1, v_num2, v_num3);
DBMS_OUTPUT.PUT_LINE ('Result: '||v_result);

END;

In the original version of the script you used a nested CASE expression to assign a value to the
variable v_result as follows:

CASE
WHEN v_num1 IS NOT NULL THEN v_num1
ELSE

CASE
WHEN v_num2 IS NOT NULL THEN v_num2

L A B 5.3
110

Lab 5.3 Exercises

ELSE v_num3
END

END;

In the new version of the script, you substitute the COALESCE function for the CASE expression, as
follows:

COALESCE(v_num1, v_num2, v_num3)

Based on the values stored in the variables v_num1,v_num2, and v_num3, the COALESCE
function returns the first non-null variable.

B) Run the modified version of the script, and explain the output produced. Use the following values
for the list of numbers: NULL, 1, 2.

ANSWER: The output should look similar to the following:

Enter value for sv_num1: null
old 2: v_num1 NUMBER := &sv_num1;
new 2: v_num1 NUMBER := null;
Enter value for sv_num2: 1
old 3: v_num2 NUMBER := &sv_num2;
new 3: v_num2 NUMBER := 1;
Enter value for sv_num3: 2
old 4: v_num3 NUMBER := &sv_num3;
new 4: v_num3 NUMBER := 2;
Result: 1

PL/SQL procedure successfully completed.

The COALESCE function evaluates its expressions in sequential order. The variable v_num1 is
evaluated first. Because the variable v_num1 is NULL, the COALESCE function evaluates the vari-
able v_num2 next. Because the variable v_num2 is not NULL, the COALESCE function returns
the value of the variable v_num2. This value is assigned to the variable v_result and is
displayed on the screen via a DBMS_OUTPUT.PUT_LINE statement.

C) What output is produced by the modified version of the script if NULL is provided for all three
numbers? Try to explain your answer before you run the script.

ANSWER: The variables v_num1,v_num2, and v_num3 are evaluated in sequential order by
the COALESCE function. When NULL is assigned to these variables, none of the evaluations
produces a non-null result. So the COALESCE function returns NULL when all expressions evaluate
to NULL.

The output should look similar to the following:

Enter value for sv_num1: null
old 2: v_num1 NUMBER := &sv_num1;
new 2: v_num1 NUMBER := null;
Enter value for sv_num2: null
old 3: v_num2 NUMBER := &sv_num2;
new 3: v_num2 NUMBER := null;
Enter value for sv_num3: null
old 4: v_num3 NUMBER := &sv_num3;
new 4: v_num3 NUMBER := null;
Result:

PL/SQL procedure successfully completed.

L A B 5.3Lab 5.3 Exercises

111

▼ T R Y I T Y O U R S E L F

In this chapter you’ve learned about different types of CASE statements and expressions. You’ve also
learned about NULLIF and COALESCE functions. Here are some exercises based on the scripts you
created in the “Try It Yourself” section in Chapter 4,“Conditional Control: IF Statements” that will help you
test the depth of your understanding:

1) Create the following script. Modify the script you created in Chapter 4, project 1 of the “Try It
Yourself” section. You can use either the CASE statement or the searched CASE statement. The
output should look similar to the output produced by the example you created in Chapter 4.

2) Create the following script. Modify the script you created in Chapter 4, project 2. You can use
either the CASE statement or the searched CASE statement. The output should look similar to the
output produced by the example you created in Chapter 4.

3) Execute the following two SELECT statements, and explain why they produce different output:

SELECT e.student_id, e.section_id, e.final_grade, g.numeric_grade,
COALESCE(g.numeric_grade, e.final_grade) grade

FROM enrollment e, grade g
WHERE e.student_id = g.student_id
AND e.section_id = g.section_id
AND e.student_id = 102
AND g.grade_type_code = 'FI';

SELECT e.student_id, e.section_id, e.final_grade, g.numeric_grade,
NULLIF(g.numeric_grade, e.final_grade) grade

FROM enrollment e, grade g
WHERE e.student_id = g.student_id
AND e.section_id = g.section_id
AND e.student_id = 102
AND g.grade_type_code = 'FI';

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

112 Try it Yourself

C H A P T E R 6

Iterative Control: Part I

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Simple loops

. WHILE loops

. Numeric FOR loops

Generally, computer programs are written because certain tasks must be
executed a number of times. For example, many companies need to process
transactions on a monthly basis. A program allows the completion of this task by
being executed at the end of each month.

Similarly, programs incorporate instructions that need to be executed repeatedly.
For example, a program may need to write a number of records to a table. By
using a loop, the program can write the desired number of records to a table. In
other words, loops are programming facilities that allow a set of instructions to
be executed repeatedly.

PL/SQL has four types of loops: simple loops, WHILE loops, numeric FOR loops,
and cursor FOR loops. This chapter explores the first three kinds of loops. The
next chapter explores how these types of loops can be nested within each other.
In addition, you will learn about the CONTINUE and CONTINUE WHEN state-
ments, introduced in Oracle 11g. Cursor FOR loops are discussed in Chapters
11 and 12.

L A B 6 . 1

Simple Loops

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use simple loops with EXIT conditions

. Use simple loops with EXIT WHEN conditions

A simple loop, as you can tell from its name, is the most basic kind of loop. It has the follow-
ing structure:

LOOP
STATEMENT 1;
STATEMENT 2;
...
STATEMENT N;

END LOOP;

The reserved word LOOP marks the beginning of the simple loop. Statements 1 through N are
a sequence of statements that is executed repeatedly. These statements consist of one or more
standard programming structures. END LOOP is a reserved phrase that indicates the end of the
loop construct.

This flow of logic is illustrated in Figure 6.1.

Every time the loop iterates, a sequence of statements is executed, and then control is passed
back to the top of the loop. The sequence of statements is executed an infinite number of times,
because no statement specifies when the loop must terminate. Hence, a simple loop is called an
infinite loop because there is no means to exit the loop. A properly constructed loop needs an
exit condition that determines when the loop is complete. This exit condition has two forms:
EXIT and EXIT WHEN.

EXIT STATEMENT

The EXIT statement causes a loop to terminate when the EXIT condition evaluates to TRUE. The
EXIT condition is evaluated with the help of an IF statement. When the EXIT condition is eval-
uated to TRUE, control is passed to the first executable statement after the END LOOP
statement. This is indicated by the following:

LOOP
STATEMENT 1;
STATEMENT 2;

L A B 6.1
114

FIGURE 6.1
A simple loop

DID YOU KNOW?

The EXIT statement is valid only when placed inside a loop. When placed outside a loop, it causes a
syntax error. To avoid this error, use the RETURN statement to terminate a PL/SQL block before its
normal end is reached:

BEGIN
DBMS_OUTPUT.PUT_LINE ('Line 1');
RETURN;
DBMS_OUTPUT.PUT_LINE ('Line 2');

END;

This example produces the following output:

Line 1
PL/SQL procedure successfully completed.

Because the RETURN statement terminates the PL/SQL block, the second DBMS_OUTPUT.PUT_LINE
statement is never executed.

L A B 6.1Simple Loops

115

start loop

execute statements

end loop

IF CONDITION THEN
EXIT;

END IF;
END LOOP;
STATEMENT 3;

In this example, you can see that after the EXIT condition evaluates to TRUE, control is passed
to STATEMENT 3, which is the first executable statement after the END LOOP statement.

EXIT WHEN STATEMENT

The EXIT WHEN statement causes a loop to terminate only if the EXIT WHEN condition eval-
uates to TRUE. Control is then passed to the first executable statement after the END LOOP
statement. The structure of a loop using an EXIT WHEN clause is as follows:

LOOP
STATEMENT 1;
STATEMENT 2;
EXIT WHEN CONDITION;

END LOOP;
STATEMENT 3;

Figure 6.2 shows this flow of logic from the EXIT and EXIT WHEN statements.

L A B 6.1
116

Simple Loops

start loop

end loop

is exit condition true

execute statements

Yes

No

next statement

FIGURE 6.2
A simple loop with the EXIT condition

▼

Figure 6.2 shows that during each iteration, the loop executes a sequence of statements. Control
is then passed to the loop’s EXIT condition. If the EXIT condition evaluates to FALSE, control
is passed to the top of the loop. The sequence of statements is executed repeatedly until the
EXIT condition evaluates to TRUE. When the EXIT condition evaluates to TRUE, the loop is
terminated, and control is passed to the next executable statement following the loop.

Figure 6.2 also shows that the EXIT condition is included in the body of the loop. Therefore,
the decision about loop termination is made inside the body of the loop, and the body of the
loop, or a part of it, is always executed at least once. However, the number of iterations of the
loop depends on the evaluation of the EXIT condition and is not known until the loop
completes.

As mentioned earlier, Figure 6.2 illustrates that the flow of logic for the structure of EXIT and
EXIT WHEN statements is the same even though two different forms of the EXIT condition are
used. In other words,

IF CONDITION THEN
EXIT;

END IF;

is equivalent to

EXIT WHEN CONDITION;

WATCH OUT!

It is important to note that when the EXIT statement is used without an EXIT condition, the simple
loop executes only once. Consider the following example.

DECLARE
v_counter NUMBER := 0;

BEGIN
LOOP

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
EXIT;

END LOOP;
END;

This example produces the following output:

v_counter = 0
PL/SQL procedure successfully completed.

Because the EXIT statement is used without an EXIT condition, the loop is terminated as soon as the
EXIT statement is executed.

L A B 6 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

L A B 6.1Lab 6.1 Exercises

117

6.1.1 Use Simple Loops with EXIT Conditions

In this exercise, you use the EXIT condition to terminate a simple loop, and a special variable,
v_counter, which keeps count of the loop iterations. With each iteration of the loop, the value of
v_counter is incremented and displayed on the screen.

Create the following PL/SQL script:

-- ch06_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 0;
BEGIN

LOOP
-- increment loop counter by one
v_counter := v_counter + 1;
DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

-- if EXIT condition yields TRUE exit the loop
IF v_counter = 5 THEN

EXIT;
END IF;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

The statement

v_counter := v_counter + 1;

is used often when working with a loop. Variable v_counter is a loop counter that tracks the number
of times the statements in the body of the loop are executed. You will notice that for each iteration of
the loop, its value is incremented by 1. However, it is very important to initialize the variable
v_counter for successful termination of the loop. If v_counter is not initialized, its value is NULL.
Then, the statement

v_counter := v_counter + 1;

never increments the value of v_counter by 1, because NULL + 1 evaluates to NULL. As a result, the
EXIT condition never yields TRUE, and the loop becomes infinite.

Execute the script, and then answer the following questions.

A) What output appears on the screen?

ANSWER: The output should look like the following:

v_counter = 1
v_counter = 2
v_counter = 3
v_counter = 4
v_counter = 5
Done...

PL/SQL procedure successfully completed.

L A B 6.1
118

Lab 6.1 Exercises

Every time the loop is run, the statements in the body of the loop are executed. In this script, the
value of v_counter is incremented by 1 and displayed on the screen. The EXIT condition is
evaluated for each value of v_counter. When the value of v_counter increases to 5, the
loop is terminated. For the first iteration of the loop, the value of v_counter is equal to 1, and it
is displayed on the screen, and so forth. After the loop has terminated,Done... is displayed on
the screen.

B) How many times did the loop execute?

ANSWER: The loop executed five times.

When the value of v_counter increases to 5, the IF statement

IF v_counter = 5 THEN
EXIT;

END IF;

evaluates to TRUE, and the loop is terminated.

The loop counter tracks how many times the loop is executed. You will notice that in this exercise,
the maximum value of v_counter is equal to the number of times the loop is iterated.

C) What is the EXIT condition for this loop?

ANSWER: The EXIT condition for this loop is v_counter = 5.

The EXIT condition is used as a part of an IF statement. The IF statement evaluates the EXIT condi-
tion to TRUE or FALSE, based on the current value of v_counter.

D) How many times is the value of the variable v_counter displayed if the
DBMS_OUTPUT.PUT_LINE statement is used after the END IF statement?

ANSWER: The value of v_counter is displayed four times.

LOOP
v_counter := v_counter + 1;
IF v_counter = 5 THEN

EXIT;
END IF;
DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

END LOOP;

Assume that the loop has already iterated four times. Then the value of v_counter is incre-
mented by 1, so v_counter is equal to 5. Next, the IF statement evaluates the EXIT condition.
The EXIT condition yields TRUE, and the loop is terminated. The DBMS_OUTPUT.PUT_LINE state-
ment is not executed for the fifth iteration of the loop, because control is passed to the next
executable statement after the END LOOP statement. Thus, only four values of v_counter are
displayed on the screen.

E) Why does the number of times the loop counter value is displayed on the screen differ when the
DBMS_OUTPUT.PUT_LINE statement is placed after the END IF statement?

ANSWER: When the DBMS_OUTPUT.PUT_LINE statement is placed before the IF statement, the
value of v_counter is displayed on the screen first. Then the IF statement evaluates it. The fifth
iteration of the loop v_counter = 5 is displayed first, and then the EXIT condition yields TRUE,
and the loop is terminated.

When the DBMS_OUTPUT.PUT_LINE statement is placed after the END IF statement, the EXIT
condition is evaluated before the DBMS_OUTPUT.PUT_LINE statement is executed. Thus, for the
fifth iteration of the loop, the EXIT condition evaluates to TRUE before the value of v_counter
is displayed on the screen by the DBMS_OUTPUT.PUT_LINE statement.

L A B 6.1Lab 6.1 Exercises

119

F) Rewrite this script using the EXIT WHEN condition instead of the EXIT condition so that it
produces the same result.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch06_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 0;
BEGIN

LOOP
-- increment loop counter by one
v_counter := v_counter + 1;
DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

-- if EXIT WHEN condition yields TRUE exit the loop
EXIT WHEN v_counter = 5;

END LOOP;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

Notice that the IF statement has been replaced by the EXIT WHEN statement. The rest of the state-
ments in the body of the loop do not need to be changed.

6.1.2 Use Simple Loops with EXIT WHEN Conditions

In this exercise, you use the EXIT WHEN condition to terminate the loop. You add a number of sections
for a given course number. Try to answer the questions before you run the script. After you have
answered the questions, run the script and check your answers.

Create the following PL/SQL script:

-- ch06_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_course course.course_no%type := 430;
v_instructor_id instructor.instructor_id%type := 102;
v_sec_num section.section_no%type := 0;

BEGIN
LOOP

-- increment section number by one
v_sec_num := v_sec_num + 1;
INSERT INTO section

(section_id, course_no, section_no, instructor_id,
created_date, created_by, modified_date,
modified_by)

VALUES
(section_id_seq.nextval, v_course, v_sec_num,
v_instructor_id, SYSDATE, USER, SYSDATE, USER);

-- if number of sections added is four exit the loop
EXIT WHEN v_sec_num = 4;

L A B 6.1
120

Lab 6.1 Exercises

END LOOP;

-- control resumes here
COMMIT;

END;

Notice that the INSERT statement contains an Oracle built-in function called USER. At first glance, this
function looks like a variable that has not been declared. This function returns the name of the current
user. In other words, it returns the login name that you use when connecting to Oracle.

Try to answer the following questions, and then execute the script:

A) How many sections will be added for the specified course number?

ANSWER: Four sections will be added for the given course number.

B) How many times will the loop be executed if the course number is invalid?

ANSWER: The loop will be partially executed once.

If the course number is invalid, the INSERT statement

INSERT INTO section
(section_id, course_no, section_no, instructor_id,
created_date, created_by, modified_date, modified_by)

VALUES
(section_id_seq.nextval, v_course, v_sec_num,
v_instructor_id, SYSDATE, USER, SYSDATE, USER);

causes the integrity constraint violation error shown next. As soon as this error occurs, the
program terminates. This termination causes partial execution of the loop because the EXIT WHEN
statement does not execute even once.

DECLARE
*
ERROR at line 1:
ORA-02291: integrity constraint (STUDENT.SECT_CRSE_FK) violated -
parent key not found
ORA-06512: at line 9

Note that line 9 refers to the INSERT statement inside the body of the loop. Therefore, if the
course number is invalid, the loop partially executes once.

C) How would you change this script to add ten sections for the specified course number?

ANSWER: The script should look similar to the following script. Changes are shown in bold.

-- ch06_2b.sql, version 2.0
DECLARE

v_course course.course_no%type := 430;
v_instructor_id instructor.instructor_id%type := 102;
v_sec_num section.section_no%type := 0;

BEGIN
LOOP

-- increment section number by one
v_sec_num := v_sec_num + 1;
INSERT INTO section

(section_id, course_no, section_no, instructor_id,
created_date, created_by, modified_date,

L A B 6.1Lab 6.1 Exercises

121

modified_by)
VALUES

(section_id_seq.nextval, v_course, v_sec_num,
v_instructor_id, SYSDATE, USER, SYSDATE, USER);

-- if number of sections added is ten exit the loop
EXIT WHEN v_sec_num = 10;

END LOOP;

-- control resumes here
COMMIT;

END;

To add ten sections for the given course number, the test value of v_sec_num in the EXIT condi-
tion is changed to 10.

Note that before you execute this version of the script you need to delete records from the
SECTION table that were added when you executed the original example. If you did not run the
original script, you do not need to delete records from the SECTION table.

The SECTION table has a unique constraint defined on the COURSE_NO and SECTION_NO
columns. In other words, the combination of course and section numbers allows you to uniquely
identify each row of the table. When the original script is executed, it creates four records in the
SECTION table for course number 430, section numbers 1, 2, 3, and 4. When the new version of this
script is executed, the unique constraint defined on the SECTION table is violated because there
already are records corresponding to course number 430 and section numbers 1, 2, 3, and 4.
Therefore, these rows must be deleted from the SECTION table as follows:

DELETE FROM section
WHERE course_no = 430
AND section_no <= 4;

COMMIT;

As soon as these records are deleted from the SECTION table, you can execute the new version of
the script.

D) How would you change the script to add only even-numbered sections (the maximum section
number is 10) for the specified course number?

ANSWER: The script should look similar to the following script. Changes are shown in bold. To
run this script, you need to delete records from the SECTION table that were added by the previ-
ous version. With each iteration of the loop, the value of v_sec_num should be incremented by
two, as shown:

-- ch06_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_course course.course_no%type := 430;
v_instructor_id instructor.instructor_id%type := 102;
v_sec_num section.section_no%type := 0;

BEGIN
LOOP

-- increment section number by two
v_sec_num := v_sec_num + 2;
INSERT INTO section

L A B 6.1
122

Lab 6.1 Exercises

(section_id, course_no, section_no, instructor_id,
created_date, created_by, modified_date,
modified_by)

VALUES
(section_id_seq.nextval, v_course, v_sec_num,
v_instructor_id, SYSDATE, USER, SYSDATE, USER);

-- if number of sections added is ten exit the loop
EXIT WHEN v_sec_num = 10;

END LOOP;

-- control resumes here
COMMIT;

END;

E) How many times does the loop execute in this case?

ANSWER: The loop executes five times when even-numbered sections are added for the given
course number.

L A B 6.1Lab 6.1 Exercises

123

L A B 6 . 2

WHILE Loops

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use WHILE loops

A WHILE loop has the following structure:

WHILE CONDITION LOOP
STATEMENT 1;
STATEMENT 2;
...
STATEMENT N;

END LOOP;

The reserved word WHILE marks the beginning of a loop construct. The word CONDITION is
the test condition of the loop that evaluates to TRUE or FALSE. The result of this evaluation
determines whether the loop is executed. Statements 1 through N are a sequence of statements
that is executed repeatedly. The END LOOP is a reserved phrase that indicates the end of the
loop construct.

This flow of logic is illustrated in Figure 6.3.

Figure 6.3 shows that the test condition is evaluated prior to each iteration of the loop. If the
test condition evaluates to TRUE, the sequence of statements is executed, and control is passed
to the top of the loop for the next evaluation of the test condition. If the test condition evalu-
ates to FALSE, the loop is terminated, and control is passed to the next executable statement
following the loop.

As mentioned earlier, before the body of the loop can be executed, the test condition must be
evaluated. The decision as to whether to execute the statements in the body of the loop is made
prior to entering the loop. As a result, the loop is not executed if the test condition yields FALSE.

FOR EXAMPLE

DECLARE
v_counter NUMBER := 5;

BEGIN
WHILE v_counter < 5 LOOP

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

L A B 6.2
124

-- decrement the value of v_counter by one
v_counter := v_counter - 1;

END LOOP;
END;

In this example, the body of the loop is not executed at all because the test condition of the loop
evaluates to FALSE.

L A B 6.2WHILE Loops

125

is test condition true

Yes

execute statements

next statement

end loop

No

FIGURE 6.3
WHILE loop

The test condition must evaluate to TRUE at least once for the statements in the loop to execute.
However, it is important to ensure that the test condition will eventually evaluate to FALSE, as
well. Otherwise, the WHILE loop executes continually.

FOR EXAMPLE

DECLARE
v_counter NUMBER := 1;

BEGIN
WHILE v_counter < 5 LOOP

DBMS_OUTPUT.PUT_LINE('v_counter = '||v_counter);

-- decrement the value of v_counter by one
v_counter := v_counter - 1;

END LOOP;
END;

This is an example of an infinite WHILE loop. The test condition always evaluates to TRUE,
because the value of v_counter is decremented by 1 and is always less than 5.

DID YOU KNOW?

Boolean expressions can also be used to determine when the loop should terminate.

DECLARE
v_test BOOLEAN := TRUE;

BEGIN
WHILE v_test LOOP

STATEMENTS;
IF TEST_CONDITION THEN

v_test := FALSE;
END IF;

END LOOP;
END;

When using a Boolean expression as a test condition of a loop, you must make sure that a different
value is eventually assigned to the Boolean variable to exit the loop. Otherwise, the loop becomes
infinite.

PREMATURE TERMINATION OF THE LOOP

The EXIT and EXIT WHEN statements can be used inside the body of a WHILE loop. If the
EXIT condition evaluates to TRUE before the test condition evaluates to FALSE, the loop is
terminated prematurely. If the test condition yields FALSE before the EXIT condition yields
TRUE, there is no premature termination of the loop. This is indicated as follows:

WHILE TEST_CONDITION LOOP
STATEMENT 1;
STATEMENT 2;

IF EXIT_CONDITION THEN
EXIT;

END IF;
END LOOP;
STATEMENT 3;

or

WHILE TEST_CONDITION LOOP
STATEMENT 1;
STATEMENT 2;

L A B 6.2
126

WHILE Loops

EXIT WHEN EXIT_CONDITION;
END LOOP;
STATEMENT 3;

Consider the following example.

FOR EXAMPLE

DECLARE
v_counter NUMBER := 1;

BEGIN
WHILE v_counter <= 5 LOOP

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

IF v_counter = 2 THEN
EXIT;

END IF;

v_counter := v_counter + 1;
END LOOP;

END;

Before the statements in the body of the WHILE loop are executed, the test condition

v_counter <= 5

must evaluate to TRUE. Then, the value of v_counter is displayed on the screen and incre-
mented by one. Next, the EXIT condition

v_counter = 2

is evaluated, and as soon as the value of v_counter reaches 2, the loop is terminated.

Notice that according to the test condition, the loop should execute five times. However, the
loop is executed only twice, because the EXIT condition is present inside the body of the loop.
Therefore, the loop terminates prematurely.

Now try to reverse the test condition and EXIT condition as shown in the following example.

FOR EXAMPLE

DECLARE
v_counter NUMBER := 1;

BEGIN
WHILE v_counter <= 2 LOOP

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
v_counter := v_counter + 1;

IF v_counter = 5 THEN
EXIT;

END IF;
END LOOP;

END;

L A B 6.2WHILE Loops

127

▼

In this example, the test condition is

v_counter <= 2

and the EXIT condition is

v_counter = 5

In this case, the loop is executed twice as well. However, it does not terminate prematurely,
because the EXIT condition never evaluates to TRUE. As soon as the value of v_counter
reaches 3, the test condition evaluates to FALSE, and the loop is terminated.

Both examples, when run, produce the following output:

v_counter = 1
v_counter = 2

PL/SQL procedure successfully completed.

These examples demonstrate not only the use of the EXIT statement inside the body of the
WHILE loop, but also a bad programming practice. In the first example, the test condition can
be changed so that there is no need to use an EXIT condition, because essentially they both are
used to terminate the loop. In the second example, the EXIT condition is useless, because its
terminal value is never reached. You should never use unnecessary code in your program.

L A B 6 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

6.2.1 Use WHILE Loops

In this exercise, you use a WHILE loop to calculate the sum of the integers between 1 and 10.

Create the following PL/SQL script:

-- ch06_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 1;
v_sum NUMBER := 0;

BEGIN
WHILE v_counter <= 10 LOOP

v_sum := v_sum + v_counter;
DBMS_OUTPUT.PUT_LINE ('Current sum is: '||v_sum);

-- increment loop counter by one
v_counter := v_counter + 1;

END LOOP;

-- control resumes here

L A B 6.2
128

Lab 6.2 Exercises

DBMS_OUTPUT.PUT_LINE ('The sum of integers between 1 '||
'and 10 is: '||v_sum);

END;

Execute the script, and then answer the following questions:

A) What output appears on the screen?

ANSWER: The output should look like the following:

Current sum is: 1
Current sum is: 3
Current sum is: 6
Current sum is: 10
Current sum is: 15
Current sum is: 21
Current sum is: 28
Current sum is: 36
Current sum is: 45
Current sum is: 55
The sum of integers between 1 and 10 is: 55

PL/SQL procedure successfully completed.

Every time the loop is run, the value of v_counter is checked in the test condition. While the
value of v_counter is less than or equal to 10, the statements inside the body of the loop are
executed. In this script, the value of v_sum is calculated and displayed on the screen. Next, the
value of v_counter is incremented, and control is passed to the top of the loop. When the
value of v_counter increases to 11, the loop is terminated.

For the first iteration of the loop, the value of v_sum is equal to 1, according to the statement

v_sum := v_sum + v_counter

After the value of v_sum is calculated, the value of v_counter is incremented by 1. Then, for
the second iteration of the loop, the value of v_sum is equal to 3, because 2 is added to the old
value of v_sum.

After the loop has terminated,“The sum of integers...” is displayed on the screen.

B) What is the test condition for this loop?

ANSWER: The test condition for this loop is v_counter <= 10.

C) How many times did the loop execute?

ANSWER: The loop executed 10 times.

As soon as the value of v_counter reaches 11, the test condition

v_counter <= 10

evaluates to FALSE, and the loop is terminated.

As mentioned earlier, the loop counter tracks the number of times the loop is executed. You will
notice that in this exercise, the maximum value of v_counter is equal to the number of times
the loop is iterated.

L A B 6.2Lab 6.2 Exercises

129

D) How many times will the loop execute

I) if v_counter is not initialized?

II) if v_counter is initialized to 0?

III) if v_counter is initialized to 10?

ANSWER:

I) If the value of v_counter is not initialized to a value, the loop does not execute.

For the loop to execute at least once, the test condition must evaluate to TRUE at least
once. If the value of v_counter is only declared and not initialized, it is NULL. It is impor-
tant to remember that null variables cannot be compared to other variables or values.
Therefore, the test condition

v_counter <= 10

never evaluates to TRUE, and the loop is not executed.

II) If v_counter is initialized to 0, the loop executes 11 times instead of 10, because the
minimum value of v_counter has decreased by 1.

When v_counter is initialized to 0, the range of integers for which the test condition of
the loop evaluates to TRUE becomes 0 to 10. The given range of the integers has 11
numbers. As a result, the loop iterates 11 times.

III) If v_counter is initialized to 10, the loop executes once.

When the initial value of v_counter equals 10, the test condition evaluates to TRUE for
the first iteration of the loop. Inside the body of the loop, the value of v_counter is
incremented by 1. As a result, for the second iteration of the loop, the test condition evalu-
ates to FALSE, because 11 is not less than or equal to 10, and control is passed to the next
executable statement after the loop.

E) How does the value of v_sum change based on the initial value of v_counter from the
preceding question?

ANSWER: When v_counter is not initialized, the loop is not executed. Therefore, the value of
v_sum does not change from its initial value; it stays 0.

When v_counter is initialized to 0, the loop is executed 11 times. The value of v_sum is calcu-
lated 11 times as well. However, after the loop completes, the value of v_sum is 55, because 0 is
added to v_sum during the first iteration of the loop.

When v_counter is initialized to 10, the loop is executed once. As a result, the value of v_sum
is incremented only once by 10. After the loop is complete, the value of v_sum is equal to 10.

F) What is the value of v_sum if it is not initialized?

ANSWER: The value of v_sum is NULL if it is not initialized to some value.

The value of v_sum in the statement

v_sum := v_sum + 1

is always equal to NULL, because NULL + 1 is NULL. It was mentioned previously that NULL vari-
ables cannot be compared to other variable or values. Similarly, calculations cannot be performed
on null variables.

G) How would you change the script to calculate the sum of the even integers between 1 and 100?

ANSWER: The script should be similar to the following. Changes are shown in bold.

Notice that the value of v_counter is initialized to 2, and with each iteration of the loop, the
value of v_counter is incremented by 2 as well.

L A B 6.2
130

Lab 6.2 Exercises

-- ch06_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 2;
v_sum NUMBER := 0;

BEGIN
WHILE v_counter <= 100 LOOP

v_sum := v_sum + v_counter;
DBMS_OUTPUT.PUT_LINE ('Current sum is: '||v_sum);

-- increment loop counter by two
v_counter := v_counter + 2;

END LOOP;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('The sum of even integers between '||

'1 and 100 is: '||v_sum);
END;

L A B 6.2Lab 6.2 Exercises

131

L A B 6 . 3

Numeric FOR Loops

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use numeric FOR loops with the IN option

. Use numeric FOR loops with the REVERSE option

A numeric FOR loop is called numeric because it requires an integer as its terminating value. Its
structure is as follows:

FOR loop_counter IN [REVERSE] lower_limit..upper_limit LOOP
STATEMENT 1;
STATEMENT 2;
...
STATEMENT N;

END LOOP;

The reserved word FOR marks the beginning of a FOR loop construct. The variable
loop_counter is an implicitly defined index variable. There is no need to define the loop
counter in the declaration section of the PL/SQL block. This variable is defined by the loop
construct. lower_limit and upper_limit are two integer numbers or expressions that
evaluate to integer values at runtime, and the double dot (..) serves as the range operator.
lower_limit and upper_limit define the number of iterations for the loop, and their
values are evaluated once, for the first iteration of the loop. At this point, it is determined how
many times the loop will iterate. Statements 1 through N are a sequence of statements that is
executed repeatedly. END LOOP is a reserved phrase that marks the end of the loop construct.

The reserved word IN or IN REVERSE must be present when the loop is defined. If the
REVERSE keyword is used, the loop counter iterates from the upper limit to the lower limit.
However, the syntax for the limit specification does not change. The lower limit is always refer-
enced first. This flow of logic is illustrated in Figure 6.4.

L A B 6.3
132

FIGURE 6.4
Numeric FOR loop

Figure 6.4 shows that the loop counter is initialized to the lower limit for the first iteration of
the loop only. However, the value of the loop counter is tested for each iteration of the loop. As
long as the value of v_counter ranges from the lower limit to the upper limit, the statements
inside the body of the loop are executed. When the value of the loop counter does not satisfy
the range specified by the lower limit and the upper limit, control is passed to the first
executable statement outside the loop.

L A B 6.3Numeric FOR Loops

133

initialize counter

is counter between lower
and upper limits

Yes

execute statements

increment counter

next statement

No

FOR EXAMPLE

BEGIN
FOR v_counter IN 1..5 LOOP

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
END LOOP;

END;

In this example, there is no declaration section for the PL/SQL block because the only variable
used, v_counter, is the loop counter. Numbers 1..5 specify the range of the integer numbers
for which this loop is executed.

Notice that there is no statement

v_counter := v_counter + 1;

anywhere, inside or outside the body of the loop. The value of v_counter is incremented
implicitly by the FOR loop itself.

This example produces the following output when run:

v_counter = 1
v_counter = 2
v_counter = 3
v_counter = 4
v_counter = 5

PL/SQL procedure successfully completed.

As a matter of fact, if you include the statement

v_counter := v_counter + 1;

in the body of the loop, the PL/SQL script compiles with errors. Consider the following
example:

FOR EXAMPLE

BEGIN
FOR v_counter IN 1..5 LOOP

v_counter := v_counter + 1;
DBMS_OUTPUT.PUT_LINE ('v_counter = '|| v_counter);

END LOOP;
END;

When this example is run, the following error message is produced:

BEGIN
*
ERROR at line 1:
ORA-06550: line 3, column 7:

L A B 6.3
134

Numeric FOR Loops

PLS-00363: expression 'V_COUNTER' cannot be used as an assignment
target
ORA-06550: line 3, column 7:
PL/SQL: Statement ignored

WATCH OUT!

It is important to remember that the loop counter is implicitly defined and incremented when a
numeric FOR loop is used. As a result, it cannot be referenced outside the body of the FOR loop.
Consider the following example:

BEGIN
FOR v_counter IN 1..5 LOOP

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
END LOOP;
DBMS_OUTPUT.PUT_LINE

('Counter outside the loop is '||v_counter);
END;

When this example is run, the following error message is produced:

('Counter outside the loop is '||v_counter);
*

ERROR at line 6:
ORA-06550: line 6, column 40:
PLS-00201: identifier 'V_COUNTER' must be declared
ORA-06550: line 5, column 4:
PL/SQL: Statement ignored

Because the loop counter is declared implicitly by the loop, the variable v_counter cannot be
referenced outside the loop. As soon as the loop completes, the loop counter ceases to exist.

USING THE REVERSE OPTION IN THE LOOP

Earlier in this section, you encountered two options that are available when the value of the loop
counter is evaluated, IN and IN REVERSE. You have seen examples that demonstrate the usage
of the IN option for the loop. The next example demonstrates the usage of the IN REVERSE
option for the loop.

FOR EXAMPLE

BEGIN
FOR v_counter IN REVERSE 1..5 LOOP
DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

END LOOP;
END;

When this example is run, the following output is produced:

v_counter = 5
v_counter = 4
v_counter = 3

L A B 6.3Numeric FOR Loops

135

v_counter = 2
v_counter = 1

PL/SQL procedure successfully completed.

As mentioned, even though the REVERSE keyword is present, the lower limit of the loop is
referenced first. However, it is important to note that the loop counter is evaluated from the
upper limit to the lower limit. For the first iteration of the loop, v_counter (in our case it is
a loop counter) is initialized to 5 (upper limit). Then its value is displayed on the screen. For
the second iteration of the loop, the value of v_counter is decreased by 1 and displayed on
the screen.

Notice that the number of times the body of the loop is executed is not affected by the option
used, IN or IN REVERSE. Only the values assigned to the lower limit and the upper limit deter-
mine how many times the body of the loop is executed.

PREMATURE TERMINATION OF THE LOOP

The EXIT and EXIT WHEN statements covered in the previous labs can be used inside the body
of a numeric FOR loop as well. If the EXIT condition evaluates to TRUE before the loop counter
reaches its terminal value, the FOR loop is terminated prematurely. If the loop counter reaches
its terminal value before the EXIT condition yields TRUE, the FOR loop doesn’t terminate
prematurely. Consider the following:

FOR LOOP_COUNTER IN LOWER_LIMIT..UPPER_LIMIT LOOP
STATEMENT 1;
STATEMENT 2;
IF EXIT_CONDITION THEN

EXIT;
END IF;

END LOOP;
STATEMENT 3;

or

FOR LOOP_COUNTER IN LOWER_LIMIT..UPPER_LIMIT LOOP
STATEMENT 1;
STATEMENT 2;
EXIT WHEN EXIT_CONDITION;

END LOOP;
STATEMENT 3;

Consider the following example of a FOR loop that uses the EXIT WHEN condition. This condi-
tion causes the loop to terminate prematurely.

L A B 6.3
136

Numeric FOR Loops

▼

FOR EXAMPLE

BEGIN
FOR v_counter IN 1..5 LOOP

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
EXIT WHEN v_counter = 3;

END LOOP;
END;

Notice that according to the range specified, the loop should execute five times. However, the
loop is executed only three times because the EXIT condition is present inside the body of the
loop. Thus, the loop terminates prematurely.

L A B 6 . 3 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

6.3.1 Use Numeric FOR Loops with the IN Option

In this exercise, you use a numeric FOR loop to calculate a factorial of 10 (10! = 1*2*3...*10).

Create the following PL/SQL script:

-- ch06_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_factorial NUMBER := 1;
BEGIN

FOR v_counter IN 1..10 LOOP
v_factorial := v_factorial * v_counter;

END LOOP;

-- control resumes here
DBMS_OUTPUT.PUT_LINE

('Factorial of ten is: '||v_factorial);
END;

Execute the script, and then answer the following questions:

A) What output appears on the screen?

ANSWER: The output should look like the following:

Factorial of ten is: 3628800

PL/SQL procedure successfully completed.

L A B 6.3Lab 6.3 Exercises

137

Every time the loop is run, the value of v_counter is incremented by 1 implicitly, and the
current value of the factorial is calculated. As soon as the value of v_counter increases to 10,
the loop is run for the last time. At this point, the final value of the factorial is calculated, and the
loop is terminated. After the loop has terminated, control is passed to the first statement outside
the loop—in this case, DBMS_OUTPUT.PUT_LINE.

B) How many times did the loop execute?

ANSWER: The loop executed ten times according to the range specified by the loop’s lower and
upper limits. In this example, the lower limit equals 1, and the upper limit equals 10.

C) What is the value of the loop counter before the loop?

ANSWER: The loop counter is defined implicitly by the loop. Therefore, before the loop, the loop
counter is undefined and has no value.

D) What is the value of the loop counter after the loop?

ANSWER: Similarly, after the loop has completed, the loop counter is undefined again and can
hold no value.

E) How many times does the loop execute if the value of v_counter is incremented by 5 inside
the body of the loop?

ANSWER: If the value of v_counter is incremented by 5 inside the body of the loop, the
PL/SQL block does not compile successfully. As a result, it does not execute.

In this example, variable v_counter is a loop counter. Therefore, its value can be incremented
only implicitly by the loop. Any executable statement that causes v_counter to change its
current value leads to compilation errors.

F) Rewrite this script using the REVERSE option. What will the value of v_factorial be after the
loop is completed?

ANSWER: The script should look similar to the following. Changes are shown in bold.

The value of v_factorial equals 3628800 after the loop is completed.

-- ch06_4b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_factorial NUMBER := 1;
BEGIN

FOR v_counter IN REVERSE 1..10 LOOP
v_factorial := v_factorial * v_counter;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE

('Factorial of ten is: '||v_factorial);
END;

This script produces the following output:

Factorial of ten is: 3628800

PL/SQL procedure successfully completed.

The value of v_factorial computed by this loop is equal to the value of v_factorial
computed by the original loop. You will notice that in some cases it does not matter which option,
IN or REVERSE, you use to obtain the final result. You will also notice that in other cases, the result
produced by the loop can differ significantly.

L A B 6.3
138

Lab 6.3 Exercises

6.3.2 Use Numeric FOR Loops with the REVERSE Option

In this exercise, you use the REVERSE option to specify the range of numbers used by the loop to iterate.
You display a list of even numbers starting from 10 and going to 0. Try to answer the questions before
you run the script. After you have answered the questions, run the script and check your results.

Create the following PL/SQL script:

-- ch06_5a.sql, version 1.0
SET SERVEROUTPUT ON
BEGIN

FOR v_counter IN REVERSE 0..10 LOOP
-- if v_counter is even, display its value on the
-- screen
IF MOD(v_counter, 2) = 0 THEN

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
END IF;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

As in the previous exercises, answer the following questions, and then execute the script:

A) What output appears on the screen?

ANSWER: The output should look like the following:

v_counter = 10
v_counter = 8
v_counter = 6
v_counter = 4
v_counter = 2
v_counter = 0
Done...

PL/SQL procedure successfully completed.

Notice that the values of v_counter are displayed in decreasing order from 10 to 0 because
the REVERSE option is used. Remember that, regardless of the option used, the lower limit is
referenced first.

B) How many times does the body of the loop execute?

ANSWER: The body of the loop executes 11 times, because the range of the integer numbers
specified varies from 0 to 10.

C) How many times is the value of v_counter displayed on the screen?

ANSWER: The value of v_counter is displayed on the screen six times, because the IF state-
ment evaluates to TRUE only for even integers.

D) How would you change this script to start the list from 0 and go up to 10?

ANSWER: The script should look similar to the following. Changes are shown in bold.

To start the list of integers from 0 and go up to 10, the IN option needs to be used in the loop:

-- ch06_5b.sql, version 2.0
SET SERVEROUTPUT ON

L A B 6.3Lab 6.3 Exercises

139

BEGIN
FOR v_counter IN 0..10 LOOP

-- if v_counter is even, display its value on the
-- screen
IF MOD(v_counter, 2) = 0 THEN

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
END IF;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

This example produces the following output:

v_counter = 0
v_counter = 2
v_counter = 4
v_counter = 6
v_counter = 8
v_counter = 10
Done...

PL/SQL procedure successfully completed.

Notice that when the IN option is used, the value of v_counter is initialized to 0, and, with each
iteration of the loop, it is incremented by 1. When the REVERSE option is used,v_counter is
initialized to 10, and its value is decremented by 1 with each iteration of the loop.

E) How would you change the script to display only odd numbers on the screen?

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch06_5c.sql, version 3.0
SET SERVEROUTPUT ON
BEGIN

FOR v_counter IN REVERSE 0..10 LOOP
-- if v_counter is odd, display its value on the
-- screen
IF MOD(v_counter, 2) != 0 THEN

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
END IF;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

L A B 6.3
140

Lab 6.3 Exercises

Notice that only the test condition of the IF statement is changed to display the list of odd inte-
gers, and the following output is produced:

v_counter = 9
v_counter = 7
v_counter = 5
v_counter = 3
v_counter = 1
Done...

PL/SQL procedure successfully completed.

F) How many times does the loop execute in this case?

ANSWER: In this case the loop executes 11 times.

Based on the test condition used in the IF statement, even or odd integers are displayed on the
screen. Depending on the test condition, the number of times v_counter is displayed on the
screen varies. However, the loop is executed 11 times as long as the number range specified is 0
to 10.

L A B 6.3Lab 6.3 Exercises

141

▼ T R Y I T Y O U R S E L F

In this chapter you’ve learned about simple loops, WHILE loops, and numeric FOR loops. Here are some
projects that will help you test the depth of your understanding:

1) Rewrite script ch06_1a.sql using a WHILE loop instead of a simple loop. Make sure that the output
produced by this script does not differ from the output produced by the script ch06_1a.sql.

2) Rewrite script ch06_3a.sql using a numeric FOR loop instead of a WHILE loop. Make sure that the
output produced by this script does not differ from the output produced by the script
ch06_3a.sql.

3) Rewrite script ch06_4a.sql using a simple loop instead of a numeric FOR loop. Make sure that the
output produced by this script does not differ from the output produced by the script
ch06_4a.sql.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

142 Try it Yourself

C H A P T E R 7

Iterative Control: Part II

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

.. TheCONTINUEThe CONTINUE statement

.. Nested loops

In the preceding chapter you explored three types of loops: simple loops,
WHILE loops, and numeric FOR loops. You also learned that these types of loops
can be terminated with the EXIT condition. In this chapter you will learn about
a new PL/SQL feature introduced in Oracle 11g called the CONTINUE condi-
tion. Similar to the EXIT condition, the CONTINUE condition has two forms,
CONTINUE and CONTINUE WHEN, and it may be used inside the body of the
loop only. You will also learn how to nest these types of loops inside one another.

L A B 7 . 1

The CONTINUE Statement

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use the CONTINUE statement

. Use the CONTINUE WHEN statement

As mentioned previously, the CONTINUE condition has two forms: CONTINUE and
CONTINUE WHEN.

THE CONTINUE STATEMENT

The CONTINUE statement causes a loop to terminate its current iteration and pass control to
the next iteration of the loop when the CONTINUE condition evaluates to TRUE. The
CONTINUE condition is evaluated with the help of an IF statement. When the CONTINUE
condition evaluates to TRUE, control is passed to the first executable statement in the body of
the loop. This is indicated by the following:

LOOP
STATEMENT 1;
STATEMENT 2;
IF CONTINUE_CONDITION THEN

CONTINUE;
END IF;

EXIT WHEN EXIT_CONDITION;
END LOOP;
STATEMENT 3;

In this example, you can see that after the CONTINUE condition evaluates to TRUE, control is
passed to STATEMENT 1, which is the first executable statement inside the body of the loop. In
this case, it causes partial execution of the loop as the statements following the CONTINUE
condition inside the body of the loop are not executed.

WATCH OUT!

It is important to note that when the CONTINUE statement is used without a CONTINUE condition,
the current iteration of the loop terminates unconditionally, and control of the execution is passed
to the first executable statement in the body of the loop. Consider the following example:

DECLARE
v_counter NUMBER := 0;

L A B 7.1
144

BEGIN
LOOP

DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);
CONTINUE;

v_counter := v_counter + 1;
EXIT WHEN v_counter = 5;

END LOOP;
END;

Because the CONTINUE statement is used without a CONTINUE condition, this loop never reaches its
EXIT WHEN condition and, as a result, never terminates.

THE CONTINUE WHEN STATEMENT

The CONTINUE WHEN statement causes a loop to terminate its current iteration and pass
control to the next iteration of the loop only if the CONTINUE WHEN condition evaluates to
TRUE. Control is then passed to the first executable statement inside the body of the loop. The
structure of a loop using a CONTINUE WHEN clause is as follows:

LOOP
STATEMENT 1;
STATEMENT 2;
CONTINUE WHEN CONTINUE_CONDITION;

EXIT WHEN EXIT_CONDITION;
END LOOP;
STATEMENT 3;

Figure 7.1 shows the flow of logic from the CONTINUE and CONTINUE WHEN statements.

Figure 7.1 shows that during each iteration, the loop executes a sequence of statements. Control
is then passed to the CONTINUE condition of the loop. If the CONTINUE condition evaluates
to TRUE, control is passed to the top of the loop. The sequence of statements is executed repeat-
edly until the CONTINUE condition evaluates to FALSE. When the CONTINUE condition eval-
uates to FALSE, control is passed to the next executable statement in the body of the loop, which
in this case evaluates the EXIT condition.

As mentioned earlier, Figure 7.1 illustrates that the flow of logic for the CONTINUE and
CONTINUE WHEN statements is the same. In other words,

IF CONDITION THEN
CONTINUE;

END IF;

is equivalent to

CONTINUE WHEN CONDITION;

L A B 7.1The CONTINUE Statement

145

▼

FIGURE 7.1
A simple loop with the CONTINUE condition

WATCH OUT!

The CONTINUE and CONTINUE WHEN statements are valid only when placed inside a loop. When
placed outside a loop, they cause a syntax error. To avoid this error, use the RETURN statement, as
shown in the preceding chapter.

DID YOU KNOW?

That CONTINUE and CONTINUE WHEN statements can be used with all types of loops.

L A B 7 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

7.1.1 Use the CONTINUE Statement

In this exercise, you use a modified version of the ch06_1a.sql script you created in the previous chapter.
The original script uses the EXIT condition to terminate a simple loop, and a special variable,
v_counter, which keeps count of the loop iterations. With each iteration of the loop, the value of

L A B 7.1
146

Lab 7.1 Exercises

start loop

end loop

execute statements

next statement

is continue condition true

is exit condition true

YesYes

NoNo

NoNo

YesYes

Yes

No

No

Yes

v_counter is incremented and displayed on the screen. The newly created script adds the CONTINUE
condition, which affects the output produced by the script.

Create the following PL/SQL script:

-- ch07_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 0;
BEGIN

LOOP
-- increment loop counter by one
v_counter := v_counter + 1;
DBMS_OUTPUT.PUT_LINE

('before continue condition, v_counter = '||
v_counter);

-- if CONTINUE condition yields TRUE pass control to the
-- first executable statement of the loop
IF v_counter < 3 THEN

CONTINUE;
END IF;

DBMS_OUTPUT.PUT_LINE
('after continue condition, v_counter = '||
v_counter);

-- if EXIT condition yields TRUE exit the loop
IF v_counter = 5 THEN

EXIT;
END IF;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

Execute the script, and then answer the following questions:

A) What output appears on the screen?

ANSWER: The output should look like the following:

before continue condition, v_counter = 1
before continue condition, v_counter = 2
before continue condition, v_counter = 3
after continue condition, v_counter = 3
before continue condition, v_counter = 4
after continue condition, v_counter = 4
before continue condition, v_counter = 5
after continue condition, v_counter = 5
Done...

PL/SQL procedure successfully completed.

L A B 7.1Lab 7.1 Exercises

147

B) Explain the output produced by the script.

ANSWER: For the first two iterations of the loop (the values of v_counter are 1 and 2), the
CONTINUE condition

IF v_counter < 3 THEN
CONTINUE;

END IF;

evaluates to TRUE, and control of the execution is passed to the first statement inside the body. As
a result, only the first DBMS_OUTPUT.PUT_LINE statement is executed:

before continue condition, v_counter = 1
before continue condition, v_counter = 2

In other words, for the first two iterations, only part of the loop before the CONTINUE statement is
executed.

For the last three iterations of the loops (the values of v_counter are 3, 4, and 5) the CONTINUE
condition evaluates to FALSE, and the second DBMS_OUTPUT.PUT_LINE is executed:

before continue condition, v_counter = 3
after continue condition, v_counter = 3
before continue condition, v_counter = 4
after continue condition, v_counter = 4
before continue condition, v_counter = 5
after continue condition, v_counter = 5

In this case, all statements inside the body of the loop are executed.

Finally, for the last iteration of the loop, the EXIT condition evaluates to TRUE and the loop termi-
nates, and the last DBMS_OUTPUT.PUT_LINE statement is executed as well.

C) How many times does the loop execute?

ANSWER: The loop executes five times.

Remember that the number of executions is controlled by the EXIT condition, not by the
CONTINUE condition.

DID YOU KNOW?

What is the difference between the EXIT and CONTINUE conditions? The EXIT condition terminates
the loop, whereas the CONTINUE condition terminates the current iteration of the loop.

D) Explain how each iteration of the loop is affected if the CONTINUE condition is changed to

I) v_counter = 3

II) v_counter > 3.

ANSWER:

I) Changing the CONTINUE condition to

IF v_counter = 3 THEN
CONTINUE;

END IF;

affects only the third iteration of the loop.

L A B 7.1
148

Lab 7.1 Exercises

As long as the value of v_counter is not equal to 3, the CONTINUE condition evaluates
to FALSE. As a result, for the first, second, fourth, and fifth iterations of the loop, all state-
ments inside the body of the loop are executed. For the third iteration of the loop, the
CONTINUE condition evaluates to TRUE, causing partial execution of the loop. Thus, control
of the execution is passed to the first statement inside the body of the loop, as shown in
this output:

before continue condition, v_counter = 1
after continue condition, v_counter = 1
before continue condition, v_counter = 2
after continue condition, v_counter = 2
before continue condition, v_counter = 3
before continue condition, v_counter = 4
after continue condition, v_counter = 4
before continue condition, v_counter = 5
after continue condition, v_counter = 5
Done...

PL/SQL procedure successfully completed.

II) Changing the CONTINUE condition to

IF v_counter > 3 THEN
CONTINUE;

END IF;

affects all iterations of the loop after the third iteration.

As long as the value of v_counter is less than or equal to 3, the CONTINUE condition
evaluates to FALSE. As a result, for the first three iterations of the loop, all statements inside
the body of the loop are executed. Starting with the fourth iteration of the loop, the
CONTINUE condition evaluates to TRUE, causing partial execution. Note that due to this
partial execution, the EXIT condition is never reached, causing this loop to become infinite.

WATCH OUT!

When working with the EXIT and CONTINUE conditions, the execution of a loop and the number of
iterations are affected by the placement of those conditions inside the body of the loop.

E) How would you modify the script so that the CONTINUE condition v_counter > 3 does not
cause an infinite loop?

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch07_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 0;
BEGIN

LOOP
-- if EXIT condition yields TRUE exit the loop
IF v_counter = 5 THEN

EXIT;
END IF;

L A B 7.1Lab 7.1 Exercises

149

-- if CONTINUE condition yields TRUE pass control to the
-- first executable statement of the loop
IF v_counter > 3 THEN

CONTINUE;
END IF;

DBMS_OUTPUT.PUT_LINE
('after continue condition, v_counter = '||
v_counter);

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

In this version of the script, the EXIT condition is moved to the top of the loop, and the placement
of the CONTINUE condition remains as is. Note that as long as the EXIT condition is placed before
the CONTINUE condition, the loop terminates. In other words, the EXIT condition can be placed
anywhere in the loop as long as it is placed before the CONTINUE condition, as shown in a differ-
ent version of the script:

-- ch07_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 0;
BEGIN

LOOP
-- increment loop counter by one
v_counter := v_counter + 1;
DBMS_OUTPUT.PUT_LINE

('before continue condition, v_counter = '||
v_counter);

-- if EXIT condition yields TRUE exit the loop
IF v_counter = 5 THEN

EXIT;
END IF;

-- if CONTINUE condition yields TRUE pass control to the
-- first executable statement of the loop
IF v_counter > 3 THEN

CONTINUE;
END IF;

DBMS_OUTPUT.PUT_LINE
('after continue condition, v_counter = '||
v_counter);

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

L A B 7.1
150

Lab 7.1 Exercises

Both versions of the script produce the following output:

before continue condition, v_counter = 1
after continue condition, v_counter = 1
before continue condition, v_counter = 2
after continue condition, v_counter = 2
before continue condition, v_counter = 3
after continue condition, v_counter = 3
before continue condition, v_counter = 4
before continue condition, v_counter = 5
Done...

PL/SQL procedure successfully completed.

F) Rewrite the first version of the script using the CONTINUE WHEN condition instead of the
CONTINUE condition so that it produces the same result.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch07_1d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 0;
BEGIN

LOOP
-- increment loop counter by one
v_counter := v_counter + 1;
DBMS_OUTPUT.PUT_LINE

('before continue condition, v_counter = '||
v_counter);

-- if CONTINUE condition yields TRUE pass control to the
-- first executable statement of the loop
CONTINUE WHEN v_counter < 3;

DBMS_OUTPUT.PUT_LINE
('after continue condition, v_counter = '||
v_counter);

-- if EXIT condition yields TRUE exit the loop
IF v_counter = 5 THEN

EXIT;
END IF;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

Notice that the IF statement has been replaced by the CONTINUE WHEN statement. The rest of the
statements in the body of the loop do not need to be changed.

L A B 7.1Lab 7.1 Exercises

151

7.1.2 Use the CONTINUE WHEN Condition

In this exercise, you use the CONTINUE WHEN condition with the numeric FOR loop to calculate to the
sum of even integers between 1 and 10.

Create the following PL/SQL script:

-- ch07_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_sum NUMBER := 0;
BEGIN

FOR v_counter in 1..10 LOOP

-- if v_counter is odd, pass control to the top of the loop
CONTINUE WHEN mod(v_counter, 2) != 0;

v_sum := v_sum + v_counter;
DBMS_OUTPUT.PUT_LINE ('Current sum is: '||v_sum);

END LOOP;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Final sum is: '||v_sum);

END;

Execute the script, and then answer the following questions:

A) What output is printed on the screen?

ANSWER: The output should look similar to the following:

Current sum is: 2
Current sum is: 6
Current sum is: 12
Current sum is: 20
Current sum is: 30
Final sum is: 30

PL/SQL procedure successfully completed.

For each iteration of the loop, the value of v_counter is evaluated in the CONTINUE WHEN
condition. When the value of v_counter is even, the CONTINUE WHEN condition yields FALSE,
and the current value of the sum is calculated and displayed on the screen. When the value of
v_counter is odd, the CONTINUE WHEN condition yields TRUE, and control of the execution is
passed to the top of the loop, causing partial execution of the loop. In this case, the statements
following the WHEN CONTINUE condition are not executed.

After the loop has terminated, the final sum is displayed on the screen.

B) How many times did the loop execute?

ANSWER: The loop executed ten times because the number of iterations is controlled by the
loop’s lower and upper limits, which are 1 and 10.

C) How many iterations of the loop were partial iterations?

ANSWER: Five iterations of the loop were partial iterations.

L A B 7.1
152

Lab 7.1 Exercises

The CONTINUE WHEN condition evaluates to TRUE for the odd values of v_counter, which are
1, 3, 5, 7, and 9. These values correspond to the loop’s iterations. In other words, the first, third, fifth,
seventh, and ninth iterations of the loop are partial iterations because for these iterations the
CONTINUE WHEN condition yields TRUE.

D) How would you change the script to calculate the sum of odd integers between 1 and 10?

ANSWER: The script should look similar to the following. Changes are shown in bold. Note that
only the CONTINUE WHEN condition is modified; the rest of the script remains unchanged.

-- ch07_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_sum NUMBER := 0;
BEGIN

FOR v_counter in 1..10 LOOP

-- if v_counter is even, pass control to the top of the loop
CONTINUE WHEN mod(v_counter, 2) = 0;

v_sum := v_sum + v_counter;
DBMS_OUTPUT.PUT_LINE ('Current sum is: '||v_sum);

END LOOP;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Final sum is: '||v_sum);

END;

This version of the script produces the following output:

Current sum is: 1
Current sum is: 4
Current sum is: 9
Current sum is: 16
Current sum is: 25
Final sum is: 25

PL/SQL procedure successfully completed.

In this version of the script, the CONTINUE WHEN condition yields FALSE for the odd values of
v_counter, causing the current value of v_sum to be calculated and displayed on the screen.
For the even values of v_counter, the CONTINUE WHEN condition evaluates to TRUE, causing
control of the execution to be passed to the top of the loop.

L A B 7.1Lab 7.1 Exercises

153

L A B 7 . 2

Nested Loops

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use nested loops

You have explored three types of loops: simple loops, WHILE loops, and numeric FOR loops.
Any of these three types of loops can be nested inside one another. For example, a simple loop
can be nested inside a WHILE loop, and vice versa. Consider the following example:

FOR EXAMPLE

DECLARE
v_counter1 INTEGER := 0;
v_counter2 INTEGER;

BEGIN
WHILE v_counter1 < 3 LOOP

DBMS_OUTPUT.PUT_LINE ('v_counter1: '||v_counter1);
v_counter2 := 0;
LOOP

DBMS_OUTPUT.PUT_LINE ('v_counter2: '||v_counter2);
v_counter2 := v_counter2 + 1;
EXIT WHEN v_counter2 >= 2;

END LOOP;
v_counter1 := v_counter1 + 1;

END LOOP;
END;

In this example, the WHILE loop is called an outer loop because it encompasses the simple
loop. The simple loop is called an inner loop because it is enclosed by the body of the WHILE
loop.

The outer loop is controlled by the loop counter, v_counter1, and it executes if the value of
v_counter1 is less than 3. With each iteration of the loop, the value of v_counter1 is
displayed on the screen. Next, the value of v_counter2 is initialized to 0. It is important to
note that v_counter2 is not initialized at the time of the declaration. The simple loop is placed
inside the body of the WHILE loop, and the value of v_counter2 must be initialized every
time before control is passed to the simple loop.

L A B 7.2
154

As soon as control is passed to the inner loop, the value of v_counter2 is displayed on the
screen and incremented by 1. Next, the EXIT WHEN condition is evaluated. If the EXIT WHEN
condition evaluates to FALSE, control is passed back to the top of the simple loop. If the EXIT
WHEN condition evaluates to TRUE, control is passed to the first executable statement outside
the loop. In our case, control is passed back to the outer loop, the value of v_counter1 is
incremented by 1, and the test condition of the WHILE loop is evaluated again.

This logic is demonstrated by the output produced by the example:

v_counter1: 0
v_counter2: 0
v_counter2: 1
v_counter1: 1
v_counter2: 0
v_counter2: 1
v_counter1: 2
v_counter2: 0
v_counter2: 1

PL/SQL procedure successfully completed.

Notice that for each value of v_counter1, two values of v_counter2 are displayed. For the
first iteration of the outer loop, the value of v_counter1 is equal to 0. After control is passed
to the inner loop, the value of v_counter2 is displayed on the screen twice, and so forth.

LOOP LABELS

Earlier in the book, you read about labeling PL/SQL blocks. Loops can be labeled in a similar
manner, as follows:

<<label_name>>
FOR LOOP_COUNTER IN LOWER_LIMIT..UPPER_LIMIT LOOP

STATEMENT 1;
...
STATEMENT N;

END LOOP label_name;

The label must appear right before the beginning of the loop. This syntax example shows that
the label can optionally be used at the end of the loop statement. It is very helpful to label nested
loops, because labels improve readability. Consider the following example:

FOR EXAMPLE

BEGIN
<<outer_loop>>
FOR i IN 1..3 LOOP

DBMS_OUTPUT.PUT_LINE ('i = '||i);
<<inner_loop>>
FOR j IN 1..2 LOOP

DBMS_OUTPUT.PUT_LINE ('j = '||j);

L A B 7.2Nested Loops

155

END LOOP inner_loop;
END LOOP outer_loop;

END;

For both outer and inner loops, the statement END LOOP must be used. If the loop label is
added to each END LOOP statement, it is easier to understand which loop is being terminated.

Loop labels can also be used when referencing loop counters.

FOR EXAMPLE

BEGIN
<<outer>>
FOR v_counter IN 1..3 LOOP

<<inner>>
FOR v_counter IN 1..2 LOOP

DBMS_OUTPUT.PUT_LINE ('outer.v_counter '||outer.v_counter);
DBMS_OUTPUT.PUT_LINE ('inner.v_counter '||inner.v_counter);

END LOOP inner;
END LOOP outer;

END;

In this example, both the inner and outer loops use the same loop counter, v_counter. To
reference both the outer and inner values of v_counter, loop labels are used. This example
produces the following output:

outer.v_counter 1
inner.v_counter 1
outer.v_counter 1
inner.v_counter 2
outer.v_counter 2
inner.v_counter 1
outer.v_counter 2
inner.v_counter 2
outer.v_counter 3
inner.v_counter 1
outer.v_counter 3
inner.v_counter 2

PL/SQL procedure successfully completed.

Your program can differentiate between two variables that have the same name because loop
labels are used when the variables are referenced. If no loop labels are used when v_counter
is referenced, the output produced by this script changes significantly. Basically, after control is
passed to the inner loop, the value of v_counter from the outer loop is unavailable. When
control is passed back to the outer loop, the value of v_counter becomes available again.

L A B 7.2
156

Nested Loops

▼

In this example, the same name is used for two different loop counters to demonstrate another
use of loop labels. However, it is not considered good programming practice to use the same
name for different variables.

L A B 7 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

7.2.1 Use Nested Loops

In this exercise, you use nested numeric FOR loops.

Create the following PL/SQL script:

-- ch07_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_test NUMBER := 0;
BEGIN

<<outer_loop>>
FOR i IN 1..3 LOOP

DBMS_OUTPUT.PUT_LINE('Outer Loop');
DBMS_OUTPUT.PUT_LINE('i = '||i);
DBMS_OUTPUT.PUT_LINE('v_test = '||v_test);
v_test := v_test + 1;

<<inner_loop>>
FOR j IN 1..2 LOOP

DBMS_OUTPUT.PUT_LINE('Inner Loop');
DBMS_OUTPUT.PUT_LINE('j = '||j);
DBMS_OUTPUT.PUT_LINE('i = '||i);
DBMS_OUTPUT.PUT_LINE('v_test = '||v_test);

END LOOP inner_loop;
END LOOP outer_loop;

END;

Execute the script, and then answer the following questions:

A) What output is printed on the screen?

ANSWER: The output should look like the following:

Outer Loop
i = 1
v_test = 0
Inner Loop
j = 1
i = 1
v_test = 1
Inner Loop
j = 2
i = 1

L A B 7.2Lab 7.2 Exercises

157

v_test = 1
Outer Loop
i = 2
v_test = 1
Inner Loop
j = 1
i = 2
v_test = 2
Inner Loop
j = 2
i = 2
v_test = 2
Outer Loop
i = 3
v_test = 2
Inner Loop
j = 1
i = 3
v_test = 3
Inner Loop
j = 2
i = 3
v_test = 3

PL/SQL procedure successfully completed.

Every time the outer loop is run, the value of the loop counter is implicitly incremented by 1 and
displayed on the screen. In addition, the value of v_test is displayed on the screen and is incre-
mented by 1. Next, control is passed to the inner loop.

Every time the inner loop is run, the value of the inner loop counter is incremented by 1 and
displayed on the screen, along with the value of the outer loop counter and the variable
v_test.

B) How many times did the outer loop execute?

ANSWER: The outer loop executed three times, according to the range specified by the loop’s
lower and upper limits. In this example, the lower limit is equal to 1 and the upper limit is equal
to 3.

C) How many times did the inner loop execute?

ANSWER: The inner loop executed six times.

For each iteration of the outer loop, the inner loop executed twice. However, the outer loop
executed three times. Overall, the inner loop executed six times.

D) What are the values of the loop counters, i and j, after both loops terminate?

ANSWER: After both loops terminate, both loop counters are undefined again and can hold no
values. As mentioned earlier, the loop counter ceases to exist as soon as the numeric FOR loop is
terminated.

E) Rewrite this script using the REVERSE option for both loops. How many times is each loop
executed in this case?

ANSWER: The script should be similar to the following. Changes are shown in bold.

The outer loop executes three times, and the inner loop executes six times.

L A B 7.2
158

Lab 7.2 Exercises

-- ch07_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_test NUMBER := 0;
BEGIN

<<outer_loop>>
FOR i IN REVERSE 1..3 LOOP

DBMS_OUTPUT.PUT_LINE('Outer Loop');
DBMS_OUTPUT.PUT_LINE('i = '||i);
DBMS_OUTPUT.PUT_LINE('v_test = '||v_test);
v_test := v_test + 1;

<<inner_loop>>
FOR j IN REVERSE 1..2 LOOP

DBMS_OUTPUT.PUT_LINE('Inner Loop');
DBMS_OUTPUT.PUT_LINE('j = '||j);
DBMS_OUTPUT.PUT_LINE('i = '||i);
DBMS_OUTPUT.PUT_LINE('v_test = '||v_test);

END LOOP inner_loop;
END LOOP outer_loop;

END;

This script produces the following output:

Outer Loop
i = 3
v_test = 0
Inner Loop
j = 2
i = 3
v_test = 1
Inner Loop
j = 1
i = 3
v_test = 1
Outer Loop
i = 2
v_test = 1
Inner Loop
j = 2
i = 2
v_test = 2
Inner Loop
j = 1
i = 2
v_test = 2
Outer Loop
i = 1
v_test = 2
Inner Loop
j = 2

L A B 7.2Lab 7.2 Exercises

159

i = 1
v_test = 3
Inner Loop
j = 1
i = 1
v_test = 3

PL/SQL procedure successfully completed.

Notice that the output produced by this example has changed significantly from the output
shown in the preceding example. The values of the loop counters are decremented because the
REVERSE option is used. However, the value of the variable v_test is unaffected by using the
REVERSE option.

L A B 7.2
160

Lab 7.2 Exercises

▼ T R Y I T Y O U R S E L F

In this chapter you learned about CONTINUE and CONTINUE WHEN statements. You also learned how to
nest different loops inside one another. Here are some projects that will help you test the depth of your
understanding:

1) Rewrite script ch06_4a.sql to calculate the factorial of even integers only between 1 and 10. The
script should use a CONTINUE or CONTINUE WHEN statement.

2) Rewrite script ch07_3a.sql using a simple loop instead of the outer FOR loop, and a WHILE loop for
the inner FOR loop. Make sure that the output produced by this script does not differ from the
output produced by the original script.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

Try it Yourself 161

This page intentionally left blank

C H A P T E R 8

Error Handling and Built-in
Exceptions

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Handling errors

. Built-in exceptions

In Chapter 1, “PL/SQL Concepts,” you encountered two types of errors that can
be found in a program: compilation errors and runtime errors. You will recall that
a special section in a PL/SQL block handles runtime errors. This is called the
exception-handling section, and in it, runtime errors are called exceptions. The
exception-handling section allows programmers to specify what actions should
be taken when a specific exception occurs.

PL/SQL has two types of exceptions: built-in and user-defined. In this chapter,
you will learn how to handle certain kinds of runtime errors with the help of
built-in exceptions. User-defined exceptions are discussed in Chapters 9 and 10.

L A B 8 . 1

Handling Errors

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Understand the importance of error handling

The following example illustrates some of the differences between compilation and runtime
errors:

FOR EXAMPLE

DECLARE
v_num1 INTEGER := &sv_num1;
v_num2 INTEGER := &sv_num2;
v_result NUMBER;

BEGIN
v_result = v_num1 / v_num2;
DBMS_OUTPUT.PUT_LINE ('v_result: '||v_result);

END;

This example is a very simple program. It has two variables, v_num1 and v_num2. A user
supplies values for these variables. Next, v_num1 is divided by v_num2, and the result of this
division is stored in the third variable, v_result. Finally, the value of v_result is displayed
on the screen.

Now, assume that a user supplies values of 3 and 5 for the variables v_num1 and v_num2,
respectively. As a result, the example produces the following output:

Enter value for sv_num1: 3
old 2: v_num1 INTEGER := &sv_num1;
new 2: v_num1 INTEGER := 3;
Enter value for sv_num2: 5
old 3: v_num2 INTEGER := &sv_num2;
new 3: v_num2 INTEGER := 5;

v_result = v_num1 / v_num2;
*

ERROR at line 6:
ORA-06550: line 6, column 13:
PLS-00103: Encountered the symbol "=" when expecting one of the
following:

L A B 8.1
164

:= . (@ % ;
The symbol ":= was inserted before "=" to continue.

You have probably noticed that the example did not execute successfully. A syntax error was
encountered at line 6. Close inspection of the example shows that the statement

v_result = v_num1 / v_num2;

contains an equals-sign operator where an assignment operator should be used. The statement
should be rewritten as follows:

v_result := v_num1 / v_num2;

After the corrected example is run again, the following output is produced:

Enter value for sv_num1: 3
old 2: v_num1 integer := &sv_num1;
new 2: v_num1 integer := 3;
Enter value for sv_num2: 5
old 3: v_num2 integer := &sv_num2;
new 3: v_num2 integer := 5;
v_result: .6

PL/SQL procedure successfully completed.

As you can see, the example now executes successfully because the syntax error has been
corrected.

Next, if you change the values of the variables v_num1 and v_num2 to 4 and 0, respectively,
the following output is produced:

Enter value for sv_num1: 4
old 2: v_num1 integer := &sv_num1;
new 2: v_num1 integer := 4;
Enter value for sv_num2: 0
old 3: v_num2 integer := &sv_num2;
new 3: v_num2 integer := 0;
DECLARE
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at line 6

Even though this example does not contain syntax errors, it was terminated prematurely
because the value entered for v_num2, the divisor, was 0. As you may recall, division by 0 is
undefined and thus leads to an error.

This example illustrates a runtime error that the compiler cannot detect. For some of the values
entered for the variables v_num1 and v_num2, this example executes successfully. For other
values entered for the variables v_num1 and v_num2, this example cannot execute. As a result,
the runtime error occurs. You will recall that the compiler cannot detect runtime errors. In this
case, a runtime error occurs because the compiler does not know the result of the division of

L A B 8.1Handling Errors

165

v_num1 by v_num2. This result can be determined only at runtime. Hence, this error is called
a runtime error.

To handle this type of error in the program, you must add an exception handler. The exception-
handling section has the following structure:

EXCEPTION
WHEN EXCEPTION_NAME THEN

ERROR-PROCESSING STATEMENTS;

The exception-handling section is placed after the executable section of the block. The preced-
ing example can be rewritten in the following manner:

FOR EXAMPLE

DECLARE
v_num1 INTEGER := &sv_num1;
v_num2 INTEGER := &sv_num2;
v_result NUMBER;

BEGIN
v_result := v_num1 / v_num2;
DBMS_OUTPUT.PUT_LINE ('v_result: '||v_result);

EXCEPTION
WHEN ZERO_DIVIDE THEN

DBMS_OUTPUT.PUT_LINE ('A number cannot be divided by zero.');
END;

The section of the example in bold shows the exception-handling section of the block. When
this version of the example is executed with the values of 4 and 0 for variables v_num1 and
v_num2, respectively, the following output is produced:

Enter value for sv_num1: 4
old 2: v_num1 integer := &sv_num1;
new 2: v_num1 integer := 4;
Enter value for sv_num2: 0
old 3: v_num2 integer := &sv_num2;
new 3: v_num2 integer := 0;
A number cannot be divided by zero.

PL/SQL procedure successfully completed.

This output shows that as soon as an attempt to divide v_num1 by v_num2 is made, the excep-
tion-handling section of the block is executed. Therefore, the error message specified by the
exception-handling section is displayed on the screen.

This version of the output illustrates several advantages of using an exception-handling section.
You have probably noticed that the output looks cleaner compared to the preceding version.
Even though the error message is still displayed on the screen, the output is more informative.
In short, it is oriented more toward a user than a programmer.

L A B 8.1
166

Handling Errors

▼

WATCH OUT!

Often a user does not have access to the code. Therefore, references to line numbers and keywords
in a program are not significant to most users.

An exception-handling section allows a program to execute to completion, instead of terminat-
ing prematurely. Another advantage offered by the exception-handling section is isolation of
error-handling routines. In other words, all error-processing code for a specific block is located
in a single section. As a result, the program’s logic is easier to follow and understand. Finally,
adding an exception-handling section enables event-driven processing of errors. As in the
example shown earlier, in the case of a specific exception event, such as division by 0, the excep-
tion-handling section is executed, and the error message specified by the DBMS_OUTPUT.
PUT_LINE statement is displayed on the screen.

L A B 8 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

8.1.1 Understand the Importance of Error Handling

In this exercise, you calculate the value of the square root of a number and display it on the screen.

Create the following PL/SQL script:

-- ch08_1a.sql, version 1.0
SET SERVEROUTPUT ON;
DECLARE

v_num NUMBER := &sv_num;
BEGIN

DBMS_OUTPUT.PUT_LINE ('Square root of '||v_num||
' is '||SQRT(v_num));

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

In this script, the exception VALUE_ERROR is raised when conversion or type mismatch errors occur. This
exception is covered in greater detail in Lab 8.2.

To test this script fully, execute it twice. For the first run, enter a value of 4 for the variable v_num. For the
second run, enter a value of –4 for the variable v_num. Execute the script, and then answer the follow-
ing questions:

A) What output is printed on the screen (for both runs)?

ANSWER: The first version of the output is produced when v_num equals 4. The output should
look like the following:

Enter value for sv_num: 4
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := 4;

L A B 8.1Lab 8.1 Exercises

167

Square root of 4 is 2

PL/SQL procedure successfully completed.

The second version of the output is produced when v_num equals –4. The output should look
like the following:

Enter value for sv_num: -4
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := -4;
An error has occurred

PL/SQL procedure successfully completed.

B) Why do you think an error message was generated when the script was run a second time?

ANSWER: The error message An error has occurred is generated for the second run of
the example because a runtime error occurred. The built-in function SQRT is unable to accept a
negative number as its argument. Therefore, the exception VALUE_ERROR was raised, and the error
message was displayed.

C) Assume that you are unfamiliar with the exception VALUE_ERROR. How would you change this
script to avoid this runtime error?

ANSWER: The new version of the program should look similar to the following. All changes are
shown in bold.

-- ch08_1b.sql, version 2.0
SET SERVEROUTPUT ON;
DECLARE

v_num NUMBER := &sv_num;
BEGIN

IF v_num >= 0 THEN
DBMS_OUTPUT.PUT_LINE ('Square root of '||v_num||
' is '||SQRT(v_num));

ELSE
DBMS_OUTPUT.PUT_LINE ('A number cannot be negative');

END IF;
END;

Notice that before you calculate the square root of a number, you can check to see if the number
is greater than or equal to 0 with the help of the IF-THEN-ELSE statement. If the number is nega-
tive, the message A number cannot be negative is displayed on the screen. When a value
of –4 is entered for the variable v_num, this script produces the following output:

Enter value for sv_num: -4
old 2: v_num NUMBER := &sv_num;
new 2: v_num NUMBER := -4;
A number cannot be negative

PL/SQL procedure successfully completed.

L A B 8.1
168

Lab 8.1 Exercises

L A B 8 . 2

Built-in Exceptions

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use built-in exceptions

As mentioned earlier, a PL/SQL block has the following structure:

DECLARE
...

BEGIN
EXECUTABLE STATEMENTS;

EXCEPTION
WHEN EXCEPTION_NAME THEN

ERROR-PROCESSING STATEMENTS;
END;

When an error occurs that raises a built-in exception, the exception is said to be raised implic-
itly. In other words, if a program breaks an Oracle rule, control is passed to the exception-
handling section of the block. At this point, the error-processing statements are executed. It is
important to realize that after the exception-handling section of the block has executed, the
block terminates. Control does not return to the executable section of the block. The following
example illustrates this point:

FOR EXAMPLE

DECLARE
v_student_name VARCHAR2(50);

BEGIN
SELECT first_name||' '||last_name
INTO v_student_name
FROM student
WHERE student_id = 101;

DBMS_OUTPUT.PUT_LINE ('Student name is '||v_student_name);
EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE ('There is no such student');

END;

L A B 8.2
169

This example produces the following output:

There is no such student

PL/SQL procedure successfully completed.

Because there is no record in the STUDENT table with student ID 101, the SELECT INTO state-
ment does not return any rows. As a result, control passes to the exception-handling section of
the block, and the error message There is no such student is displayed. Even though there
is a DBMS_OUTPUT.PUT_LINE statement right after the SELECT statement, it is not executed,
because control has been transferred to the exception-handling section. Control never returns
to the executable section of this block, which contains the first DBMS_OUTPUT.PUT_LINE
statement.

You have probably noticed that, although every Oracle runtime error has a number associated
with it, it must be handled by its name in the exception-handling section. One of the outputs
from the example used in the previous lab in this chapter has the following error message:

ORA-01476: divisor is equal to zero

where ORA-01476 is the error number. This error number refers to the error named ZERO_
DIVIDE. Some common Oracle runtime errors are predefined in PL/SQL as exceptions.

The following list describes some commonly used predefined exceptions and how they are
raised:

. NO_DATA_FOUND: This exception is raised when a SELECT INTO statement that makes
no calls to group functions, such as SUM or COUNT, does not return any rows. For
example, suppose you issue a SELECT INTO statement against the STUDENT table where
student ID equals 101. If there is no record in the STUDENT table passing this criteria
(student ID equals 101), the NO_DATA_FOUND exception is raised.

When a SELECT INTO statement calls a group function, such as COUNT, the result set is
never empty. When used in a SELECT INTO statement against the STUDENT table, func-
tion COUNT returns 0 for the value of student ID 123. Hence, a SELECT statement that
calls a group function never raises the NO_DATA_FOUND exception.

. TOO_MANY_ROWS: This exception is raised when a SELECT INTO statement returns
more than one row. By definition, a SELECT INTO can return only a single row. If a
SELECT INTO statement returns more than one row, the definition of the SELECT INTO
statement is violated. This causes the TOO_MANY_ROWS exception to be raised.

For example, suppose you issue a SELECT INTO statement against the STUDENT table
for a specific zip code. There is a good chance that this SELECT statement will return
more than one row, because many students can live in the same zip code area.

. ZERO_DIVIDE: This exception is raised when a division operation is performed in the
program and a divisor is equal to 0. An example in the previous lab of this chapter illus-
trated how this exception is raised.

L A B 8.2
170

Built-in Exceptions

. LOGIN_DENIED: This exception is raised when a user tries to log in to Oracle with an
invalid username or password.

. PROGRAM_ERROR: This exception is raised when a PL/SQL program has an internal
problem.

. VALUE_ERROR: This exception is raised when a conversion or size mismatch error
occurs. For example, suppose you select a student’s last name into a variable that has been
defined as VARCHAR2(5). If the student’s last name contains more than five characters,
the VALUE_ERROR exception is raised.

. DUP_VALUE_ON_INDEX: This exception is raised when a program tries to store a dupli-
cate value in the column or columns that have a unique index defined on them. For
example, suppose you are trying to insert a record into the SECTION table for course
number 25, section 1. If a record for the given course and section number already exists
in the SECTION table, the DUP_VAL_ON_INDEX exception is raised, because these
columns have a unique index defined on them.

So far, you have seen examples of programs that can handle only a single exception. For
example, a PL/SQL block contains an exception handler with a single exception ZERO_DIVIDE.
However, many times you need to handle different exceptions in the PL/SQL block. Moreover,
often you need to specify different actions that must be taken when a particular exception is
raised, as the following example illustrates:

FOR EXAMPLE

DECLARE
v_student_id NUMBER := &sv_student_id;
v_enrolled VARCHAR2(3) := 'NO';

BEGIN
DBMS_OUTPUT.PUT_LINE ('Check if the student is enrolled');
SELECT 'YES'
INTO v_enrolled
FROM enrollment
WHERE student_id = v_student_id;

DBMS_OUTPUT.PUT_LINE ('The student is enrolled into one course');
EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE ('The student is not enrolled');

WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE

('The student is enrolled in too many courses');
END;

Notice that this example contains two exceptions in a single exception-handling section. The
first exception, NO_DATA_FOUND, is raised if there are no records in the ENROLLMENT table

L A B 8.2Built-in Exceptions

171

for a particular student. The second exception, TOO_MANY_ROWS, is raised if a particular
student is enrolled in more than one course.

Consider what happens if you run this example for three different values of student ID: 102,
103, and 319.

The first run of the example (student ID is 102) produces the following output:

Enter value for sv_student_id: 102
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 102;
Check if the student is enrolled
Student is enrolled in too many courses

PL/SQL procedure successfully completed.

The first time, a user entered 102 for the value of student ID. Next, the first DBMS_OUTPUT.
PUT_LINE statement is executed, and the message Check if the ... is displayed on the screen.
Then the SELECT INTO statement is executed. You probably noticed that the
DBMS_OUTPUT.PUT_LINE statement following the SELECT INTO statement was not
executed. When the SELECT INTO statement is executed for student ID 102, multiple rows are
returned. Because the SELECT INTO statement can return only a single row, control is passed
to the exception-handling section of the block. Next, the PL/SQL block raises the proper excep-
tion. As a result, the message Student is enrolled in too many courses is displayed on
the screen, and this message is specified by the exception TOO_MANY_ROWS.

DID YOU KNOW?

Built-in exceptions are raised implicitly. Therefore, you only need to specify what action must be
taken in the case of a particular exception.

A second run of the example (student ID is 103) produces the following output:

Enter value for sv_student_id: 103
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 103;
Check if the student is enrolled
The student is enrolled into one course

PL/SQL procedure successfully completed.

In this second run, a user entered 103 for the value of student ID. As a result, the first
DBMS_OUTPUT.PUT_LINE statement is executed, and the message Check if the ... is
displayed on the screen. Then the SELECT INTO statement is executed. When the SELECT
INTO statement is executed for student ID 103, a single row is returned. Next, the
DBMS_OUTPUT.PUT_LINE statement following the SELECT INTO statement is executed. As a
result, the message The student is enrolled into one course is displayed on the
screen. Notice that for this value of the variable v_student_id, no exception has been raised.

L A B 8.2
172

Built-in Exceptions

A third run of the example (student ID is 319) produces the following output:

Enter value for sv_student_id: 319
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 319;
Check if the student is enrolled
The student is not enrolled

PL/SQL procedure successfully completed.

This time, a user entered 319 for the value of student ID. The first DBMS_OUTPUT.PUT_LINE
statement is executed, and the message Check if the ... is displayed on the screen. Then the
SELECT INTO statement is executed. When the SELECT INTO statement is executed for
student ID 319, no rows are returned. As a result, control is passed to the exception-handling
section of the PL/SQL block, and the proper exception is raised. In this case, the
NO_DATA_FOUND exception is raised because the SELECT INTO statement failed to return a
single row. Thus, the message The student is not enrolled is displayed on the screen.

So far, you have seen examples of exception-handling sections that have particular exceptions,
such as NO_DATA_FOUND and ZERO_DIVIDE. However, you cannot always predict what
exception might be raised by your PL/SQL block. For cases like this, there is a special exception
handler called OTHERS. All predefined Oracle errors (exceptions) can be handled with the use
of the OTHERS handler.

Consider the following:

FOR EXAMPLE

DECLARE
v_instructor_id NUMBER := &sv_instructor_id;
v_instructor_name VARCHAR2(50);

BEGIN
SELECT first_name||' '||last_name
INTO v_instructor_name
FROM instructor
WHERE instructor_id = v_instructor_id;

DBMS_OUTPUT.PUT_LINE ('Instructor name is '||v_instructor_name);
EXCEPTION

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE ('An error has occurred');

END;

When run, this example produces the following output:

Enter value for sv_instructor_id: 100
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 100;
An error has occurred
PL/SQL procedure successfully completed.

L A B 8.2Built-in Exceptions

173

▼

This demonstrates not only the use of the OTHERS exception handler, but also a bad program-
ming practice. The exception OTHERS has been raised because there is no record in the
INSTRUCTOR table for instructor ID 100.

This is a simple example, where it is possible to guess what exception handlers should be used.
However, in many instances you may find a number of programs that have been written with a
single exception handler, OTHERS. This is a bad programming practice, because such use of this
exception handler does not give you or your user good feedback. You do not really know what
error has occurred. Your user does not know whether he or she entered some information incor-
rectly. Two special error-reporting functions, SQLCODE and SQLERRM, are very useful when
used with the OTHERS handler. You will learn about them in Chapter 10, “Exceptions:
Advanced Concepts.”

L A B 8 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

8.2.1 Use Built-in Exceptions

In this exercise, you learn more about some built-in exceptions discussed earlier in this chapter.

Create the following PL/SQL script:

-- ch08_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_exists NUMBER(1);
v_total_students NUMBER(1);
v_zip CHAR(5):= '&sv_zip';

BEGIN
SELECT count(*)
INTO v_exists
FROM zipcode
WHERE zip = v_zip;

IF v_exists != 0 THEN
SELECT COUNT(*)
INTO v_total_students
FROM student
WHERE zip = v_zip;

DBMS_OUTPUT.PUT_LINE
('There are '||v_total_students||' students');

ELSE
DBMS_OUTPUT.PUT_LINE (v_zip||' is not a valid zip');

END IF;

L A B 8.2
174

Lab 8.2 Exercises

EXCEPTION
WHEN VALUE_ERROR OR INVALID_NUMBER THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

This script contains two exceptions, VALUE_ERROR and INVALID_NUMBER. However, only one exception
handler is written for both exceptions. You can combine different exceptions in a single exception
handler when you want to handle both exceptions in a similar way. Often the exceptions VALUE_ERROR
and INVALID_NUMBER are used in a single exception handler because these Oracle errors refer to the
conversion problems that may occur at runtime.

To test this script fully, execute it three times. For the first run, enter 07024, for the second run, enter
00914, and for the third run, enter 12345 for the variable v_zip. Execute the script, and then answer the
following questions:

A) What output is printed on the screen (for all values of zip)?

ANSWER: The first version of the output is produced when the value of zip is 07024. The second
version of the output is produced when the value of zip is 00914. The third version of the output is
produced when the value of zip is 12345.

The output should look like the following:

Enter value for sv_zip: 07024
old 4: v_zip CHAR(5):= '&sv_zip';
new 4: v_zip CHAR(5):= '07024';
There are 9 students

PL/SQL procedure successfully completed.

When you enter 07024 for the variable v_zip, the first SELECT INTO statement is executed. This
SELECT INTO statement checks whether the value of zip is valid, or, in other words, if a record
exists in the ZIPCODE table for a given value of zip. Next, the value of the variable v_exists is
evaluated with the help of the IF statement. For this run of the example, the IF statement evalu-
ates to TRUE, and as a result, the SELECT INTO statement against the STUDENT table is evaluated.
Next, the DBMS_OUTPUT.PUT_LINE following the SELECT INTO statement is executed, and the
message There are 9 students is displayed on the screen.

The output should look like the following:

Enter value for sv_zip: 00914
old 4: v_zip CHAR(5):= '&sv_zip';
new 4: v_zip CHAR(5):= '00914';
There are 0 students

PL/SQL procedure successfully completed.

For the second run, the value 00914 is entered for the variable v_zip. The SELECT INTO state-
ment against the STUDENT table returns one record, and the message There are 0
students is displayed on the screen.

Because the SELECT INTO statement against the STUDENT table uses a group function, COUNT,
there is no reason to use the exception NO_DATA_FOUND, because the COUNT function will
always return data.

L A B 8.2Lab 8.2 Exercises

175

The output should look like the following:

Enter value for sv_zip: 12345
old 4: v_zip CHAR(5):= '&sv_zip';
new 4: v_zip CHAR(5):= '12345';
12345 is not a valid zip

PL/SQL procedure successfully completed.

For the third run, the value 12345 is entered for the variable v_zip. The SELECT INTO statement
against the ZIPCODE table is executed. Next, the variable v_exists is evaluated with the help
of the IF statement. Because the value of v_exists equals 0, the IF statement evaluates to
FALSE. As a result, the ELSE part of the IF statement is executed. The message 12345 is not a
valid zip is displayed on the screen.

B) Explain why no exception was raised for these values of the variable v_zip.

ANSWER: The exceptions VALUE_ERROR and INVALID_NUMBER were not raised because no
conversion or type mismatch error occurred. Both variables,v_exists and
v_total_students, were defined as NUMBER(1).

The group function COUNT used in the SELECT INTO statement returns a NUMBER datatype.
Moreover, on both occasions, the COUNT function returns a single-digit number. As a result,
neither exception was raised.

C) Insert a record into the STUDENT table with a zip having the value of 07024.

INSERT INTO student (student_id, salutation, first_name,
last_name, zip, registration_date, created_by, created_date,
modified_by, modified_date)

VALUES (STUDENT_ID_SEQ.NEXTVAL, 'Mr.', 'John', 'Smith', '07024',
SYSDATE, 'STUDENT', SYSDATE, 'STUDENT', SYSDATE);

COMMIT;

Run the script again for the same value of zip (07024). What output is printed on the screen? Why?

ANSWER: After a student has been added, the output should look like the following:

Enter value for sv_zip: 07024
old 4: v_zip CHAR(5):= '&sv_zip';
new 4: v_zip CHAR(5):= '07024';
An error has occurred

PL/SQL procedure successfully completed.

After the student has been inserted into the STUDENT table with a zip having a value of 07024,
the total number of students changes to 10 (remember, previously this number was 9). As a result,
the SELECT INTO statement against the STUDENT table causes an error, because the variable
v_total_students has been defined as NUMBER(1). This means that only a single-digit
number can be stored in this variable. The number 10 is a two-digit number, so the exception
INVALID_NUMBER is raised. As a result, the message An error has occurred is displayed on
the screen.

D) How would you change the script to display a student’s first name and last name instead of
displaying the total number of students for any given value of a zip? Remember, the SELECT INTO
statement can return only one record.

L A B 8.2
176

Lab 8.2 Exercises

ANSWER: The new version of the script should look similar to the following. All changes are
shown in bold.

-- ch08_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_exists NUMBER(1);
v_student_name VARCHAR2(30);
v_zip CHAR(5):= '&sv_zip';

BEGIN
SELECT count(*)
INTO v_exists
FROM zipcode
WHERE zip = v_zip;

IF v_exists != 0 THEN
SELECT first_name||' '||last_name
INTO v_student_name
FROM student
WHERE zip = v_zip
AND rownum = 1;

DBMS_OUTPUT.PUT_LINE ('Student name is '||v_student_name);
ELSE

DBMS_OUTPUT.PUT_LINE (v_zip||' is not a valid zip');
END IF;

EXCEPTION
WHEN VALUE_ERROR OR INVALID_NUMBER THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE

('There are no students for this value of zip code');
END;

This version of the program contains several changes. The variable v_total_students has
been replaced by the variable v_student_name. The SELECT INTO statement against the
STUDENT table has been changed as well. Another condition has been added to the WHERE
clause:

rownum = 1

You have seen in the previous runs of this script that for any given value of zip there could be
multiple records in the STUDENT table. Because a SELECT INTO statement returns only a single
row, the condition rownum = 1 has been added to it. Another way to deal with multiple rows
returned by the SELECT INTO statement is to add the exception TOO_MANY_ROWS.

Finally, another exception has been added to the program. The SELECT INTO statement against
the STUDENT table does not contain any group functions. Therefore, for any given value of zip, the
SELECT INTO statement might not return any data and might cause an error. As a result, the excep-
tion NO_DATA_FOUND might be raised.

L A B 8.2Lab 8.2 Exercises

177

▼ T R Y I T Y O U R S E L F

In this chapter you’ve learned about built-in exceptions. Here are some projects that will help you test
the depth of your understanding:

1) Create the following script: Check to see whether there is a record in the STUDENT table for a
given student ID. If there is not, insert a record into the STUDENT table for the given student ID.

2) Create the following script: For a given instructor ID, check to see whether it is assigned to a valid
instructor. Then check to see how many sections this instructor teaches, and display this informa-
tion on the screen.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

178 Try it Yourself

C H A P T E R 9

Exceptions

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Exception scope

. User-defined exceptions

. Exception propagation

In the preceding chapter, you explored the concept of error handling and built-
in exceptions. In this chapter you continue by examining whether an exception
can catch a runtime error occurring in the declaration, executable, or exception-
handling section of a PL/SQL block. You also will learn how to define your own
exceptions and how to reraise an exception.

L A B 9 . 1

Exception Scope

L A B O B J E C T I V E
After completing this lab, you will be able to

. Understand the scope of an exception

You are already familiar with the term scope—for example, the scope of a variable. Even though
variables and exceptions serve different purposes, the same scope rules apply to them. Now
examine the scope of an exception by means of an example:

FOR EXAMPLE

DECLARE
v_student_id NUMBER := &sv_student_id;
v_name VARCHAR2(30);

BEGIN
SELECT RTRIM(first_name)||' '||RTRIM(last_name)
INTO v_name
FROM student
WHERE student_id = v_student_id;

DBMS_OUTPUT.PUT_LINE ('Student name is '||v_name);
EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE ('There is no such student');

END;

In this example, you display the student’s name on the screen. If no record in the STUDENT
table corresponds to the value of v_student_id provided by the user, the exception
NO_DATA_FOUND is raised. Therefore, you can say that the exception NO_DATA_FOUND
covers this block, or that this block is the scope of this exception. In other words, the scope of
an exception is the portion of the block that is covered by this exception.

L A B 9.1
180

Now, you can expand on that:

FOR EXAMPLE

DECLARE
v_student_id NUMBER := &sv_student_id;
v_name VARCHAR2(30);
v_total NUMBER(1);

-- outer block
BEGIN

SELECT RTRIM(first_name)||' '||RTRIM(last_name)
INTO v_name
FROM student
WHERE student_id = v_student_id;
DBMS_OUTPUT.PUT_LINE ('Student name is '||v_name);

-- inner block
BEGIN

SELECT COUNT(*)
INTO v_total
FROM enrollment
WHERE student_id = v_student_id;
DBMS_OUTPUT.PUT_LINE ('Student is registered for '||

v_total||' course(s)');
EXCEPTION

WHEN VALUE_ERROR OR INVALID_NUMBER THEN
DBMS_OUTPUT.PUT_LINE ('An error has occurred');

END;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no such student');
END;

The part of the example shown in bold has been added to the original version of the example.
The new version of the example has an inner block added to it. This block has a structure similar
to the outer block. It has a SELECT INTO statement and an exception section to handle errors.
When a VALUE_ERROR or INVALID_NUMBER error occurs in the inner block, the exception
is raised.

It is important that you realize that the exceptions VALUE_ERROR and INVALID_ NUMBER
have been defined for the inner block only. Therefore, they can be handled only if they are raised
in the inner block. If one of these errors occurs in the outer block, the program is unable to
terminate successfully.

L A B 9.1Exception Scope

181

On the other hand, the exception NO_DATA_FOUND has been defined in the outer block;
therefore, it is global to the inner block. This version of the example never raises the exception
NO_DATA_FOUND in the inner block. Why do you think this is the case?

DID YOU KNOW?

If you define an exception in a block, it is local to that block. However, it is global to any blocks
enclosed by that block. In other words, in the case of nested blocks, any exception defined in the
outer block becomes global to its inner blocks.

Note what happens when the example is changed so that the exception NO_DATA_FOUND can
be raised by the inner block:

FOR EXAMPLE

DECLARE
v_student_id NUMBER := &sv_student_id;
v_name VARCHAR2(30);
v_registered CHAR;

-- outer block
BEGIN

SELECT RTRIM(first_name)||' '||RTRIM(last_name)
INTO v_name
FROM student
WHERE student_id = v_student_id;
DBMS_OUTPUT.PUT_LINE ('Student name is '||v_name);

-- inner block
BEGIN

SELECT 'Y'
INTO v_registered
FROM enrollment
WHERE student_id = v_student_id;
DBMS_OUTPUT.PUT_LINE ('Student is registered');

EXCEPTION
WHEN VALUE_ERROR OR INVALID_NUMBER THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('There is no such student');
END;

The part of the example shown in bold has been added to the original version of the example.
The new version of the example has a different SELECT INTO statement. To answer the ques-
tion posed a moment ago, the exception NO_DATA_FOUND can be raised by the inner block

L A B 9.1
182

Exception Scope

▼

because the SELECT INTO statement does not contain a group function, COUNT(). This func-
tion always returns a result, so when no rows are returned by the SELECT INTO statement, the
value returned by COUNT(*) equals 0.

Now, run this example with a value of 284 for the student ID. The following output is produced:

Enter value for sv_student_id: 284
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 284;
Student name is Salewa Lindeman
There is no such student

PL/SQL procedure successfully completed.

You have probably noticed that this example produces only a partial output. Even though you
can see the student’s name, an error message is displayed, saying that this student does not exist.
This error message is displayed because the exception NO_DATA_FOUND is raised in the inner
block.

The SELECT INTO statement of the outer block returns the student’s name, and it is displayed
on the screen by the DBMS_OUTPUT.PUT_LINE statement. Next, control is passed to the inner
block. The SELECT INTO statement of the inner block does not return any rows. As a result,
the error occurs, and the NO_DATA_FOUND exception is raised.

Next, PL/SQL tries to find a handler for the exception NO_DATA_FOUND in the inner block.
Because there is no such handler in the inner block, control is transferred to the exception
section of the outer block. The exception section of the outer block contains the handler for the
exception NO_DATA_FOUND. This handler executes, and the message There is no such
student is displayed on the screen. This process is called exception propagation, and it is
discussed in detail in Lab 9.3.

This example has been shown for illustrative purposes only. In its current version, it is not very
useful. The SELECT INTO statement of the inner block is prone to another exception,
TOO_MANY_ROWS, that this example does not handle. In addition, the error message There
is no such student is not very descriptive when the inner block raises the exception
NO_DATA_FOUND.

L A B 9 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

9.1.1 Understand the Scope of an Exception

In this exercise, you display the number of students for a given zip code. You use nested PL/SQL blocks to
achieve the desired results. The original PL/SQL script does not contain any exception handlers. There-
fore, you are asked to identify possible errors that may occur and define exception handlers for them.

L A B 9.1Lab 9.1 Exercises

183

Create the following PL/SQL script:

-- ch9_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_zip VARCHAR2(5) := '&sv_zip';
v_total NUMBER(1);

-- outer block
BEGIN

DBMS_OUTPUT.PUT_LINE ('Check if provided zipcode is valid');
SELECT zip
INTO v_zip
FROM zipcode
WHERE zip = v_zip;

-- inner block
BEGIN

SELECT count(*)
INTO v_total
FROM student
WHERE zip = v_zip;

DBMS_OUTPUT.PUT_LINE ('There are '||v_total||
' students for zipcode '||v_zip);

END;
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

Execute the script, providing 07024 for the value of the zip code, and then answer the following
questions:

A) What output is printed on the screen?

ANSWER: The output should look like the following:

Enter value for sv_zip: 07024
old 2: v_zip VARCHAR2(5) := '&sv_zip';
new 2: v_zip VARCHAR2(5) := '07024';
Check if provided zip code is valid
There is(are) 9 student(s) for zipcode 07024
Done...

PL/SQL procedure successfully completed.

B) The first run of this example succeeds. The output produced by the example shows that there are
nine students for zip code 07024. What happens if there are ten students with the zip code 07024?
What output is produced? To answer this question, you need to add a record to the STUDENT
table:

INSERT INTO student (student_id, salutation, first_name, last_name,
street_address, zip, phone, employer, registration_date,
created_by, created_date, modified_by, modified_date)

VALUES (STUDENT_ID_SEQ.NEXTVAL, 'Mr.', 'John', 'Smith',

L A B 9.1
184

Lab 9.1 Exercises

'100 Main St.', '07024', '718-555-5555', 'ABC Co.', SYSDATE,
USER, SYSDATE, USER, SYSDATE);

COMMIT;

ANSWER: The example produces partial output only. When the total number of students is
calculated for zip code 07024, the following error occurs:

Enter value for sv_zip: 07024
old 2: v_zip VARCHAR2(5) := '&sv_zip';
new 2: v_zip VARCHAR2(5) := '07024';
Check if provided zipcode is valid
DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: number precision too large
ORA-06512: at line 15

The SELECT INTO statement returns a value of 10. However, the variable v_total has been
defined so that it can hold only single-digit numbers. Because 10 is a two-digit number, the error
occurs during the execution of the SELECT INTO statement. As a result, an error message is
displayed.

Notice that as soon as the error occurs, the example terminates because there is no exception
handler for this error.

C) Based on the error message produced by the example in the preceding question, what exception
handler must be added to the script?

ANSWER: The newly created script should look similar to one of the following two scripts. The
error message produced by the example in the preceding question refers to a numeric or value
error. Therefore, an exception VALUE_ERROR or INVALID_NUMBER must be added to the script.
Changes are shown in bold:

-- ch9_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_zip VARCHAR2(5) := '&sv_zip';
v_total NUMBER(1);

-- outer block
BEGIN

DBMS_OUTPUT.PUT_LINE ('Check if provided zipcode is valid');
SELECT zip
INTO v_zip
FROM zipcode
WHERE zip = v_zip;

-- inner block
BEGIN

SELECT count(*)
INTO v_total
FROM student
WHERE zip = v_zip;

L A B 9.1Lab 9.1 Exercises

185

DBMS_OUTPUT.PUT_LINE ('There are '||v_total||
' students for zipcode '||v_zip);

EXCEPTION
WHEN VALUE_ERROR OR INVALID_NUMBER THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

-- ch9_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_zip VARCHAR2(5) := '&sv_zip';
v_total NUMBER(1);

-- outer block
BEGIN

DBMS_OUTPUT.PUT_LINE ('Check if provided zipcode is valid');
SELECT zip
INTO v_zip
FROM zipcode
WHERE zip = v_zip;

-- inner block
BEGIN

SELECT count(*)
INTO v_total
FROM student
WHERE zip = v_zip;

DBMS_OUTPUT.PUT_LINE ('There are '||v_total||
' students for zipcode '||v_zip);

END;
DBMS_OUTPUT.PUT_LINE ('Done...');

EXCEPTION
WHEN VALUE_ERROR OR INVALID_NUMBER THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

In the second version of the script (ch09_1b.sql), the exception-handling section is added to the
inner block. In the third version of the script (ch09_1c.sql), the exception-handling section is
added to the outer block. Both versions of the script are similar in their behavior of catching the
error and terminating successfully. However, there is a slight difference, as shown in the outputs.
The first output corresponds to version 2, and the second output corresponds to version 3:

Enter value for sv_zip: 07024
old 2: v_zip VARCHAR2(5) := '&sv_zip';
new 2: v_zip VARCHAR2(5) := '07024';
Check if provided zipcode is valid

L A B 9.1
186

Lab 9.1 Exercises

An error has occurred
Done...

PL/SQL procedure successfully completed.

Enter value for sv_zip: 07024
old 2: v_zip VARCHAR2(5) := '&sv_zip';
new 2: v_zip VARCHAR2(5) := '07024';
Check if provided zipcode is valid
An error has occurred

PL/SQL procedure successfully completed.

D) Explain the difference in the outputs produced by versions 2 and 3 of the script.

ANSWER: Version 2 of the script has an exception-handling section in the inner block, where the
exception actually occurs. When the exception is encountered, control of the execution is passed
to this exception-handling section, and the message An error has occurred is displayed on
the screen. Because the exception was handled successfully, control of the execution is then
passed to the outer block, and Done... is displayed on the screen. Version 3 of the script has an
exception-handling section in the outer block. In this case, when the exception occurs in the inner
block, control of the execution is passed to the exception-handling section of the outer block,
because the inner block does not have its own exception-handling section. As a result, the
message Done... is not displayed on the screen. As mentioned earlier, this behavior is called
exception propagation, and it is discussed in detail in Lab 9.3.

L A B 9.1Lab 9.1 Exercises

187

L A B 9 . 2

User-Defined Exceptions

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use user-defined exceptions

Often in your programs you may need to handle problems that are specific to the program you
write. For example, your program asks a user to enter a value for student ID. This value is then
assigned to the variable v_student_id that is used later in the program. Generally, you want
a positive number for an ID. By mistake, the user enters a negative number. However, no error
occurs, because the variable v_student_id has been defined as a number, and the user has
supplied a legitimate numeric value. Therefore, you may want to implement your own excep-
tion to handle this situation.

This type of exception is called a user-defined exception because the programmer defines it. As
a result, before the exception can be used, it must be declared. A user-defined exception is
declared in the declaration section of a PL/SQL block:

DECLARE
exception_name EXCEPTION;

Notice that this declaration looks similar to a variable declaration. You specify an exception
name followed by the keyword EXCEPTION. Consider the following code fragment:

FOR EXAMPLE

DECLARE
e_invalid_id EXCEPTION;

In this example, the name of the exception is prefixed by the letter e. This syntax is not required,
but it allows you to differentiate between variable names and exception names.

After an exception has been declared, the executable statements associated with this exception
are specified in the exception-handling section of the block. The format of the exception-
handling section is the same as for built-in exceptions. Consider the following code fragment:

L A B 9.2
188

FOR EXAMPLE

DECLARE
e_invalid_id EXCEPTION;

BEGIN
...

EXCEPTION
WHEN e_invalid_id THEN

DBMS_OUTPUT.PUT_LINE ('An id cannot be negative');
END;

You already know that built-in exceptions are raised implicitly. In other words, when a certain
error occurs, a built-in exception associated with this error is raised. Of course, you are assum-
ing that you have included this exception in the exception-handling section of your program.
For example, a TOO_MANY_ROWS exception is raised when a SELECT INTO statement
returns multiple rows. Next, you will explore how a user-defined exception is raised.

A user-defined exception must be raised explicitly. In other words, you need to specify in your
program under what circumstances an exception must be raised:

DECLARE
exception_name EXCEPTION;

BEGIN
...
IF CONDITION THEN

RAISE exception_name;
ELSE

...
END IF;

EXCEPTION
WHEN exception_name THEN

ERROR-PROCESSING STATEMENTS;
END;

In this structure, the circumstances under which a user-defined exception must be raised are
determined with the help of the IF-THEN-ELSE statement. If CONDITION evaluates to TRUE,
a user-defined exception is raised. If CONDITION evaluates to FALSE, the program proceeds
with its normal execution. In other words, the statements associated with the ELSE part of the
IF-THEN-ELSE statement are executed. Any form of the IF statement can be used to check
when a user-defined exception must be raised.

In the next modified version of the earlier example used in this lab, you will see that the exception
e_invalid_id is raised when a negative number is entered for the variable v_student_id:

L A B 9.2User-Defined Exceptions

189

FOR EXAMPLE

DECLARE
v_student_id student.student_id%type := &sv_student_id;
v_total_courses NUMBER;
e_invalid_id EXCEPTION;

BEGIN
IF v_student_id < 0 THEN

RAISE e_invalid_id;
ELSE

SELECT COUNT(*)
INTO v_total_courses
FROM enrollment
WHERE student_id = v_student_id;

DBMS_OUTPUT.PUT_LINE ('The student is registered for '||
v_total_courses||' courses');

END IF;
DBMS_OUTPUT.PUT_LINE ('No exception has been raised');

EXCEPTION
WHEN e_invalid_id THEN

DBMS_OUTPUT.PUT_LINE ('An id cannot be negative');
END;

In this example, the exception e_invalid_id is raised with the help of the IF-THEN-ELSE
statement. After the user supplies a value for v_student_id, the sign of this numeric value is
checked. If the value is less than 0, the IF-THEN-ELSE statement evaluates to TRUE, and the
exception e_invalid_id is raised. Therefore, control transfers to the exception-handling
section of the block. Next, statements associated with this exception are executed. In this case,
the message An id cannot be negative is displayed on the screen. If the value entered for
v_student_id is positive, the IF-THEN-ELSE statement yields FALSE, and the ELSE part of
the IF-THEN-ELSE statement is executed.

Run this example for two values of v_student_id: 102 and –102.

A first run of the example (student ID is 102) produces this output:

Enter value for sv_student_id: 102
old 2: v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
new 2: v_student_id STUDENT.STUDENT_ID%TYPE := 102;
The student is registered for 2 courses
No exception has been raised

PL/SQL procedure successfully completed.

For this run, you entered a positive value for the variable v_student_id. As a result, the
IF-THEN-ELSE statement evaluates to FALSE, and the ELSE part of the statement executes. The
SELECT INTO statement determines how many records are in the ENROLLMENT table for a

L A B 9.2
190

User-Defined Exceptions

given student ID. Next, the message The student is registered for 2 courses is
displayed on the screen. At this point, the IF-THEN-ELSE statement is complete. So control is
transferred to the DBMS_OUTPUT.PUT_LINE statement that follows END IF. As a result,
another message is displayed on the screen.

A second run of the example (student ID is –102) produces the following output:

Enter value for sv_student_id: -102
old 2: v_student_id STUDENT.STUDENT_ID%TYPE := &sv_student_id;
new 2: v_student_id STUDENT.STUDENT_ID%TYPE := -102;
An id cannot be negative

PL/SQL procedure successfully completed.

For the second run, a negative value was entered for the variable v_student_id. The IF-
THEN-ELSE statement evaluates to TRUE, and the exception e_invalid_id is raised. As a
result, control is transferred to the exception-handling section of the block, and the error
message An id cannot be negative is displayed on the screen.

WATCH OUT!

It is important for you to note that the RAISE statement should be used in conjunction with an IF
statement. Otherwise, control of the execution is transferred to the exception-handling section of
the block for every execution. Consider the following example:

DECLARE
e_test_exception EXCEPTION;

BEGIN
DBMS_OUTPUT.PUT_LINE ('Exception has not been raised');
RAISE e_test_exception;
DBMS_OUTPUT.PUT_LINE ('Exception has been raised');

EXCEPTION
WHEN e_test_exception THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

Every time this example is run, the following output is produced:

Exception has not been raised
An error has occurred

PL/SQL procedure successfully completed.

Even though no error has occurred, control is transferred to the exception-handling section. It is
important for you to check to see if the error has occurred before raising the exception associated
with that error.

The same scope rules apply to user-defined exceptions that apply to built-in exceptions. An
exception declared in the inner block must be raised in the inner block and defined in the
exception-handling section of the inner block. Consider the following example:

L A B 9.2User-Defined Exceptions

191

▼

FOR EXAMPLE

-- outer block
BEGIN

DBMS_OUTPUT.PUT_LINE ('Outer block');

-- inner block
DECLARE

e_my_exception EXCEPTION;
BEGIN

DBMS_OUTPUT.PUT_LINE ('Inner block');
EXCEPTION

WHEN e_my_exception THEN
DBMS_OUTPUT.PUT_LINE ('An error has occurred');

END;

IF 10 > &sv_number THEN
RAISE e_my_exception;

END IF;
END;

In this example, the exception, e_my_exception, is declared in the inner block. However,
you are trying to raise this exception in the outer block. This example causes a syntax error
because the exception declared in the inner block ceases to exist as soon as the inner block
terminates. As a result, this example produces the following output:

Enter value for sv_number: 11
old 12: IF 10 > &sv_number THEN
new 12: IF 10 > 11 THEN

RAISE e_my_exception;
*

ERROR at line 13:
ORA-06550: line 13, column 13:
PLS-00201: identifier 'E_MY_EXCEPTION' must be declared
ORA-06550: line 13, column 7:
PL/SQL: Statement ignored

Notice that the error message

PLS-00201: identifier 'E_MY_EXCEPTION' must be declared

is the same error message you get when trying to use a variable that has not been declared.

L A B 9 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

L A B 9.2
192

Lab 9.2 Exercises

9.2.1 Use User-Defined Exceptions

In this exercise, you define an exception that allows you to raise an error if an instructor teaches ten or
more sections.

Create the following PL/SQL script:

-- ch9_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_instructor_id NUMBER := &sv_instructor_id;
v_tot_sections NUMBER;
v_name VARCHAR2(30);
e_too_many_sections EXCEPTION;

BEGIN
SELECT COUNT(*)
INTO v_tot_sections
FROM section
WHERE instructor_id = v_instructor_id;

IF v_tot_sections >= 10 THEN
RAISE e_too_many_sections;

ELSE
SELECT RTRIM(first_name)||' '||RTRIM(last_name)
INTO v_name
FROM instructor
WHERE instructor_id = v_instructor_id;

DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||', teaches '||
v_tot_sections||' sections');

END IF;
EXCEPTION

WHEN e_too_many_sections THEN
DBMS_OUTPUT.PUT_LINE ('This instructor teaches too much');

END;

Execute the script twice, providing 101 and 102 for the values of instructor ID, and then answer the
following questions:

A) What output is printed on the screen? Explain the difference in the outputs produced.

ANSWER: The outputs should look like the following:

Enter value for sv_instructor_id: 101
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 101;
Instructor, Fernand Hanks, teaches 9 sections

PL/SQL procedure successfully completed.

Enter value for sv_instructor_id: 102
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 102;
This instructor teaches too much

PL/SQL procedure successfully completed.

L A B 9.2Lab 9.2 Exercises

193

The first output is produced when value 101 is provided for the instructor ID. Because the number
of sections taught by this instructor is less than 10, the ELSE part of the IF-THEN-ELSE statement is
executed, and the instructor’s name is displayed on the screen.

The second output is produced when value 102 is provided for the instructor ID. In this case, the
number of sections taught by the instructor is 10. As a result, the IF part of the IF-THEN-ELSE state-
ment is executed, and the user-defined exception is raised. After the exception is raised, control of
the execution is transferred to the exception-handling section of the block, and the message
This instructor teaches too much is displayed on the screen.

B) What condition causes the user-defined exception to be raised?

ANSWER: The user-defined exception is raised if the condition

v_tot_sections >= 10

evaluates to TRUE. In other words, if an instructor teaches ten or more sections, the exception
e_too_many_sections is raised.

C) How would you change the script to display an instructor’s name in the error message as well?

ANSWER: The script should look similar to the following. All changes are shown in bold.

-- ch9_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_instructor_id NUMBER := &sv_instructor_id;
v_tot_sections NUMBER;
v_name VARCHAR2(30);
e_too_many_sections EXCEPTION;

BEGIN
SELECT COUNT(*)
INTO v_tot_sections
FROM section
WHERE instructor_id = v_instructor_id;

SELECT RTRIM(first_name)||' '||RTRIM(last_name)
INTO v_name
FROM instructor
WHERE instructor_id = v_instructor_id;

IF v_tot_sections >= 10 THEN
RAISE e_too_many_sections;

ELSE
DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||', teaches '||

v_tot_sections||' sections');
END IF;

EXCEPTION
WHEN e_too_many_sections THEN

DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||
', teaches too much');

END;

L A B 9.2
194

Lab 9.2 Exercises

The new version of this script has only two changes. First, the SELECT INTO statement that returns
the instructor name has been moved from the ELSE part of the IF-THEN-ELSE statement immedi-
ately after the first SELECT INTO statement. Second, the error message in the exception-handling
section has been modified to include the instructor name.

The new version of this script produces the following output:

Enter value for sv_instructor_id: 102
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 102;
Instructor, Tom Wojick, teaches too much

PL/SQL procedure successfully completed.

In the version of the script shown next, the DBMS_OUTPUT.PUT_LINE statement displaying how
many sections are taught by the instructor has been moved from the ELSE portion of the IF-THEN-
ELSE statement as well. This eliminates the ELSE portion of the IF-THEN-ELSE statement. In this
case, the output produced by the script contains the number of sections for the instructor even
when the e_too_many_sections exception occurs.

-- ch9_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_instructor_id NUMBER := &sv_instructor_id;
v_tot_sections NUMBER;
v_name VARCHAR2(30);
e_too_many_sections EXCEPTION;

BEGIN
SELECT COUNT(*)
INTO v_tot_sections
FROM section
WHERE instructor_id = v_instructor_id;

SELECT RTRIM(first_name)||' '||RTRIM(last_name)
INTO v_name
FROM instructor
WHERE instructor_id = v_instructor_id;

DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||', teaches '||
v_tot_sections||' sections');

IF v_tot_sections >= 10 THEN
RAISE e_too_many_sections;

END IF;

EXCEPTION
WHEN e_too_many_sections THEN

DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||
', teaches too much');

END;

L A B 9.2Lab 9.2 Exercises

195

Enter value for sv_instructor_id: 102
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 102;
Instructor, Tom Wojick, teaches 10 sections
Instructor, Tom Wojick, teaches too much

PL/SQL procedure successfully completed.

L A B 9.2
196

Lab 9.2 Exercises

L A B 9 . 3

Exception Propagation

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Understand how exceptions propagate

. Reraise exceptions

You already have seen how different types of exceptions are raised when a runtime error occurs
in the executable portion of the PL/SQL block. However, a runtime error also may occur in the
declaration section or exception-handling section of the block. The rules that govern how
exceptions are raised in these situations are called exception propagation.

Consider the first case: A runtime error occurs in the executable section of the PL/SQL block.
This case should be treated as a review, because the examples you have seen so far in this chapter
show how an exception is raised when an error occurs in the executable section of the block.

If an exception is associated with a particular error, control is passed to the exception-handling
section of the block. After the statements associated with the exception are executed, control is
passed to the host environment or to the enclosing block. If there is no exception handler for
this error, the exception is propagated to the enclosing block (outer block). Then the steps just
described are repeated again. If no exception handler is found, execution of the program halts,
and control is transferred to the host environment.

Next, take a look at a second case: A runtime error occurs in the declaration section of the block.
If there is no outer block, execution of the program halts, and control is passed to the host envi-
ronment. Consider the following script:

FOR EXAMPLE

DECLARE
v_test_var CHAR(3):= 'ABCDE';

BEGIN
DBMS_OUTPUT.PUT_LINE ('This is a test');

EXCEPTION
WHEN INVALID_NUMBER OR VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

L A B 9.3
197

When executed, this example produces the following output:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer
too small
ORA-06512: at line 2

As you can see, the assignment statement in the declaration section of the block causes an error.
Even though there is an exception handler for this error, the block cannot execute successfully.
Based on this example, you may conclude that when a runtime error occurs in the declaration
section of the PL/SQL block, the exception-handling section of this block cannot catch the error.

Next, consider an example with nested PL/SQL blocks:

FOR EXAMPLE

--outer block
BEGIN

-- inner block
DECLARE

v_test_var CHAR(3):= 'ABCDE';
BEGIN

DBMS_OUTPUT.PUT_LINE ('This is a test');
EXCEPTION

WHEN INVALID_NUMBER OR VALUE_ERROR THEN
DBMS_OUTPUT.PUT_LINE ('An error has occurred in '||

'the inner block');
END;

EXCEPTION
WHEN INVALID_NUMBER OR VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred in the '||
'program');

END;

When executed, this example produces the following output:

An error has occurred in the program

PL/SQL procedure successfully completed.

In this example, the PL/SQL block is enclosed in another block, and the program can complete.
This is possible because the exception defined in the outer block is raised when the error occurs
in the declaration section of the inner block. Therefore, you can conclude that when a runtime
error occurs in the declaration section of the inner block, the exception immediately propagates to the
enclosing (outer) block.

L A B 9.3
198

Exception Propagation

Finally, consider a third case: A runtime error occurs in the exception-handling section of the
block. Just like the previous case, if there is no outer block, execution of the program halts, and
control is passed to the host environment. Consider the following script:

FOR EXAMPLE

DECLARE
v_test_var CHAR(3) := 'ABC';

BEGIN
v_test_var := '1234';
DBMS_OUTPUT.PUT_LINE ('v_test_var: '||v_test_var);

EXCEPTION
WHEN INVALID_NUMBER OR VALUE_ERROR THEN

v_test_var := 'ABCD';
DBMS_OUTPUT.PUT_LINE ('An error has occurred');

END;

When executed, this example produces the following output:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: character string buffer
too small
ORA-06512: at line 8
ORA-06502: PL/SQL: numeric or value error: character string buffer
too small

As you can see, the assignment statement in the executable section of the block causes an error.
Therefore, control is transferred to the exception-handling section of the block. However, the
assignment statement in the exception-handling section of the block raises the same error. As a
result, the output of this example contains the same error message twice. The first message is
generated by the assignment statement in the executable section of the block, and the second
message is generated by the assignment statement of the exception-handling section of this block.
Based on this example, you may conclude that when a runtime error occurs in the exception-handling
section of the PL/SQL block, the exception-handling section of this block cannot prevent the error.

Next, consider an example with nested PL/SQL blocks:

FOR EXAMPLE

--outer block
BEGIN

-- inner block
DECLARE

v_test_var CHAR(3) := 'ABC';
BEGIN

v_test_var := '1234';
DBMS_OUTPUT.PUT_LINE ('v_test_var: '||v_test_var);

L A B 9.3Exception Propagation

199

EXCEPTION
WHEN INVALID_NUMBER OR VALUE_ERROR THEN

v_test_var := 'ABCD';
DBMS_OUTPUT.PUT_LINE ('An error has occurred in '||

'the inner block');
END;

EXCEPTION
WHEN INVALID_NUMBER OR VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred in the '||
'program');

END;

When executed, this example produces the following output:

An error has occurred in the program

PL/SQL procedure successfully completed.

In this example, the PL/SQL block is enclosed by another block, and the program can complete.
This is possible because the exception defined in the outer block is raised when the error occurs
in the exception-handling section of the inner block. Therefore, you can conclude that when a
runtime error occurs in the exception-handling section of the inner block, the exception immediately
propagates to the enclosing block.

In the previous two examples, an exception is raised implicitly by a runtime error in the excep-
tion-handling section of the block. However, the RAISE statement can explicitly raise an excep-
tion in the exception-handling section of the block. Consider the following example:

FOR EXAMPLE

--outer block
DECLARE

e_exception1 EXCEPTION;
e_exception2 EXCEPTION;

BEGIN
-- inner block
BEGIN

RAISE e_exception1;
EXCEPTION

WHEN e_exception1 THEN
RAISE e_exception2;

WHEN e_exception2 THEN
DBMS_OUTPUT.PUT_LINE ('An error has occurred in '||

'the inner block');
END;

EXCEPTION
WHEN e_exception2 THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred in '||
'the program');

END;

L A B 9.3
200

Exception Propagation

This example produces the following output:

An error has occurred in the program

PL/SQL procedure successfully completed.

Here two exceptions are declared: e_exception1 and e_exception2. Exception
e_exception1 is raised in the inner block via the RAISE statement. In the exception-handling
section of the block, exception e_exception1 tries to raise e_exception2. Even though
there is an exception handler for the exception e_exception2 in the inner block, control is
transferred to the outer block. This happens because only one exception can be raised in the
exception-handling section of the block. Only after one exception has been handled can another
be raised, but two or more exceptions cannot be raised simultaneously.

When a PL/SQL block is not enclosed by another block, control is transferred to the host envi-
ronment, and the program cannot complete successfully. This is illustrated by the following
example:

FOR EXAMPLE

DECLARE
e_exception1 EXCEPTION;

BEGIN
RAISE e_exception1;

END;

The following error message is displayed:

DECLARE
*
ERROR at line 1:
ORA-06510: PL/SQL: unhandled user-defined exception
ORA-06512: at line 4

RERAISING AN EXCEPTION

On some occasions you may want to be able to stop your program if a certain type of error
occurs. In other words, you may want to handle an exception in the inner block and then pass
it to the outer block. This process is called reraising an exception. The following example helps
illustrate this point:

FOR EXAMPLE

-- outer block
DECLARE

e_exception EXCEPTION;
BEGIN

-- inner block
BEGIN

RAISE e_exception;

L A B 9.3Exception Propagation

201

EXCEPTION
WHEN e_exception THEN

RAISE;
END;

EXCEPTION
WHEN e_exception THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

In this example, the exception e_exception is declared in the outer block. Then it is raised
in the inner block. As a result, control is transferred to the exception-handling section of the
inner block. The RAISE statement in the exception-handling section of the block causes the
exception to propagate to the exception-handling section of the outer block.

Notice that when the RAISE statement is used in the exception-handling section of the inner
block, it is not followed by the exception name.

When run, this example produces the following output:

The error has occurred

PL/SQL procedure successfully completed.

WATCH OUT!

It is important to note that when an exception is reraised in the block that is not enclosed by any
other block, the program is unable to complete successfully. Consider the following example:

DECLARE
e_exception EXCEPTION;

BEGIN
RAISE e_exception;

EXCEPTION
WHEN e_exception THEN

RAISE;
END;

When run, this example produces the following output:

DECLARE
*
ERROR at line 1:
ORA-06510: PL/SQL: unhandled user-defined exception
ORA-06512: at line 7

L A B 9.3
202

Exception Propagation

▼ L A B 9 . 3 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

9.3.1 Understand How Exceptions Propagate

In this exercise, you use nested PL/SQL blocks to practice exception propagation. You are asked to exper-
iment with the script via exceptions. Try to answer the questions before you run the script. After you
have answered the questions, run the script and check your answers.

Create the following PL/SQL script:

-- ch9_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_my_name VARCHAR2(15) := 'ELENA SILVESTROVA';
BEGIN

DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

DECLARE
v_your_name VARCHAR2(15);

BEGIN
v_your_name := '&sv_your_name';
DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Error in the inner block');
DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Error in the outer block');
DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

Answer the following questions, and then execute the script:

A) What exception is raised by the assignment statement in the declaration section of the outer
block?

ANSWER: The exception VALUE_ERROR is raised by the assignment statement of the outer block.

The variable v_my_name is declared as VARCHAR2(15). However, the value that is assigned to
this variable contains 17 letters. As a result, the assignment statement causes a runtime error.

B) After this exception (based on the preceding question) is raised, will the program terminate
successfully? Explain why or why not.

ANSWER: When the exception VALUE_ERROR is raised, the script cannot complete successfully
because the error occurs in the declaration section of the outer block. Because the outer block is
not enclosed by any other block, control is transferred to the host environment. As a result, an
error message is generated when this example is run.

L A B 9.3Lab 9.3 Exercises

203

C) How would you change this script so that the exception can handle an error caused by the
assignment statement in the declaration section of the outer block?

ANSWER: For the exception to handle the error generated by the assignment statement in the
declaration section of the outer block, the assignment statement must be moved to the
executable section of this block. All changes are shown in bold.

-- ch9_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_my_name VARCHAR2(15);
BEGIN

v_my_name := 'ELENA SILVESTROVA';
DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

DECLARE
v_your_name VARCHAR2(15);

BEGIN
v_your_name := '&sv_your_name';
DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Error in the inner block');
DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Error in the outer block');
DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

The new version of this script produces the following output:

Enter value for sv_your_name: TEST A NAME
old 9: v_your_name := '&sv_your_name';
new 9: v_your_name := 'TEST A NAME';
Error in the outer block
This name is too long

PL/SQL procedure successfully completed.

D) Change the value of the variable from “Elena Silvestrova” to “Elena.”Then change the script so that
if the assignment statement of the inner block causes an error, it is handled by the exception-
handling section of the outer block.

ANSWER: The script should look similar to the following. All changes are shown in bold.

-- ch9_3c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_my_name VARCHAR2(15) := 'ELENA';
BEGIN

DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

L A B 9.3
204

Lab 9.3 Exercises

DECLARE
v_your_name VARCHAR2(15) := '&sv_your_name';

BEGIN
DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Error in the inner block');
DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Error in the outer block');
DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

In this version of the example, the assignment statement has been moved from the executable
section of the inner block to the declaration section of this block. As a result, if the assignment
statement of the inner block raises an exception, control is transferred to the exception section of
the outer block.

You can modify this example in a different manner that allows you to achieve the same result.

-- ch9_3d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE

v_my_name VARCHAR2(15) := 'ELENA';
BEGIN

DBMS_OUTPUT.PUT_LINE ('My name is '||v_my_name);

DECLARE
v_your_name VARCHAR2(15);

BEGIN
v_your_name := '&sv_your_name';
DBMS_OUTPUT.PUT_LINE ('Your name is '||v_your_name);

EXCEPTION
WHEN VALUE_ERROR THEN

RAISE;
END;

EXCEPTION
WHEN VALUE_ERROR THEN

DBMS_OUTPUT.PUT_LINE ('Error in the outer block');
DBMS_OUTPUT.PUT_LINE ('This name is too long');

END;

In this version of the example, the RAISE statement is used in the exception-handling section of
the inner block. As a result, the exception is reraised in the outer block.

Both versions of this example produce very similar output. The first output is generated by the
third version of the example, and the second output is generated by the fourth version of the
example.

L A B 9.3Lab 9.3 Exercises

205

Enter value for sv_your_name: THIS NAME MUST BE REALLY LONG
old 6: v_your_name VARCHAR2(15) := '&sv_your_name';
new 6: v_your_name VARCHAR2(15) := 'THIS NAME MUST BE

REALLY LONG';
My name is ELENA
Error in the outer block
This name is too long

PL/SQL procedure successfully completed.

Enter value for sv_your_name: THIS NAME MUST BE REALLY LONG
old 8: v_your_name := '&sv_your_name';
new 8: v_your_name := 'THIS NAME MUST BE REALLY LONG';
My name is ELENA
Error in the outer block
This name is too long

PL/SQL procedure successfully completed.

Notice that the only difference between the two versions of the output is the line number of the
substitution variable. In the first version of the output, the assignment statement takes place in
the declaration section of the inner block. In the second version of the output, the assignment
statement occurs in the executable section of the inner block. However, all messages displayed on
the screen are identical in both versions of the output.

9.3.2 Reraise Exceptions

In this exercise, you check the number of sections for a course. If a course does not have a section associ-
ated with it, you raise an exception,e_no_sections. Again, try to answer the questions before you
run the script. After you have answered the questions, run the script and check your answers.

Create the following PL/SQL script:

-- ch9_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_course_no NUMBER := 430;
v_total NUMBER;
e_no_sections EXCEPTION;

BEGIN
BEGIN

SELECT COUNT(*)
INTO v_total
FROM section
WHERE course_no = v_course_no;

IF v_total = 0 THEN
RAISE e_no_sections;

ELSE
DBMS_OUTPUT.PUT_LINE ('Course, '||v_course_no||

' has '||v_total||' sections');
END IF;

L A B 9.3
206

Lab 9.3 Exercises

EXCEPTION
WHEN e_no_sections THEN

DBMS_OUTPUT.PUT_LINE ('There are no sections for course '||
v_course_no);

END;
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

Answer the following questions, and then execute the script:

A) What exception is raised if there are no sections for a given course number?

ANSWER: If there are no sections for a given course number, the exception e_no_sections
is raised.

B) If the exception e_no_sections is raised, how does the control of execution flow? Explain
your answer.

ANSWER: If the exception e_no_sections is raised, control of the execution is passed from
the inner block to the exception-handling section of that inner block. This is possible because the
inner block has the exception-handling section, in which the exception is raised and handled. This
is illustrated in the following output:

There are no sections for course 430
Done...

PL/SQL procedure successfully completed.

C) Change this script so that the exception e_no_sections is reraised in the outer block.

-- ch9_4b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_course_no NUMBER := 430;
v_total NUMBER;
e_no_sections EXCEPTION;

BEGIN
BEGIN

SELECT COUNT(*)
INTO v_total
FROM section
WHERE course_no = v_course_no;

IF v_total = 0 THEN
RAISE e_no_sections;

ELSE
DBMS_OUTPUT.PUT_LINE ('Course, '||v_course_no||

' has '||v_total||' sections');
END IF;

EXCEPTION
WHEN e_no_sections THEN

RAISE;
END;
DBMS_OUTPUT.PUT_LINE ('Done...');

L A B 9.3Lab 9.3 Exercises

207

EXCEPTION
WHEN e_no_sections THEN

DBMS_OUTPUT.PUT_LINE ('There are no sections for course '||
v_course_no);

END;

In this version of the example, the exception-handling section of the inner block has been modi-
fied. The DBMS_OUTPUT.PUT_LINE statement has been replaced with the RAISE statement. In
addition, the exception-handling section is included in the outer block.

L A B 9.3
208

Lab 9.3 Exercises

▼ T R Y I T Y O U R S E L F

In this chapter you’ve learned about built-in exceptions. Here are some projects that will help you test
the depth of your understanding:

1) Create the following script: For a course section provided at runtime, determine the number of
students registered. If this number is equal to or greater than 10, raise the user-defined exception
e_too_many_students and display an error message. Otherwise, display how many
students are in a section.

2) Modify the script you just created. After the exception e_too_many_students has been
raised in the inner block, reraise it in the outer block.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

Try it Yourself 209

This page intentionally left blank

C H A P T E R 1 0

Exceptions: Advanced
Concepts

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. RAISE_APPLICATION_ERROR

. EXCEPTION_INIT pragma

. SQLCODE and SQLERRM

In Chapters 8 and 9, you encountered the concepts of error handling, built-in
exceptions, and user-defined exceptions. You also learned about the scope of an
exception and how to reraise an exception.

In this chapter you conclude your exploration of error handling and exceptions
with a study of advanced topics. After working through this chapter, you will be
able to associate an error number with an error message. You also will be able to
trap a runtime error that has an Oracle error number but no name by which it
can be referenced.

L A B 1 0 . 1

RAISE_APPLICATION_ERROR

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use RAISE_APPLICATION_ERROR

RAISE_APPLICATION_ERROR is a special built-in procedure provided by Oracle. It allows
programmers to create meaningful error messages for a specific application. The RAISE_
APPLICATION_ERROR procedure works with user-defined exceptions; its syntax is

RAISE_APPLICATION_ERROR(error_number, error_message);

or

RAISE_APPLICATION_ERROR(error_number, error_message, keep_errors);

As you can see, the RAISE_APPLICATION_ERROR procedure has two forms. The first form
contains only two parameters: error_number and error_message. error_number is a
number that a programmer associates with a specific error message. It can be any number
between –20,999 and –20,000. error_message is the text of the error; it can contain up to
2,048 characters.

The second form of RAISE_APPLICATION_ERROR contains one additional parameter:
keep_errors, which is an optional Boolean parameter. If keep_errors is set to TRUE, the
new error is added to the list of errors that have been raised already. This list of errors is called
the error stack. If keep_errors is set to FALSE, the new error replaces the error stack that has
been raised already. The default value for the parameter keep_errors is FALSE.

It is important to note that the RAISE_APPLICATION_ERROR procedure works with unnamed
user-defined exceptions. It associates the number of the error with the text of the error.
Therefore, the user-defined exception does not have a name associated with it.

Consider the following example used in Chapter 9, “Exceptions.” It illustrates the use of the
named user-defined exception and the RAISE statement. Within the example you can compare
a modified version using the unnamed user-defined exception and the RAISE_APPLICATION_
ERROR procedure.

First, view the original example from Chapter 9. The named user-defined exception and the
RAISE statement are shown in bold.

L A B 10.1
212

FOR EXAMPLE

DECLARE
v_student_id student.student_id%type := &sv_student_id;
v_total_courses NUMBER;
e_invalid_id EXCEPTION;

BEGIN
IF v_student_id < 0 THEN

RAISE e_invalid_id;
ELSE

SELECT COUNT(*)
INTO v_total_courses
FROM enrollment
WHERE student_id = v_student_id;
DBMS_OUTPUT.PUT_LINE ('The student is registered for '||

v_total_courses||' courses');
END IF;
DBMS_OUTPUT.PUT_LINE ('No exception has been raised');

EXCEPTION
WHEN e_invalid_id THEN

DBMS_OUTPUT.PUT_LINE ('An id cannot be negative');
END;

Now, compare this to the modified example (changes are shown in bold):

FOR EXAMPLE

DECLARE
v_student_id student.student_id%type := &sv_student_id;
v_total_courses NUMBER;

BEGIN
IF v_student_id < 0 THEN

RAISE_APPLICATION_ERROR (-20000, 'An id cannot be negative');
ELSE

SELECT COUNT(*)
INTO v_total_courses
FROM enrollment
WHERE student_id = v_student_id;
DBMS_OUTPUT.PUT_LINE ('The student is registered for '||

v_total_courses||' courses');
END IF;

END;

The second version of the example does not contain the name of the exception, the RAISE
statement, or the error-handling section of the PL/SQL block. Instead, it has a single RAISE_
APPLICATION_ERROR statement.

DID YOU KNOW?

Even though the RAISE_APPLICATION_ERROR is a built-in procedure, it can be referred to as a state-
ment when used in the PL/SQL block.

L A B 10.1RAISE_APPLICATION_ERROR

213

Both versions of the example achieve the same result: The processing stops if a negative number
is provided for v_student_id. However, the second version of this example produces output
that has the look and feel of an error message. Now, run both versions of the example with a
value of –4 for the variable v_student_id.

The first version of the example produces the following output:

Enter value for sv_student_id: -4
old 2: v_student_id student.student_id%type := &sv_student_id;
new 2: v_student_id student.student_id%type := -4;
An id cannot be negative

PL/SQL procedure successfully completed.

The second version of the example produces the following output:

Enter value for sv_student_id: -4
old 2: v_student_id student.student_id%type := &sv_student_id;
new 2: v_student_id student.student_id%type := -4;
DECLARE
*
ERROR at line 1:
ORA-20000: An id cannot be negative
ORA-06512: at line 6

The output produced by the first version of the example contains the error message An id
cannot be negative and the message PL/SQL procedure successfully completed.
The error message An id cannot be negative in the output generated by the second version
of the example looks like the error message generated by the system, because the error number
ORA-20000 precedes the error message.

The RAISE_APPLICATION_ERROR procedure can work with built-in exceptions as well.
Consider the following example:

FOR EXAMPLE

DECLARE
v_student_id student.student_id%type := &sv_student_id;
v_name varchar2(50);

BEGIN
SELECT first_name||' '||last_name
INTO v_name
FROM student
WHERE student_id = v_student_id;
DBMS_OUTPUT.PUT_LINE (v_name);

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR (-20001, 'This ID is invalid');
END;

L A B 10.1
214

RAISE_APPLICATION_ERROR

▼

When a value of 100 is entered for the student ID, the example produces the following output:

Enter value for sv_student_id: 100
old 2: v_student_id student.student_id%type := &sv_student_id;
new 2: v_student_id student.student_id%type := 100;
DECLARE
*
ERROR at line 1:
ORA-20001: This ID is invalid
ORA-06512: at line 12

The built-in exception NO_DATA_FOUND is raised because no record in the STUDENT table
corresponds to this value of the student ID. However, the number of the error message does not
refer to the exception NO_DATA_FOUND. It refers to the error message This ID is invalid.

The RAISE_APPLICATION_ERROR procedure allows programmers to return error messages in
a manner that is consistent with Oracle errors. However, it is up to a programmer to maintain
the relationship between the error numbers and the error messages. For example, you have
designed an application to maintain enrollment information on students. In this application you
have associated the error text This ID is invalid with the error number ORA-20001. This
error message can be used by your application for any invalid ID. After you have associated the
error number (ORA-20001) with a specific error message (This ID is invalid), you should
not assign this error number to another error message. If you do not maintain the relationship
between error numbers and error messages, the error-handling interface of your application
might become very confusing to the users and to yourself.

L A B 1 0 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

10.1.1 Use RAISE_APPLICATION_ERROR

In this exercise, you calculate how many students are registered for a given section of a given course. You
then display a message on the screen that contains the course number and the number of students
registered for it. The original PL/SQL script does not contain any exception handlers, so you are asked to
add the RAISE_APPLICATION_ERROR statements.

Create the following PL/SQL script:

-- ch10_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_students NUMBER(3) := 0;
BEGIN

SELECT COUNT(*)
INTO v_students
FROM enrollment e, section s
WHERE e.section_id = s.section_id
AND s.course_no = 25

L A B 10.1Lab 10.1 Exercises

215

AND s.section_id = 89;

DBMS_OUTPUT.PUT_LINE ('Course 25, section 89 has '||v_students||
' students');

END;

Execute the script, and then answer the following questions:

A) What output is printed on the screen?

ANSWER: The output should look similar to the following:

Course 25, section 89 has 12 students

PL/SQL procedure successfully completed.

B) Modify this script so that if a section of a course has more than ten students enrolled in it, an error
message is displayed, indicating that this course has too many students enrolled.

ANSWER: The script should look similar to the following. All changes are shown in bold.

-- ch10_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_students NUMBER(3) := 0;
BEGIN

SELECT COUNT(*)
INTO v_students
FROM enrollment e, section s
WHERE e.section_id = s.section_id
AND s.course_no = 25
AND s.section_id = 89;

IF v_students > 10 THEN
RAISE_APPLICATION_ERROR

(-20002, 'Course 25, section 89 has more than 10 students');
END IF;

DBMS_OUTPUT.PUT_LINE ('Course 25, section 89 has '||v_students||
' students');

END;

Consider the result if you were to add an IF statement to this script that checks whether the value
of the variable v_students exceeds 10. If the value of the variable does exceed 10, the
RAISE_APPLICATION_ERROR statement executes, and the error message is displayed on the
screen.

C) Execute the new version of the script. What output is printed on the screen?

ANSWER: The output should look similar to the following:

DECLARE
*
ERROR at line 1:
ORA-20002: Course 25, section 89 has more than 10 students
ORA-06512: at line 12

L A B 10.1
216

Lab 10.1 Exercises

L A B 1 0 . 2

EXCEPTION_INIT Pragma

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use the EXCEPTION_INIT pragma

Often your programs need to handle an Oracle error that has a particular number associated
with it, but no name by which it can be referenced. As a result, you are unable to write a handler
to trap this error. In a case like this, you can use a construct called a pragma. A pragma is a
special instruction to the PL/SQL compiler. It is important to note that pragmas are processed
at the time of the compilation. The EXCEPTION_INIT pragma allows you to associate an Oracle
error number with the name of a user-defined error. After you associate an error name with an
Oracle error number, you can reference the error and write a handler for it.

The EXCEPTION_INIT pragma appears in the declaration section of a block as shown:

DECLARE
exception_name EXCEPTION;
PRAGMA EXCEPTION_INIT(exception_name, error_code);

Notice that the declaration of the user-defined exception appears before the EXCEPTION_INIT
pragma where it is used. The EXCEPTION_INIT pragma has two parameters: exception_
name and error_code. exception_name is the name of your exception, and error_code
is the number of the Oracle error you want to associate with your exception. Consider the
following:

FOR EXAMPLE

DECLARE
v_zip zipcode.zip%type := '&sv_zip';

BEGIN
DELETE FROM zipcode
WHERE zip = v_zip;
DBMS_OUTPUT.PUT_LINE ('Zip '||v_zip||' has been deleted');
COMMIT;

END;

L A B 10.2
217

In this example, the record corresponding to the value of a zip code provided by the user is
deleted from the ZIPCODE table. Next, the message that a specific zip code has been deleted is
displayed on the screen.

Compare the results when you run this example using 06870 for the value of v_zip. The
example produces the following output:

Enter value for sv_zip: 06870
old 2: v_zip zipcode.zip%type := '&sv_zip';
new 2: v_zip zipcode.zip%type := '06870';
DECLARE
*
ERROR at line 1:
ORA-02292: integrity constraint (STUDENT.STU_ZIP_FK) violated -

child record found
ORA-06512: at line 4

The error message generated by this example occurs because you are trying to delete a record
from the ZIPCODE table while its child records exist in the STUDENT table. This violates the
referential integrity constraint STU_ZIP_FK. In other words, a record with a foreign key
(STU_ZIP_FK) in the STUDENT table (child table) references a record in the ZIPCODE table
(parent table).

Notice that this error has Oracle error number ORA-02292 assigned to it, but it does not have
a name. As a result, you need to associate this error number with a user-defined exception so
that you can handle this error in the script.

Contrast the example if you modify it as follows (all changes are shown in bold):

FOR EXAMPLE

DECLARE
v_zip zipcode.zip%type := '&sv_zip';
e_child_exists EXCEPTION;
PRAGMA EXCEPTION_INIT(e_child_exists, -2292);

BEGIN
DELETE FROM zipcode
WHERE zip = v_zip;
DBMS_OUTPUT.PUT_LINE ('Zip '||v_zip||' has been deleted');
COMMIT;

EXCEPTION
WHEN e_child_exists THEN

DBMS_OUTPUT.PUT_LINE ('Delete students for this '||
'zipcode first');

END;

In this example, you declare the exception e_child_exists. Then you associate the exception
with error number –2292. It is important to note that you do not use ORA-02292 in the EXCEP-
TION_INIT pragma. Next, you add the exception-handling section to the PL/SQL block so that
you trap this error. Notice that even though the exception e_child_exists is user-defined,

L A B 10.2
218

EXCEPTION_INIT Pragma

▼

you do not use the RAISE statement, as you saw in Chapter 9. Why do you think you don’t use
the RAISE statement?

When you run this example using the same value for the zip code, the following output is
produced:

Enter value for sv_zip: 06870
old 2: v_zip zipcode.zip%type := '&sv_zip';
new 2: v_zip zipcode.zip%type := '06870';
Delete students for this zipcode first

PL/SQL procedure successfully completed.

Notice that this output contains a new error message displayed by the DBMS_OUTPUT.
PUT_LINE statement. This version of the output is more descriptive than the previous version.
Remember that the user of the program probably does not know about the referential integrity
constraints existing in the database. Therefore, the EXCEPTION_INIT pragma improves
the readability of your error-handling interface. If the need arises, you can use multiple
EXCEPTION_INIT pragmas in your program.

L A B 1 0 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

10.2.1 USE the EXCEPTION_INIT Pragma

In this exercise, you insert a record in the COURSE table. The original PL/SQL script does not contain any
exception handlers, so you are asked to define an exception and add the EXCEPTION_INIT pragma.

Create the following PL/SQL script:

-- ch10_2a.sql, version 1.0
SET SERVEROUTPUT ON
BEGIN

INSERT INTO course (course_no, description, created_by,
created_date)

VALUES (COURSE_NO_SEQ.NEXTVAL, 'TEST COURSE', USER, SYSDATE);
COMMIT;
DBMS_OUTPUT.PUT_LINE ('One course has been added');

END;

Execute the script, and then answer the following questions:

A) What output is printed on the screen?

ANSWER: The output should look like the following:

BEGIN
*
ERROR at line 1:
ORA-01400: cannot insert NULL into ("STUDENT"."COURSE"."MODIFIED_BY")
ORA-06512: at line 2

L A B 10.2Lab 10.2 Exercises

219

B) Explain why the script does not execute successfully.

ANSWER: The script does not execute successfully because a NULL is inserted for the
MODIFIED_BY and MODIFIED_DATE columns.

The MODIFIED_BY and MODIFIED_DATE columns have check constraints defined on them. You
can view these constraints by querying one of the data dictionary tables. The data dictionary
comprises tables owned by the user SYS. These tables provide the database with information that
it uses to manage itself.

Consider the following SELECT statement against one of Oracle’s data dictionary tables,
USER_CONSTRAINTS. This table contains information on various constraints defined on each table
of the STUDENT schema.

SELECT constraint_name, search_condition
FROM user_constraints

WHERE table_name = 'COURSE';

CONSTRAINT_NAME SEARCH_CONDITION
------------------------ ---------------------------
CRSE_CREATED_DATE_NNULL "CREATED_DATE" IS NOT NULL
CRSE_MODIFIED_BY_NNULL "MODIFIED_BY" IS NOT NULL
CRSE_MODIFIED_DATE_NNULL "MODIFIED_DATE" IS NOT NULL
CRSE_DESCRIPTION_NNULL "DESCRIPTION" IS NOT NULL
CRSE_COURSE_NO_NNULL "COURSE_NO" IS NOT NULL
CRSE_CREATED_BY_NNULL "CREATED_BY" IS NOT NULL
CRSE_PK
CRSE_CRSE_FK

8 rows selected.

Notice that the last two rows refer to the primary and foreign key constraints, so no search condi-
tions are specified.

Based on the results produced by the preceding SELECT statement, six columns have a NOT NULL
constraint. However, the INSERT statement

INSERT INTO course (course_no, description, created_by,
created_date)

VALUES (COURSE_NO_SEQ.NEXTVAL, 'TEST COURSE', USER, SYSDATE);

has only four columns that have NOT NULL constraints. The columns MODIFIED_BY and
MODIFIED_DATE are not included in the INSERT statement. Any column of a table not listed in
the INSERT statement has NULL assigned to it when a new record is added to the table. If a
column has a NOT NULL constraint and is not listed in the INSERT statement, the INSERT state-
ment fails and causes an error.

C) Add a user-defined exception to the script so that the error generated by the INSERT statement is
handled.

ANSWER: The script should look similar to the following. All changes are shown in bold.

-- ch10_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

e_constraint_violation EXCEPTION;
PRAGMA EXCEPTION_INIT(e_constraint_violation, -1400);

L A B 10.2
220

Lab 10.2 Exercises

BEGIN
INSERT INTO course (course_no, description, created_by,

created_date)
VALUES (COURSE_NO_SEQ.NEXTVAL, 'TEST COURSE', USER, SYSDATE);
COMMIT;
DBMS_OUTPUT.PUT_LINE ('One course has been added');

EXCEPTION
WHEN e_constraint_violation THEN

DBMS_OUTPUT.PUT_LINE ('INSERT statement is '||
'violating a constraint');

END;

In this script, you declare the e_constraint_violation exception. Then, using the
EXCEPTION_INIT pragma to associate the exception with Oracle error number ORA-02290, the
handler is written for the new exception e_constraint_violation.

D) Run the new version of the script and explain its output.

ANSWER: The output should look similar to the following:

INSERT statement is violating a constraint

PL/SQL procedure successfully completed.

After you define an exception and associate an Oracle error number with it, you can write an
exception handler for it. As a result, as soon as the INSERT statement causes an error, control of the
execution is transferred to the exception-handling section of the block. Then the message
INSERT statement ... is displayed on the screen. Notice that when an exception is raised and
processed, the execution of the program does not halt. The script completes successfully.

L A B 10.2Lab 10.2 Exercises

221

L A B 1 0 . 3

SQLCODE and SQLERRM

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use SQLCODE and SQLERRM

In Chapter 8, “Error Handling and Built-in Exceptions,” you learned about the Oracle exception
OTHERS. Recall that all Oracle errors can be trapped with the help of the OTHERS exception
handler, as illustrated in the following example:

FOR EXAMPLE

DECLARE
v_zip VARCHAR2(5) := '&sv_zip';
v_city VARCHAR2(15);
v_state CHAR(2);

BEGIN
SELECT city, state
INTO v_city, v_state
FROM zipcode
WHERE zip = v_zip;

DBMS_OUTPUT.PUT_LINE (v_city||', '||v_state);

EXCEPTION
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

When 07458 is entered for the value of the zip code, this example produces the following
output:

Enter value for sv_zip: 07458
old 2: v_zip VARCHAR2(5) := '&sv_zip';
new 2: v_zip VARCHAR2(5) := '07458';
An error has occurred

PL/SQL procedure successfully completed.

L A B 10.3
222

This output informs you that an error occurred at runtime. However, you do not know what the
error is and what caused it. Maybe no record in the ZIPCODE table corresponds to the value
provided at runtime, or maybe a datatype mismatch was caused by the SELECT INTO state-
ment. As you can see, even though this is a simple example, a number of possible runtime errors
can occur.

Of course, you cannot always know all the possible runtime errors that may occur when a
program is running. Therefore, it is a good practice to have the OTHERS exception handler in
your script. To improve the error-handling interface of your program, Oracle gives you two
built-in functions, SQLCODE and SQLERRM, used with the OTHERS exception handler. The
SQLCODE function returns the Oracle error number, and the SQLERRM function returns
the error message. The maximum length of a message returned by the SQLERRM function is
512 bytes.

Consider what happens if you modify the preceding by adding the SQLCODE and SQLERRM
functions as follows (all changes are shown in bold):

FOR EXAMPLE

DECLARE
v_zip VARCHAR2(5) := '&sv_zip';
v_city VARCHAR2(15);
v_state CHAR(2);
v_err_code NUMBER;
v_err_msg VARCHAR2(200);

BEGIN
SELECT city, state
INTO v_city, v_state
FROM zipcode
WHERE zip = v_zip;

DBMS_OUTPUT.PUT_LINE (v_city||', '||v_state);

EXCEPTION
WHEN OTHERS THEN
v_err_code := SQLCODE;
v_err_msg := SUBSTR(SQLERRM, 1, 200);
DBMS_OUTPUT.PUT_LINE ('Error code: '||v_err_code);
DBMS_OUTPUT.PUT_LINE ('Error message: '||v_err_msg);

END;

When executed, this example produces the following output:

Enter value for sv_zip: 07458
old 2: v_zip VARCHAR2(5) := '&sv_zip';
new 2: v_zip VARCHAR2(5) := '07458';
Error code: -6502
Error message: ORA-06502: PL/SQL: numeric or value error:

L A B 10.3SQLCODE and SQLERRM

223

character string buffer too small

PL/SQL procedure successfully completed.

In this example, you declare two variables: v_err_code and v_err_msg. Then, in the excep-
tion-handling section of the block, you assign SQLCODE to the variable v_err_code and
SQLERRM to the variable v_err_msg. Next, you use the DBMS_OUTPUT.PUT_LINE state-
ments to display the error number and the error message on the screen.

Notice that this output is more informative than the output produced by the previous version
of the example, because it displays the error message. As soon as you know which runtime error
has occurred in your program, you can take steps to prevent this error’s recurrence.

Generally, the SQLCODE function returns a negative number for an error number. However,
there are a few exceptions:

. When SQLCODE is referenced outside the exception section, it returns 0 for the error
code. The value of 0 means successful completion.

. When SQLCODE is used with the user-defined exception, it returns +1 for the error code.

. SQLCODE returns a value of 100 when the NO_DATA_FOUND exception is raised.

The SQLERRM function accepts an error number as a parameter, and it returns an error message
corresponding to the error number. Usually, it works with the value returned by SQLCODE.
However, you can provide the error number yourself if such a need arises. Consider the follow-
ing example:

FOR EXAMPLE

BEGIN
DBMS_OUTPUT.PUT_LINE ('Error code: '||SQLCODE);
DBMS_OUTPUT.PUT_LINE ('Error message1: '||SQLERRM(SQLCODE));
DBMS_OUTPUT.PUT_LINE ('Error message2: '||SQLERRM(100));
DBMS_OUTPUT.PUT_LINE ('Error message3: '||SQLERRM(200));
DBMS_OUTPUT.PUT_LINE ('Error message4: '||SQLERRM(-20000));

END;

In this example, SQLCODE and SQLERRM are used in the executable section of the PL/SQL
block. The SQLERRM function accepts the value of the SQLCODE in the second DBMS_
OUTPUT.PUT_LINE statement. In the following DBMS_OUPUT.PUT_LINE statements,
SQLERRM accepts the values of 100, 200, and –20,000 respectively. When executed, this
example produces the following output:

Error code: 0
Error message1: ORA-0000: normal, successful completion
Error message2: ORA-01403: no data found
Error message3: -200: non-ORACLE exception
Error message4: ORA-20000:

PL/SQL procedure successfully completed.

L A B 10.3
224

SQLCODE and SQLERRM

▼

The first DBMS_OUTPUT.PUT_LINE statement displays the value of the SQLCODE function.
Because no exception is raised, it returns 0. Next, SQLERRM accepts as a parameter the value
returned by the SQLCODE function. This function returns the message ORA-0000: normal,
... . Next, SQLERRM accepts 100 as its parameter and returns ORA-01403: no data found.
Notice that when SQLERRM accepts 200 as its parameter, it cannot find an Oracle exception
that corresponds to the error number 200. Finally, when SQLERRM accepts –20,000 as its
parameter, no error message is returned. Remember that –20,000 is an error number that can
be associated with a named user-defined exception.

L A B 1 0 . 3 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

10.3.1 Use SQLCODE and SQLERRM

In this exercise, you add a new record to the ZIPCODE table. The original PL/SQL script does not contain
any exception handlers. You are asked to add an exception-handling section to this script.

Create the following PL/SQL script:

-- ch10_3a.sql, version 1.0
SET SERVEROUTPUT ON
BEGIN

INSERT INTO ZIPCODE (zip, city, state, created_by, created_date,
modified_by, modified_date)

VALUES ('10027', 'NEW YORK', 'NY', USER, SYSDATE, USER, SYSDATE);
COMMIT;

END;

Execute the script, and answer the following questions:

A) What output is printed on the screen?

ANSWER: The output should look like the following:

BEGIN
*
ERROR at line 1:
ORA-00001: unique constraint (STUDENT.ZIP_PK) violated
ORA-06512: at line 2

The INSERT statement

INSERT INTO ZIPCODE (zip, city, state, created_by, created_date,
modified_by, modified_date)

VALUES ('10027', 'NEW YORK', 'NY', USER, SYSDATE, USER, SYSDATE);

causes an error because a record with zip code 10027 already exists in the ZIPCODE table. Column
ZIP of the ZIPCODE table has a primary key constraint defined on it. Therefore, when you try to
insert another record when the value of ZIP already exists in the ZIPCODE table, the error message
ORA-00001: unique constraint ... is generated.

L A B 10.3Lab 10.3 Exercises

225

B) Modify the script so that it completes successfully and so that the error number and message are
displayed on the screen.

ANSWER: The script should resemble the script shown. All changes are shown in bold.

-- ch10_3b.sql, version 2.0
SET SERVEROUTPUT ON
BEGIN

INSERT INTO ZIPCODE (zip, city, state, created_by, created_date,
modified_by, modified_date)

VALUES ('10027', 'NEW YORK', 'NY', USER, SYSDATE, USER, SYSDATE);
COMMIT;

EXCEPTION
WHEN OTHERS THEN

DECLARE
v_err_code NUMBER := SQLCODE;
v_err_msg VARCHAR2(100) := SUBSTR(SQLERRM, 1, 100);

BEGIN
DBMS_OUTPUT.PUT_LINE ('Error code: '||v_err_code);
DBMS_OUTPUT.PUT_LINE ('Error message: '||v_err_msg);

END;
END;

In this script, you add an exception-handling section with the OTHERS exception handler. Notice
that two variables,v_err_code and v_err_msg, are declared in the exception-handling
section of the block, adding an inner PL/SQL block.

C) Run the new version of the script and explain the output it produces.

ANSWER: The output should look similar to the following:

Error code: -1
Error message: ORA-00001: unique constraint (STUDENT.ZIP_PK)

violated

PL/SQL procedure successfully completed.

Because the INSERT statement causes an error, control is transferred to the OTHERS exception
handler. The SQLCODE function returns –1, and the SQLERRM function returns the text of the error
corresponding to the error code –1. After the exception-handling section completes its execution,
control is passed to the host environment.

L A B 10.3
226

Lab 10.3 Exercises

▼ T R Y I T Y O U R S E L F

In this chapter you’ve learned about advanced concepts of exception-handling techniques. Here are
some projects that will help you test the depth of your understanding:

1) Modify the script you created in project 1 of the “Try It Yourself” section in Chapter 9. Raise a user-
defined exception with the RAISE_APPLICATION_ERROR statement. Otherwise, display how many
students are in a section. Make sure your program can process all sections.

2) Create the following script: Try to add a record to the INSTRUCTOR table without providing values
for the columns MODIFIED_BY and MODIFIED_DATE. Define an exception and associate it with the
Oracle error number so that the error generated by the INSERT statement is handled.

3) Modify the script you just created. Instead of declaring a user-defined exception, add the OTHERS
exception handler to the exception-handling section of the block. Then display the error number
and the error message on the screen.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

Try it Yourself 227

This page intentionally left blank

C H A P T E R 1 1

Introduction to Cursors

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Cursor manipulation

. Using cursor FOR loops and nested cursors

Cursors are memory areas where Oracle executes SQL statements. In database
programming cursors are internal data structures that allow processing of SQL
query results. For example, you use a cursor to operate on all the rows of the
STUDENT table for students who are taking a particular course (having associ-
ated entries in the ENROLLMENT table). In this chapter, you will learn to
declare an explicit cursor that enables a user to process many rows returned by
a query and allows the user to write code that processes each row one at a time.

L A B 1 1 . 1

Cursor Manipulation

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Make use of record types

. Process an explicit cursor

. Make use of cursor attributes

. Put it all together

For Oracle to process a SQL statement, it needs to create an area of memory known as the
context area; this will have the information needed to process the statement. This information
includes the number of rows processed by the statement and a pointer to the parsed represen-
tation of the statement. (Parsing a SQL statement is the process whereby information is trans-
ferred to the server, at which point the SQL statement is evaluated as being valid.) In a query,
the active set refers to the rows that are returned.

A cursor is a handle, or pointer, to the context area. Through the cursor, a PL/SQL program can
control the context area and what happens to it as the statement is processed. Cursors have two
important features:

. Cursors allow you to fetch and process rows returned by a SELECT statement one row at
a time.

. A cursor is named so that it can be referenced.

TYPES OF CURSORS

There are two types of cursors:

. Oracle automatically declares an implicit cursor every time a SQL statement is executed.
The user is unaware of this and cannot control or process the information in an implicit
cursor.

. The program defines an explicit cursor for any query that returns more than one row of
data. This means that the programmer has declared the cursor within the PL/SQL code
block. This declaration allows the application to sequentially process each row of data as
the cursor returns it.

L A B 11.1
230

IMPLICIT CURSOR

To better understand the capabilities of an explicit cursor, you first need to understand the
process of an implicit cursor:

. Any given PL/SQL block issues an implicit cursor whenever a SQL statement is executed,
as long as an explicit cursor does not exist for that SQL statement.

. A cursor is automatically associated with every DML (data manipulation) statement
(UPDATE, DELETE, INSERT).

. All UPDATE and DELETE statements have cursors that identify the set of rows that will
be affected by the operation.

. An INSERT statement needs a place to receive the data that is to be inserted into the data-
base; the implicit cursor fulfills this need.

. The most recently opened cursor is called the SQL cursor.

The implicit cursor is used to process INSERT, UPDATE, DELETE, and SELECT INTO state-
ments. During the processing of an implicit cursor, Oracle automatically performs the OPEN,
FETCH, and CLOSE operations.

BY THE WAY

An implicit cursor can tell you how many rows were affected by an update. Cursors have attributes
such as ROWCOUNT. SQL%ROWCOUNT returns the number of rows updated. It can be used as
follows:

SET SERVEROUTPUT ON
BEGIN

UPDATE student
SET first_name = 'B'

WHERE first_name LIKE 'B%';
DBMS_OUTPUT.PUT_LINE(SQL%ROWCOUNT);

END;

Consider the following example of an implicit cursor:

FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

v_first_name VARCHAR2(35);
v_last_name VARCHAR2(35);

BEGIN
SELECT first_name, last_name
INTO v_first_name, v_last_name
FROM student
WHERE student_id = 123;
DBMS_OUTPUT.PUT_LINE ('Student name: '||

L A B 11.1Cursor Manipulation

231

v_first_name||' '||v_last_name);
EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE
('There is no student with student ID 123');

END;

Oracle automatically associates an implicit cursor with the SELECT INTO statement and fetches
the values for the variables v_first_name and v_last_name. After the SELECT INTO
statement completes, Oracle closes the implicit cursor.

Unlike with an implicit cursor, the program defines an explicit cursor for any query that returns
more than one row of data. To process an explicit cursor, first you declare it, and then you open
it. Then you fetch it, and finally you close it.

EXPLICIT CURSOR

The only means of generating an explicit cursor is to name the cursor in the DECLARE section
of the PL/SQL block.

The advantage of declaring an explicit cursor over an indirect implicit cursor is that the explicit
cursor gives the programmer more programmatic control. Also, implicit cursors are less efficient
than explicit cursors, so it is harder to trap data errors.

The process of working with an explicit cursor consists of the following steps:

1. Declaring the cursor. This initializes the cursor into memory.

2. Opening the cursor. The declared cursor is opened, and memory is allotted.

3. Fetching the cursor. The declared and opened cursor can now retrieve data.

4. Closing the cursor. The declared, opened, and fetched cursor must be closed to release the
memory allocation.

DECLARING A CURSOR

Declaring a cursor defines the cursor’s name and associates it with a SELECT statement. You
declare a cursor using the following syntax:

CURSOR c_cursor_name IS select statement

DID YOU KNOW?

We advise you to always begin a cursor name with c_. When you do so, it will always be clear that
the name refers to a cursor.

You can’t use a cursor unless the complete cycle of declaring, opening, fetching, and closing has
been performed. To explain these four steps, the following examples show code fragments for
each step. After that, you are shown the complete process.

L A B 11.1
232

Cursor Manipulation

FOR EXAMPLE

DECLARE
CURSOR c_MyCursor IS

SELECT *
FROM zipcode
WHERE state = 'NY';

...
-- code would continue here with opening, fetching
-- and closing of the cursor>

This PL/SQL fragment demonstrates the first step of declaring a cursor. A cursor named
c_MyCursor is declared as a select statement of all the rows in the zipcode table that have the
item state equal to NY.

BY THE WAY

Cursor names follow the same rules of scope and visibility that apply to the PL/SQL identifiers.
Because the cursor name is a PL/SQL identifier, it must be declared before it is referenced. Any valid
select statement can be used to define a cursor, including joins and statements with the UNION or
MINUS clause.

RECORD TYPES

A record is a composite data structure, which means that it is composed of one or more
elements. Records are very much like a row of a database table, but each element of the record
does not stand on its own. PL/SQL supports three kinds of records: table-based, cursor-based,
and programmer-defined.

A table-based record is one whose structure is drawn from the list of columns in the table. A
cursor-based record is one whose structure matches the elements of a predefined cursor. To
create a table-based or cursor-based record, use the %ROWTYPE attribute:

record_name table_name or cursor_name%ROWTYPE

FOR EXAMPLE

-- ch11_1a.sql
SET SERVEROUTPUT ON
DECLARE

vr_student student%ROWTYPE;
BEGIN

SELECT *
INTO vr_student
FROM student
WHERE student_id = 156;
DBMS_OUTPUT.PUT_LINE (vr_student.first_name||' '

||vr_student.last_name||' has an ID of 156');
EXCEPTION

WHEN no_data_found

L A B 11.1Cursor Manipulation

233

▼

THEN
RAISE_APPLICATION_ERROR(-2001,'The Student '||
'is not in the database');

END;

The variable vr_student is a record type of the existing database table student. In other
words, it has the same components as a row in the student table. A cursor-based record is much
the same, except that it is drawn from the select list of an explicitly declared cursor. When refer-
encing elements of the record, you use the same syntax that you use with tables:

record_name.item_name

To define a variable that is based on a cursor record, first you must declare the cursor. In the
following lab, you will start by declaring a cursor and then open the cursor, fetch from the
cursor, and close the cursor.

A table-based record is drawn from a particular table structure. Consider the following code
fragment:

FOR EXAMPLE

DECLARE
vr_zip ZIPCODE%ROWTYPE;
vr_instructor INSTRUCTOR%ROWTYPE;

Record vr_zip has a structure similar to a row of the ZIPCODE table. Its elements are CITY,
STATE, and ZIP. It is important to note that if the CITY column of the ZIPCODE table has been
defined as VARCHAR2(15), the attribute CITY of the vr_zip record has the same datatype
structure. Similarly, record vr_instructor is based on the row of the INSTRUCTOR table.

L A B 1 1 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

11.1.1 Make Use of Record Types

Here is an example of a record type in an anonymous PL/SQL block:

FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE
vr_zip ZIPCODE%ROWTYPE;
BEGIN

SELECT *
INTO vr_zip
FROM zipcode

L A B 11.1
234

Lab 11.1 Exercises

WHERE rownum < 2;
DBMS_OUTPUT.PUT_LINE('City: '||vr_zip.city);
DBMS_OUTPUT.PUT_LINE('State: '||vr_zip.state);
DBMS_OUTPUT.PUT_LINE('Zip: '||vr_zip.zip);

END;

A) What happens when the preceding example is run in a SQL*Plus session?

ANSWER: In this example, you select a single row for the ZIPCODE table into the vr_zip
record. Next, you display each element of the record on the screen. Notice that to reference each
attribute of the record, dot notation is used. When run, the example produces the following
output:

City: Santurce
State: PR
Zip: 00914
PL/SQL procedure successfully completed.

A cursor-based record is based on the list of elements of a predefined cursor.

B) Explain how the record type vr_student_name is being used in the following example:

FOR EXAMPLE

DECLARE
CURSOR c_student_name IS

SELECT first_name, last_name
FROM student;

vr_student_name c_student_name%ROWTYPE;

ANSWER: Record vr_student_name has a structure similar to a row returned by the SELECT
statement defined in the cursor. It contains two attributes—the student’s first and last names.

It is important to note that a cursor-based record can be declared only after its corresponding
cursor has been declared; otherwise, a compilation error will occur.

In the next lab you will learn how to process an explicit cursor. Then you will address record types within
that process.

11.1.2 Process an Explicit Cursor

To use a cursor, you must make use of the complete cycle of declaring, opening, fetching, and closing the
cursor. To help you learn these four steps, this lab covers them one at a time.

A) Write the declaration section of a PL/SQL block. It should define a cursor named c_student
based on the student table, with last_name and first_name concatenated into one item
called name. It also should omit the created_by and modified_by columns. Then declare
a record based on this cursor.

ANSWER:

DECLARE
CURSOR c_student is

SELECT first_name||' '||Last_name name
FROM student;

vr_student c_student%ROWTYPE;

L A B 11.1Lab 11.1 Exercises

235

OPENING A CURSOR
The next step in controlling an explicit cursor is to open it. When the OPEN cursor statement is
processed, the following four actions take place automatically:

1. The variables (including bind variables) in the WHERE clause are examined.

2. Based on the values of the variables, the active set is determined, and the PL/SQL engine executes
the query for that cursor. Variables are examined at cursor open time only.

3. The PL/SQL engine identifies the active set of data—the rows from all the involved tables that
meet the WHERE clause criteria.

4. The active set pointer is set to the first row.

The syntax for opening a cursor is

OPEN cursor_name;

DID YOU KNOW?

A pointer into the active set is also established at cursor open time. The pointer determines which
row is the next to be fetched by the cursor. More than one cursor can be open at a time.

B) Add the necessary lines to the PL/SQL block that you just wrote to open the cursor.

ANSWER: The following lines should be added to the lines in A):

BEGIN
OPEN c_student;

FETCHING ROWS IN A CURSOR
After the cursor has been declared and opened, you can retrieve data from the cursor. The process of
getting data from the cursor is called fetching the cursor. There are two ways to fetch a cursor:

FETCH cursor_name INTO PL/SQL variables;

or

FETCH cursor_name INTO PL/SQL record;

When the cursor is fetched, the following occurs:

1. The FETCH command is used to retrieve one row at a time from the active set. This is generally
done inside a loop. The values of each row in the active set can then be stored in the correspon-
ding variables or PL/SQL record one at a time, performing operations on each one successively.

2. After each FETCH, the active set pointer is moved forward to the next row. Thus, each FETCH
returns successive rows of the active set, until the entire set is returned. The last FETCH does not
assign values to the output variables; they still contain their prior values.

FOR EXAMPLE

-- ch11_2a.sql
SET SERVEROUTPUT ON
DECLARE

CURSOR c_zip IS
SELECT *
FROM zipcode;

vr_zip c_zip%ROWTYPE;

L A B 11.1
236

Lab 11.1 Exercises

BEGIN
OPEN c_zip;
LOOP

FETCH c_zip INTO vr_zip;
EXIT WHEN c_zip%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(vr_zip.zip||

' '||vr_zip.city||' '||vr_zip.state);
END LOOP;

END;

The line in italic has not yet been covered but is essential for the code to run correctly. It is explained
later in this chapter.

C) In Chapter 6,“Iterative Control: Part I,” you learned how to construct a loop. For the PL/SQL block
that you have been writing, add a loop. Inside the loop, fetch the cursor into the record. Include a
DBMS_OUTPUT line inside the loop so that each time the loop iterates, all the information in the
record is displayed in a SQL*Plus session.

ANSWER: The following lines should be added:

LOOP
FETCH c_student INTO vr_student;
DBMS_OUTPUT.PUT_LINE(vr_student.name);

CLOSING A CURSOR
As soon as all the rows in the cursor have been processed (retrieved), the cursor should be closed. This
tells the PL/SQL engine that the program is finished with the cursor, and the resources associated with it
can be freed. The syntax for closing the cursor is

CLOSE cursor_name;

BY THE WAY

After a cursor is closed, you no longer can fetch from it. Likewise, it is not possible to close an already
closed cursor. Trying to perform either of these actions would result in an Oracle error.

D) Continue with the code you have developed by adding a CLOSE statement to the cursor. Is your
code complete now?

ANSWER: The following line should be added:

CLOSE c_student;

The code is not complete because there is not a proper way to exit the loop.

E) Explain what is occurring in the following PL/SQL block. What will be the output from this
example?

FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

CURSOR c_student_name IS
SELECT first_name, last_name
FROM student

L A B 11.1Lab 11.1 Exercises

237

WHERE rownum <= 5;
vr_student_name c_student_name%ROWTYPE;

BEGIN
OPEN c_student_name;
LOOP

FETCH c_student_name INTO vr_student_name;
EXIT WHEN c_student_name%NOTFOUND;
DBMS_OUTPUT.PUT_LINE('Student name: '||

vr_student_name.first_name
||' '||vr_student_name.last_name);

END LOOP;
CLOSE c_student_name;

END;

ANSWER: In this example, you declare a cursor that returns five student names. Next, you declare
a cursor-based record. In the body of the program, you process explicit cursors via the cursor loop.
In the body of the loop, you assign each record returned by the cursor to the cursor-based record,
vr_student_name. Next, you display its contents on the screen. When run, the example
produces the following output:

Student name: Austin V. Cadet
Student name: Frank M. Orent
Student name: Yvonne Winnicki
Student name: Mike Madej
Student name: Paula Valentine
PL/SQL procedure successfully completed.

F) Consider the same example with a single modification. Notice that the DBMS_OUTPUT.PUT_LINE
statement (shown in bold) has been moved outside the loop. Execute this example, and try to
explain why this version of the script produces different output.

FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

CURSOR c_student_name IS
SELECT first_name, last_name
FROM student
WHERE rownum <= 5;

vr_student_name c_student_name%ROWTYPE;
BEGIN

OPEN c_student_name;
LOOP

FETCH c_student_name INTO vr_student_name;
EXIT WHEN c_student_name%NOTFOUND;

END LOOP;
CLOSE c_student_name;
DBMS_OUTPUT.PUT_LINE('Student name: '||

vr_student_name.first_name||’ '
||vr_student_name.last_name);

END;

L A B 11.1
238

Lab 11.1 Exercises

ANSWER: The DBMS_OUTPUT.PUT_LINE has been moved outside the loop. First the loop
processes the five student records. The values for each record are placed in the record
vr_student_
name, but each time the loop iterates, it replaces the value in the record with a new value. When
the five iterations of the loop are finished, it exits because of the EXIT WHEN condition, leaving the
vr_student_name record with the last value that was in the cursor. This is the only value that
is displayed via the DBMS_OUTPUT.PUT_LINE, which comes after the loop is closed.

A user-defined record is based on the record type defined by a programmer. First you declare a
record type, and then you declare a record variable based on the record type defined in the
preceding step:

TYPE type_name IS RECORD
(field_name 1 DATATYPE 1,
field_name 2 DATATYPE 2,
...
field_name N DATATYPE N);

record_name TYPE_NAME%ROWTYPE;

Consider the following code fragment:

FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

-- declare user-defined type
TYPE instructor_info IS RECORD

(instructor_id instructor.instructor_id%TYPE,
first_name instructor.first_name%TYPE,
last_name instructor.last_name%TYPE,
sections NUMBER(1));

-- declare a record based on the type defined above
rv_instructor instructor_info;

In this code fragment, you define your own type,instructor_info. This type contains four
attributes: the instructor’s ID, the instructor’s first and last names, and the number of sections
taught by this instructor. Next, you declare a record based on the type just described. As a result,
this record has a structure similar to the type instructor_info.

G) Explain what is declared in the following example. Describe what is happening to the record, and
explain how this results in the output:

FOR EXAMPLE

SET SERVEROUTPUT ON;
DECLARE

TYPE instructor_info IS RECORD
(first_name instructor.first_name%TYPE,
last_name instructor.last_name%TYPE,
sections NUMBER);

rv_instructor instructor_info;
BEGIN

SELECT RTRIM(i.first_name),

L A B 11.1Lab 11.1 Exercises

239

RTRIM(i.last_name), COUNT(*)
INTO rv_instructor
FROM instructor i, section s
WHERE i.instructor_id = s.instructor_id
AND i.instructor_id = 102

GROUP BY i.first_name, i.last_name;
DBMS_OUTPUT.PUT_LINE('Instructor, '||

rv_instructor.first_name||
' '||rv_instructor.last_name||
', teaches '||rv_instructor.sections||
' section(s)');

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE
('There is no such instructor');

END;

ANSWER: In this example, you declare a record called vr_instructor. This record is based
on the type you defined previously. In the body of the PL/SQL block, you initialize this record with
the help of the SELECT INTO statement and display its value on the screen. It is important to note
that the columns of the SELECT INTO statement are listed in the same order that the attributes are
defined in the instructor_info type. So there is no need to use dot notation for this record
initialization. When run, this example produces the following output:

Instructor, Tom Wojick, teaches 9 section(s)
PL/SQL procedure successfully completed.

11.1.3 Make Use of Cursor Attributes

Table 11.1 lists the attributes of a cursor, which determine the result of a cursor operation when fetched
or opened.

TABLE 11.1
Explicit Cursor Attributes

CURSOR ATTRIBUTE SYNTAX DESCRIPTION

%NOTFOUND cursor_name%NOTFOUND A Boolean attribute that returns TRUE if
the previous FETCH did not return a row
and FALSE if it did.

%FOUND cursor_name%FOUND A Boolean attribute that returns TRUE if
the previous FETCH returned a row and
FALSE if it did not.

%ROWCOUNT cursor_name%ROWCOUNT The number of records fetched from a
cursor at that point in time.

%ISOPEN cursor_name%ISOPEN A Boolean attribute that returns TRUE if
the cursor is open and FALSE if it is not.

L A B 11.1
240

Lab 11.1 Exercises

A) Now that you know about cursor attributes, you can use one of them to exit the loop within the
code you developed in the previous example. Can you make a fully executable block now? Why or
why not?

ANSWER: You can make use of the attribute %NOTFOUND to close the loop. It would also be
wise to add an exception clause to the end of the block to close the cursor if it is still open. If you
add the following statements to the end of your block, it will be complete:

EXIT WHEN c_student%NOTFOUND;
END LOOP;
CLOSE c_student;

EXCEPTION
WHEN OTHERS
THEN
IF c_student%ISOPEN
THEN

CLOSE c_student;
END IF;

END;

Cursor attributes can be used with implicit cursors by using the prefix SQL, such as
SQL%ROWCOUNT.

If you use SELECT INTO syntax in your PL/SQL block, you will create an implicit cursor. You can
then use these attributes on the implicit cursor.

B) What will happen if the following code is run? Describe what is happening in each phase of the
example.

FOR EXAMPLE

-- ch11_3a.sql
SET SERVEROUTPUT ON
DECLARE

v_city zipcode.city%type;
BEGIN

SELECT city
INTO v_city
FROM zipcode
WHERE zip = 07002;
IF SQL%ROWCOUNT = 1
THEN
DBMS_OUTPUT.PUT_LINE(v_city ||' has a '||

'zipcode of 07002');
ELSIF SQL%ROWCOUNT = 0
THEN

DBMS_OUTPUT.PUT_LINE('The zipcode 07002 is '||
' not in the database');

ELSE
DBMS_OUTPUT.PUT_LINE('Stop harassing me');

END IF;
END;

L A B 11.1Lab 11.1 Exercises

241

ANSWER: The preceding code displays the following output:

Bayonne has a zipcode of 07002
PL/SQL procedure successfully completed.

The declaration section declares a variable,v_city, anchored to the datatype of the city item in
the zipcode table. The SELECT statement causes an implicit cursor to be opened, fetched, and then
closed. The IF clause uses the attribute %ROWCOUNT to determine if the implicit cursor has a row
count of 1. If it does, the first DBMS_OUTPUT line is displayed. Note that this example does not
handle a situation in which the row count is greater than 1. Because the zipcode table’s primary
key is the zip code, this could happen.

C) Rerun this block, changing 07002 to 99999. What do you think will happen? Explain.

ANSWER: The PL/SQL block displays the following:

DECLARE
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 4

A select statement in a PL/SQL block that does not return any rows raises a no data found
exception. Because there is no exception handler, the preceding error is displayed.

D) Try running this file. Does it run as you expected? Why or why not? What could be done to
improve how it handles a possible error condition?

ANSWER: You may have expected the second and third condition of the IF statement to capture
the instance of a %ROWCOUNT equal to 0. Now that you understand that a SELECT statement that
returns no rows raises a WHEN NO_DATA_FOUND exception, it would be a good idea to handle
this by adding a WHEN NO_DATA_FOUND exception to the existing block. You can add a
%ROWCOUNT in the exception, either to display the row count in a DBMS_OUTPUT or to put an IF
statement to display various possibilities.

11.1.4 Put It All Together

The following is an example of the complete cycle of declaring, opening, fetching, and closing a cursor,
including the use of cursor attributes.

A) Describe what is happening in each phase of the following code. Use the line numbers as a
reference.

-- ch11_4a.sql
1> DECLARE
2> v_sid student.student_id%TYPE;
3> CURSOR c_student IS
4> SELECT student_id
5> FROM student
6> WHERE student_id < 110;
7> BEGIN
8> OPEN c_student;
9> LOOP
10> FETCH c_student INTO v_sid;
11> EXIT WHEN c_student%NOTFOUND;
12> DBMS_OUTPUT.PUT_LINE('STUDENT ID : '||v_sid);
13> END LOOP;
14> CLOSE c_student;
15> EXCEPTION

L A B 11.1
242

Lab 11.1 Exercises

16> WHEN OTHERS
17> THEN
18> IF c_student%ISOPEN
19> THEN
20> CLOSE c_student;
21> END IF;
22> END;

ANSWER: This example illustrates a cursor fetch loop, in which multiple rows of data are
returned from the query. The cursor is declared in the declaration section of the block (lines 1
through 6), just like other identifiers. In the executable section of the block (lines 7 through 15), a
cursor is opened using the OPEN statement (line 8). Because the cursor returns multiple rows, a
loop is used to assign returned data to the variables with a FETCH statement (line 10). Because the
loop statement has no other means of termination, an exit condition must be specified. In this
case, one of the cursor’s attributes is %NOTFOUND (line 11). The cursor is then closed to free the
memory allocation (line 14). Additionally, if the exception handler is called, there is a check to see
if the cursor is open (line 18). If it is, it is closed (line 20).

B) Modify the example to make use of the cursor attributes %FOUND and %ROWCOUNT.

ANSWER: Your modification should look like this:

-- ch11_5a.sql
SET SERVEROUTPUT ON
DECLARE

v_sid student.student_id%TYPE;
CURSOR c_student IS

SELECT student_id
FROM student
WHERE student_id < 110;

BEGIN
OPEN c_student;
LOOP
FETCH c_student INTO v_sid;
IF c_student%FOUND THEN
DBMS_OUTPUT.PUT_LINE
('Just FETCHED row '
||TO_CHAR(c_student%ROWCOUNT)||
' Student ID: '||v_sid);

ELSE
EXIT;

END IF;
END LOOP;
CLOSE c_student;

EXCEPTION
WHEN OTHERS
THEN

IF c_student%ISOPEN
THEN

CLOSE c_student;
END IF;

END;

L A B 11.1Lab 11.1 Exercises

243

The loop structure has been modified. Instead of an exit condition, an IF statement is used. The IF
statement uses the cursor attribute %FOUND. This attribute returns true when a row is “found” in
the cursor and false when it is not. The next attribute, %ROWCOUNT, returns a number, which is
the cursor’s current row number.

C) Demonstrate how to fetch a cursor that has data from the student table into a %ROWTYPE. Select
only students who have a student_id of less than 110. The columns are STUDENT_ID,
LAST_NAME, FIRST_NAME, and a count of the number of classes they are enrolled in (using the
enrollment table). Fetch the cursor with a loop, and then output all the columns. You will have to
use an alias for the enrollment count.

ANSWER: One method of doing this is as follows:

-- ch11_6a.sql
SET SERVEROUTPUT ON
DECLARE

CURSOR c_student_enroll IS
SELECT s.student_id, first_name, last_name,

COUNT(*) enroll,
(CASE

WHEN count(*) = 1 Then ' class.'
WHEN count(*) is null then

' no classes.'
ELSE ' classes.'

END) class
FROM student s, enrollment e
WHERE s.student_id = e.student_id
AND s.student_id <110

GROUP BY s.student_id, first_name, last_name;
r_student_enroll c_student_enroll%ROWTYPE;

BEGIN
OPEN c_student_enroll;
LOOP

FETCH c_student_enroll INTO r_student_enroll;
EXIT WHEN c_student_enroll%NOTFOUND;
DBMS_OUTPUT.PUT_LINE('Student INFO: ID '||

r_student_enroll.student_id||' is '||
r_student_enroll.first_name|| ' ' ||
r_student_enroll.last_name||
' is enrolled in '||r_student_enroll.enroll||
r_student_enroll.class);

END LOOP;
CLOSE c_student_enroll;

EXCEPTION
WHEN OTHERS
THEN
IF c_student_enroll %ISOPEN
THEN

CLOSE c_student_enroll;
END IF;

END;

L A B 11.1
244

Lab 11.1 Exercises

WATCH OUT!

Remember that the CASE syntax was introduced in Oracle 9i. This means that the preceding state-
ment will not run in Oracle 8 or 8i. You can change the CASE statement to a DECODE statement as
follows:

DECODE(count(*), 1, ' class. ', null, 'no classes.',

'classes') class

In the declaration section, the cursor c_student_enroll is defined, as well as a record,
which is the type of a row of the cursor. The cursor loop structure uses an exit condition with the
%NOTFOUND cursor attribute. When there are no more rows, %NOTFOUND is true and causes the
loop to exit. While the cursor is open and the loop is processing, it fetches a row of the cursor in a
record one at a time. The DBMS output causes each row to be displayed to the screen. Finally, the
cursor is closed, and an exception clause also closes the cursor if any error is raised.

ASSORTED TIPS ON CURSORS

Cursor SELECT LIST

Match the SELECT list with PL/SQL variables or PL/SQL record components.

The number of variables must be equal to the number of columns or expressions in the SELECT list.
The number of components in a record must match the columns or expressions in the SELECT list.

Cursor Scope

The scope of a cursor declared in the main block (or an enclosing block) extends to the subblocks.

Expressions in a Cursor SELECT List

PL/SQL variables, expressions, and even functions can be included in the cursor SELECT list.

Column Aliases in Cursors

An alias is an alternative name you provide to a column or expression in the SELECT list. In an
explicit cursor column, aliases are required for calculated columns when

. You FETCH into a record declared with a %ROWTYPE declaration against that cursor.

. You want to reference the calculated column in the program.

L A B 11.1Lab 11.1 Exercises

245

L A B 1 1 . 2

Using Cursor FOR Loops and
Nested Cursors

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use a cursor FOR loop

. Process nested cursors

There is an alternative way to handle cursors. It is called the cursor FOR loop because of the
simplified syntax that is used. With a cursor FOR loop, the process of opening, fetching, and
closing is handled implicitly. This makes the blocks much easier to code and maintain.

The cursor FOR loop specifies a sequence of statements to be repeated once for each row
returned by the cursor. Use the cursor FOR loop if you need to FETCH and PROCESS every
record from a cursor until you want to stop processing and exit the loop.

To use this column, you need to create a new table called table_log with the following script:

FOR EXAMPLE

create table table_log
(description VARCHAR2(250));

Then run this script:

-- ch11_7a.sql
DECLARE

CURSOR c_student IS
SELECT student_id, last_name, first_name
FROM student
WHERE student_id < 110;

BEGIN
FOR r_student IN c_student
LOOP

INSERT INTO table_log
VALUES(r_student.last_name);

END LOOP;
END;

L A B 11.2
246

▼ L A B 1 1 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

11.2.1 Use a Cursor FOR Loop

A) Write a PL/SQL block that reduces the cost of all courses by 5 percent for courses having an enroll-
ment of eight students or more. Use a cursor FOR loop that updates the course table.

ANSWER: Your block should look like this:

-- ch11_7b.sql
DECLARE

CURSOR c_group_discount IS
SELECT DISTINCT s.course_no
FROM section s, enrollment e
WHERE s.section_id = e.section_id
GROUP BY s.course_no, e.section_id, s.section_id
HAVING COUNT(*)>=8;

BEGIN
FOR r_group_discount IN c_group_discount LOOP

UPDATE course
SET cost = cost * .95

WHERE course_no = r_group_discount.course_no;
END LOOP;
COMMIT;

END;

The cursor c_group_discount is declared in the declaration section. The proper SQL is used
to generate the SELECT statement to answer the question given. The cursor is processed in a FOR
loop. In each iteration of the loop, the SQL update statement is executed. This means that it does
not have to be opened, fetched, and closed. This also means that a cursor attribute does not have
to be used to create an exit condition for the loop that is processing the cursor.

11.2.2 Process Nested Cursors

Cursors can be nested inside each other. Although this may sound complex, it is really just a loop inside a
loop, much like nested loops, which were covered in previous chapters. If you have one parent cursor
and two child cursors, each time the parent cursor makes a single loop, it loops through each child
cursor once and then begins a second round. The following two examples show a nested cursor with a
single child cursor.

FOR EXAMPLE

SET SERVEROUTPUT ON
-- ch11_8a.sql
1 DECLARE
2 v_zip zipcode.zip%TYPE;
3 v_student_flag CHAR;
4 CURSOR c_zip IS
5 SELECT zip, city, state
6 FROM zipcode

L A B 11.2Lab 11.2 Exercises

247

7 WHERE state = 'CT';
8 CURSOR c_student IS
9 SELECT first_name, last_name
10 FROM student
11 WHERE zip = v_zip;
12 BEGIN
13 FOR r_zip IN c_zip
14 LOOP
15 v_student_flag := 'N';
16 v_zip := r_zip.zip;
17 DBMS_OUTPUT.PUT_LINE(CHR(10));
18 DBMS_OUTPUT.PUT_LINE('Students living in '||
19 r_zip.city);
20 FOR r_student in c_student
21 LOOP
22 DBMS_OUTPUT.PUT_LINE(
23 r_student.first_name||
24 ' '||r_student.last_name);
25 v_student_flag := 'Y';
26 END LOOP;
27 IF v_student_flag = 'N'
28 THEN
29 DBMS_OUTPUT.PUT_LINE

('No Students for this zipcode');
30 END IF;
31 END LOOP;
32 END;

This example has two cursors. The first is a cursor of the zip codes, and the second is a list of students.
The variable v_zip is initialized in line 16 to be the zip code of the current record of the c_zip cursor.
The c_ student cursor ties in the c_zip cursor by means of this variable. Thus, when the cursor is
processed in lines 20 through 26, it is retrieving students who have the zip code of the current record for
the parent cursor. The parent cursor is processed from lines 13 through 31. Each iteration of the parent
cursor will execute the DBMS_OUTPUT in lines 16 and 17 only once. The DBMS_OUTPUT in line 22 will be
executed once for each iteration of the child loop, producing a line of output for each student. The
DBMS_OUTPUT.PUT_LINE statement in line 29 will only execute if the inner loop did not execute. This
was accomplished by setting a variable v_student_flag. The variable is set to N in the beginning of
the parent loop. If the child loop executes at least once, the variable is set to Y. After the child loop has
closed, a check is made with an IF statement to determine the value of the variable. If it is still N, it can be
safely concluded that the inner loop did not process. This will then allow the last DBMS_OUTPUT.PUT_
LINE statement to execute. Nested cursors are more often parameterized. You will see parameters in
cursors explained in depth in Lab 12.2,“Using Parameters with Cursors and Nested Cursors.”

A) Write a PL/SQL block with two cursor for loops. The parent cursor will call the student_id,
first_name, and last_name from the student table for students with a student_id less
than 110 and output one line with this information. For each student, the child cursor will loop
through all the courses that the student is enrolled in, outputting the course_no and the
description.

ANSWER: Your block should look similar to this:

-- ch11_09a.sql
SET SERVEROUTPUT ON

L A B 11.2
248

Lab 11.2 Exercises

DECLARE
v_sid student.student_id%TYPE;
CURSOR c_student IS

SELECT student_id, first_name, last_name
FROM student
WHERE student_id < 110;

CURSOR c_course IS
SELECT c.course_no, c.description
FROM course c, section s, enrollment e
WHERE c.course_no = s.course_no
AND s.section_id = e.section_id
AND e.student_id = v_sid;

BEGIN
FOR r_student IN c_student
LOOP

v_sid := r_student.student_id;
DBMS_OUTPUT.PUT_LINE(chr(10));
DBMS_OUTPUT.PUT_LINE(' The Student '||

r_student.student_id||' '||
r_student.first_name||' '||
r_student.last_name);

DBMS_OUTPUT.PUT_LINE(' is enrolled in the '||
'following courses: ');

FOR r_course IN c_course
LOOP

DBMS_OUTPUT.PUT_LINE(r_course.course_no||
' '||r_course.description);

END LOOP;
END LOOP;

END;

The select statements for the two cursors are defined in the declaration section of the PL/SQL
block. A variable to store the student_id from the parent cursor is also declared. The course
cursor is the child cursor, and because it uses the variable v_sid, the variable must be declared
first. Both cursors are processed with a FOR loop, which eliminates the need for OPEN, FETCH, and
CLOSE. When the parent student loop is processed, the first step is to initialize the variable
v_sid, and the value is then used when the child loop is processed. DBMS_OUTPUT is used so
that display is generated for each cursor loop. The parent cursor displays the student name once,
and the child cursor displays the name of each course in which the student is enrolled.

B) The following is another example of a nested cursor. Before you run this code, analyze what it
does, and determine what you think the result will be. Explain what happens in each phase of the
PL/SQL block and what happens to the variables as control passes through the parent and child
cursors.

FOR EXAMPLE

-- ch11_10a.sql
SET SERVEROUTPUT ON
DECLARE

v_amount course.cost%TYPE;
v_instructor_id instructor.instructor_id%TYPE;

L A B 11.2Lab 11.2 Exercises

249

CURSOR c_inst IS
SELECT first_name, last_name, instructor_id
FROM instructor;

CURSOR c_cost IS
SELECT c.cost
FROM course c, section s, enrollment e
WHERE s.instructor_id = v_instructor_id
AND c.course_no = s.course_no
AND s.section_id = e.section_id;

BEGIN
FOR r_inst IN c_inst
LOOP

v_instructor_id := r_inst.instructor_id;
v_amount := 0;
DBMS_OUTPUT.PUT_LINE(

'Amount generated by instructor '||
r_inst.first_name||' '||r_inst.last_name
||' is');

FOR r_cost IN c_cost
LOOP

v_amount := v_amount + NVL(r_cost.cost, 0);
END LOOP;
DBMS_OUTPUT.PUT_LINE
(' '||TO_CHAR(v_amount,'$999,999'));

END LOOP;
END;

ANSWER: The declaration section contains a declaration for two variables. The first is
v_amount of the datatype matching that of the cost in the course table. The second is
v_instructor_id of the datatype matching the instructor_id in the instructor table.
There are also two declarations for two cursors. The first is for c_inst, which is composed of the
first_name,last_name, and instructor_id for an instructor from the instructor
table. The second cursor,c_cost, produces a result set of the cost of a course. This is the course
taken for each enrolled student. That course is taught by the instructor who matches the variable
v_instructor_id. These two cursors are run in nested fashion. First, the cursor c_inst is
opened in a FOR loop. The value of the variable v_instructor_id is initialized to match the
instructor_id of the current row of the c_inst cursor. The variable v_amount is initial-
ized to 0. The second cursor is open within the loop for the first cursor. This means that for each
iteration of the cursor c_inst, the second cursor is opened, fetched, and closed. The second
cursor loops through each student enrolled in a course for the instructor, which is current of the
c_inst cursor. It adds the cost of the course one time for each enrolled student. Each time the
nest loop iterates, it increases the variable v_amount by adding the current cost in the c_cost
loop. Before the c_cost loop is opened, a DBMS_OUTPUT displays the instructor name. After the
c_cost cursor loop is closed, it displays the total amount generated by all the enrollments of
the current instructor.

L A B 11.2
250

Lab 11.2 Exercises

C) Run the code and see what the result is. Is it what you expected? Explain the difference.

ANSWER: The result set is as follows:

Amount generated by instructor Fernand Hanks is
$49,110
Amount generated by instructor Tom Wojick is
$24,582
Amount generated by instructor Nina Schorin is
$43,319
Amount generated by instructor Gary Pertez is
$29,317
Amount generated by instructor Anita Morris is
$18,662
Amount generated by instructor Todd Smythe is
$21,092
Amount generated by instructor Marilyn Frantzen is
$34,311
Amount generated by instructor Charles Lowry is
$37,512
Amount generated by instructor Rick Chow is
$0
Amount generated by instructor Irene Willig is
$0

In this example, the nested cursor is tied to the current row of the outer cursor by means of the
variable v_instructor_id. A more common way of doing this is to pass a parameter to a
cursor. You will learn more about how to do this in Chapter 12,“Advanced Cursors.”

L A B 11.2Lab 11.2 Exercises

251

▼ T R Y I T Y O U R S E L F

In this chapter, you’ve learned how to process data with a cursor. Additionally, you’ve learned how to
simplify the code by using a cursor FOR loop. You’ve also encountered the more complex example
of nesting cursors within cursors. Here are some projects that will help you test the depth of your
understanding:

1) Write a nested cursor in which the parent cursor gathers information about each section of a
course. The child cursor counts the enrollment. The only output is one line for each course, with
the course name, section number, and total enrollment.

2) Write an anonymous PL/SQL block that finds all the courses that have at least one section that is
at its maximum enrollment. If no courses meet that criterion, pick two courses and create that
situation for each.

a) For each of those courses, add another section. The instructor for the new section should
be taken from the existing records in the instructor table. Use the instructor who is signed
up to teach the fewest courses. Handle the fact that, during the execution of your program,
the instructor teaching the most courses may change.

b) Use any exception-handling techniques you think are useful to capture error conditions.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

252 Try it Yourself

C H A P T E R 1 2

Advanced Cursors

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Using parameters with cursors and complex nested cursors

. FOR UPDATE and WHERE CURRENT cursors

In the preceding chapter you mastered basic cursor concepts. In this chapter you
will learn how to dynamically alter a cursor’s WHERE clause by passing param-
eters when you call the cursor. Chapter 21 takes cursors to another level. In the
context of a package you will also learn to implement cursor variables.

L A B 1 2 . 1

Using Parameters with Cursors
and Complex Nested Cursors

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use parameters in a cursor

. Use complex nested cursors

CURSORS WITH PARAMETERS

A cursor can be declared with parameters. This enables a cursor to generate a specific result set
that is narrow but also reusable. A cursor of all the data from the zipcode table may be very
useful, but it would be more useful for certain data processing if it held information for only one
state. At this point, you know how to create such a cursor. But wouldn’t it be more useful if you
could create a cursor that could accept a parameter of a state and then run through only the city
and zip for that state?

FOR EXAMPLE

CURSOR c_zip (p_state IN zipcode.state%TYPE) IS
SELECT zip, city, state
FROM zipcode
WHERE state = p_state;

Here are the main points to keep in mind for parameters in cursors:

. Cursor parameters make the cursor more reusable.

. Cursor parameters can be assigned default values.

. The scope of the cursor parameters is local to the cursor.

. The mode of the parameters can only be IN.

When a cursor has been declared as taking a parameter, it must be called with a value for that
parameter. The c_zip cursor declared in the preceding example is called as follows:

OPEN c_zip (parameter_value)

L A B 12.1
254

▼

The same cursor could be opened with a CURSOR FOR loop as follows:

FOR r_zip IN c_zip('NY')
LOOP ...

L A B 1 2 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

12.1.1 Use Parameters in a Cursor

A) Complete the code for the parameter cursor that was begun in the preceding example. Include
a DBMS_OUTPUT line that displays the zip code, city, and state. This is identical to the process
you have already used in a CURSOR FOR loop, only now, when you open the cursor, you pass a
parameter.

ANSWER: Your block should look like this:

-- ch12_17a.sql
DECLARE

CURSOR c_zip (p_state IN zipcode.state%TYPE) IS
SELECT zip, city, state
FROM zipcode
WHERE state = p_state

BEGIN
FOR r_zip IN c_zip('NJ')
LOOP ...
DBMS_OUTPUT.PUT_LINE(r_zip.city||

' '||r_zip.zip');
END LOOP;

END;

To complete the block, the cursor declaration must be surrounded by DECLARE and BEGIN. The
cursor is opened by passing the parameter NJ. Then, for each iteration of the cursor loop, the zip
code and the city are displayed using the built-in package DBMS_OUTPUT.

12.1.2 Use Complex Nested Cursors

Nesting cursors allows for looping through data at various stages. For example, one cursor could loop
through zip codes. When it hits a zip code, a second, nested cursor would loop through students who
live in that zip code. Working through a specific example will help you understand this in more detail.

A) The following PL/SQL code is complex. It involves all the topics covered so far in this chapter. It has
a nested cursor with three levels, meaning a grandparent cursor, a parent cursor, and a child
cursor. Before running this script, review the code and identify its levels of nesting. When you
describe each level of the code, explain what parameters are passed into the cursor and why.
What do you think the result of running this statement will be?

-- ch12_1a.sql
SET SERVEROUTPUT ON
1 DECLARE
2 CURSOR c_student IS
3 SELECT first_name, last_name, student_id

L A B 12.1Lab 12.1 Exercises

255

4 FROM student
5 WHERE last_name LIKE 'J%';
6 CURSOR c_course
7 (i_student_id IN

student.student_id%TYPE)
8 IS
9 SELECT c.description, s.section_id sec_id
10 FROM course c, section s, enrollment e
11 WHERE e.student_id = i_student_id
12 AND c.course_no = s.course_no
13 AND s.section_id = e.section_id;
14 CURSOR c_grade(i_section_id IN

section.section_id%TYPE,
15 i_student_id IN

student.student_id%TYPE)
16 IS
17 SELECT gt.description grd_desc,
18 TO_CHAR
19 (AVG(g.numeric_grade), '999.99')

num_grd
20 FROM enrollment e,
21 grade g, grade_type gt
22 WHERE e.section_id = i_section_id
23 AND e.student_id = g.student_id
24 AND e.student_id = i_student_id
25 AND e.section_id = g.section_id
26 AND g.grade_type_code =

gt.grade_type_code
27 GROUP BY gt.description ;
28 BEGIN
29 FOR r_student IN c_student
30 LOOP
31 DBMS_OUTPUT.PUT_LINE(CHR(10));
32 DBMS_OUTPUT.PUT_LINE(r_student.first_name||
33 ' '||r_student.last_name);
34 FOR r_course IN

c_course(r_student.student_id)
35 LOOP
36 DBMS_OUTPUT.PUT_LINE

('Grades for course :'||
37 r_course.description);
38 FOR r_grade IN c_grade(r_course.sec_id,
39 r_student.student_id)
40 LOOP
41 DBMS_OUTPUT.PUT_LINE(r_grade.num_grd||
42 ' '||r_grade.grd_desc);
43 END LOOP;
44 END LOOP;
45 END LOOP;
46 END;

L A B 12.1
256

Lab 12.1 Exercises

ANSWER: The grandparent cursor,c_student, is declared in lines 2 through 5. It takes no
parameters and is a collection of students with a last name beginning with J. The parent cursor,
c_course, is declared in lines 6 through 13. It takes in the parameter of student_ID to
generate a list of courses that student is taking. The child cursor,c_grade, is declared in lines 14
through 27. It takes in two parameters,section_id and student_id. In this way it can
generate an average of the different grade types (quizzes, homework, final, etc.) for that student
for that course. The grandparent cursor loop begins on line 29, and only the student name is
displayed with DBMS_OUTPUT. The parent cursor loop begins on line 35. It takes the parameter of
student_id from the grandparent cursor. Only the description of the course is displayed. The
child cursor loop begins on line 40. It takes in the parameter of section_id from the parent
cursor and student_id from the grandparent cursor. The grades are then displayed. The
grandparent cursor loop ends on line 45, the parent cursor loop on line 44, and the child cursor
loop on line 43.

B) Now run the code. Analyze it line by line, and explain what is processed and then displayed for
each line.

ANSWER: The output is a student name, followed by the courses he or she is taking and the
average grade he or she has earned for each grade type. If you did not guess the correct answer,
try commenting out different sections of the block and see what happens. This helps you under-
stand what is happening in each step.

L A B 12.1Lab 12.1 Exercises

257

▼

L A B 1 2 . 2

FOR UPDATE and WHERE
CURRENT Cursors

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use a FOR UPDATE and WHERE CURRENT in a cursor

The cursor FOR UPDATE clause is used only with a cursor when you want to update tables in
the database. Generally, when you execute a SELECT statement, you are not locking any rows.
The purpose of using the FOR UPDATE clause is to lock the rows of the tables you want to
update so that another user cannot perform an update until you perform your update and
release the lock. The next COMMIT or ROLLBACK statement releases the lock. The FOR
UPDATE clause changes the manner in which the cursor operates in only a few respects. When
you open a cursor, all rows that meet the restriction criteria are identified as part of the active
set. Using the FOR UPDATE clause locks these rows that have been identified in the active set.
If the FOR UPDATE clause is used, rows may not be fetched from the cursor until a COMMIT
has been issued. It is important to think about where to place the COMMIT. Be sure to consider
the transaction management issues covered in Chapter 3, “SQL in PL/SQL.”

The syntax is simply to add FOR UPDATE to the end of the cursor definition. If several items
are being selected, but you want to lock only one of them, end the cursor definition with the
following syntax:

FOR UPDATE OF <item_name>

L A B 1 2 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

12.2.1 For UPDATE and WHERE CURRENT Cursors

The following example shows how to update the cost of all courses that cost less than $2,500. It incre-
ments them by 10.

L A B 12.2
258

FOR EXAMPLE

-- ch12_2a.sql
DECLARE
CURSOR c_course IS

SELECT course_no, cost
FROM course FOR UPDATE;

BEGIN
FOR r_course IN c_course
LOOP

IF r_course.cost < 2500
THEN

UPDATE course
SET cost = r_course.cost + 10

WHERE course_no = r_course.course_no;
END IF;

END LOOP;
END;

A) In this example, where should the COMMIT be placed? What issues are involved in deciding where
to place a COMMIT in this example?

ANSWER: Placing a COMMIT after each update can be costly. But if there are a lot of updates and
the COMMIT comes after the block loop, the rollback segment might not be large enough.
Normally, the COMMIT would go after the loop, except when the transaction count is high. In that
case you might want to code something that does a COMMIT for every 10,000 records. If this were
part of a large procedure, you may want to put a SAVEPOINT after the loop. Then, if you needed to
roll back this update later, this would be easy.

B) What do you think will happen if you run the code in the following example? After making your
analysis, run the code, and then perform a SELECT statement to determine if your guess is correct.

FOR EXAMPLE

-- ch12_3a.sql
DECLARE

CURSOR c_grade(
i_student_id IN enrollment.student_id%TYPE,
i_section_id IN enrollment.section_id%TYPE)

IS
SELECT final_grade
FROM enrollment
WHERE student_id = i_student_id
AND section_id = i_section_id

FOR UPDATE;
CURSOR c_enrollment IS

SELECT e.student_id, e.section_id
FROM enrollment e, section s
WHERE s.course_no = 135
AND e.section_id = s.section_id;

BEGIN
FOR r_enroll IN c_enrollment
LOOP

FOR r_grade IN c_grade(r_enroll.student_id,
r_enroll.section_id)

L A B 12.2Lab 12.2 Exercises

259

LOOP
UPDATE enrollment

SET final_grade = 90
WHERE student_id = r_enroll.student_id
AND section_id = r_enroll.section_id;

END LOOP;
END LOOP;

END;

ANSWER: The final_grade for all students enrolled in course 135 is updated to 90. There
are two cursors. One cursor captures the students who are enrolled in course 135 into the active
set. The other cursor takes the student_id and section_id from this active set, selects the
corresponding final_grade from the enrollment table, and locks the entire enrollment table.
The enrollment cursor loop occurs first. It passes the student_id and section_id as IN
parameters for the second cursor loop of the c_grade cursor, which performs the update.

C) Where should the COMMIT go in the preceding example? Explain the considerations.

ANSWER: The COMMIT should go immediately after the update to ensure that each update is
committed into the database.

FOR UPDATE OF can be used when creating a cursor FOR UPDATE that is based on multiple tables.
FOR UPDATE OF locks the rows of a table that both contain one of the specified columns and are
members of the active set. In other words, it is the means of specifying which table you want to
lock. If the FOR UPDATE OF clause is used, rows may not be fetched from the cursor until a
COMMIT has been issued.

D) What changes to the database take place if the following example is run? Explain specifically what
is being locked, as well as when it is locked and when it is released.

FOR EXAMPLE

-- ch12_4a.sql
DECLARE

CURSOR c_stud_zip IS
SELECT s.student_id, z.city
FROM student s, zipcode z
WHERE z.city = 'Brooklyn'
AND s.zip = z.zip

FOR UPDATE OF phone;
BEGIN
FOR r_stud_zip IN c_stud_zip
LOOP

UPDATE student
SET phone = '718'||SUBSTR(phone,4)

WHERE student_id = r_stud_zip.student_id;
END LOOP;

END;

ANSWER: The phone numbers of students living in Brooklyn are being updated to change the
area code to 718. The cursor declaration only locks the phone column of the student table. The
lock is never released because there is no COMMIT or ROLLBACK statement.

L A B 12.2
260

Lab 12.2 Exercises

Use WHERE CURRENT OF when you want to update the most recently fetched row. WHERE
CURRENT OF can be used only with a FOR UPDATE OF cursor. The advantage of the WHERE
CURRENT OF clause is that it enables you to eliminate the WHERE clause in the UPDATE statement:

FOR EXAMPLE

-- ch12_5a.sql
DECLARE

CURSOR c_stud_zip IS
SELECT s.student_id, z.city
FROM student s, zipcode z
WHERE z.city = 'Brooklyn'
AND s.zip = z.zip

FOR UPDATE OF phone;
BEGIN

FOR r_stud_zip IN c_stud_zip
LOOP

DBMS_OUTPUT.PUT_LINE(r_stud_zip.student_id);
UPDATE student

SET phone = '718'||SUBSTR(phone,4)
WHERE CURRENT OF c_stud_zip;

END LOOP;
END;

E) Compare the two preceding examples. Explain their similarities and differences. What has been
altered by using the WHERE CURRENT OF clause? What is the advantage of doing this?

ANSWER: These two statements perform the same update. The WHERE CURRENT OF clause
allows you to eliminate a match in the UPDATE statement, because the update is being performed
for the cursor’s current record only.

DID YOU KNOW?

The FOR UPDATE and WHERE CURRENT OF syntax can be used with cursors that are performing a
delete as well as an update.

BY THE WAY

This chapter has no “Try it Yourself” section.

L A B 12.2Lab 12.2 Exercises

261

This page intentionally left blank

C H A P T E R 1 3

Triggers

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. What triggers are

. Types of triggers

In Chapter 1, “PL/SQL Concepts,” you encountered the concept of named
PL/SQL blocks such as procedures, functions, and packages that can be stored in
the database. In this chapter, you will learn about another type of named PL/SQL
block called a database trigger. You will also learn about different characteristics
of triggers and their usage in the database.

L A B 1 3 . 1

What Triggers Are

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Understand what a trigger is

. Use BEFORE and AFTER triggers

A database trigger is a named PL/SQL block stored in a database and executed implicitly when
a triggering event occurs. The act of executing a trigger is called firing the trigger. A triggering
event can be one of the following:

. A DML statement (such as INSERT, UPDATE, or DELETE) executed against a database
table. Such a trigger can fire before or after a triggering event. For example, if you have
defined a trigger to fire before an INSERT statement on the STUDENT table, this trigger
fires each time before you insert a row in the STUDENT table.

. A DDL statement (such as CREATE or ALTER) executed either by a particular user against
a schema or by any user. Such triggers are often used for auditing purposes and are specif-
ically helpful to Oracle DBAs. They can record various schema changes, when they were
made, and by which user.

. A system event such as startup or shutdown of the database.

. A user event such as logon and logoff. For example, you can define a trigger that fires after
database logon that records the username and time of logon.

BY THE WAY

In this chapter you will explore triggers associated with DML statements. Triggers associated with
other triggering events are not covered in this book. You can find detailed information about them
in the Oracle help.

The general syntax for creating a trigger is as follows (the reserved words and phrases in
brackets are optional):

CREATE [OR REPLACE] TRIGGER Ttrigger_name
{BEFORE|AFTER} Triggering_event ON table_name
[FOR EACH ROW]
[FOLLOWS another_trigger]

L A B 13.1
264

[ENABLE/DISABLE]
[WHEN condition]
DECLARE

declaration statements
BEGIN

executable statements
EXCEPTION

exception-handling statements
END;

The reserved word CREATE specifies that you are creating a new trigger. The reserved word
REPLACE specifies that you are modifying an existing trigger. REPLACE is optional. However,
note that both CREATE and REPLACE are present most of the time. Consider the following situ-
ation. You create a trigger as follows:

CREATE TRIGGER Trigger_name
...

In a few days you decide to modify this trigger. If you do not include the reserved word
REPLACE in the CREATE clause of the trigger, an error message will be generated when you
compile the trigger. The error message states that the name of your trigger is already being used
by another object. When REPLACE is included in the CREATE clause of the trigger, there is less
chance of an error because, if this is a new trigger, it is created, and if it is an old trigger, it is
replaced.

The trigger_name is the trigger’s name. BEFORE or AFTER specifies when the trigger fires
(before or after the triggering event). The triggering_event is a DML statement issued
against the table. table_name is the name of the table associated with the trigger. The clause
FOR EACH ROW specifies that a trigger is a row trigger and fires once for each row that is
inserted, updated, or deleted. You will encounter row and statement triggers in Lab 13.2. A
WHEN clause specifies a condition that must evaluate to TRUE for the trigger to fire. For
example, this condition may specify a certain restriction on the column of a table. This portion
of the trigger is often called the trigger header. Next, the trigger body is defined.

Note the three clauses, FOLLOWS, ENABLE, and DISABLE. These were added to the CREATE
OR REPLACE TRIGGER clause in Oracle 11g. Prior to Oracle 11g, you needed to issue the
ALTER TRIGGER command to enable or disable a trigger after it was created. The ENABLE and
DISABLE clauses specify whether the trigger is created in the enabled or disabled state. When
the trigger is enabled, it fires when a triggering event occurs. Similarly, when a trigger is
disabled, it does not fire when a triggering event occurs. Note that when trigger is first created
without an ENABLE or DISABLE clause, it is enabled by default. To disable the trigger, you need
to issue the ALTER TRIGGER command as follows:

ALTER TRIGGER trigger_name DISABLE;

Similarly, to enable a trigger that was disabled previously, you issue the ALTER TRIGGER
command as follows:

ALTER TRIGGER trigger_name ENABLE;

L A B 13.1What Triggers Are

265

The FOLLOWS option allows you to specify the order in which triggers should fire. This applies
to triggers that are defined on the same table and that fire at the same timing point. For example,
if you defined two triggers on the STUDENT table that fire before the insert occurs, Oracle does
not guarantee the order in which these triggers will fire unless you specify it with the FOLLOWS
clause. Note that the trigger referenced in the FOLLOWS clause must already exist and have
been successfully compiled.

It is important for you to realize that if you drop a table, the table’s database triggers are dropped
as well.

You should be careful when using the reserved word REPLACE for a number of reasons. First,
if you happen to use REPLACE and the name of an existing stored function, procedure, or
package, you will end up with different database objects that have the same name. This occurs
because triggers have separate naming space in the database. Although a trigger and a proce-
dure, function, or package sharing the same name does not cause errors, potentially it might
become confusing. As a result, it is not considered a good programming practice. Second, when
you use the reserved word REPLACE and decide to associate a different table with your trigger,
an error message is generated. For example, assume that you created a trigger STUDENT_BI on
the STUDENT table. Next, you decide to modify this trigger and associate it with the ENROLL-
MENT table. As a result, the following error message is generated:

ERROR at line 1:
ORA-04095: trigger 'STUDENT_BI' already exists on another table,
cannot replace it

Triggers are used for different purposes:

. Enforcing complex business rules that cannot be defined by using integrity constraints

. Maintaining complex security rules

. Automatically generating values for derived columns

. Collecting statistical information on table accesses

. Preventing invalid transactions

. Providing value auditing

The body of a trigger is a PL/SQL block. However, you need to know about several restrictions
before creating a trigger:

. A trigger may not issue a transactional control statement such as COMMIT, SAVEPOINT,
or ROLLBACK. When the trigger fires, all operations performed become part of a trans-
action. When this transaction is committed or rolled back, the operations performed by
the trigger are committed or rolled back as well. An exception to this rule is a trigger that
contains an autonomous transaction. Autonomous transactions are discussed in detail
later in this lab.

L A B 13.1
266

What Triggers Are

. Any function or procedure called by a trigger may not issue a transactional control state-
ment unless it contains an autonomous transaction.

. It is not permissible to declare LONG or LONG RAW variables in the body of a trigger.

BEFORE TRIGGERS

Consider the following example of a trigger on the STUDENT table mentioned earlier in this
chapter. This trigger fires before the INSERT statement on the STUDENT table and populates
the STUDENT_ID, CREATED_DATE, MODIFIED_DATE, CREATED_BY, and MODIFIED_BY
columns. Column STUDENT_ID is populated with the number generated by the
STUDENT_ID_SEQ sequence, and columns CREATED_DATE, MODIFIED_DATE,
CREATED_USER, and MODIFIED_USER are populated with the current date and the current
username information.

FOR EXAMPLE

CREATE OR REPLACE TRIGGER student_bi
BEFORE INSERT ON student
FOR EACH ROW
BEGIN

:NEW.student_id := STUDENT_ID_SEQ.NEXTVAL;
:NEW.created_by := USER;
:NEW.created_date := SYSDATE;
:NEW.modified_by := USER;
:NEW.modified_date := SYSDATE;

END;

This trigger fires for each row before the INSERT statement on the STUDENT table. Notice that
the name of the trigger is STUDENT_BI, where STUDENT is the name of the table on which the
trigger is defined, and BI means BEFORE INSERT. There is no specific requirement for naming
triggers; however, this approach to naming a trigger is descriptive. The name of the trigger
contains the name of the table affected by the triggering event, the time of the triggering event
(before or after), and the triggering event itself.

In the body of the trigger is a pseudorecord, :NEW, allowing you to access a row currently being
processed. In other words, a row is being inserted into the STUDENT table. The :NEW pseudo-
record is of type TRIGGERING_TABLE%TYPE, so, in this case, it is of the STUDENT%TYPE
type. To access individual members of the pseudorecord :NEW, dot notation is used. In other
words, :NEW.CREATED_BY refers to the member CREATED_BY of the :NEW pseudorecord,
and the name of the record is separated from the name of its member by a dot.

Take a closer look at the statement that assigns a sequence value to the STUDENT_ID column.
The ability to access a sequence via PL/SQL expression is a new feature in Oracle 11g. Prior to
Oracle 11g, sequences could be accessed only via queries.

L A B 13.1What Triggers Are

267

FOR EXAMPLE

CREATE OR REPLACE TRIGGER student_bi
BEFORE INSERT ON student
FOR EACH ROW
DECLARE

v_student_id STUDENT.STUDENT_ID%TYPE;
BEGIN

SELECT STUDENT_ID_SEQ.NEXTVAL
INTO v_student_id
FROM dual;

:NEW.student_id := v_student_id;
:NEW.created_by := USER;
:NEW.created_date := SYSDATE;
:NEW.modified_by := USER;
:NEW.modified_date := SYSDATE;

END;

Before you create this trigger, consider the following INSERT statement on the STUDENT table:

INSERT INTO student (student_id, first_name, last_name, zip,
registration_date, created_by, created_date, modified_by,
modified_date)

VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '00914', SYSDATE,
USER, SYSDATE, USER, SYSDATE);

This INSERT statement contains values for the columns STUDENT_ID, CREATED_BY,
CREATED_DATE, MODIFIED_BY, and MODIFIED_DATE. It is important to note that for every
row you insert into the STUDENT table, the values for these columns must be provided, and
they are always derived in the same fashion. Why do you think the values for these columns
must be provided when you insert a record into the STUDENT table?

When the trigger shown earlier is created, there is no need to include these columns in the
INSERT statement, because the trigger populates them with the required information.
Therefore, the INSERT statement can be modified as follows:

INSERT INTO student (first_name, last_name, zip, registration_date)
VALUES ('John', 'Smith', '00914', SYSDATE);

Notice that this version of the INSERT statement looks significantly shorter than the previous
version. The columns STUDENT_ID, CREATED_BY, CREATED_DATE, MODIFIED_BY, and
MODIFIED_DATE are not present. However, the trigger provides their values. As a result, there
is no need to include them in the INSERT statement, and there is less chance of a transaction
error.

You should use BEFORE triggers in the following situations:

. When a trigger provides values for derived columns before an INSERT or UPDATE state-
ment is completed. For example, the column FINAL_GRADE in the ENROLLMENT table
holds the value of the student’s final grade for a specific course. This value is calculated
based on the student’s performance for the duration of the course.

L A B 13.1
268

What Triggers Are

. When a trigger determines whether an INSERT, UPDATE, or DELETE statement should
be allowed to complete. For example, when you insert a record into the INSTRUCTOR
table, a trigger can verify whether the value provided for the column ZIP is valid, or, in
other words, if a record in the ZIPCODE table corresponds to the value of zip that you
provided.

AFTER TRIGGERS

Assume that a table called STATISTICS has the following structure:

Name Null? Type
------------------------------- -------- ----
TABLE_NAME VARCHAR2(30)
TRANSACTION_NAME VARCHAR2(10)
TRANSACTION_USER VARCHAR2(30)
TRANSACTION_DATE DATE

This table is used to collect statistical information on different tables of the database. For
example, you can record who deleted records from the INSTRUCTOR table and when they were
deleted.

Consider the following example of a trigger on the INSTRUCTOR table. This trigger fires after
an UPDATE or DELETE statement is issued on the INSTRUCTOR table.

FOR EXAMPLE

CREATE OR REPLACE TRIGGER instructor_aud
AFTER UPDATE OR DELETE ON INSTRUCTOR
DECLARE

v_type VARCHAR2(10);
BEGIN

IF UPDATING THEN
v_type := 'UPDATE';

ELSIF DELETING THEN
v_type := 'DELETE';

END IF;

UPDATE statistics
SET transaction_user = USER,

transaction_date = SYSDATE
WHERE table_name = 'INSTRUCTOR'
AND transaction_name = v_type;

IF SQL%NOTFOUND THEN
INSERT INTO statistics
VALUES ('INSTRUCTOR', v_type, USER, SYSDATE);

END IF;
END;

L A B 13.1What Triggers Are

269

This trigger fires after an UPDATE or DELETE statement on the INSTRUCTOR table. In the
body of the trigger are two Boolean functions, UPDATING and DELETING. The function
UPDATING evaluates to TRUE if an UPDATE statement is issued on the table, and the function
DELETING evaluates to TRUE if a DELETE statement is issued on the table. There is another
Boolean function called INSERTING. As you probably can guess, this function evaluates to
TRUE when an INSERT statement is issued against the table.

This trigger updates a record or inserts a new record into the STATISTICS table when an
UPDATE or DELETE operation is issued against the INSTRUCTOR table. First, the trigger deter-
mines the type of the DML statement issued against the INSTRUCTOR table. This determina-
tion is made with the help of the UPDATING and DELETING functions.

Next, the trigger tries to update a record in the STATISTICS table where TABLE_NAME is equal
to INSTRUCTOR and TRANSACTION_NAME is equal to the current transaction (UPDATE or
DELETE). Then the status of the UPDATE statement is checked with the help of the
SQL%NOTFOUND constructor. The SQL%NOTFOUND constructor evaluates to TRUE if the
UPDATE statement does not update any rows and evaluates to FALSE otherwise. So if
SQL%NOTFOUND evaluates to TRUE, a new record is added to the STATISTICS table.

After this trigger is created on the INSTRUCTOR table, any UPDATE or DELETE operation
causes modification of old records or creation of new records in the STATISTICS table.
Furthermore, you can enhance this trigger by calculating how many rows are updated or deleted
from the INSTRUCTOR table.

You should use AFTER triggers in the following situations:

. When a trigger should fire after a DML statement is executed

. When a trigger performs actions not specified in a BEFORE trigger

AUTONOMOUS TRANSACTION

An autonomous transaction is an independent transaction started by another transaction that is
usually called the main transaction. In other words, the autonomous transaction may issue
various DML statements and commit or roll them back, without committing or rolling back the
DML statements issued by the main transaction.

For example, consider the trigger created earlier that fires after the UPDATE or DELETE state-
ment is issued on the INSTRUCTOR table where you record auditing data. Suppose you want
to record auditing data even when the main transaction fails (in this case, the main transaction
is the UPDATE or DELETE statement issued on the INSTRUCTOR table). You need to define an
autonomous transaction that can be committed independently of the main transaction.

To define an autonomous transaction, you employ the AUTONOMOUS_TRANSACTION
pragma. You encountered the EXCEPTION_INIT pragma in Chapter 10, “Exceptions: Advanced
Concepts.” Recall that a pragma is a special instruction to the PL/SQL compiler that is processed

L A B 13.1
270

What Triggers Are

at the time of compilation. The AUTONOMOUS_TRANSACTION pragma appears in the decla-
ration section of a block:

DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;

Consider a modified version of INSTRUCTOR_AUD with the autonomous transaction. Changes
are shown in bold:

FOR EXAMPLE

CREATE OR REPLACE TRIGGER instructor_aud
AFTER UPDATE OR DELETE ON INSTRUCTOR
DECLARE

v_type VARCHAR2(10);
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
IF UPDATING THEN

v_type := 'UPDATE';

ELSIF DELETING THEN
v_type := 'DELETE';

END IF;

UPDATE statistics
SET transaction_user = USER,

transaction_date = SYSDATE
WHERE table_name = 'INSTRUCTOR'
AND transaction_name = v_type;

IF SQL%NOTFOUND THEN
INSERT INTO statistics
VALUES ('INSTRUCTOR', v_type, USER, SYSDATE);

END IF;

COMMIT;
END;

In this version of the trigger, you add the AUTONOMOUS_TRANSACTION pragma to the
declaration portion of the trigger and the COMMIT statement to the executable portion.

Next, consider the UPDATE statement on the INSTRUCTOR table that is rolled back, and the
SELECT against the STATISTICS table:

UPDATE instructor
SET phone = '7181234567'

WHERE instructor_id = 101;

1 row updated.

L A B 13.1What Triggers Are

271

▼

ROLLBACK;

SELECT *
FROM statistics;

TABLE_NAME TRANSACTIO TRANSACTION_USER TRANSACTI
----------- ---------- ---------------- ---------
INSTRUCTOR UPDATE STUDENT 09-MAR-08

Notice that even though you roll the UPDATE statement against the INSTRUCTOR table, the
record is inserted in the STATISTICS table due to the autonomous transaction specified in the
trigger body.

L A B 1 3 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

13.1.1 Understand What a Trigger Is

In this exercise, you need to determine the trigger firing event, its type, and so on based on the trigger’s
CREATE clause.

Consider the following CREATE clause:

CREATE TRIGGER student_au
AFTER UPDATE ON STUDENT
FOR EACH ROW
WHEN (NVL(NEW.ZIP, ' ') <> OLD.ZIP)

Trigger Body...

In the WHEN statement of the CREATE clause, the pseudorecord :OLD allows you to access a row
currently being processed. It is important to note that neither :NEW nor :OLD is prefixed by a colon (:)
when it is used in the condition of the WHEN statement.

You are already familiar with the pseudorecord :NEW. The :OLD pseudorecord allows you to access the
current information of the record being updated. In other words, it is information currently present in the
STUDENT table for a specified record. The :NEW pseudorecord allows you to access the new information
for the current record. In other words, :NEW indicates the updated values. For example, consider the
following UPDATE statement:

UPDATE student
SET zip = '01247'

WHERE zip = '02189';

The value 01247 of the ZIP column is a new value, and the trigger references it as :NEW.ZIP. The value
02189 in the ZIP column is the previous value and is referenced as :OLD.ZIP.

L A B 13.1
272

Lab 13.1 Exercises

DID YOU KNOW?

:OLD is undefined for INSERT statements, and :NEW is undefined for DELETE statements. However,
the PL/SQL compiler does not generate syntax errors when :OLD or :NEW is used in triggers where
the triggering event is an INSERT or DELETE operation, respectively. In this case, the field values are
set to NULL for :OLD and :NEW pseudorecords.

Answer the following questions:

A) Assume that a trigger named STUDENT_AU already exists in the database. If you use the CREATE
clause to modify the existing trigger, what error message is generated? Explain your answer.

ANSWER: You see an error message stating that the STUDENT_AU name is already being used
by another object. The CREATE clause can create new objects in the database, but it is unable to
handle modifications. To modify the existing trigger, you must add the REPLACE statement to the
CREATE clause. In this case, the old version of the trigger is dropped without warning, and the new
version of the trigger is created.

B) If an update statement is issued on the STUDENT table, how many times does this trigger fire?

ANSWER: The trigger fires as many times as there are rows affected by the triggering event,
because the FOR EACH ROW statement is present in the CREATE trigger clause.

When the FOR EACH ROW statement is not present in the CREATE trigger clause, the trigger fires
once for the triggering event. In this case, if the following UPDATE statement

UPDATE student
SET zip = '01247'

WHERE zip = '02189';

is issued against the STUDENT table, it updates as many records as there are students with a zip
code of 02189.

C) How many times does this trigger fire if an update statement is issued against the STUDENT table
but the ZIP column is not changed?

ANSWER: The trigger does not fire, because the condition of the WHEN statement evaluates
to FALSE.

The condition

(NVL(NEW.ZIP, ' ') <> OLD.ZIP)

of the WHEN statement compares the new value of the zip code to the old value of the zip code. If
the value of the zip code is not changed, this condition evaluates to FALSE. As a result, this trigger
does not fire if an UPDATE statement does not modify the value of the zip code for a specified
record.

D) Why do you think an NVL function is present in the WHEN statement of the CREATE clause?

ANSWER: If an UPDATE statement does not modify the column ZIP, the value of the field
NEW.ZIP is undefined. In other words, it is NULL. A NULL value of ZIP cannot be compared with a
non-NULL value of ZIP. Therefore, the NVL function is present in the WHEN condition.

Because the column ZIP has a NOT NULL constraint defined, there is no need to use the NVL func-
tion for the OLD.ZIP field. An UPDATE statement issued against the STUDENT table always has a
value of ZIP present in the table.

L A B 13.1Lab 13.1 Exercises

273

13.1.2 Use BEFORE and AFTER Triggers

In this exercise, you create a trigger on the INSTRUCTOR table that fires before an INSERT statement is
issued against the table. The trigger determines the values for the columns CREATED_BY, MODIFIED_BY,
CREATED_DATE, and MODIFIED_DATE. In addition, it determines if the value of zip provided by an INSERT
statement is valid.

Create the following trigger:

-- ch13_1a.sql, version 1.0
CREATE OR REPLACE TRIGGER instructor_bi
BEFORE INSERT ON INSTRUCTOR
FOR EACH ROW
DECLARE

v_work_zip CHAR(1);
BEGIN

:NEW.CREATED_BY := USER;
:NEW.CREATED_DATE := SYSDATE;
:NEW.MODIFIED_BY := USER;
:NEW.MODIFIED_DATE := SYSDATE;

SELECT 'Y'
INTO v_work_zip
FROM zipcode
WHERE zip = :NEW.ZIP;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR (-20001, 'Zip code is not valid!');
END;

Answer the following questions:

A) If an INSERT statement issued against the INSTRUCTOR table is missing a value for the column ZIP,
does the trigger raise an exception? Explain your answer.

ANSWER: Yes, the trigger raises an exception. When an INSERT statement does not provide a
value for the column ZIP, the value of :NEW.ZIP is NULL. This value is used in the WHERE clause of
the SELECT INTO statement. As a result, the SELECT INTO statement is unable to return data.
Therefore, the trigger raises a NO_DATA_FOUND exception.

B) Modify this trigger so that another error message is displayed when an INSERT statement is
missing a value for the column ZIP.

ANSWER: The script should look similar to the following. All changes are shown in bold.

-- ch13_1b.sql, version 2.0
CREATE OR REPLACE TRIGGER instructor_bi
BEFORE INSERT ON INSTRUCTOR
FOR EACH ROW
DECLARE

v_work_zip CHAR(1);
BEGIN

:NEW.CREATED_BY := USER;
:NEW.CREATED_DATE := SYSDATE;

L A B 13.1
274

Lab 13.1 Exercises

:NEW.MODIFIED_BY := USER;
:NEW.MODIFIED_DATE := SYSDATE;

IF :NEW.ZIP IS NULL THEN
RAISE_APPLICATION_ERROR (-20002, 'Zip code is missing!');

ELSE
SELECT 'Y'
INTO v_work_zip
FROM zipcode
WHERE zip = :NEW.ZIP;

END IF;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20001, 'Zip code is not valid!');

END;

Notice that an IF-ELSE statement is added to the body of the trigger. This IF-ELSE statement evalu-
ates the value of :NEW.ZIP. If the value of :NEW.ZIP is NULL, the IF-ELSE statement evaluates to
TRUE, and another error message is displayed, stating that the value of ZIP is missing. If the IF-ELSE
statement evaluates to FALSE, control is passed to the ELSE part of the statement, and the SELECT
INTO statement is executed.

C) Modify this trigger so that there is no need to supply the value for the instructor’s ID at the time
of the INSERT statement.

ANSWER: The version of the trigger should look similar to the following. All changes are shown
in bold.

-- ch13_1c.sql, version 3.0
CREATE OR REPLACE TRIGGER instructor_bi
BEFORE INSERT ON INSTRUCTOR
FOR EACH ROW
DECLARE

v_work_zip CHAR(1);
BEGIN

:NEW.CREATED_BY := USER;
:NEW.CREATED_DATE := SYSDATE;
:NEW.MODIFIED_BY := USER;
:NEW.MODIFIED_DATE := SYSDATE;

SELECT 'Y'
INTO v_work_zip
FROM zipcode
WHERE zip = :NEW.ZIP;

:NEW.INSTRUCTOR_ID := INSTRUCTOR_ID_SEQ.NEXTVAL;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20001, 'Zip code is not valid!');

END;

L A B 13.1Lab 13.1 Exercises

275

The original version of this trigger does not derive a value for the instructor’s ID. Therefore, an
INSERT statement issued against the INSTRUCTOR table has to populate the INSTRUCTOR_ID
column as well. The new version of the trigger populates the value of the INSTRUCTOR_ID column
so that the INSERT statement does not have to do it.

Generally, it is a good idea to populate columns holding IDs in the trigger, because when a user
issues an INSERT statement, he or she might not know that an ID must be populated at the time
of the insert. Furthermore, a user may not know—more than likely does not know—how to
operate sequences to populate the ID.

As mentioned previously, the ability to access a sequence via a PL/SQL expression is a new feature
introduced in Oracle 11g. Prior to Oracle 11g, you needed to employ the SELECT INTO statement
in the body of the trigger to populate the INSTRUCTOR_ID column.

CREATE OR REPLACE TRIGGER instructor_bi
BEFORE INSERT ON INSTRUCTOR
FOR EACH ROW
DECLARE

v_work_zip CHAR(1);
v_instructor_id INSTRUCTOR.INSTRUCTOR_ID%TYPE;

BEGIN
:NEW.CREATED_BY := USER;
:NEW.CREATED_DATE := SYSDATE;
:NEW.MODIFIED_BY := USER;
:NEW.MODIFIED_DATE := SYSDATE;

SELECT 'Y'
INTO v_work_zip
FROM zipcode
WHERE zip = :NEW.ZIP;

SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
INTO v_instructor_id
FROM dual;

:NEW.INSTRUCTOR_ID := v_instructor_id;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20001, 'Zip code is not valid!');

END;

L A B 13.1
276

Lab 13.1 Exercises

L A B 1 3 . 2

Types of Triggers

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use row and statement triggers

. Use INSTEAD OF triggers

In the preceding lab you encountered the term row trigger. A row trigger is fired as many times
as there are rows affected by the triggering statement. When the statement FOR EACH ROW is
present in the CREATE TRIGGER clause, the trigger is a row trigger. Consider the following
code:

FOR EXAMPLE

CREATE OR REPLACE TRIGGER course_au
AFTER UPDATE ON COURSE
FOR EACH ROW
...

In this code fragment, the statement FOR EACH ROW is present in the CREATE TRIGGER
clause. Therefore, this trigger is a row trigger. If an UPDATE statement causes 20 records in the
COURSE table to be modified, this trigger fires 20 times.

A statement trigger is fired once for the triggering statement. In other words, a statement trigger
fires once, regardless of the number of rows affected by the triggering statement. To create a
statement trigger, you omit the FOR EACH ROW in the CREATE TRIGGER clause. Consider the
following code fragment:

FOR EXAMPLE

CREATE OR REPLACE TRIGGER enrollment_ad
AFTER DELETE ON ENROLLMENT
...

This trigger fires once after a DELETE statement is issued against the ENROLLMENT table.
Whether the DELETE statement removes one row or five rows from the ENROLLMENT table,
this trigger fires only once.

L A B 13.2
277

Statement triggers should be used when the operations performed by the trigger do not depend
on the data in the individual records. For example, if you want to limit access to a table to busi-
ness hours only, a statement trigger is used. Consider the following example:

FOR EXAMPLE

CREATE OR REPLACE TRIGGER instructor_biud
BEFORE INSERT OR UPDATE OR DELETE ON INSTRUCTOR
DECLARE

v_day VARCHAR2(10);
BEGIN

v_day := RTRIM(TO_CHAR(SYSDATE, 'DAY'));

IF v_day LIKE ('S%') THEN
RAISE_APPLICATION_ERROR

(-20000, 'A table cannot be modified during off hours');
END IF;

END;

This is a statement trigger on the INSTRUCTOR table, and it fires before an INSERT, UPDATE,
or DELETE statement is issued. First, the trigger determines the day of the week. If the day is
Saturday or Sunday, an error message is generated. When the following UPDATE statement on
the INSTRUCTOR table is issued on Saturday or Sunday:

UPDATE instructor
SET zip = 10025

WHERE zip = 10015;

the trigger generates this error message:

update INSTRUCTOR
*
ERROR at line 1:
ORA-20000: A table cannot be modified during off hours
ORA-06512: at "STUDENT.INSTRUCTOR_BIUD", line 6
ORA-04088: error during execution of trigger

'STUDENT.INSTRUCTOR_BIUD'

Notice that this trigger checks for a specific day of the week. However, it does not check the
time of day. You can create a more sophisticated trigger that checks what day of the week it is
and if the current time is between 9 a.m. and 5 p.m. If the day is during the business week but
the time of day is not between 9 a.m. and 5 p.m., the error is generated.

INSTEAD OF TRIGGERS

So far you have seen triggers that are defined on database tables. PL/SQL provides another kind
of trigger that is defined on database views. A view is a custom representation of data and can
be called a stored query. Consider the following example of the view created against the COURSE
table:

L A B 13.2
278

Types of Triggers

FOR EXAMPLE

You may find that you do not have privileges to create a view when logged in as STUDENT. If
this is so, you need to log in as SYS and grant a CREATE VIEW privilege as follows:

GRANT CREATE VIEW TO student;

As soon as the privilege has been granted, the view on the COURSE table may be created as
follows:

CREATE VIEW course_cost AS
SELECT course_no, description, cost
FROM course;

DID YOU KNOW?

When a view is created, it does not contain or store any data. The data is derived from the SELECT
statement associated with the view. Based on the preceding example, the COURSE_COST view
contains three columns that are selected from the COURSE table.

Similar to tables, views can be manipulated via INSERT, UPDATE, or DELETE statements, with
some restrictions. However, it is important to note that when any of these statements are issued
against a view, the corresponding data is modified in the underlying tables. For example,
consider an UPDATE statement against the COURSE_COST view:

FOR EXAMPLE

UPDATE course_cost
SET cost = 2000

WHERE course_no = 450;

COMMIT;

After the UPDATE statement is executed, both SELECT statements against the COURSE_COST
view and the COURSE table return the same value of the cost for course number 450:

SELECT *
FROM course_cost
WHERE course_no = 450;

COURSE_NO DESCRIPTION COST
---------- ------------------------ ----------

450 DB Programming in Java 2000

SELECT course_no, cost
FROM course
WHERE course_no = 450;

COURSE_NO COST
---------- ----------

450 2000

L A B 13.2Types of Triggers

279

As mentioned earlier, some views are restricted as to whether they can be modified by INSERT,
UPDATE, or DELETE statements. Specifically, these restrictions apply to the underlying SELECT
statement, which is also called a view query. Thus, if a view query performs any of the opera-
tions or contains any of the following constructs, a view cannot be modified by an UPDATE,
INSERT, or DELETE statement:

. Set operations such as UNION, UNION ALL, INTERSECT, and MINUS

. Group functions such as AVG, COUNT, MAX, MIN, and SUM

. GROUP BY or HAVING clauses

. CONNECT BY or START WITH clauses

. The DISTINCT operator

. The ROWNUM pseudocolumn

Consider the following view created on the INSTRUCTOR and SECTION tables:

FOR EXAMPLE

CREATE VIEW instructor_summary_view AS
SELECT i.instructor_id, COUNT(s.section_id) total_courses
FROM instructor i
LEFT OUTER JOIN section s
ON (i.instructor_id = s.instructor_id)

GROUP BY i.instructor_id;

Note that the SELECT statement is written in the ANSI 1999 SQL standard. It uses the outer
join between the INSTRUCTOR and SECTION tables. The LEFT OUTER JOIN indicates that an
instructor record in the INSTRUCTOR table that does not have a corresponding record in the
SECTION table is included in the result set with TOTAL_COURSES equal to 0.

BY THE WAY

You will find detailed explanations and examples of the statements using the new ANSI 1999 SQL
standard in Appendix C,“ANSI SQL Standards,” and in the Oracle help. Throughout this book we try
to provide examples illustrating both standards; however, our main focus is on PL/SQL features
rather than SQL.

In the previous versions of Oracle, this statement would look as follows:

SELECT i.instructor_id, COUNT(s.section_id) total_courses
FROM instructor i, section s
WHERE i.instructor_id = s.instructor_id (+)
GROUP BY i.instructor_id;

L A B 13.2
280

Types of Triggers

This view is not updatable, because it contains the group function, COUNT(). As a result, the
following DELETE statement

DELETE FROM instructor_summary_view
WHERE instructor_id = 109;

causes the error shown:

DELETE FROM instructor_summary_view
*

ERROR at line 1:
ORA-01732: data manipulation operation not legal on this view

You will recall that PL/SQL provides a special kind of trigger that can be defined on database
views. This trigger is called an INSTEAD OF trigger and is created as a row trigger. An INSTEAD
OF trigger fires instead of the triggering statement (INSERT, UPDATE, DELETE) that has been
issued against a view and directly modifies the underlying tables.

Consider an INSTEAD OF trigger defined on the INSTRUCTOR_SUMMARY_VIEW created
earlier. This trigger deletes a record from the INSTRUCTOR table for the corresponding value
of the instructor’s ID.

FOR EXAMPLE

CREATE OR REPLACE TRIGGER instructor_summary_del
INSTEAD OF DELETE ON instructor_summary_view
FOR EACH ROW
BEGIN

DELETE FROM instructor
WHERE instructor_id = :OLD.INSTRUCTOR_ID;

END;

After the trigger is created, the DELETE statement against the INSTRUCTOR_SUMMARY_VIEW
does not generate any errors:

DELETE FROM instructor_summary_view
WHERE instructor_id = 109;

1 row deleted.

When the DELETE statement is issued, the trigger deletes a record from the INSTRUCTOR table
corresponding to the specified value of INSTRUCTOR_ID. Consider the same DELETE state-
ment with a different instructor ID:

DELETE FROM instructor_summary_view
WHERE instructor_id = 101;

When this DELETE statement is issued, it causes the error shown:

DELETE FROM instructor_summary_view
*
ERROR at line 1:

L A B 13.2Types of Triggers

281

ORA-02292: integrity constraint (STUDENT.SECT_INST_FK) violated -
child record found

ORA-06512: at "STUDENT.INSTRUCTOR_SUMMARY_DEL", line 2
ORA-04088: error during execution of trigger -

'STUDENT.INSTRUCTOR_SUMMARY_DEL'

The INSTRUCTOR_SUMMARY_VIEW joins the INSTRUCTOR and SECTION tables based on
the INSTRUCTOR_ID column that is present in both tables. The INSTRUCTOR_ID column in
the INSTRUCTOR table has a primary key constraint defined on it. The INSTRUCTOR_ID
column in the SECTION table has a foreign key constraint that references the INSTRUCTOR_ID
column of the INSTRUCTOR table. Thus, the SECTION table is considered a child table of the
INSTRUCTOR table.

The original DELETE statement does not cause any errors because no record in the SECTION
table corresponds to the instructor ID of 109. In other words, the instructor with the ID of 109
does not teach any courses.

The second DELETE statement causes an error because the INSTEAD OF trigger tries to delete
a record from the INSTRUCTOR table, the parent table. However, a corresponding record in the
SECTION table, the child table, has the instructor ID of 101. This causes an integrity constraint
violation error. It may seem that one more DELETE statement should be added to the INSTEAD
OF trigger, as shown here:

FOR EXAMPLE

CREATE OR REPLACE TRIGGER instructor_summary_del
INSTEAD OF DELETE ON instructor_summary_view
FOR EACH ROW
BEGIN

DELETE FROM section
WHERE instructor_id = :OLD.INSTRUCTOR_ID;
DELETE FROM instructor
WHERE instructor_id = :OLD.INSTRUCTOR_ID;

END;

Notice that the new DELETE statement removes records from the SECTION table before the
INSTRUCTOR table because the SECTION table contains child records of the INSTRUCTOR
table. However, the DELETE statement against the INSTRUCTOR_SUMMARY_VIEW causes
another error:

DELETE FROM instructor_summary_view
WHERE instructor_id = 101;

DELETE FROM instructor_summary_view
*

ERROR at line 1:
ORA-02292: integrity constraint (STUDENT.GRTW_SECT_FK) violated -

child record found

L A B 13.2
282

Types of Triggers

▼

ORA-06512: at "STUDENT.INSTRUCTOR_SUMMARY_DEL", line 2
ORA-04088: error during execution of trigger -

'STUDENT.INSTRUCTOR_SUMMARY_DEL'

This time, the error refers to a different foreign key constraint that specifies the relationship
between the SECTION and the GRADE_TYPE_WEIGHT tables. In this case, the child records
are found in the GRADE_TYPE_WEIGHT table. This means that before deleting records from
the SECTION table, the trigger must delete all corresponding records from the GRADE_
TYPE_WEIGHT table. However, the GRADE_TYPE_WEIGHT table has child records in the
GRADE table, so the trigger must delete records from the GRADE table first.

This example illustrates the complexity of designing an INSTEAD OF trigger. To design such a
trigger, you must be aware of two important factors: the relationship among tables in the data-
base, and the ripple effect that a particular design may introduce. This example suggests delet-
ing records from four underlying tables. However, it is important to realize that those tables
contain information that relates not only to the instructors and the sections they teach, but also
to the students and the sections they are enrolled in.

L A B 1 3 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

13.2.1 Use Row and Statement Triggers

In this exercise, you create a trigger that fires before an INSERT statement is issued against the COURSE
table.

Create the following trigger:

-- ch13_2a.sql, version 1.0
CREATE OR REPLACE TRIGGER course_bi
BEFORE INSERT ON COURSE
FOR EACH ROW
BEGIN

:NEW.COURSE_NO := COURSE_NO_SEQ.NEXTVAL;
:NEW.CREATED_BY := USER;
:NEW.CREATED_DATE := SYSDATE;
:NEW.MODIFIED_BY := USER;
:NEW.MODIFIED_DATE := SYSDATE;

END;

As mentioned, the ability to access sequence via a PL/SQL expression is a new feature introduced in
Oracle 11g. Prior to Oracle 11g, you would have needed to employ the SELECT INTO statement in the
body of the trigger to populate the COURSE_NO column.

CREATE OR REPLACE TRIGGER course_bi
BEFORE INSERT ON COURSE
FOR EACH ROW
DECLARE

v_course_no COURSE.COURSE_NO%TYPE;

L A B 13.2Lab 13.2 Exercises

283

BEGIN
SELECT COURSE_NO_SEQ.NEXTVAL
INTO v_course_no
FROM DUAL;

:NEW.COURSE_NO := v_course_no;
:NEW.CREATED_BY := USER;
:NEW.CREATED_DATE := SYSDATE;
:NEW.MODIFIED_BY := USER;
:NEW.MODIFIED_DATE := SYSDATE;

END;

Answer the following questions:

A) What type of trigger is created on the COURSE table—row or statement? Explain your answer.

ANSWER: The trigger created on the COURSE table is a row trigger because the CREATE TRIGGER
clause contains the statement FOR EACH ROW. This means that this trigger fires every time a
record is added to the COURSE table.

B) Based on the answer you just provided, explain why this particular type is chosen for the trigger.

ANSWER: This trigger is a row trigger because its operations depend on the data in the individ-
ual records. For example, for every record inserted into the COURSE table, the trigger calculates
the value for the column COURSE_NO. All values in this column must be unique, because it is
defined as a primary key. A row trigger guarantees that every record added to the COURSE table
has a unique number assigned to the COURSE_NO column.

C) When an INSERT statement is issued against the COURSE table, which actions does the trigger
perform?

ANSWER: First, the trigger assigns a unique number derived from the sequence
COURSE_NO_SEQ to the filed COURSE_NO_SEQ to the filed COURSE_NO OF THE :NEW
PSEUDORECORD. Then, the values containing the current user’s name and date are assigned to
the fields CREATED_BY, MODIFIED_BY, CREATED_DATE, and MODIFIED_DATE of the :NEW
pseudorecord.

D) Modify this trigger so that if a prerequisite course is supplied at the time of the insert, its value is
checked against the existing courses in the COURSE table.

ANSWER: The trigger you created should look similar to the following. All changes are shown
in bold.

-- ch13_2b.sql, version 2.0
CREATE OR REPLACE TRIGGER course_bi
BEFORE INSERT ON COURSE
FOR EACH ROW
DECLARE

v_prerequisite COURSE.COURSE_NO%TYPE;
BEGIN

IF :NEW.PREREQUISITE IS NOT NULL THEN
SELECT course_no
INTO v_prerequisite
FROM course
WHERE course_no = :NEW.PREREQUISITE;

END IF;

L A B 13.2
284

Lab 13.2 Exercises

:NEW.COURSE_NO := COURSE_NO_SEQ.NEXTVAL;
:NEW.CREATED_BY := USER;
:NEW.CREATED_DATE := SYSDATE;
:NEW.MODIFIED_BY := USER;
:NEW.MODIFIED_DATE := SYSDATE;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR (-20002, 'Prerequisite is not
valid!');

END;

Notice that because PREREQUISITE is not a required column (in other words, no NOT NULL
constraint is defined against it), the IF statement validates the existence of the incoming value.
Next, the SELECT INTO statement validates that the prerequisite already exists in the COURSE
table. If no record corresponds to the prerequisite course, the NO_DATA_FOUND exception is
raised, and the error message Prerequisite is not valid! is displayed on the screen.

After this version of the trigger is created, the INSERT statement

INSERT INTO COURSE (description, cost, prerequisite)
VALUES ('Test Course', 0, 999);

causes the following error:

INSERT INTO COURSE (description, cost, prerequisite)
*
ERROR at line 1:
ORA-20002: Prerequisite is not valid!
ORA-06512: at "STUDENT.COURSE_BI", line 21
ORA-04088: error during execution of trigger 'STUDENT.COURSE_BI'

13.2.2 Use INSTEAD OF Triggers

In this exercise, you create a view STUDENT_ADDRESS and an INSTEAD OF trigger that fires instead of an
INSERT statement issued against the view.

Create the following view:

CREATE VIEW student_address AS
SELECT s.student_id, s.first_name, s.last_name,

s.street_address, z.city, z.state, z.zip
FROM student s
JOIN zipcode z
ON (s.zip = z.zip);

Note that the SELECT statement is written in the ANSI 1999 SQL standard.

BY THE WAY

You will find detailed explanations and examples of the statements using the new ANSI 1999 SQL
standard in Appendix C and in the Oracle help. Throughout this book we try to provide examples
illustrating both standards; however, our main focus is on PL/SQL features rather than SQL.

L A B 13.2Lab 13.2 Exercises

285

Create the following INSTEAD OF trigger:

-- ch13_3a.sql, version 1.0
CREATE OR REPLACE TRIGGER student_address_ins
INSTEAD OF INSERT ON student_address
FOR EACH ROW
BEGIN

INSERT INTO STUDENT
(student_id, first_name, last_name, street_address, zip,
registration_date, created_by, created_date, modified_by,
modified_date)

VALUES
(:NEW.student_id, :NEW.first_name, :NEW.last_name,
:NEW.street_address, :NEW.zip, SYSDATE, USER, SYSDATE, USER,

SYSDATE);
END;

Issue the following INSERT statements:

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street',

'New York', 'NY', '10019');

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street',

'New York', 'NY', '12345');

Answer the following questions:

A) What output is produced after each INSERT statement is issued?

ANSWER: The output should look similar to the following:

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street',

'New York', 'NY', '10019');

1 row created.

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street',

'New York', 'NY', '12345');

VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street',
'New York',

*
ERROR at line 2:
ORA-02291: integrity constraint (STUDENT.STU_ZIP_FK) violated -

parent key not found
ORA-06512: at "STUDENT.STUDENT_ADDRESS_INS", line 2
ORA-04088: error during execution of trigger

'STUDENT.STUDENT_ADDRESS_INS'

L A B 13.2
286

Lab 13.2 Exercises

B) Explain why the second INSERT statement causes an error.

ANSWER: The second INSERT statement causes an error because it violates the foreign key
constraint on the STUDENT table. The value of the zip code provided at the time of an insert does
not have a corresponding record in the ZIPCODE table.

The ZIP column of the STUDENT table has a foreign key constraint STU_ZIP_FK defined on it. This
means that each time a record is inserted into the STUDENT table, the system checks the incom-
ing value of the zip code in the ZIPCODE table. If there is a corresponding record, the INSERT state-
ment against the STUDENT table does not cause errors. For example, the first INSERT statement is
successful because the ZIPCODE table contains a record corresponding to the value of zip code
10019. The second insert statement causes an error because no record in the ZIPCODE table corre-
sponds to the value of zip code 12345.

C) Modify the trigger so that it checks the value of the zip code provided by the INSERT statement
against the ZIPCODE table and raises an error if there is no such value.

ANSWER: The trigger should look similar to the following. All changes are shown in bold.

-- ch13_3b.sql, version 2.0
CREATE OR REPLACE TRIGGER student_address_ins
INSTEAD OF INSERT ON student_address
FOR EACH ROW
DECLARE

v_zip VARCHAR2(5);
BEGIN

SELECT zip
INTO v_zip
FROM zipcode
WHERE zip = :NEW.ZIP;

INSERT INTO STUDENT
(student_id, first_name, last_name, street_address, zip,
registration_date, created_by, created_date, modified_by,
modified_date)

VALUES
(:NEW.student_id, :NEW.first_name, :NEW.last_name,
:NEW.street_address, :NEW.zip, SYSDATE, USER, SYSDATE, USER,

SYSDATE);

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR (-20002, 'Zip code is not valid!');
END;

In this version of the trigger, the incoming value of zip code is checked against the ZIPCODE table
via the SELECT INTO statement. If the SELECT INTO statement does not return any rows, the
NO_DATA_FOUND exception is raised, and the error message stating Zip code is not
valid! is displayed on the screen.

L A B 13.2Lab 13.2 Exercises

287

After this trigger is created, the second INSERT statement produces the following output:

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street',

'New York', 'NY', '12345');

VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street',
'New York',

*
ERROR at line 2:
ORA-20002: Zip code is not valid!
ORA-06512: at "STUDENT.STUDENT_ADDRESS_INS", line 18
ORA-04088: error during execution of trigger
'STUDENT.STUDENT_ADDRESS_INS'

D) Modify the trigger so that it checks the value of the zip code provided by the INSERT statement
against the ZIPCODE table. If the ZIPCODE table has no corresponding record, the trigger should
create a new record for the given value of zip before adding a new record to the STUDENT table.

ANSWER: The trigger should look similar to the following. All changes are shown in bold.

-- ch13_3c.sql, version 3.0
CREATE OR REPLACE TRIGGER student_address_ins
INSTEAD OF INSERT ON student_address
FOR EACH ROW
DECLARE

v_zip VARCHAR2(5);
BEGIN

BEGIN
SELECT zip
INTO v_zip
FROM zipcode
WHERE zip = :NEW.zip;

EXCEPTION
WHEN NO_DATA_FOUND THEN

INSERT INTO ZIPCODE
(zip, city, state, created_by, created_date,
modified_by, modified_date)

VALUES
(:NEW.zip, :NEW.city, :NEW.state, USER, SYSDATE, USER,
SYSDATE);

END;
INSERT INTO STUDENT

(student_id, first_name, last_name, street_address, zip,
registration_date, created_by, created_date, modified_by,
modified_date)

VALUES
(:NEW.student_id, :NEW.first_name, :NEW.last_name,
:NEW.street_address, :NEW.zip, SYSDATE, USER, SYSDATE, USER,
SYSDATE);

END;

L A B 13.2
288

Lab 13.2 Exercises

As in the previous version, the existence of the incoming value of the zip code is checked against
the ZIPCODE table via the SELECT INTO statement. When a new value of zip code is provided by
the INSERT statement, the SELECT INTO statement does not return any rows. As a result, the
NO_DATA_FOUND exception is raised, and the INSERT statement against the ZIPCODE table is
executed. Next, control is passed to the INSERT statement against the STUDENT table.

It is important to realize that the SELECT INTO statement and the exception-handling section have
been placed in the inner block. This placement ensures that after the exception NO_DATA_FOUND
is raised, the trigger does not terminate but proceeds with its normal execution.

After this trigger is created, the second INSERT statement completes successfully:

INSERT INTO student_address
VALUES (STUDENT_ID_SEQ.NEXTVAL, 'John', 'Smith', '123 Main Street',

'New York', 'NY', '12345');

1 row created.

L A B 13.2Lab 13.2 Exercises

289

▼ T R Y I T Y O U R S E L F

In this chapter you’ve learned about triggers. Here are some projects that will help you test the depth of
your understanding:

1) Create or modify a trigger on the ENROLLMENT table that fires before an INSERT statement. Make
sure that all columns that have NOT NULL and foreign key constraints defined on them are popu-
lated with their proper values.

2) Create or modify a trigger on the SECTION table that fires before an UPDATE statement. Make sure
that the trigger validates incoming values so that there are no constraint violation errors.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

290 Try it Yourself

C H A P T E R 1 4

Compound Triggers

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Mutating table issues

. Compound triggers

In the preceding chapter, you explored the concept of triggers. You learned
about using triggers in the database, events that cause triggers to fire, and differ-
ent types of triggers. In this chapter, you will continue exploring triggers. You
will learn about mutating table issues and how triggers can be used to resolve
these issues.

In Lab 14.1 you will see how to resolve mutating table issues in the Oracle data-
base prior to version 11g. In Lab 14.2 you will learn about compound triggers,
which were introduced in Oracle 11g, and how they can be used to resolve
mutating table issues.

L A B 1 4 . 1

Mutating Table Issues

L A B O B J E C T I V E
After completing this lab, you will be able to

. Understand mutating tables

A table that has a DML statement issued against it is called a mutating table. For a trigger, it is
the table on which this trigger is defined. If a trigger tries to read or modify such a table, it causes
a mutating table error. As a result, a SQL statement issued in the body of the trigger may not
read or modify a mutating table. Note that this restriction applies to row-level triggers.

Note that prior to Oracle 8i, another restriction on the SQL statement issued in the body of a
trigger caused a different type of error called a constraining table error. A table read from for a refer-
ential integrity constraint is called a constraining table. So a SQL statement issued in the body of
a trigger could not modify the columns of a constraining table having primary, foreign, or unique
constraints defined on them. However, staring with Oracle 8i, there is no such restriction.

Consider the following example of a trigger causing a mutating table error.

WATCH OUT!

A mutating table error is a runtime error. In other words, this error occurs not at the time of trigger
creation (compilation), but when the trigger fires.

FOR EXAMPLE

CREATE OR REPLACE TRIGGER section_biu
BEFORE INSERT OR UPDATE ON section
FOR EACH ROW
DECLARE

v_total NUMBER;
v_name VARCHAR2(30);

BEGIN
SELECT COUNT(*)
INTO v_total
FROM section -- SECTION is MUTATING
WHERE instructor_id = :NEW. instructor_id;

L A B 14.1
292

-- check if the current instructor is overbooked
IF v_total >= 10 THEN

SELECT first_name||' '||last_name
INTO v_name
FROM instructor
WHERE instructor_id = :NEW.instructor_id;

RAISE_APPLICATION_ERROR
(-20000, 'Instructor, '||v_name||', is overbooked');

END IF;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR

(-20001, 'This is not a valid instructor');
END;

This trigger fires before an INSERT or UPDATE statement is issued on the SECTION table. The
trigger checks whether the specified instructor is teaching too many sections. If the number of
sections taught by an instructor is equal to or greater than 10, the trigger issues an error message
stating that this instructor teaches too much.

Now, consider the following UPDATE statement issued against the SECTION table:

UPDATE section
SET instructor_id = 101

WHERE section_id = 80;

When this UPDATE statement is issued against the SECTION table, the following error message
is displayed:

UPDATE section
*
ERROR at line 1:
ORA-04091: table STUDENT.SECTION is mutating, trigger/function

may not see it
ORA-06512: at "STUDENT.SECTION_BIU", line 5
ORA-04088: error during execution of trigger 'STUDENT.SECTION_BIU'

Notice that the error message states that the SECTION table is mutating and that the trigger may
not see it. This error message is generated because a SELECT INTO statement

SELECT COUNT(*)
INTO v_total
FROM section
WHERE instructor_id = :NEW.INSTRUCTOR_ID;

issued against the SECTION table that is being modified and therefore is mutating.

To correct this problem, you must follow these steps when using a version of Oracle prior
to 11g:

L A B 14.1Mutating Table Issues

293

1. To record the instructor’s ID and name as described in the preceding example, you must
declare two global variables with the help of a PL/SQL package. You will learn about
global variables and packages in Chapter 21, “Packages.”

2. You must modify an existing trigger so that it records the instructor’s ID, queries the
INSTRUCTOR table, and records the instructor’s name.

3. You must create a new trigger on the SECTION table. This trigger should be a statement-
level trigger that fires after the INSERT or UPDATE statement has been issued. It checks
the number of courses that are taught by a particular instructor and raises an error if the
number is equal to or greater than 10.

BY THE WAY

As stated, these steps are used to resolve mutating table errors in versions of Oracle prior to 11g.
Starting with Oracle 11g, compound triggers are used to resolve this error. Compound triggers are
covered in the next lab.

Consider the following package:

CREATE OR REPLACE PACKAGE instructor_adm AS
v_instructor_id instructor.instructor_id%TYPE;
v_instructor_name varchar2(50);

END;

This package declares two global variables, v_instructor_id and v_instructor_name.
Note that the CREATE OR REPLACE clause is similar to that of a trigger.

Next, the existing trigger SECTION_BIU is modified as follows:

CREATE OR REPLACE TRIGGER section_biu
BEFORE INSERT OR UPDATE ON section
FOR EACH ROW
BEGIN

IF :NEW. instructor_id IS NOT NULL THEN
BEGIN

instructor_adm.v_instructor_id := :NEW.INSTRUCTOR_ID;

SELECT first_name||' '||last_name
INTO instructor_adm.v_instructor_name
FROM instructor
WHERE instructor_id = instructor_adm.v_instructor_id;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR
(-20001, 'This is not a valid instructor');

END;
END IF;

END;

L A B 14.1
294

Mutating Table Issues

In this version of the trigger, the global variables v_instructor_id and v_instructor_
name are initialized if the incoming value of the instructor’s ID is not null. Notice that the vari-
able names are prefixed by the package name. This type of notation is called dot notation.

Finally, a new trigger is created on the SECTION table:

CREATE OR REPLACE TRIGGER section_aiu
AFTER INSERT OR UPDATE ON section
DECLARE

v_total INTEGER;
BEGIN

SELECT COUNT(*)
INTO v_total
FROM section
WHERE instructor_id = instructor_adm.v_instructor_id;

-- check if the current instructor is overbooked
IF v_total >= 10 THEN

RAISE_APPLICATION_ERROR
(-20000, 'Instructor, '||instructor_adm.v_instructor_name||
', is overbooked');

END IF;
END;

This trigger checks the number of courses that are taught by a particular instructor and raises
an error if the number is equal to or greater than 10. This is accomplished with the help of the
global variables v_instructor_id and v_instructor_name. As mentioned, these vari-
ables are populated by the SECTION_BIU trigger that fires before the UPDATE statement is
issued against the SECTION table.

As a result, the UPDATE statement used earlier

UPDATE section
SET instructor_id = 101

WHERE section_id = 80;

causes a different error:

UPDATE section
*
ERROR at line 1:
ORA-20000: Instructor, Fernand Hanks, is overbooked
ORA-06512: at "STUDENT.SECTION_AIU", line 11
ORA-04088: error during execution of trigger 'STUDENT.SECTION_AIU'

Notice that this error was generated by the trigger SECTION_AIU and does not contain any
message about a mutating table. Next, consider a similar UPDATE statement for a different
instructor ID that does not cause any errors:

UPDATE section
SET instructor_id = 110

WHERE section_id = 80;

1 row updated.

L A B 14.1Mutating Table Issues

295

L A B 14.1
296

Lab 14.1 Exercises

▼ L A B 1 4 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

14.1.1 Understand Mutating Tables

In this exercise, you modify a trigger that causes a mutating table error when an INSERT statement is
issued against the ENROLLMENT table.

Create the following trigger:

-- ch14_1a.sql, version 1.0
CREATE OR REPLACE TRIGGER enrollment_biu
BEFORE INSERT OR UPDATE ON enrollment
FOR EACH ROW
DECLARE

v_total NUMBER;
v_name VARCHAR2(30);

BEGIN
SELECT COUNT(*)
INTO v_total
FROM enrollment
WHERE student_id = :NEW. student_id;

-- check if the current student is enrolled in too
-- many courses
IF v_total >= 3 THEN

SELECT first_name||' '||last_name
INTO v_name
FROM student
WHERE student_id = :NEW.STUDENT_ID;

RAISE_APPLICATION_ERROR (-20000, 'Student, '||v_name||
', is registered for 3 courses already');

END IF;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR

(-20001, 'This is not a valid student');
END;

Issue the following INSERT and UPDATE statements:

INSERT INTO ENROLLMENT
(student_id, section_id, enroll_date, created_by, created_date,
modified_by, modified_date)

VALUES (184, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

INSERT INTO ENROLLMENT
(student_id, section_id, enroll_date, created_by, created_date,
modified_by, modified_date)

VALUES (399, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

UPDATE ENROLLMENT
SET student_id = 399

WHERE student_id = 283;

Answer the following questions:

A) What output is produced after the INSERT and UPDATE statements are issued?

ANSWER: The output should look like this:

INSERT INTO ENROLLMENT
(student_id, section_id, enroll_date, created_by, created_date,
modified_by, modified_date)

VALUES (184, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

INSERT INTO ENROLLMENT
*

ERROR at line 1:
ORA-20000: Student, Salewa Zuckerberg, is registered for 3 courses
already
ORA-06512: at "STUDENT.ENROLLMENT_BIU", line 17
ORA-04088: error during execution of trigger

'STUDENT.ENROLLMENT_BIU'

INSERT INTO ENROLLMENT
(student_id, section_id, enroll_date, created_by, created_date,
modified_by, modified_date)

VALUES (399, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

1 row created.

UPDATE enrollment
SET student_id = 399

WHERE student_id = 283;

UPDATE enrollment
*
ERROR at line 1:
ORA-04091: table STUDENT.ENROLLMENT is mutating, trigger/function

may not see it
ORA-06512: at "STUDENT.ENROLLMENT_BIU", line 5
ORA-04088: error during execution of trigger

'STUDENT.ENROLLMENT_BIU'

B) Explain why two of the statements did not succeed.

ANSWER: The INSERT statement does not succeed because it tries to create a record in the
ENROLLMENT table for a student who is already registered for three courses.

The IF statement

IF v_total >= 3 THEN
SELECT first_name||' '||last_name

INTO v_name
FROM student
WHERE student_id = :NEW.STUDENT_ID;

L A B 14.1Lab 14.1 Exercises

297

RAISE_APPLICATION_ERROR (-20000, 'Student, '||v_name||
', is registered for 3 courses already');

END IF;

in the body of the trigger evaluates to TRUE. As a result, the RAISE_APPLICATION_ERROR state-
ment raises a user-defined exception.

The UPDATE statement does not succeed because a trigger tries to read data from the mutating
table.

The SELECT INTO statement

SELECT COUNT(*)
INTO v_total
FROM enrollment
WHERE student_id = :NEW.STUDENT_ID;

is issued against the ENROLLMENT table that is being modified and therefore is mutating.

C) Modify the trigger so that it does not cause a mutating table error when an UPDATE statement is
issued against the ENROLLMENT table.

ANSWER: First, create a package to hold the student’s ID and name:

CREATE OR REPLACE PACKAGE student_adm AS
v_student_id student.student_id%TYPE;
v_student_name varchar2(50);

END;

Next, modify the existing trigger, ENROLLMENT:

CREATE OR REPLACE TRIGGER enrollment_biu
BEFORE INSERT OR UPDATE ON enrollment
FOR EACH ROW
BEGIN

IF :NEW.STUDENT_ID IS NOT NULL THEN
BEGIN

student_adm.v_student_id := :NEW. student_id;

SELECT first_name||' '||last_name
INTO student_adm.v_student_name
FROM student
WHERE student_id = student_adm.v_student_id;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR
(-20001, 'This is not a valid student');

END;
END IF;

END;

Finally, create a new statement-level trigger on the ENROLLMENT table:

CREATE OR REPLACE TRIGGER enrollment_aiu
AFTER INSERT OR UPDATE ON enrollment
DECLARE

v_total INTEGER;

L A B 14.1
298

Lab 14.1 Exercises

BEGIN
SELECT COUNT(*)
INTO v_total
FROM enrollment
WHERE student_id = student_adm.v_student_id;

-- check if the current student is enrolled in too
-- many courses
IF v_total >= 3 THEN

RAISE_APPLICATION_ERROR (-20000, 'Student, '||
student_adm.v_student_name||
', is registered for 3 courses already ');

END IF;
END;

After the package and two triggers have been created, the UPDATE statement does not cause a
mutating table error. However, the UPDATE statement

UPDATE enrollment
SET student_id = 399

WHERE student_id = 283;

causes a different kind of error. Why do you think this error occurs, and how would you go about
fixing it?

L A B 14.1Lab 14.1 Exercises

299

L A B 1 4 . 2

Compound Triggers

L A B O B J E C T I V E
After completing this lab, you will be able to

. Understand compound triggers

In the preceding lab you learned about mutating table issues and how they can be resolved in
Oracle versions prior to 11g. In this lab, you learn how to resolve mutating table issues using
compound triggers, which were introduced in Oracle 11g.

A compound trigger allows you to combine different types of triggers into one. Specifically, you
can combine

. A statement trigger that fires before the firing statement

. A statement trigger that fires after the firing statement

. A row trigger that fires before each row that the firing statement affects

. A row trigger that fires after each row that the firing statement affects

For example, you can create a compound trigger on the STUDENT table with portions of code
that will fire once before the insert, before the insert for each affected row, after the insert for
each affected row, and after the insert.

The structure of the compound trigger is as follows:

CREATE [OR REPLACE] TRIGGER trigger_name
triggering_event ON table_name
COMPOUND TRIGGER

declaration statements

BEFORE STATEMENT IS
BEGIN

executable statements
END BEFORE STATEMENT;

BEFORE EACH ROW IS
BEGIN

executable statements
END BEFORE EACH ROW;

L A B 14.2
300

AFTER EACH ROW IS
BEGIN

executable statements
END AFTER EACH ROW;

AFTER STATEMENT IS
BEGIN

executable statements
END AFTER STATEMENT;

END trigger_name;

First, you specify the trigger header that includes the CREATE OR REPLACE clause, the trigger-
ing event, the table name for which the trigger is defined, and the COMPOUND TRIGGER
clause, which specifies that this is a compound trigger. Note the absence of the BEFORE or
AFTER clause in the header of the compound trigger.

Next, you specify the declaration section, which is common to all executable sections. In other
words, any variable declared in this section can be referenced in any of the executable sections.

Finally, you specify the executable sections that fire at different timing points. Note that each of
these sections is optional. For example, if no action takes place after the firing statement, no
AFTER STATEMENT section is needed.

WATCH OUT!

Compound triggers have several restrictions:

. A compound trigger may be defined on a table or view only.

. A triggering event of a compound trigger is limited to the DML statements.

. A compound trigger may not contain an autonomous transaction. In other words, its declara-
tion portion cannot include PRAGMA AUTONOMOUS_TRANSACTION.

. An exception that occurs in one executable section must be handled within that section. For
example, if an exception occurs in the AFTER EACH ROW section, it cannot propagate to the
AFTER STATEMENT section. It must be handled in the AFTER EACH ROW section.

. References to :OLD and :NEW pseudocolumns cannot appear in the declaration, BEFORE
STATEMENT, and AFTER STATEMENT sections.

. The value :NEW pseudocolumn can be changed in the BEFORE EACH ROW section only.

. The firing order of the compound and simple triggers is not guaranteed. In other words, the
firing of the compound trigger may interleave with the firing of the simple triggers.

. If a DML statement issued on a table that has a compound trigger defined on it fails (rolls
back) due to an exception:

Variables declared in the compound trigger sections are reinitialized. In other words, any
values assigned to those variable are lost.

DML statements issued by the compound trigger are not rolled back.

L A B 14.2Compound Triggers

301

Consider the following example of the compound trigger on the STUDENT table that has
BEFORE STATEMENT and BEFORE EACH ROW sections only:

FOR EXAMPLE

CREATE OR REPLACE TRIGGER student_compound
FOR INSERT ON STUDENT
COMPOUND TRIGGER

-- Declaration section
v_day VARCHAR2(10);
v_date DATE;
v_user VARCHAR2(30);

BEFORE STATEMENT IS
BEGIN

v_day := RTRIM(TO_CHAR(SYSDATE, 'DAY'));

IF v_day LIKE ('S%') THEN
RAISE_APPLICATION_ERROR

(-20000, 'A table cannot be modified during off hours');
END IF;

v_date := SYSDATE;
v_user := USER;

END BEFORE STATEMENT;

BEFORE EACH ROW IS
BEGIN

:NEW.student_id := STUDENT_ID_SEQ.NEXTVAL;
:NEW.created_by := v_user;
:NEW.created_date := v_date;
:NEW.modified_by := v_user;
:NEW.modified_date := v_date;

END BEFORE EACH ROW;

END student_compound;

This trigger has a declaration section and two executable sections only. As mentioned earlier, each
of the executable sections is optional and is specified only when an action is associated with it.

First, the declaration section declares four variables used in the BEFORE STATEMENT and
BEFORE EACH ROW sections. Second, the BEFORE STATEMENT section initializes the vari-
ables and contains an IF statement that prevents modification of the STUDENT table during off
hours. This section fires once before the INSERT statement. Next, the BEFORE EACH ROW
section initializes some of the columns of the STUDENT table to their default values.

L A B 14.2
302

Compound Triggers

Note that all references to the :NEW pseudocolumns are placed in the BEFORE EACH ROW
section of the trigger. However, the values for the majority of those columns are calculated in
the BEFORE STATEMENT section.

As mentioned, one of the reasons to use compound triggers is to avoid mutating table errors.
Recall from Lab 14.1 the example of the trigger on the SECTION table that causes a mutating
table error:

FOR EXAMPLE

CREATE OR REPLACE TRIGGER section_biu
BEFORE INSERT OR UPDATE ON section
FOR EACH ROW
DECLARE

v_total NUMBER;
v_name VARCHAR2(30);

BEGIN
SELECT COUNT(*)
INTO v_total
FROM section -- SECTION is MUTATING
WHERE instructor_id = :NEW.instructor_id;

-- check if the current instructor is overbooked
IF v_total >= 10 THEN

SELECT first_name||' '||last_name
INTO v_name
FROM instructor
WHERE instructor_id = :NEW.instructor_id;

RAISE_APPLICATION_ERROR
(-20000, 'Instructor, '||v_name||', is overbooked');

END IF;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR

(-20001, 'This is not a valid instructor');
END;

To correct this problem, you followed these steps:

1. You created a package in which you declared two global variables:

CREATE OR REPLACE PACKAGE instructor_adm AS
v_instructor_id instructor.instructor_id%TYPE;
v_instructor_name varchar2(50);

END;

L A B 14.2Compound Triggers

303

2. You modified the existing trigger to record the instructor’s ID and name:

CREATE OR REPLACE TRIGGER section_biu
BEFORE INSERT OR UPDATE ON section
FOR EACH ROW
BEGIN

IF :NEW. instructor_id IS NOT NULL THEN
BEGIN

instructor_adm.v_instructor_id := :NEW.INSTRUCTOR_ID;

SELECT first_name||' '||last_name
INTO instructor_adm.v_instructor_name
FROM instructor
WHERE instructor_id = instructor_adm.v_instructor_id;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR
(-20001, 'This is not a valid instructor');

END;
END IF;

END;

3. You created a new statement trigger that fires after the INSERT or UPDATE statement has
been issued:

CREATE OR REPLACE TRIGGER section_aiu
AFTER INSERT OR UPDATE ON section
DECLARE

v_total INTEGER;
BEGIN

SELECT COUNT(*)
INTO v_total
FROM section
WHERE instructor_id = instructor_adm.v_instructor_id;

-- check if the current instructor is overbooked
IF v_total >= 10 THEN

RAISE_APPLICATION_ERROR
(-20000, 'Instructor, '||instructor_adm.v_instructor_name||
', is overbooked');

END IF;
END;

Now consider a compound trigger on the SECTION table that fires on INSERT or UPDATE:

FOR EXAMPLE

CREATE OR REPLACE TRIGGER section_compound
FOR INSERT OR UPDATE ON SECTION
COMPOUND TRIGGER

L A B 14.2
304

Compound Triggers

-- Declaration Section
v_instructor_id INSTRUCTOR.INSTRUCTOR_ID%TYPE;
v_instructor_name VARCHAR2(50);
v_total INTEGER;

BEFORE EACH ROW IS
BEGIN

IF :NEW. instructor_id IS NOT NULL THEN
BEGIN

v_instructor_id := :NEW. instructor_id;

SELECT first_name||' '||last_name
INTO instructor_adm.v_instructor_name
FROM instructor
WHERE instructor_id = instructor_adm.v_instructor_id;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR
(-20001, 'This is not a valid instructor');

END;
END IF;

END BEFORE EACH ROW;

AFTER STATEMENT IS
BEGIN

SELECT COUNT(*)
INTO v_total
FROM section

WHERE instructor_id = v_instructor_id;

-- check if the current instructor is overbooked
IF v_total >= 10 THEN

RAISE_APPLICATION_ERROR
(-20000, 'Instructor, '||instructor_adm.v_instructor_name||
', is overbooked');

END IF;
END AFTER STATEMENT;

END section_compound;

In this trigger, you declare three variables, two of which were previously declared in the
package. Next, you place statements from two simple triggers into two corresponding sections
of a compound trigger.

Notice that by using a compound trigger you can resolve the mutating table issue with a simpler
approach. You eliminated the need for a package that is used as a link between two triggers that
fire at different times in a transaction.

L A B 14.2Compound Triggers

305

▼

Note that the UPDATE statement used earlier

UPDATE section
SET instructor_id = 101

WHERE section_id = 80;

produces the same output:

UPDATE section
*
ERROR at line 1:
ORA-20000: Instructor, Fernand Hanks, is overbooked
ORA-06512: at "STUDENT.SECTION_COMPOUND", line 38
ORA-04088: error during execution of trigger 'STUDENT.SECTION_COMPOUND'

L A B 1 4 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

14.2.1 Understand Compound Triggers

In this exercise, you modify the trigger you created in Lab 14.1 that causes a mutating table error when
an INSERT statement is issued against the ENROLLMENT table.

Before starting this exercise, we suggest that you drop the triggers and package you created in Lab 14.1
and delete the records you added and/or updated in the ENROLLMENT table as follows:

DROP TRIGGER enrollment_biu;
DROP TRIGGER enrollment_aiu;
DROP PACKAGE student_adm;

DELETE FROM enrollment
WHERE student_id = 399;

COMMIT;

Recall the ENROLLMENT_BIU trigger you created in Lab 14.1:

-- ch14_1a.sql, version 1.0
CREATE OR REPLACE TRIGGER enrollment_biu
BEFORE INSERT OR UPDATE ON enrollment
FOR EACH ROW
DECLARE

v_total NUMBER;
v_name VARCHAR2(30);

BEGIN
SELECT COUNT(*)
INTO v_total
FROM enrollment
WHERE student_id = :NEW.student_id;

L A B 14.2
306

Lab 14.2 Exercises

-- check if the current student is enrolled in too
-- many courses
IF v_total >= 3 THEN

SELECT first_name||' '||last_name
INTO v_name
FROM student
WHERE student_id = :NEW.STUDENT_ID;

RAISE_APPLICATION_ERROR (-20000, 'Student, '||v_name||
', is registered for 3 courses already');

END IF;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR

(-20001, 'This is not a valid student');
END;

Recall the following INSERT and UPDATE statements and the errors they produced:

INSERT INTO ENROLLMENT
(student_id, section_id, enroll_date, created_by, created_date,
modified_by, modified_date)

VALUES (184, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

INSERT INTO ENROLLMENT
*

ERROR at line 1:
ORA-20000: Student, Salewa Zuckerberg, is registered for 3 courses
already
ORA-06512: at "STUDENT.ENROLLMENT_BIU", line 17
ORA-04088: error during execution of trigger

'STUDENT.ENROLLMENT_BIU'

INSERT INTO ENROLLMENT
(student_id, section_id, enroll_date, created_by, created_date,
modified_by, modified_date)

VALUES (399, 98, SYSDATE, USER, SYSDATE, USER, SYSDATE);

1 row created.

UPDATE ENROLLMENT
SET student_id = 399

WHERE student_id = 283;

UPDATE enrollment
*
ERROR at line 1:
ORA-04091: table STUDENT.ENROLLMENT is mutating, trigger/function

may not see it
ORA-06512: at "STUDENT.ENROLLMENT_BIU", line 5
ORA-04088: error during execution of trigger

'STUDENT.ENROLLMENT_BIU'

L A B 14.2Lab 14.2 Exercises

307

Complete the following tasks:

A) Create a new compound trigger so that it does not cause a mutating table error when an UPDATE
statement is issued against the ENROLLMENT table.

ANSWER: The newly created compound trigger should look similar to the following:

-- ch14_2a.sql, version 1.0
CREATE OR REPLACE TRIGGER enrollment_compound
FOR INSERT OR UPDATE ON enrollment
COMPOUND TRIGGER

v_student_id STUDENT.STUDENT_ID%TYPE;
v_student_name VARCHAR2(50);
v_total INTEGER;

BEFORE EACH ROW IS
BEGIN

IF :NEW. student_id IS NOT NULL THEN
BEGIN

v_student_id := :NEW.student_id;

SELECT first_name||' '||last_name
INTO v_student_name
FROM student

WHERE student_id = v_student_id;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR

(-20001, 'This is not a valid student');
END;

END IF;
END BEFORE EACH ROW;

AFTER STATEMENT IS
BEGIN

SELECT COUNT(*)
INTO v_total
FROM enrollment
WHERE student_id = v_student_id;

-- check if the current student is enrolled in too
-- many courses
IF v_total >= 3 THEN

RAISE_APPLICATION_ERROR (-20000, 'Student, '||v_student_name||
', is registered for 3 courses already ');

END IF;
END AFTER STATEMENT;

END enrollment_compound;

In this trigger, you declare variables to record student ID and name that were previously declared
in the package STUDENT_ADM. You also declare variable v_total, which was previously
declared in the ENROLLMENT_AIU trigger. Next, you create BEFORE EACH ROW and AFTER STATE-

L A B 14.2
308

Lab 14.2 Exercises

MENT sections in the body of the trigger. Note that the statements in those sections are copies of
the executable sections of the ENROLLMENT_BIU and ENROLLMENT_AIU triggers, respectively.

B) Run the UPDATE statement listed in the exercise text again. Explain the output produced.

ANSWER: The output should look like this:

SQL> UPDATE ENROLLMENT
2 SET student_id = 399
3 WHERE student_id = 283;

UPDATE ENROLLMENT
*
ERROR at line 1:
ORA-02292: integrity constraint (STUDENT.GR_ENR_FK) violated -

child record found

Note that the error generated by the UPDATE statement is not a mutating table error. This error
refers to the integrity constraint violation, because there is a child record in the GRADE table with
a student ID of 283.

C) Modify the compound trigger so that the trigger populates the values for the CREATED_BY,
CREATED_DATE, MODIFIED_BY, and MODIFIED_DATE columns.

ANSWER: The newly created trigger should look similar to the following. Changes are shown
in bold.

-- ch14_2b.sql, version 2.0
CREATE OR REPLACE TRIGGER enrollment_compound
FOR INSERT OR UPDATE ON enrollment
COMPOUND TRIGGER

v_student_id STUDENT.STUDENT_ID%TYPE;
v_student_name VARCHAR2(50);
v_total INTEGER;
v_date DATE;
v_user STUDENT.CREATED_BY%TYPE;

BEFORE STATEMENT IS
BEGIN

v_date := SYSDATE;
v_user := USER;

END BEFORE STATEMENT;

BEFORE EACH ROW IS
BEGIN

IF INSERTING THEN
:NEW.created_date := v_date;
:NEW.created_by := v_user;

ELSIF UPDATING THEN
:NEW.created_date := :OLD.created_date;
:NEW.created_by := :OLD.created_by;

END IF;
:NEW.MODIFIED_DATE := v_date;
:NEW.MODIFIED_BY := v_user;

L A B 14.2Lab 14.2 Exercises

309

IF :NEW.STUDENT_ID IS NOT NULL THEN
BEGIN

v_student_id := :NEW.STUDENT_ID;

SELECT first_name||' '||last_name
INTO v_student_name
FROM student
WHERE student_id = v_student_id;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR
(-20001, 'This is not a valid student');

END;
END IF;

END BEFORE EACH ROW;

AFTER STATEMENT IS
BEGIN

SELECT COUNT(*)
INTO v_total
FROM enrollment
WHERE student_id = v_student_id;

-- check if the current student is enrolled in too
-- many courses
IF v_total >= 3 THEN

RAISE_APPLICATION_ERROR (-20000, 'Student, '||v_student_name||
', is registered for 3 courses already ');

END IF;
END AFTER STATEMENT;

END enrollment_compound;

In this version of the trigger, you define two new variables,v_date and v_user, in the trigger’s
declaration section. You add a BEFORE STATEMENT section to initialize these variables. You also
modify the BEFORE EACH ROW section, where you initialize the CREATED_BY, CREATED_DATE,
MODIFIED_BY, and MODIFIED_DATE columns. Note that the ELSIF statement

IF INSERTING THEN
:NEW.CREATED_DATE := v_date;
:NEW.CREATED_BY := v_user;

ELSIF UPDATING THEN
:NEW.created_date := :OLD.created_date;
:NEW.created_by := :OLD.created_by;

END IF;

checks whether the current operation is INSERT or UPDATE to determine how to populate the
CREATED_DATE and CREATED_BY columns. For the INSERT operation, these columns are
assigned values based on the v_date and v_user variables. For the UPDATE operation, the
CREATED_BY and CREATED_DATE columns do not change their values. As a result, the values are
copied from the OLD pseudorecord. Because the MODIFIED_BY and MODIFIED_DATE columns are
always populated with the new values, there is no need to evaluate whether the current record is
being inserted or updated.

This version of the trigger may be tested as follows:

L A B 14.2
310

Lab 14.2 Exercises

INSERT INTO enrollment
(student_id, section_id, enroll_date, final_grade)

VALUES (102, 155, sysdate, null);

INSERT INTO enrollment
*

ERROR at line 1:
ORA-20000: Student, Fred Crocitto, is registered for 3 courses

already
ORA-06512: at "STUDENT.ENROLLMENT_COMPOUND", line 48
ORA-04088: error during execution of trigger

'STUDENT.ENROLLMENT_COMPOUND'

INSERT INTO enrollment
(student_id, section_id, enroll_date, final_grade)

VALUES (103, 155, sysdate, null);

1 row created.

UPDATE ENROLLMENT
SET final_grade = 85

WHERE student_id = 105
AND section_id = 155;

1 row updated.

ROLLBACK;

Rollback complete.

It is important to note that when the CREATED_DATE and CREATED_BY columns are not initialized
to any values in the body of the trigger for the UPDATE operation, the trigger causes a NOT NULL
constraint violation. In other words, the CREATED_DATE and CREATED_BY columns should be
reinitialized to their original values explicitly in the BEFORE EACH ROW section of the trigger.
Consider a modified version of the BEFORE EACH ROW section that causes a NOT NULL constraint
violation error for the UPDATE operation:

BEFORE EACH ROW IS
BEGIN

IF INSERTING THEN
:NEW.created_date := v_date;
:NEW.created_by := v_user;

END IF;
:NEW.modified_date := v_date;
:NEW.modified_by := v_user;

IF :NEW.STUDENT_ID IS NOT NULL THEN
BEGIN

v_student_id := :NEW.student_id;

SELECT first_name||' '||last_name

L A B 14.2Lab 14.2 Exercises

311

INTO v_student_name
FROM student
WHERE student_id = v_student_id;

EXCEPTION
WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR
(-20001, 'This is not a valid student');

END;
END IF;

END BEFORE EACH ROW;

Note that in this version, the ELSIF statement has been replaced by the IF statement that initializes
the CREATED_DATE and CREATED_BY columns for the INSERT operation only. In this case, the
trigger causes the following error when an UPDATE is issued against the ENROLLMENT table:

UPDATE enrollment
*
ERROR at line 1:
ORA-01407: cannot update ("STUDENT"."ENROLLMENT"."CREATED_DATE")

to NULL

L A B 14.2
312

Lab 14.2 Exercises

▼ T R Y I T Y O U R S E L F

In this chapter you’ve learned about mutating table issues and compound triggers. Here are some proj-
ects that will help you test the depth of your understanding:

1) Create a compound trigger on the INSTRUCTOR table that fires on the INSERT and UPDATE state-
ments. The trigger should not allow an insert on the INSTRUCTOR table during off hours. Off hours
are weekends and times of day outside the 9 a.m. to 5 p.m. window. The trigger should also popu-
late the INSTRUCTOR_ID, CREATED_BY, CREATED_DATE, MODIFIED_BY, and MODIFIED_DATE
columns with their default values.

2) Create a compound trigger on the ZIPCODE table that fires on the INSERT and UPDATE state-
ments. The trigger should populate the MODIFIED_BY and MODIFIED_DATE columns with their
default values. In addition, it should record in the STATISTICS table the type of the transaction, the
name of the user who issued the transaction, the date of the transaction, and how many records
are affected by the transaction. Assume that the STATISTICS table has the following structure:

Name Null? Type
------------------------------- -------- ----
TABLE_NAME VARCHAR2(30)
TRANSACTION_NAME VARCHAR2(10)
TRANSACTION_USER VARCHAR2(30)
TRANSACTION_DATE DATE

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

Try it Yourself 313

This page intentionally left blank

C H A P T E R 1 5

Collections

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. PL/SQL tables

. Varrays

. Multilevel collections

Throughout this book you have explored different types of PL/SQL identifiers
or variables that represent individual elements, such as a variable that represents
a student’s grade. However, often in your programs you want to represent a group
of elements such as the grades for a class of students. To support this technique,
PL/SQL provides collection datatypes that work just like arrays available in other
third-generation programming languages.

A collection is a group of elements of the same datatype. Each element is identi-
fied by a unique subscript that represents its position in the collection. In this
chapter you will learn about two collection datatypes: tables and varrays. In addi-
tion, you will learn about multilevel collections that were introduced in Oracle
9i and that are not supported by the previous releases.

L A B 1 5 . 1

PL/SQL Tables

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use associative arrays

. Use nested tables

A PL/SQL table is similar to a one-column database table. The rows of a PL/SQL table are not
stored in any predefined order, yet when they are retrieved in a variable, each row is assigned a
consecutive subscript starting at 1, as shown in Figure 15.1.

L A B 15.1
316

10 number (1)

1 number (2)

39 number (3)

57 number (4)

3 number (5)

FIGURE 15.1
PL/SQL table

Figure 15.1 shows a PL/SQL table consisting of integers. Each number is assigned a unique
subscript that corresponds to its position in the table. For example, number 3 has subscript 5
assigned to it because it is stored in the fifth row of the PL/SQL table.

The two types of PL/SQL tables are associative tables (formerly called index-by tables) and
nested tables. They have the same structure, and their rows are accessed in the same way using
subscript notation, as shown in Figure 15.1. The main difference between these two types is that
nested tables can be stored in a database column, and associative arrays cannot.

ASSOCIATIVE ARRAYS

The general syntax for creating an associative array is as follows (the reserved words and phrases
in brackets are optional):

TYPE type_name IS TABLE OF element_type [NOT NULL]
INDEX BY element_type;

table_name TYPE_NAME;

Notice that declaring an associative array has two steps. First, a table structure is defined using
the TYPE statement, where type_name is the name of the type that is used in the second step
to declare an actual table. An element_type is any PL/SQL datatype, such as NUMBER,
VARCHAR2, or DATE, with some restrictions. The majority of restricted datatypes are beyond
the scope of this book and are not mentioned in this chapter. You can find the complete list in
the online Oracle help. Second, the actual table is declared based on the type specified in the
first step. Consider the following code fragment:

FOR EXAMPLE

DECLARE
TYPE last_name_type IS TABLE OF student.last_name%TYPE

INDEX BY BINARY_INTEGER;
last_name_tab last_name_type;

In this example, type last_name_type is declared based on the column LAST_NAME of the
STUDENT table. Next, the actual associative array last_name_tab is declared as
last_name_type.

As mentioned, the individual elements of a PL/SQL table are referenced using subscript nota-
tion as follows:

table_name(subscript)

This technique is demonstrated in the following example:

FOR EXAMPLE

DECLARE
CURSOR name_cur IS

SELECT last_name
FROM student

L A B 15.1PL/SQL Tables

317

FOR EXAMPLE (continued)

WHERE rownum <= 10;

TYPE last_name_type IS TABLE OF student.last_name%TYPE
INDEX BY BINARY_INTEGER;

last_name_tab last_name_type;

v_counter INTEGER := 0;
BEGIN

FOR name_rec IN name_cur LOOP
v_counter := v_counter + 1;
last_name_tab(v_counter) := name_rec.last_name;
DBMS_OUTPUT.PUT_LINE ('last_name('||v_counter||'): '||

last_name_tab(v_counter));
END LOOP;

END;

In this example, the associative array last_name_tab is populated with last names from the
STUDENT table. Notice that the variable v_counter is used as a subscript to reference indi-
vidual table elements. This example produces the following output:

last_name(1): Crocitto
last_name(2): Landry
last_name(3): Enison
last_name(4): Moskowitz
last_name(5): Olvsade
last_name(6): Mierzwa
last_name(7): Sethi
last_name(8): Walter
last_name(9): Martin
last_name(10): Noviello

PL/SQL procedure successfully completed.

WATCH OUT!

It is important to note that referencing a nonexistent row raises the NO_DATA_FOUND exception as
follows:

DECLARE
CURSOR name_cur IS

SELECT last_name
FROM student
WHERE rownum <= 10;

TYPE last_name_type IS TABLE OF student.last_name%TYPE
INDEX BY BINARY_INTEGER;

last_name_tab last_name_type;

L A B 15.1
318

PL/SQL Tables

v_counter INTEGER := 0;
BEGIN

FOR name_rec IN name_cur LOOP
v_counter := v_counter + 1;
last_name_tab(v_counter) := name_rec.last_name;
DBMS_OUTPUT.PUT_LINE ('last_name('||v_counter||

'): '||last_name_tab(v_counter));
END LOOP;
DBMS_OUTPUT.PUT_LINE ('last_name(11): '||

last_name_tab(11));
END;

This example produces the following output:

last_name(1): Crocitto
last_name(2): Landry
last_name(3): Enison
last_name(4): Moskowitz
last_name(5): Olvsade
last_name(6): Mierzwa
last_name(7): Sethi
last_name(8): Walter
last_name(9): Martin
last_name(10): Noviello
DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 19

Notice that the DBMS_OUTPUT.PUT_LINE statement shown in bold raises the NO_DATA_FOUND
exception because it references the eleventh row of the table, even though the table contains only
ten rows.

NESTED TABLES

The general syntax for creating a nested table is as follows (the reserved words and phrases in
brackets are optional):

TYPE type_name IS TABLE OF element_type [NOT NULL];
table_name TYPE_NAME;

Notice that this declaration is very similar to the declaration of an associative array, except that
it has no INDEX BY BINARY_INTEGER clause. As in the case of an associative array, restrictions
apply to an element_type of a nested table. These restrictions are listed in the Oracle online
help.

It is important to note that a nested table must be initialized before its individual elements can
be referenced. Consider a modified version of the example used earlier. Notice that the
last_name_type is defined as a nested table (there is no INDEX BY clause):

L A B 15.1PL/SQL Tables

319

FOR EXAMPLE

DECLARE
CURSOR name_cur IS

SELECT last_name
FROM student
WHERE rownum <= 10;

TYPE last_name_type IS TABLE OF student.last_name%TYPE;
last_name_tab last_name_type;

v_counter INTEGER := 0;
BEGIN

FOR name_rec IN name_cur LOOP
v_counter := v_counter + 1;
last_name_tab(v_counter) := name_rec.last_name;
DBMS_OUTPUT.PUT_LINE ('last_name('||v_counter||'): '||

last_name_tab(v_counter));
END LOOP;

END;

This example causes the following error:

DECLARE
*
ERROR at line 1:
ORA-06531: Reference to uninitialized collection
ORA-06512: at line 14

This example causes an error because a nested table is automatically NULL when it is declared.
In other words, no individual elements exist yet because the nested table itself is NULL. For you
to reference the individual elements of the nested table, it must be initialized with the help of a
system-defined function called a constructor. The constructor has the same name as the nested
table type.

For example, the statement

last_name_tab := last_name_type('Rosenzweig', 'Silvestrova');

initializes the last_name_tab table to two elements. Note that most of the time, it is not
known in advance what values should constitute a particular nested table. So, the following
statement produces an empty but non-null nested table:

last_name_tab := last_name_type();

Notice that no arguments are passed to a constructor. Now, consider a modified version of the
example shown previously:

L A B 15.1
320

PL/SQL Tables

FOR EXAMPLE

DECLARE
CURSOR name_cur IS

SELECT last_name
FROM student

WHERE rownum <= 10;

TYPE last_name_type IS TABLE OF student.last_name%TYPE;
last_name_tab last_name_type := last_name_type();

v_counter INTEGER := 0;
BEGIN

FOR name_rec IN name_cur LOOP
v_counter := v_counter + 1;
last_name_tab.EXTEND;
last_name_tab(v_counter) := name_rec.last_name;

DBMS_OUTPUT.PUT_LINE ('last_name('||v_counter||'): '||
last_name_tab(v_counter));

END LOOP;
END;

In this version, the nested table is initialized at the time of declaration. This means that it is
empty, but non-null. In the cursor loop is a statement with one of the collection methods,
EXTEND. This method allows you to increase the size of the collection. Note that the EXTEND
method cannot be used with associative arrays. You will read detailed explanations of various
collection methods later in this chapter.

Next, the nested table is assigned values just like the associative array in the original version of
the example. When run, the script produces the following output:

last_name(1): Crocitto
last_name(2): Landry
last_name(3): Enison
last_name(4): Moskowitz
last_name(5): Olvsade
last_name(6): Mierzwa
last_name(7): Sethi
last_name(8): Walter
last_name(9): Martin
last_name(10): Noviello

PL/SQL procedure successfully completed.

L A B 15.1PL/SQL Tables

321

DID YOU KNOW?

What is the difference between a NULL collection and an empty collection? If a collection has not
been initialized, referencing its individual elements causes the following error:

DECLARE
TYPE integer_type IS TABLE OF INTEGER;
integer_tab integer_type;

v_counter integer := 1;
BEGIN

DBMS_OUTPUT.PUT_LINE (integer_tab(v_counter));
END;

DECLARE
*
ERROR at line 1:
ORA-06531: Reference to uninitialized collection
ORA-06512: at line 7

If a collection has been initialized so that it is empty, referencing its individual elements causes a
different error:

DECLARE
TYPE integer_type IS TABLE OF INTEGER;
integer_tab integer_type := integer_type();

v_counter integer := 1;
BEGIN

DBMS_OUTPUT.PUT_LINE (integer_tab(v_counter));
END;

DECLARE
*
ERROR at line 1:
ORA-06533: Subscript beyond count

ORA-06512: at line 7

COLLECTION METHODS

In the previous examples, you have seen one of the collection methods, EXTEND. A collection
method is a built-in function that is called using dot notation as follows:

collection_name.method_name

The following list explains collection methods that allow you to manipulate or gain information
about a particular collection:

. EXISTS returns TRUE if a specified element exists in a collection. This method can be
used to avoid SUBSCRIPT_OUTSIDE_LIMIT exceptions.

. COUNT returns the total number of elements in a collection.

L A B 15.1
322

PL/SQL Tables

. EXTEND increases the size of a collection.

. DELETE deletes either all elements, elements in the specified range, or a particular
element from a collection. Note that PL/SQL keeps placeholders of the deleted elements.

. FIRST and LAST return subscripts of the first and last elements of a collection. Note that
if the first elements of a nested table are deleted, the FIRST method returns a value greater
than 1. If elements have been deleted from the middle of a nested table, the LAST method
returns a value greater than the COUNT method.

. PRIOR and NEXT return subscripts that precede and succeed a specified collection
subscript.

. TRIM removes either one or a specified number of elements from the end of a collection.
Note that PL/SQL does not keep placeholders for the trimmed elements.

BY THE WAY

EXTEND and TRIM methods cannot be used with index-by tables.

Consider the following example, which illustrates the use of various collection methods:

FOR EXAMPLE

DECLARE
TYPE index_by_type IS TABLE OF NUMBER

INDEX BY BINARY_INTEGER;
index_by_table index_by_type;

TYPE nested_type IS TABLE OF NUMBER;
nested_table nested_type :=

nested_type(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

BEGIN
-- Populate index by table
FOR i IN 1..10 LOOP

index_by_table(i) := i;
END LOOP;

IF index_by_table.EXISTS(3) THEN
DBMS_OUTPUT.PUT_LINE ('index_by_table(3) =

'||index_by_table(3));
END IF;

-- delete 10th element from a collection
nested_table.DELETE(10);
-- delete elements 1 through 3 from a collection
nested_table.DELETE(1,3);
index_by_table.DELETE(10);

L A B 15.1PL/SQL Tables

323

FOR EXAMPLE (continued)

DBMS_OUTPUT.PUT_LINE ('nested_table.COUNT =
'||nested_table.COUNT);

DBMS_OUTPUT.PUT_LINE ('index_by_table.COUNT = '||
index_by_table.COUNT);

DBMS_OUTPUT.PUT_LINE ('nested_table.FIRST =
'||nested_table.FIRST);

DBMS_OUTPUT.PUT_LINE ('nested_table.LAST = '||nested_table.LAST);
DBMS_OUTPUT.PUT_LINE ('index_by_table.FIRST = '||

index_by_table.FIRST);
DBMS_OUTPUT.PUT_LINE ('index_by_table.LAST =

'||index_by_table.LAST);

DBMS_OUTPUT.PUT_LINE ('nested_table.PRIOR(2) = '||
nested_table. PRIOR(2));

DBMS_OUTPUT.PUT_LINE ('nested_table.NEXT(2) = '||
nested_table.NEXT(2));

DBMS_OUTPUT.PUT_LINE ('index_by_table.PRIOR(2) = '||
index_by_table.PRIOR(2));

DBMS_OUTPUT.PUT_LINE ('index_by_table.NEXT(2) = '||
index_by_table.NEXT(2));

-- Trim last two elements
nested_table.TRIM(2);
-- Trim last element
nested_table.TRIM;

DBMS_OUTPUT.PUT_LINE('nested_table.LAST = '||nested_table.LAST);
END;

Consider the output returned by this example:

index_by_table(3) = 3
nested_table.COUNT = 6
index_by_table.COUNT = 9
nested_table.FIRST = 4
nested_table.LAST = 9
index_by_table.FIRST = 1
index_by_table.LAST = 9
nested_table.PRIOR(2) =
nested_table.NEXT(2) = 4
index_by_table.PRIOR(2) = 1
index_by_table.NEXT(2) = 3
nested_table.LAST = 7

PL/SQL procedure successfully completed.

L A B 15.1
324

PL/SQL Tables

The first line of the output

index_by_table(3) = 3

is produced because the EXISTS method returns TRUE. As a result, the IF statement

IF index_by_table.EXISTS(3) THEN
DBMS_OUTPUT.PUT_LINE ('index_by_table(3) = '||index_by_table(3));

END IF;

evaluates to TRUE as well.

The second and third lines of the output

nested_table.COUNT = 6
index_by_table.COUNT = 9

show the results of method COUNT after some elements were deleted from the associative array
and nested table.

Next, lines four through seven of the output

nested_table.FIRST = 4
nested_table.LAST = 9
index_by_table.FIRST = 1
index_by_table.LAST = 9

show the results of the FIRST and LAST methods. Notice that the FIRST method applied to the
nested table returns 4 because the first three elements were deleted earlier.

Next, lines eight through eleven of the output

nested_table.PRIOR(2) =
nested_table.NEXT(2) = 4
index_by_table.PRIOR(2) = 1
index_by_table.NEXT(2) = 3

show the results of the PRIOR and NEXT methods. Notice that the PRIOR method applied to
the nested table returns NULL because the first element was deleted earlier.

Finally, the last line of the output

nested_table.LAST = 7

shows the value of the last subscript after the last three elements were removed. As mentioned
earlier, as soon as the DELETE method is issued, PL/SQL keeps placeholders of the deleted
elements. Therefore, the first call of the TRIM method removes the ninth and tenth elements of
the nested table, and the second call of the TRIM method removes the eighth element of the
nested table. As a result, the LAST method returns value 7 as the last subscript of the nested
table.

L A B 15.1PL/SQL Tables

325

▼ L A B 1 5 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

15.1.1 Use Associative Arrays

In this exercise, you learn more about associative arrays.

Create the following PL/SQL script:

-- ch15_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

CURSOR course_cur IS
SELECT description
FROM course;

TYPE course_type IS TABLE OF course.description%TYPE
INDEX BY BINARY_INTEGER;

course_tab course_type;

v_counter INTEGER := 0;
BEGIN

FOR course_rec IN course_cur LOOP
v_counter := v_counter + 1;
course_tab(v_counter) := course_rec.description;

END LOOP;
END;

Answer the following questions, and complete the following tasks:

A) Explain the preceding script.

ANSWER: The declaration section of the script defines the associative array type,
course_type. This type is based on the column DESCRIPTION of the table COURSE. Next, the
actual associative array is declared as course_tab.

The executable section of the script populates the course_tab table in the cursor FOR loop.
Each element of the associative array is referenced by its subscript,v_counter. For each itera-
tion of the loop, the value of v_counter is incremented by 1 so that each new description
value is stored in the new row of the associative array.

B) Modify the script so that rows of the associative array are displayed on the screen.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch15_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

CURSOR course_cur IS
SELECT description
FROM course;

L A B 15.1
326

Lab 15.1 Exercises

TYPE course_type IS TABLE OF course.description%TYPE
INDEX BY BINARY_INTEGER;

course_tab course_type;

v_counter INTEGER := 0;
BEGIN

FOR course_rec IN course_cur LOOP
v_counter := v_counter + 1;
course_tab(v_counter):= course_rec.description;
DBMS_OUTPUT.PUT_LINE('course('||v_counter||'): '||

course_tab(v_counter));
END LOOP;

END;

Consider another version of the same script:

-- ch15_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

CURSOR course_cur IS
SELECT description
FROM course;

TYPE course_type IS TABLE OF course.description%TYPE
INDEX BY BINARY_INTEGER;

course_tab course_type;

v_counter INTEGER := 0;
BEGIN

FOR course_rec IN course_cur LOOP
v_counter := v_counter + 1;
course_tab(v_counter):= course_rec.description;

END LOOP;

FOR i IN 1..v_counter LOOP
DBMS_OUTPUT.PUT_LINE('course('||i||'): '||course_tab(i));

END LOOP;
END;

When run, both versions produce the same output:

course(1): DP Overview
course(2): Intro to Computers
course(3): Intro to Programming
course(4): Structured Programming Techniques
course(5): Hands-On Windows
course(6): Intro to Java Programming
course(7): Intermediate Java Programming
course(8): Advanced Java Programming
course(9): JDeveloper
course(10): Intro to Unix
course(11): Basics of Unix Admin
course(12): Advanced Unix Admin

L A B 15.1Lab 15.1 Exercises

327

course(13): Unix Tips and Techniques
course(14): Structured Analysis
course(15): Project Management
course(16): Database Design
course(17): Internet Protocols
course(18): Java for C/C++ Programmers
course(19): GUI Programming
course(20): Intro to SQL
course(21): Oracle Tools
course(22): PL/SQL Programming
course(23): Intro to Internet
course(24): Intro to the Basic Language
course(25): Operating Systems
course(26): Network Administration
course(27): JDeveloper Lab
course(28): Database System Principles
course(29): JDeveloper Techniques
course(30): DB Programming in Java

PL/SQL procedure successfully completed.

C) Modify the script so that only first and last rows of the associative array are displayed on
the screen.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch15_1d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE

CURSOR course_cur IS
SELECT description
FROM course;

TYPE course_type IS TABLE OF course.description%TYPE
INDEX BY BINARY_INTEGER;

course_tab course_type;

v_counter INTEGER := 0;
BEGIN

FOR course_rec IN course_cur LOOP
v_counter := v_counter + 1;
course_tab(v_counter) := course_rec.description;

END LOOP;
DBMS_OUTPUT.PUT_LINE('course('||course_tab.FIRST||'): '||

course_tab(course_tab.FIRST));
DBMS_OUTPUT.PUT_LINE('course('||course_tab.LAST||'): '||

course_tab(course_tab.LAST));
END;

Consider the statements

course_tab(course_tab.FIRST)

L A B 15.1
328

Lab 15.1 Exercises

and

course_tab(course_tab.LAST)

used in this example. Although these statements look somewhat different from the statements
you have seen so far, they produce the same effect as the

course_tab(1)

and

course_tab(30)

statements. As mentioned earlier, the FIRST and LAST methods return the subscripts of the first
and last elements of a collection, respectively. In this example, the associative array contains 30
elements, where the first element has a subscript of 1, and the last element has a subscript of 30.

This version of the script produces the following output:

course(1): DP Overview
course(30): DB Programming in Java

PL/SQL procedure successfully completed.

D) Modify the script by adding the following statements, and explain the output produced:

I) Display the total number of elements in the associative array after it has been populated on
the screen.

II) Delete the last element, and display the total number of elements of the associative array
again.

III) Delete the fifth element, and display the total number of elements and the subscript of the
last element of the associative array again.

ANSWER: The script should look similar to the following. All changes are shown in bold.

-- ch15_1e.sql, version 5.0
SET SERVEROUTPUT ON
DECLARE

CURSOR course_cur IS
SELECT description
FROM course;

TYPE course_type IS TABLE OF course.description%TYPE
INDEX BY BINARY_INTEGER;

course_tab course_type;

v_counter INTEGER := 0;
BEGIN

FOR course_rec IN course_cur LOOP
v_counter := v_counter + 1;
course_tab(v_counter) := course_rec.description;

END LOOP;

-- Display the total number of elements in the associative array
DBMS_OUTPUT.PUT_LINE ('1. Total number of elements: '||

course_tab.COUNT);

L A B 15.1Lab 15.1 Exercises

329

-- Delete the last element of the associative array
-- Display the total number of elements in the associative array
course_tab.DELETE(course_tab.LAST);
DBMS_OUTPUT.PUT_LINE ('2. Total number of elements: '||

course_tab.COUNT);

-- Delete the fifth element of the associative array
-- Display the total number of elements in the associative array
-- Display the subscript of the last element of the associative
-- array
course_tab.DELETE(5);
DBMS_OUTPUT.PUT_LINE ('3. Total number of elements: '||

course_tab.COUNT);
DBMS_OUTPUT.PUT_LINE ('3. The subscript of the last element: '||

course_tab.LAST);
END;

When run, this example produces the following output:

1. Total number of elements: 30
2. Total number of elements: 29
3. Total number of elements: 28
3. The subscript of the last element: 29

PL/SQL procedure successfully completed.

First, the total number of elements in the associative array is calculated using the COUNT method
and displayed on the screen. Second, the last element is deleted using the DELETE and LAST
methods, and the total number of elements in the associative array is displayed on the screen
again. Third, the fifth element is deleted, and the total number of elements in the associative array
and the subscript of the last element are displayed on the screen.

Consider the last two lines of output. After the fifth element of the associative array is deleted, the
COUNT method returns the value 28, and the LAST method returns the value 29. Usually, the
values returned by the COUNT and LAST methods are equal. However, when an element is deleted
from the middle of the associative array, the value returned by the LAST method is greater than
the value returned by the COUNT method, because the LAST method ignores deleted elements.

15.1.2 Use Nested Tables

In this exercise, you learn more about nested tables.

Complete the following tasks:

A) Modify script ch15_1a.sql, used in Exercise 15.1.1. Instead of using an associative array, use a
nested table.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch15_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

CURSOR course_cur IS
SELECT description
FROM course;

L A B 15.1
330

Lab 15.1 Exercises

TYPE course_type IS TABLE OF course.description%TYPE;
course_tab course_type := course_type();

v_counter INTEGER := 0;
BEGIN

FOR course_rec IN course_cur LOOP
v_counter := v_counter + 1;
course_tab.EXTEND;
course_tab(v_counter) := course_rec.description;

END LOOP;
END;

B) Modify the script by adding the following statements, and explain the output produced:

I) Delete the last element of the nested table, and then assign a new value to it. Execute the
script.

II) Trim the last element of the nested table, and then assign a new value to it. Execute the
script.

ANSWER:

I) The script should look similar to the following. Changes are shown in bold.

-- ch15_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

CURSOR course_cur IS
SELECT description
FROM course;

TYPE course_type IS TABLE OF course.description%TYPE;
course_tab course_type := course_type();

v_counter INTEGER := 0;
BEGIN

FOR course_rec IN course_cur LOOP
v_counter := v_counter + 1;
course_tab.EXTEND;
course_tab(v_counter) := course_rec.description;

END LOOP;

course_tab.DELETE(30);
course_tab(30) := 'New Course';

END;

II) The script should look similar to the following. Changes are shown in bold.

-- ch15_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

CURSOR course_cur IS
SELECT description
FROM course;

L A B 15.1Lab 15.1 Exercises

331

TYPE course_type IS TABLE OF course.description%TYPE;
course_tab course_type := course_type();

v_counter INTEGER := 0;
BEGIN

FOR course_rec IN course_cur LOOP
v_counter := v_counter + 1;
course_tab.EXTEND;
course_tab(v_counter) := course_rec.description;

END LOOP;

course_tab.TRIM;
course_tab(30) := 'New Course';

END;

When run, this version of the script produces the following error:

DECLARE
*
ERROR at line 1:
ORA-06533: Subscript beyond count
ORA-06512: at line 18

In the previous version of the script, the last element of the nested table was removed using the
DELETE method. As mentioned earlier, when the DELETE method is used, PL/SQL keeps a place-
holder of the deleted element. Therefore, the statement

course_tab(30) := 'New Course';

does not cause any errors.

In the current version of the script, the last element of the nested table is removed using the TRIM
method. In this case, PL/SQL does not keep a placeholder of the trimmed element, because the
TRIM method manipulates the internal size of a collection. As a result, the reference to the
trimmed elements causes a Subscript beyond count error.

C) How would you modify the script created so that no error is generated when a new value is
assigned to the trimmed element?

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch15_2d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE

CURSOR course_cur IS
SELECT description
FROM course;

TYPE course_type IS TABLE OF course.description%TYPE;
course_tab course_type := course_type();

v_counter INTEGER := 0;
BEGIN

FOR course_rec IN course_cur LOOP
v_counter := v_counter + 1;
course_tab.EXTEND;

L A B 15.1
332

Lab 15.1 Exercises

course_tab(v_counter) := course_rec.description;
END LOOP;

course_tab.TRIM;
course_tab.EXTEND;
course_tab(30) := 'New Course';

END;

To reference the trimmed element, the EXTEND method is used to increase the size on the collec-
tion. As a result, the assignment statement

course_tab(30) := 'New Course';

does not cause any errors.

L A B 15.1Lab 15.1 Exercises

333

L A B 1 5 . 2

Varrays

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use varrays

As mentioned earlier, a varray is another collection type. This term stands for “variable-size
array.” Similar to PL/SQL tables, each element of a varray is assigned a consecutive subscript
starting at 1, as shown in Figure 15.2.

L A B 15.2
334

maximum
size = 10

10 1 39 57 3

num
(1)

num
(2)

num
(3)

num
(4)

num
(5)

FIGURE 15.2
A varray

Figure 15.2 shows a varray consisting of five integers. Each number is assigned a unique
subscript that corresponds to its position in the varray.

It is important to note that a varray has a maximum size. In other words, a subscript of a varray
has a fixed lower bound equal to 1, and an upper bound that is extensible if such a need arises.
In Figure 15.2, the upper bound of a varray is 5, but it can be extended to 6, 7, 8, and so on
up to 10. Therefore, a varray can contain a number of elements, varying from 0 (an empty array)
to its maximum size. You will recall that PL/SQL tables do not have a maximum size that must
be specified explicitly.

The general syntax for creating a varray is as follows (the reserved words and phrases in square
brackets are optional):

TYPE type_name IS {VARRAY | VARYING ARRAY} (size_limit) OF
element_type [NOT NULL];

varray_name TYPE_NAME;

First, a varray structure is defined using the TYPE statement, where type_name is the name of
the type that is used in the second step to declare an actual varray. Notice that there are two vari-
ations of the type, VARRAY and VARYING ARRAY. A size_limit is a positive integer literal
that specifies the upper bound of a varray. As in the case of PL/SQL tables, restrictions apply to
an element_type of a varray. These restrictions are listed in the online Oracle help. Second,
the actual varray is declared based on the type specified in the first step.

Consider the following code fragment:

FOR EXAMPLE

DECLARE
TYPE last_name_type IS VARRAY(10) OF student.last_name%TYPE;
last_name_varray last_name_type;

In this example, type last_name_type is declared as a varray of ten elements based on the
column LAST_NAME of the STUDENT table. Next, the actual varray last_name_varray is
declared based on the last_name_type.

Similar to nested tables, a varray is automatically NULL when it is declared and must be initial-
ized before its individual elements can be referenced. Consider a modified version of the
example used in the preceding lab. Instead of using a nested table, this version uses a varray
(changes are highlighted in bold).

FOR EXAMPLE

DECLARE
CURSOR name_cur IS

SELECT last_name
FROM student
WHERE rownum <= 10;

TYPE last_name_type IS VARRAY(10) OF student.last_name%TYPE;
last_name_varray last_name_type := last_name_type();

v_counter INTEGER := 0;
BEGIN

FOR name_rec IN name_cur LOOP
v_counter := v_counter + 1;
last_name_varray.EXTEND;
last_name_varray(v_counter) := name_rec.last_name;
DBMS_OUTPUT.PUT_LINE ('last_name('||v_counter||'): '||

last_name_varray(v_counter));
END LOOP;

END;

L A B 15.2Varrays

335

This example produces the following output:

last_name(1): Crocitto
last_name(2): Landry
last_name(3): Enison
last_name(4): Moskowitz
last_name(5): Olvsade
last_name(6): Mierzwa
last_name(7): Sethi
last_name(8): Walter
last_name(9): Martin
last_name(10): Noviello

PL/SQL procedure successfully completed.

Based on this example, you may realize that the collection methods you saw in the preceding
lab can be used with varrays as well. Consider the following example, which illustrates the use
of various collection methods when applied to a varray:

FOR EXAMPLE

DECLARE
TYPE varray_type IS VARRAY(10) OF NUMBER;
varray varray_type := varray_type(1, 2, 3, 4, 5, 6);

BEGIN
DBMS_OUTPUT.PUT_LINE ('varray.COUNT = '||varray.COUNT);
DBMS_OUTPUT.PUT_LINE ('varray.LIMIT = '||varray.LIMIT);

DBMS_OUTPUT.PUT_LINE ('varray.FIRST = '||varray.FIRST);
DBMS_OUTPUT.PUT_LINE ('varray.LAST = '||varray.LAST);

varray.EXTEND(2, 4);
DBMS_OUTPUT.PUT_LINE ('varray.LAST = '||varray.LAST);
DBMS_OUTPUT.PUT_LINE ('varray('||varray.LAST||') = '||

varray(varray.LAST));

-- Trim last two elements
varray.TRIM(2);
DBMS_OUTPUT.PUT_LINE('varray.LAST = '||varray.LAST);

END;

Consider the output returned by this example:

varray.COUNT = 6
varray.LIMIT = 10
varray.FIRST = 1
varray.LAST = 6
varray.LAST = 8

L A B 15.2
336

Varrays

varray(8) = 4
varray.LAST = 6

PL/SQL procedure successfully completed.

The first two lines of output

varray.COUNT = 6
varray.LIMIT = 10

show the results of the COUNT and LIMIT methods, respectively. You will recall that the
COUNT method returns the number of elements that a collection contains. The collection has
been initialized to six elements, so the COUNT method returns a value of 6.

The next line of output corresponds to another collection method, LIMIT. This method returns
the maximum number of elements that a collection can contain. It usually is used with varrays
only because varrays have an upper bound specified at the time of declaration. The collection
VARRAY has an upper bound of 10, so the LIMIT method returns a value of 10. When used with
nested tables, the LIMIT method returns NULL, because nested tables do not have a maximum
size.

The third and fourth lines of the output

varray.FIRST = 1
varray.LAST = 6

show the results of the FIRST and LAST methods.

The fifth and six lines of the output

varray.LAST = 8
varray(8) = 4

show the results of the LAST method. The value of the eighth element of the collection after the
EXTEND method increased the size of the collection. Notice that the EXTEND method

varray.EXTEND(2, 4);

appends two copies on the fourth element to the collection. As a result, the seventh and eighth
elements both contain a value of 4.

The last line of output

varray.LAST = 6

shows the value of the last subscript after the last two elements were removed using the TRIM
method.

WATCH OUT!

You cannot use the DELETE method with a varray to remove its elements. Unlike PL/SQL tables,
varrays are dense, and using the DELETE method causes an error, as shown in the following example:

DECLARE
TYPE varray_type IS VARRAY(3) OF CHAR(1);

L A B 15.2Varrays

337

▼

varray varray_type := varray_type('A', 'B', 'C');

BEGIN
varray.DELETE(3);

END;

varray.DELETE(3);
*

ERROR at line 6:
ORA-06550: line 6, column 4:
PLS-00306: wrong number or types of arguments in call to

'DELETE'
ORA-06550: line 6, column 4:
PL/SQL: Statement ignored

L A B 1 5 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

15.2.1 Use Varrays

In this exercise, you learn more about varrays. You will debug the following script, which populates
city_varray with ten cities selected from the ZIPCODE table and displays its individual elements on
the screen.

Create the following PL/SQL script:

-- ch15_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

CURSOR city_cur IS
SELECT city
FROM zipcode
WHERE rownum <= 10;

TYPE city_type IS VARRAY(10) OF zipcode.city%TYPE;
city_varray city_type;

v_counter INTEGER := 0;
BEGIN

FOR city_rec IN city_cur LOOP
v_counter := v_counter + 1;
city_varray(v_counter) := city_rec.city;
DBMS_OUTPUT.PUT_LINE('city_varray('||v_counter||'): '||

city_varray(v_counter));
END LOOP;

END;

L A B 15.2
338

Lab 15.2 Exercises

Execute the script, and then answer the following questions and complete the following tasks:

A) What output is printed on the screen? Explain it.

ANSWER: The output should look similar to the following:

DECLARE
*
ERROR at line 1:
ORA-06531: Reference to uninitialized collection
ORA-06512: at line 14

You will recall that when a varray is declared, it is automatically NULL. In other words, the collec-
tion itself is NULL, not its individual elements. Therefore, before it can be used, it must be initial-
ized using the constructor function with the same name as the varray type. Furthermore, after the
collection is initialized, the EXTEND method must be used before its individual elements can be
referenced in the script.

B) Modify the script so that no errors are returned at runtime.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch15_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

CURSOR city_cur IS
SELECT city
FROM zipcode
WHERE rownum <= 10;

TYPE city_type IS VARRAY(10) OF zipcode.city%TYPE;
city_varray city_type := city_type();

v_counter INTEGER := 0;
BEGIN

FOR city_rec IN city_cur LOOP
v_counter := v_counter + 1;
city_varray.EXTEND;
city_varray(v_counter) := city_rec.city;
DBMS_OUTPUT.PUT_LINE('city_varray('||v_counter||'): '||

city_varray(v_counter));
END LOOP;

END;

When run, this script produces the following output:

city_varray(1): Santurce
city_varray(2): North Adams
city_varray(3): Dorchester
city_varray(4): Tufts Univ. Bedford
city_varray(5): Weymouth
city_varray(6): Sandwich
city_varray(7): Ansonia
city_varray(8): Middlefield

L A B 15.2Lab 15.2 Exercises

339

city_varray(9): Oxford
city_varray(10): New Haven

PL/SQL procedure successfully completed.

C) Modify the script as follows: Double the size of the varray, and populate the last ten elements with
the first ten elements. In other words, the value of the eleventh element should be equal to the
value of the first element, the value of the twelfth element should be equal to the value of the
second element, and so forth.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch15_3c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

CURSOR city_cur IS
SELECT city
FROM zipcode
WHERE rownum <= 10;

TYPE city_type IS VARRAY(20) OF zipcode.city%TYPE;
city_varray city_type := city_type();

v_counter INTEGER := 0;
BEGIN

FOR city_rec IN city_cur LOOP
v_counter := v_counter + 1;
city_varray.EXTEND;
city_varray(v_counter) := city_rec.city;

END LOOP;

FOR i IN 1..v_counter LOOP
-- extend the size of varray by 1 and copy the
-- current element to the last element
city_varray.EXTEND(1, i);

END LOOP;

FOR i IN 1..20 LOOP
DBMS_OUTPUT.PUT_LINE('city_varray('||i||'): '||

city_varray(i));
END LOOP;

END;

In the preceding script, you increase the maximum size of the varray to 20 at the time of the
city_type declaration. After the first ten elements of the varray are populated, the last ten
elements are populated using the numeric FOR loop and the EXTEND method:

FOR i IN 1..v_counter LOOP
-- extend the size of varray by 1 and copy the current
-- element to the last element
city_varray.EXTEND(1, i);

END LOOP;

L A B 15.2
340

Lab 15.2 Exercises

In this loop, the loop counter is implicitly incremented by 1. So for the first iteration of the loop,
the size of the varray is increased by 1, and the first element of the varray is copied to the eleventh
element. In the same manner, the second element of the varray is copied to the twelfth element,
and so forth.

To display all elements of the varray, the DBMS_OUTPUT.PUT_LINE statement has been moved to
its own numeric FOR loop that iterates 20 times.

When run, this script produces the following output:

city_varray(1): Santurce
city_varray(2): North Adams
city_varray(3): Dorchester
city_varray(4): Tufts Univ. Bedford
city_varray(5): Weymouth
city_varray(6): Sandwich
city_varray(7): Ansonia
city_varray(8): Middlefield
city_varray(9): Oxford
city_varray(10): New Haven
city_varray(11): Santurce
city_varray(12): North Adams
city_varray(13): Dorchester
city_varray(14): Tufts Univ. Bedford
city_varray(15): Weymouth
city_varray(16): Sandwich
city_varray(17): Ansonia
city_varray(18): Middlefield
city_varray(19): Oxford
city_varray(20): New Haven

PL/SQL procedure successfully completed.

L A B 15.2Lab 15.2 Exercises

341

L A B 1 5 . 3

Multilevel Collections

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use multilevel collections

So far you have seen various examples of collections with the element type based on a scalar
type, such as NUMBER and VARCHAR2. Starting with Oracle 9i, PL/SQL lets you create collec-
tions whose element type is based on a collection type. Such collections are called multilevel
collections.

Consider the varray of varrays, also called a nested varray, shown in Figure 15.3.

L A B 15.3
342

2 4 6 8

varray (4) of
integer

1 3 5 7

varray (4) of
integer

varray (4) of
integer

varray (3) of varray (4) of integer

FIGURE 15.3
A varray of varrays

A varray of varrays consists of three elements, where each element is a varray consisting of four
integers. To reference an individual element of a varray of varrays, you use the following syntax:

varray_name(subscript of the outer varray)(subscript of the inner
varray)

For example, the varray(1)(3) shown in Figure 15.3 equals 6; similarly, varray(2)(1) equals 1.

Consider an example based on Figure 15.3:

FOR EXAMPLE

DECLARE
TYPE varray_type1 IS VARRAY(4) OF INTEGER;
TYPE varray_type2 IS VARRAY(3) OF varray_type1;

varray1 varray_type1 := varray_type1(2, 4, 6, 8);
varray2 varray_type2 := varray_type2(varray1);

BEGIN
DBMS_OUTPUT.PUT_LINE ('Varray of integers');
FOR i IN 1..4 LOOP

DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||varray1(i));
END LOOP;

varray2.EXTEND;
varray2(2) := varray_type1(1, 3, 5, 7);

DBMS_OUTPUT.PUT_LINE (chr(10)||'Varray of varrays of integers');
FOR i IN 1..2 LOOP

FOR j IN 1..4 LOOP
DBMS_OUTPUT.PUT_LINE

('varray2('||i||')('||j||'): '||varray2(i)(j));
END LOOP;

END LOOP;
END;

The declaration portion of this example defines two varray types. The first, varray_type1, is
based on the INTEGER datatype and can contain up to four elements. The second,
varray_type2, is based on varray_type1 and can contain up to three elements where
each individual element may contain up to four elements. Next, you declare two varrays based
on the types just described. The first varray, varray1, is declared as varray_type1 and is
initialized so that its four elements are populated with the first four even numbers. The second
varray, varray2, is declared as varray_type2 so that each element is a varray consisting of
four integers and is initialized so that its first varray element is populated.

In the executable portion of the example, you display the values of varray1 on the screen.
Next, you extend the upper bound of varray2 by 1 and populate its second element as
follows:

varray2(2) := varray_type1(1, 3, 5, 7);

Notice that you are using a constructor corresponding to varray_type1 because each
element of varray2 is based on the varray1 collection. In other words, the same result could
be achieved using the following two statements:

varray1(2) := varray_type1(1, 3, 5, 7);
varray2(2) := varray_type2(varray1);

L A B 15.3Multilevel Collections

343

▼

After the second element of varray2 is populated, you display the results on the screen using
nested numeric FOR loops.

This example produces the following output:

Varray of integers
varray1(1): 2
varray1(2): 4
varray1(3): 6
varray1(4): 8

Varray of varrays of integers
varray2(1)(1): 2
varray2(1)(2): 4
varray2(1)(3): 6
varray2(1)(4): 8
varray2(2)(1): 1
varray2(2)(2): 3
varray2(2)(3): 5
varray2(2)(4): 7

PL/SQL procedure successfully completed.

L A B 1 5 . 3 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

15.3.1 Use Multilevel Collections

In this exercise, you learn more about multilevel collections.

Create the following PL/SQL script:

-- ch15_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

TYPE table_type1 IS TABLE OF INTEGER
INDEX BY BINARY_INTEGER;

TYPE table_type2 IS TABLE OF TABLE_TYPE1
INDEX BY BINARY_INTEGER;

table_tab1 table_type1;
table_tab2 table_type2;

BEGIN
FOR i IN 1..2 LOOP

FOR j IN 1..3 LOOP
IF i = 1 THEN

table_tab1(j) := j;
ELSE

L A B 15.3
344

Lab 15.3 Exercises

table_tab1(j) := 4 - j;
END IF;
table_tab2(i)(j) := table_tab1(j);
DBMS_OUTPUT.PUT_LINE ('table_tab2('||i||')('||j||'): '||

table_tab2(i)(j));
END LOOP;

END LOOP;
END;

Complete the following tasks:

A) Execute the preceding script, and explain the output produced.

ANSWER: The output should look similar to the following:

table_tab2(1)(1): 1
table_tab2(1)(2): 2
table_tab2(1)(3): 3
table_tab2(2)(1): 3
table_tab2(2)(2): 2
table_tab2(2)(3): 1

PL/SQL procedure successfully completed.

The preceding script uses multilevel associative arrays, or an associative array of associative arrays.
The declaration portion of the script defines the multilevel associative array table_tab2. Each
row of this table is an associative array consisting of multiple rows. The executable portion of the
script populates the multilevel table using nested numeric FOR loops. In the first iteration of the
outer loop, the inner loop populates the associative array table_tab1 with values 1, 2, and 3
and the first row of the multilevel table table_tab2. In the second iteration of the outer loop,
the inner loop populates the associative array table_tab1 with values 3, 2, and 1 and the
second row of the multilevel table table_tab2.

B) Modify the script so that instead of using multilevel associative arrays, it uses a nested table of
associative arrays.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch15_4b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

TYPE table_type1 IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;
TYPE table_type2 IS TABLE OF TABLE_TYPE1;

table_tab1 table_type1;
table_tab2 table_type2 := table_type2();

BEGIN
FOR i IN 1..2 LOOP

table_tab2.EXTEND;
FOR j IN 1..3 LOOP

IF i = 1 THEN
table_tab1(j) := j;

ELSE
table_tab1(j) := 4 - j;

L A B 15.3Lab 15.3 Exercises

345

END IF;
table_tab2(i)(j) := table_tab1(j);
DBMS_OUTPUT.PUT_LINE ('table_tab2('||i||')('||j||'): '||

table_tab2(i)(j));
END LOOP;

END LOOP;
END;

In this version of the script,table_type2 is declared as a nested table of associative arrays.
Next,table_tab2 is initialized prior to its use, and its size is extended before a new element
is assigned a value.

C) Modify the script so that instead of using multilevel associative arrays, it uses a nested table of
varrays.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch15_4c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

TYPE table_type1 IS VARRAY(3) OF INTEGER;
TYPE table_type2 IS TABLE OF TABLE_TYPE1;

table_tab1 table_type1 := table_type1();
table_tab2 table_type2 := table_type2(table_tab1);

BEGIN
FOR i IN 1..2 LOOP

table_tab2.EXTEND;
table_tab2(i) := table_type1();
FOR j IN 1..3 LOOP

IF i = 1 THEN
table_tab1.EXTEND;
table_tab1(j) := j;

ELSE
table_tab1(j) := 4 - j;

END IF;
table_tab2(i).EXTEND;
table_tab2(i)(j):= table_tab1(j);
DBMS_OUTPUT.PUT_LINE ('table_tab2('||i||')('||j||'): '||

table_tab2(i)(j));
END LOOP;

END LOOP;
END;

In the declaration section of this script,table_type1 is defined as a varray with a maximum of
three integer elements, and table_type2 is declared as a nested table of varrays. Next,
table_tab1 and table_tab2 are initialized prior to their use.

In the executable portion of the script, the size of table_tab2 is incremented using the
EXTEND method, and its individual elements are initialized as follows:

table_tab2(i) := table_type1();

L A B 15.3
346

Lab 15.3 Exercises

Notice that each element is initialized using the constructor associated with the varray type
table_type1. Furthermore, to populate a nested table, a new varray element must be added
to each nested table element as shown:

table_tab2(i).EXTEND;

In other words, for the first iteration of the outer loop, three varray elements are added to the first
element of the nested table. Without this statement, the script causes the following error:

DECLARE
*
ERROR at line 1:
ORA-06533: Subscript beyond count
ORA-06512: at line 20

When run, this script produces output identical to the original example:

table_tab2(1)(1): 1
table_tab2(1)(2): 2
table_tab2(1)(3): 3
table_tab2(2)(1): 3
table_tab2(2)(2): 2
table_tab2(2)(3): 1

PL/SQL procedure successfully completed.

L A B 15.3Lab 15.3 Exercises

347

▼ T R Y I T Y O U R S E L F

In this chapter, you’ve learned about collections and multilevel collections. Here are some projects that
will help you test the depth of your understanding.

1) Create the following script: Create an associative array, and populate it with the instructor’s full
name. In other words, each row of the associative array should contain the first name, middle
initial, and last name. Display this information on the screen.

2) Modify the script you just created. Instead of using an associative array, use a varray.

3) Modify the script you just created. Create an additional varray, and populate it with unique course
numbers for the courses that each instructor teaches. Display the instructor’s name and the list of
courses he or she teaches.

4) Find and explain the errors in the following script:

DECLARE
TYPE varray_type1 IS VARRAY(7) OF INTEGER;
TYPE table_type2 IS TABLE OF varray_type1 INDEX BY

BINARY_INTEGER;

varray1 varray_type1 := varray_type1(1, 2, 3);
table2 table_type2 := table_type2(varray1,

varray_type1(8, 9, 0));

BEGIN
DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

FOR i IN 1..10 LOOP
varray1.EXTEND;
varray1(i) := i;
DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||varray1(i));

END LOOP;
END;

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

348 Try it Yourself

C H A P T E R 1 6

Records

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Record types

. Nested records

. Collections of records

Chapter 11, “Introduction to Cursors,” introduced the concept of a record type.
You have learned that a record is a composite data structure that allows you to
combine various yet related data into a logical unit. You have also learned that
PL/SQL supports three kinds of record types: table-based, cursor-based, and
user-defined. In this chapter, you will revisit table-based and cursor-based record
types and learn about user-defined record types. In addition, you will learn about
records that contain collections and other records (called nested records) and
collections of records.

L A B 1 6 . 1

Record Types

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use table-based and cursor-based records

. Use user-defined records

A record structure is somewhat similar to a row of a database table. Each data item is stored in
a field with its own name and datatype. For example, suppose you have various data about a
company, such as its name, address, and number of employees. A record containing a field for
each of these items allows you to treat the company as a logical unit, making it easier to organ-
ize and represent the company’s information.

TABLE-BASED AND CURSOR-BASED RECORDS

The %ROWTYPE attribute enables you to create table-based and cursor-based records. It is
similar to the %TYPE attribute that is used to define scalar variables. Consider the following
example of a table-based record:

FOR EXAMPLE

DECLARE
course_rec course%ROWTYPE;

BEGIN
SELECT *
INTO course_rec
FROM course
WHERE course_no = 25;

DBMS_OUTPUT.PUT_LINE ('Course No: '||course_rec.course_no);
DBMS_OUTPUT.PUT_LINE ('Course Description: '||

course_rec.description);
DBMS_OUTPUT.PUT_LINE ('Prerequisite: '||

course_rec.prerequisite);
END;

The course_rec record has the same structure as a row from the COURSE table. As a result,
there is no need to reference individual record fields when the SELECT INTO statement popu-
lates the course_rec record. However, note that a record does not have a value of its own;

L A B 16.1
350

rather, each individual field holds a value. Therefore, to display record information on the
screen, individual fields are referenced using dot notation, as shown in the DBMS_OUTPUT.
PUT_LINE statements.

When run, this example produces the following output:

Course No: 25
Course Description: Intro to Programming
Prerequisite: 140

PL/SQL procedure successfully completed.

WATCH OUT!

As mentioned previously, a record does not have a value of its own. For this reason, you cannot test
records for nullity, equality, or inequality. In other words, the statements

IF course_rec IS NULL THEN ...
IF course_rec1 = course_rec2 THEN ...

are illegal and will cause syntax errors.

Next, consider an example of a cursor-based record:

FOR EXAMPLE

DECLARE
CURSOR student_cur IS

SELECT first_name, last_name, registration_date
FROM student
WHERE rownum <= 4;

student_rec student_cur%ROWTYPE;
BEGIN

OPEN student_cur;
LOOP

FETCH student_cur INTO student_rec;
EXIT WHEN student_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE ('Name: '||
student_rec.first_name||' '||student_rec.last_name);

DBMS_OUTPUT.PUT_LINE ('Registration Date: '||
student_rec.registration_date);

END LOOP;
END;

The student_rec record has the same structure as the rows returned by the STUDENT_CUR
cursor. As a result, similar to the previous example, there is no need to reference individual
fields when data is fetched from the cursor to the record.

L A B 16.1Record Types

351

When run, this example produces the following output:

Name: Austin V. Cadet
Registration Date: 17-FEB-03
Name: Frank M. Orent
Registration Date: 17-FEB-03
Name: Yvonne Winnicki
Registration Date: 17-FEB-03
Name: Mike Madej
Registration Date: 17-FEB-03

PL/SQL procedure successfully completed.

Note that because a cursor-based record is defined based on the rows returned by a cursor’s
select statement, its declaration must be preceded by a cursor declaration. In other words, a
cursor-based record is dependent on a particular cursor and cannot be declared before its cursor.

Consider a modified version of the preceding example (changes are shown in bold). The cursor-
based record variable is declared before the cursor. As a result, when run, this example causes
a syntax error.

FOR EXAMPLE

DECLARE
student_rec student_cur%ROWTYPE;

CURSOR student_cur IS
SELECT first_name, last_name, registration_date
FROM student
WHERE rownum <= 4;

BEGIN
OPEN student_cur;
LOOP

FETCH student_cur INTO student_rec;
EXIT WHEN student_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE ('Name: '||
student_rec.first_name||' '||student_rec.last_name);

DBMS_OUTPUT.PUT_LINE ('Registration Date: '||
student_rec.registration_date);

END LOOP;
END;

When run, the example produces the following output:

student_rec student_cur%ROWTYPE;
*

ERROR at line 2:
ORA-06550: line 2, column 16:

L A B 16.1
352

Record Types

PLS-00320: the declaration of the type of this expression is
incomplete or malformed

ORA-06550: line 2, column 16:
PL/SQL: Item ignored
ORA-06550: line 12, column 30:
PLS-00320: the declaration of the type of this expression is

incomplete or malformed
ORA-06550: line 12, column 7:
PL/SQL: SQL Statement ignored
ORA-06550: line 16, column 10:
PLS-00320: the declaration of the type of this expression is

incomplete or malformed
ORA-06550: line 15, column 7:
PL/SQL: Statement ignored
ORA-06550: line 17, column 52:
PLS-00320: the declaration of the type of this expression is

incomplete or malformed
ORA-06550: line 17, column 7:
PL/SQL: Statement ignored

USER-DEFINED RECORDS

So far, you have seen how to create records based on a table or cursor. However, you may need
to create a record that is not based on any table or any one cursor. For such situations, PL/SQL
provides a user-defined record type that gives you complete control over the record structure.

The general syntax for creating a user-defined record is as follows (the reserved words and
phrases in brackets are optional):

TYPE type_name IS RECORD
(field_name1 datatype1 [NOT NULL] [:= DEFAULT EXPRESSION],
field_name2 datatype2 [NOT NULL] [:= DEFAULT EXPRESSION],
...
field_nameN datatypeN [NOT NULL] [:= DEFAULT EXPRESSION]);

record_name TYPE_NAME;

First, a record structure is defined using the TYPE statement, where type_name is the name
of the record type that is used in the second step to declare the actual record. Enclosed in paren-
theses are declarations of each record field, with its name and datatype. You may also specify a
NOT NULL constraint and/or assign a default value. Second, the actual record is declared based
on the type specified in the preceding step. Consider the following example:

FOR EXAMPLE

DECLARE
TYPE time_rec_type IS RECORD

(curr_date DATE,
curr_day VARCHAR2(12),
curr_time VARCHAR2(8) := '00:00:00');

L A B 16.1Record Types

353

FOR EXAMPLE (continued)

time_rec TIME_REC_TYPE;
BEGIN

SELECT sysdate
INTO time_rec.curr_date
FROM dual;

time_rec.curr_day := TO_CHAR(time_rec.curr_date, 'DAY');
time_rec.curr_time := TO_CHAR(time_rec.curr_date, 'HH24:MI:SS');

DBMS_OUTPUT.PUT_LINE ('Date: '||time_rec.curr_date);
DBMS_OUTPUT.PUT_LINE ('Day: '||time_rec.curr_day);
DBMS_OUTPUT.PUT_LINE ('Time: '||time_rec.curr_time);

END;

In this example, time_rec_type is a user-defined record type that contains three fields.
Notice that the last field, curr_time, has been initialized to a particular value. time_rec is
a user-defined record based on time_rec_type. Notice that, in contrast to the previous exam-
ples, each record field is assigned a value individually. When run, the script produces the follow-
ing output:

Date: 30-MAR-08
Day: SUNDAY
Time: 18:12:59

PL/SQL procedure successfully completed.

As mentioned, when declaring a record type, you may specify a NOT NULL constraint for indi-
vidual fields. It is important to note that such fields must be initialized. Consider an example
that causes a syntax error because a record field has not been initialized after a NOT NULL
constraint has been defined on it:

FOR EXAMPLE

DECLARE
TYPE sample_type IS RECORD

(field1 NUMBER(3),
field2 VARCHAR2(3) NOT NULL);

sample_rec sample_type;

BEGIN
sample_rec.field1 := 10;
sample_rec.field2 := 'ABC';

DBMS_OUTPUT.PUT_LINE ('sample_rec.field1 = '||sample_rec.field1);
DBMS_OUTPUT.PUT_LINE ('sample_rec.field2 = '||sample_rec.field2);

END;

L A B 16.1
354

Record Types

This example produces the following output:

field2 VARCHAR2(3) NOT NULL);
*

ERROR at line 4:
ORA-06550: line 4, column 8:
PLS-00218: a variable declared NOT NULL must have an initialization

assignment

Next, consider the correct version of the preceding example and its output:

FOR EXAMPLE

DECLARE
TYPE sample_type IS RECORD

(field1 NUMBER(3),
-- initialize a NOT NULL field
field2 VARCHAR2(3) NOT NULL := 'ABC');

sample_rec sample_type;

BEGIN
sample_rec.field1 := 10;

DBMS_OUTPUT.PUT_LINE ('sample_rec.field1 = '||sample_rec.field1);
DBMS_OUTPUT.PUT_LINE ('sample_rec.field2 = '||sample_rec.field2);

END;

The output is as follows:

sample_rec.field1 = 10
sample_rec.field2 = ABC

PL/SQL procedure successfully completed.

RECORD COMPATIBILITY

You have seen that a record is defined by its name, structure, and type. However, it is important
to realize that two records may have the same structure yet be of a different type. As a result,
certain restrictions apply to the operations between different record types. Consider the follow-
ing example:

FOR EXAMPLE

DECLARE
TYPE name_type1 IS RECORD

(first_name VARCHAR2(15),
last_name VARCHAR2(30));

L A B 16.1Record Types

355

FOR EXAMPLE (continued)

TYPE name_type2 IS RECORD
(first_name VARCHAR2(15),
last_name VARCHAR2(30));

name_rec1 name_type1;
name_rec2 name_type2;

BEGIN
name_rec1.first_name := 'John';
name_rec1.last_name := 'Smith';
name_rec2 := name_rec1; -- illegal assignment

END;

In this example, both records have the same structure; however, each record is of a different
type. As a result, these records are incompatible with each other on the record level. In other
words, an aggregate assignment statement causes an error:

name_rec2 := name_rec1; -- illegal assignment
*

ERROR at line 15:
ORA-06550: line 15, column 17:
PLS-00382: expression is of wrong type
ORA-06550: line 15, column 4:
PL/SQL: Statement ignored

To assign name_rec1 to name_rec2, you can assign each field of name_rec1 to the corre-
sponding field of name_rec2, or you can declare name_rec2 so that it has the same datatype
as name_rec1, as follows:

FOR EXAMPLE

DECLARE
TYPE name_type1 IS RECORD

(first_name VARCHAR2(15),
last_name VARCHAR2(30));

name_rec1 name_type1;
name_rec2 name_type1;

BEGIN
name_rec1.first_name := 'John';
name_rec1.last_name := 'Smith';
name_rec2 := name_rec1; -- no longer illegal assignment

END;

It is important to note that the assignment restriction just mentioned applies to user-defined
records. In other words, you can assign a table-based or cursor-based record to a user-defined record
as long as they have the same structure. Consider the following example:

L A B 16.1
356

Record Types

▼

FOR EXAMPLE

DECLARE
CURSOR course_cur IS

SELECT *
FROM course
WHERE rownum <= 4;

TYPE course_type IS RECORD
(course_no NUMBER(38),
description VARCHAR2(50),
cost NUMBER(9,2),
prerequisite NUMBER(8),
created_by VARCHAR2(30),
created_date DATE,
modified_by VARCHAR2(30),
modified_date DATE);

course_rec1 course%ROWTYPE; -- table-based record
course_rec2 course_cur%ROWTYPE; -- cursor-based record
course_rec3 course_type; -- user-defined record

BEGIN
-- Populate table-based record
SELECT *
INTO course_rec1
FROM course
WHERE course_no = 10;

-- Populate cursor-based record
OPEN course_cur;
LOOP

FETCH course_cur INTO course_rec2;
EXIT WHEN course_cur%NOTFOUND;

END LOOP;

course_rec1 := course_rec2;
course_rec3 := course_rec2;

END;

In this example, each record is a different type; however, they are compatible with each other
because all records have the same structure. As a result, this example does not cause any syntax
errors.

L A B 1 6 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

L A B 16.1Lab 16.1 Exercises

357

16.1.1 Use Table-Based and Cursor-Based Records

In this exercise, you will learn more about table-based and cursor-based records.

Create the following PL/SQL script:

-- ch16_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

zip_rec zipcode%ROWTYPE;

BEGIN
SELECT *
INTO zip_rec
FROM zipcode
WHERE rownum < 2;

END;

Answer the following questions, and complete the following tasks:

A) Explain the preceding script.

ANSWER: The declaration portion of the script contains a declaration of the table-based record,
zip_rec, that has the same structure as a row from the ZIPCODE table. The executable portion
of the script populates the zip_rec record using the SELECT INTO statement with a row from
the ZIPCODE table. Notice that a restriction applied to the ROWNUM enforces the SELECT INTO
statement and always returns a random single row. As mentioned earlier, there is no need to refer-
ence individual record fields when the SELECT INTO statement populates the zip_rec record,
because zip_rec has a structure identical to a row of the ZIPCODE table.

B) Modify the script so that zip_rec data is displayed on the screen.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch16_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

zip_rec zipcode%ROWTYPE;

BEGIN
SELECT *
INTO zip_rec
FROM zipcode
WHERE rownum < 2;

DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_rec.zip);
DBMS_OUTPUT.PUT_LINE ('City: '||zip_rec.city);
DBMS_OUTPUT.PUT_LINE ('State: '||zip_rec.state);
DBMS_OUTPUT.PUT_LINE ('Created By: '||zip_rec.created_by);
DBMS_OUTPUT.PUT_LINE ('Created Date: '||zip_rec.created_date);
DBMS_OUTPUT.PUT_LINE ('Modified By: '||zip_rec.modified_by);
DBMS_OUTPUT.PUT_LINE ('Modified Date: '||zip_rec.modified_date);

END;

L A B 16.1
358

Lab 16.1 Exercises

When run, this version of the script produces the following output:

Zip: 00914
City: Santurce
State: PR
Created By: AMORRISO
Created Date: 03-AUG-07
Modified By: ARISCHER
Modified Date: 24-NOV-07

PL/SQL procedure successfully completed.

C) Modify the script created in the preceding exercise (ch16_1b.sql) so that zip_rec is defined as
a cursor-based record.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch16_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

CURSOR zip_cur IS
SELECT *
FROM zipcode
WHERE rownum < 4;

zip_rec zip_cur%ROWTYPE;
BEGIN

OPEN zip_cur;
LOOP

FETCH zip_cur INTO zip_rec;
EXIT WHEN zip_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_rec.zip);
DBMS_OUTPUT.PUT_LINE ('City: '||zip_rec.city);
DBMS_OUTPUT.PUT_LINE ('State: '||zip_rec.state);
DBMS_OUTPUT.PUT_LINE ('Created By: '||zip_rec.created_by);
DBMS_OUTPUT.PUT_LINE ('Created Date:

'||zip_rec.created_date);
DBMS_OUTPUT.PUT_LINE ('Modified By:

'||zip_rec.modified_by);
DBMS_OUTPUT.PUT_LINE ('Modified Date:

'||zip_rec.modified_date);
END LOOP;

END;

The declaration portion of the script contains a definition of the ZIP_CUR cursor that returns three
records from the ZIPCODE table. In this case, the number of records returned by the cursor has
been chosen for one reason only—so that the cursor loop iterates more than once. Next, it
contains the definition of the cursor-based record,zip_rec.

The executable portion of the script populates the zip_rec record and displays its data on the
screen using the simple cursor loop.

L A B 16.1Lab 16.1 Exercises

359

This version of the script produces the following output:

Zip: 00914
City: Santurce
State: PR
Created By: AMORRISO
Created Date: 03-AUG-07
Modified By: ARISCHER
Modified Date: 24-NOV-07
Zip: 01247
City: North Adams
State: MA
Created By: AMORRISO
Created Date: 03-AUG-07
Modified By: ARISCHER
Modified Date: 24-NOV-07
Zip: 02124
City: Dorchester
State: MA
Created By: AMORRISO
Created Date: 03-AUG-07
Modified By: ARISCHER
Modified Date: 24-NOV-07

PL/SQL procedure successfully completed.

D) Modify the script created in the preceding exercise (ch16_1c.sql). Change the structure of the
zip_rec record so that it contains the total number of students in a given city, state, and zip
code. Do not include audit columns such as CREATED_BY and CREATED_DATE in the record
structure.

ANSWER: The script should look similar to the following. All changes are shown in bold.

-- ch16_1d.sql, version 4.0
SET SERVEROUTPUT ON SIZE 40000
DECLARE

CURSOR zip_cur IS
SELECT city, state, z.zip, COUNT(*) students
FROM zipcode z, student s
WHERE z.zip = s.zip
GROUP BY city, state, z.zip;

zip_rec zip_cur%ROWTYPE;
BEGIN

OPEN zip_cur;
LOOP

FETCH zip_cur INTO zip_rec;
EXIT WHEN zip_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_rec.zip);
DBMS_OUTPUT.PUT_LINE ('City: '||zip_rec.city);
DBMS_OUTPUT.PUT_LINE ('State: '||zip_rec.state);

L A B 16.1
360

Lab 16.1 Exercises

DBMS_OUTPUT.PUT_LINE ('Students: '||zip_rec.students);
END LOOP;

END;

In this example, the cursor SELECT statement has been modified so that it returns the total
number of students for a given city, state, and zip code. Notice that the ROWNUM restriction has
been removed so that the total number of students is calculated correctly. As a result, the buffer
size has been changed from 2,000 to 40,000 so that the script does not cause a buffer overflow
error.

Consider the partial output retuned by this example:

Zip: 07401
City: Allendale
State: NJ
Students: 1
Zip: 11373
City: Amherst
State: NY
Students: 6
Zip: 48104
City: Ann Arbor
State: MI
Students: 1
Zip: 11102
City: Astoria
State: NY
Students: 1
Zip: 11105
City: Astoria
State: NY
Students: 2
Zip: 11510
City: Baldwin
State: NY
Students: 1
Zip: 11360
City: Bayside
State: NY
Students: 1
...

PL/SQL procedure successfully completed.

Next, assume that, just like in the previous version of the script (ch16_1c.sql), you want to display
only four records on the screen. This can be achieved as follows:

-- ch16_1e.sql, version 5.0
SET SERVEROUTPUT ON
DECLARE

CURSOR zip_cur IS
SELECT city, state, z.zip, COUNT(*) students
FROM zipcode z, student s

L A B 16.1Lab 16.1 Exercises

361

WHERE z.zip = s.zip
GROUP BY city, state, z.zip;

zip_rec zip_cur%ROWTYPE;
v_counter INTEGER := 0;

BEGIN
OPEN zip_cur;
LOOP

FETCH zip_cur INTO zip_rec;
EXIT WHEN zip_cur%NOTFOUND;

v_counter := v_counter + 1;

IF v_counter <= 4 THEN
DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_rec.zip);
DBMS_OUTPUT.PUT_LINE ('City: '||zip_rec.city);
DBMS_OUTPUT.PUT_LINE ('State: '||zip_rec.state);
DBMS_OUTPUT.PUT_LINE ('Students: '||zip_rec.students);

END IF;
END LOOP;

END;

The SELECT statement defined in the cursor is supported by multiple versions of Oracle. As
mentioned previously, starting with 9i, Oracle supports the new ANSI 1999 SQL standard, and the
SELECT statement can be modified as follows according to this new standard:

SELECT city, state, z.zip, COUNT(*) students
FROM zipcode z
JOIN student s
ON s.zip = z.zip

GROUP BY city, state, z.zip;

This SELECT statement uses the ON syntax to specify the join condition between two tables. This
type of join becomes especially useful when the columns participating in the join do not have the
same name.

BY THE WAY

You will find detailed explanations and examples of the statements using the new ANSI 1999 SQL
standard in Appendix C and in the Oracle help. Throughout this book we try to provide examples
illustrating both standards; however, our main focus is on PL/SQL features rather than SQL.

16.1.2 Use User-Defined Records

In this exercise, you learn more about user-defined records.

Create the following PL/SQL script:

-- ch16_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

CURSOR zip_cur IS
SELECT zip, COUNT(*) students

L A B 16.1
362

Lab 16.1 Exercises

FROM student
GROUP BY zip;

TYPE zip_info_type IS RECORD
(zip_code VARCHAR2(5),
students INTEGER);

zip_info_rec zip_info_type;
BEGIN

FOR zip_rec IN zip_cur LOOP
zip_info_rec.zip_code := zip_rec.zip;
zip_info_rec.students := zip_rec.students;

END LOOP;
END;

Answer the following questions, and complete the following tasks:

A) Explain the preceding script.

ANSWER: The declaration portion of the script contains the ZIP_CUR cursor, which returns the
total number of students corresponding to a particular zip code. Next, it contains the declaration
of the user-defined record type,zip_info_type, which has two fields, and the actual user-
defined record,zip_info_rec. The executable portion of the script populates the zip_
info_rec record using the cursor FOR loop. As mentioned earlier, because zip_info_rec
is a user-defined record, each record field is assigned a value individually.

B) Modify the script so that zip_info_rec data is displayed on the screen for only the first five
records returned by the ZIP_CUR cursor.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch16_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

CURSOR zip_cur IS
SELECT zip, COUNT(*) students
FROM student

GROUP BY zip;

TYPE zip_info_type IS RECORD
(zip_code VARCHAR2(5),
students INTEGER);

zip_info_rec zip_info_type;
v_counter INTEGER := 0;

BEGIN
FOR zip_rec IN zip_cur LOOP

zip_info_rec.zip_code := zip_rec.zip;
zip_info_rec.students := zip_rec.students;

v_counter := v_counter + 1;
IF v_counter <= 5 THEN

DBMS_OUTPUT.PUT_LINE ('Zip Code: '||zip_info_rec.zip_code);

L A B 16.1Lab 16.1 Exercises

363

DBMS_OUTPUT.PUT_LINE ('Students: '||zip_info_rec.students);
DBMS_OUTPUT.PUT_LINE ('--------------------');

END IF;
END LOOP;

END;

To display information for the first five records returned by the ZIP_CUR cursor, a new variable,
v_counter, is declared. For each iteration of the loop, the value of this variable is incremented
by 1. As long as the value of v_counter is less than or equal to 5, the data of the
zip_info_rec record is displayed on the screen.

When run, this script produces the following output:

Zip Code: 01247
Students: 1

Zip Code: 02124
Students: 1

Zip Code: 02155
Students: 1

Zip Code: 02189
Students: 1

Zip Code: 02563
Students: 1

PL/SQL procedure successfully completed.

C) Modify the script created in the preceding exercise (ch16_2b.sql). Change the structure of the
zip_info_rec record so that it also contains the total number of instructors for a given zip
code. Populate this new record, and display its data on the screen for the first five records returned
by the ZIP_CUR cursor.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch16_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

CURSOR zip_cur IS
SELECT zip
FROM zipcode
WHERE ROWNUM <= 5;

TYPE zip_info_type IS RECORD
(zip_code VARCHAR2(5),
students INTEGER,
instructors INTEGER);

zip_info_rec zip_info_type;

L A B 16.1
364

Lab 16.1 Exercises

BEGIN
FOR zip_rec IN zip_cur LOOP

zip_info_rec.zip_code := zip_rec.zip;

SELECT COUNT(*)
INTO zip_info_rec.students
FROM student
WHERE zip = zip_info_rec.zip_code;

SELECT COUNT(*)
INTO zip_info_rec.instructors
FROM instructor
WHERE zip = zip_info_rec.zip_code;

DBMS_OUTPUT.PUT_LINE ('Zip Code: '||zip_info_rec.zip_code);
DBMS_OUTPUT.PUT_LINE ('Students: '||zip_info_rec.students);
DBMS_OUTPUT.PUT_LINE ('Instructors:

'||zip_info_rec.instructors);
DBMS_OUTPUT.PUT_LINE ('--------------------');

END LOOP;
END;

Consider the changes applied to this version of the script. In the declaration portion of the script,
the cursor SELECT statement has changed so that records are retrieved from the ZIPCODE table
rather than the STUDENT table. This change allows you to accurately see the total number of
students and instructors in a particular zip code. In addition, because the cursor SELECT statement
does not have a group function, the ROWNUM restriction is listed in the WHERE clause so that
only the first five records are returned. The structure of the user-defined record type,
zip_info_type, has changed so that the total number of instructors for a given zip code is
stored in the instructors field.

In the executable portion of the script are two SELECT INTO statements that populate the
zip_info_rec.students and zip_info_rec.instructors fields, respectively.

When run, this example produces the following output:

Zip Code: 00914
Students: 0
Instructors: 0

Zip Code: 01247
Students: 1
Instructors: 0

Zip Code: 02124
Students: 1
Instructors: 0

Zip Code: 02155
Students: 1
Instructors: 0

L A B 16.1Lab 16.1 Exercises

365

Zip Code: 02189
Students: 1
Instructors: 0

PL/SQL procedure successfully completed.

Consider another version of the same script. Here, instead of using two SELECT INTO statements to
calculate the total number of students and instructors in a particular zip code, the cursor SELECT
statement contains outer joins:

-- ch16_2d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE

CURSOR zip_cur IS
SELECT z.zip, COUNT(student_id) students,

COUNT(instructor_id) instructors
FROM zipcode z, student s, instructor i
WHERE z.zip = s.zip (+)
AND z.zip = i.zip (+)

GROUP BY z.zip;

TYPE zip_info_type IS RECORD
(zip_code VARCHAR2(5),
students INTEGER,
instructors INTEGER);

zip_info_rec zip_info_type;
v_counter INTEGER := 0;

BEGIN
FOR zip_rec IN zip_cur LOOP

zip_info_rec.zip_code := zip_rec.zip;
zip_info_rec.students := zip_rec.students;
zip_info_rec.instructors := zip_rec.instructors;

v_counter := v_counter + 1;
IF v_counter <= 5 THEN

DBMS_OUTPUT.PUT_LINE ('Zip Code:
'||zip_info_rec.zip_code);

DBMS_OUTPUT.PUT_LINE ('Students:
'||zip_info_rec.students);

DBMS_OUTPUT.PUT_LINE ('Instructors: '||
zip_info_rec.instructors);

DBMS_OUTPUT.PUT_LINE ('--------------------');
END IF;

END LOOP;
END;

L A B 16.1
366

Lab 16.1 Exercises

L A B 1 6 . 2

Nested Records

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use nested records

As mentioned in the introduction to this chapter, PL/SQL allows you to define nested records.
These are records that contain other records and collections. The record that contains a nested
record or collection is called an enclosing record.

Consider the following code fragment:

FOR EXAMPLE

DECLARE
TYPE name_type IS RECORD

(first_name VARCHAR2(15),
last_name VARCHAR2(30));

TYPE person_type IS
(name name_type,
street VARCHAR2(50),
city VARCHAR2(25),
state VARCHAR2(2),
zip VARCHAR2(5));

person_rec person_type;

This code fragment contains two user-defined record types. The second user-defined record
type, person_type, is a nested record type because its field name is a record of the
name_type type.

Next, consider the complete version of the preceding example:

FOR EXAMPLE

DECLARE
TYPE name_type IS RECORD

(first_name VARCHAR2(15),
last_name VARCHAR2(30));

L A B 16.2
367

FOR EXAMPLE (continued)

TYPE person_type IS RECORD
(name name_type,
street VARCHAR2(50),
city VARCHAR2(25),
state VARCHAR2(2),
zip VARCHAR2(5));

person_rec person_type;

BEGIN
SELECT first_name, last_name, street_address, city, state, zip
INTO person_rec.name.first_name, person_rec.name.last_name,

person_rec.street, person_rec.city, person_rec.state,
person_rec.zip

FROM student
JOIN zipcode USING (zip)
WHERE rownum < 2;

DBMS_OUTPUT.PUT_LINE ('Name: '||
person_rec.name.first_name||' '||person_rec.name.last_name);

DBMS_OUTPUT.PUT_LINE ('Street: '||person_rec.street);
DBMS_OUTPUT.PUT_LINE ('City: '||person_rec.city);
DBMS_OUTPUT.PUT_LINE ('State: '||person_rec.state);
DBMS_OUTPUT.PUT_LINE ('Zip: '||person_rec.zip);

END;

In this example, the person_rec record is a user-defined nested record. Therefore, to refer-
ence its field name that is a record with two fields, the following syntax is used:

enclosing_record.(nested_record or nested_collection).field_name

In this case, person_rec is the enclosing record because it contains the name record as one
of its fields while the name record is nested in the person_rec record.

This example produces the following output:

Name: James E. Norman
Street: PO Box 809 Curran Hwy
City: North Adams
State: MA
Zip: 01247

PL/SQL procedure successfully completed.

L A B 16.2
368

Nested Records

L A B 16.2Lab 16.2 Exercises

369

▼ L A B 1 6 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

16.2.1 Use Nested Records

In this exercise, you learn more about nested records.

Create the following PL/SQL script:

-- ch16_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

TYPE last_name_type IS TABLE OF student.last_name%TYPE
INDEX BY BINARY_INTEGER;

TYPE zip_info_type IS RECORD
(zip VARCHAR2(5),
last_name_tab last_name_type);

CURSOR name_cur (p_zip VARCHAR2) IS
SELECT last_name
FROM student
WHERE zip = p_zip;

zip_info_rec zip_info_type;
v_zip VARCHAR2(5) := '&sv_zip';
v_counter INTEGER := 0;

BEGIN
zip_info_rec.zip := v_zip;

FOR name_rec IN name_cur (v_zip) LOOP
v_counter := v_counter + 1;
zip_info_rec.last_name_tab(v_counter) := name_rec.last_name;

END LOOP;
END;

Answer the following questions, and complete the following tasks:

A) Explain the preceding script.

ANSWER: The declaration portion of the script contains associative array (index-by table) type
(last_name_type), record type (zip_info_type), and nested-user-defined record
(zip_info_rec) declarations. The field,last_name_tab, of the zip_info_rec is an
associative array that is populated with the help of the cursor, NAME_CUR. In addition, the declara-
tion portion also contains two variables,v_zip and v_counter. The variable v_zip is used
to store the incoming value of the zip code provided at runtime. The variable v_counter is
used to populate the associative array,last_name_tab. The executable portion of the script
assigns values to the individual record fields,zip and last_name_tab. As mentioned previ-
ously, the last_name_tab is an associative array, and it is populated using a cursor FOR loop.

B) Modify the script so that zip_info_rec data is displayed on the screen. Make sure that a
value of the zip code is displayed only once. Provide the value of 11368 when running the script.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch16_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

TYPE last_name_type IS TABLE OF student.last_name%TYPE
INDEX BY BINARY_INTEGER;

TYPE zip_info_type IS RECORD
(zip VARCHAR2(5),
last_name_tab last_name_type);

CURSOR name_cur (p_zip VARCHAR2) IS
SELECT last_name
FROM student
WHERE zip = p_zip;

zip_info_rec zip_info_type;
v_zip VARCHAR2(5) := '&sv_zip';
v_counter INTEGER := 0;

BEGIN
zip_info_rec.zip := v_zip;
DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_info_rec.zip);

FOR name_rec IN name_cur (v_zip) LOOP
v_counter := v_counter + 1;
zip_info_rec.last_name_tab(v_counter) := name_rec.last_name;

DBMS_OUTPUT.PUT_LINE ('Names('||v_counter||'): '||
zip_info_rec.last_name_tab(v_counter));

END LOOP;
END;

To display the value of the zip code only once, the DBMS_OUTPUT.PUT_LINE statement

DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_info_rec.zip);

is placed outside the loop.

When run, this script produces the following output:

Enter value for sv_zip: 11368
old 15: v_zip VARCHAR2(5) := '&sv_zip';
new 15: v_zip VARCHAR2(5) := '11368';
Zip: 11368
Names(1): Lasseter
Names(2): Miller
Names(3): Boyd
Names(4): Griffen
Names(5): Hutheesing
Names(6): Chatman

PL/SQL procedure successfully completed.

L A B 16.2
370

Lab 16.2 Exercises

C) Modify the script created in the preceding exercise (ch16_3b.sql). Instead of providing a value for
a zip code at runtime, populate using the cursor FOR loop. The SELECT statement associated with
the new cursor should return zip codes that have more than one student in them.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch16_3c.sql, version 3.0
SET SERVEROUTPUT ON SIZE 20000
DECLARE

TYPE last_name_type IS TABLE OF student.last_name%TYPE
INDEX BY BINARY_INTEGER;

TYPE zip_info_type IS RECORD
(zip VARCHAR2(5),
last_name_tab last_name_type);

CURSOR zip_cur IS
SELECT zip, COUNT(*)
FROM student

GROUP BY zip
HAVING COUNT(*) > 1;

CURSOR name_cur (p_zip VARCHAR2) IS
SELECT last_name
FROM student
WHERE zip = p_zip;

zip_info_rec zip_info_type;
v_counter INTEGER;

BEGIN
FOR zip_rec IN zip_cur LOOP

zip_info_rec.zip := zip_rec.zip;
DBMS_OUTPUT.PUT_LINE ('Zip: '||zip_info_rec.zip);

v_counter := 0;
FOR name_rec IN name_cur (zip_info_rec.zip) LOOP

v_counter := v_counter + 1;
zip_info_rec.last_name_tab(v_counter) :=
name_rec.last_name;

DBMS_OUTPUT.PUT_LINE ('Names('||v_counter||'): '||
zip_info_rec.last_name_tab(v_counter));

END LOOP;
DBMS_OUTPUT.PUT_LINE ('----------');

END LOOP;
END;

In the preceding script, you declare a new cursor called zip_cur. This cursor returns zip codes
that have more than one student in them. Next, in the body of the script, you use nested cursors
to populate the last_name_tab associative array for each value of the zip code. First, the
outer cursor FOR loop populates the zip field of the zip_info_rec and displays its value on
the screen. Then it passes the zip field as a parameter to the inner cursor FOR loop that popu-
lates the last_name_tab table with last names of corresponding students.

L A B 16.2Lab 16.2 Exercises

371

Consider partial output from the preceding example:

Zip: 06820
Names(1): Scrittorale
Names(2): Padel
Names(3): Kiraly

Zip: 06830
Names(1): Dennis
Names(2): Meshaj
Names(3): Dalvi

Zip: 06880
Names(1): Miller
Names(2): Cheevens

Zip: 06903
Names(1): Segall
Names(2): Annina

Zip: 07003
Names(1): Wicelinski
Names(2): Intal

Zip: 07010
Names(1): Lopez
Names(2): Mulroy
Names(3): Velasco
Names(4): Kelly
Names(5): Tucker
Names(6): Mithane

...

PL/SQL procedure successfully completed.

L A B 16.2
372

Lab 16.2 Exercises

L A B 1 6 . 3

Collections of Records

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use collections of records

In the previous lab you saw an example of a nested record in which one of the record fields was
defined as an associative array. PL/SQL also lets you define a collection of records (such as an
associative array whose element type is a cursor-based record, as shown in the following
example).

FOR EXAMPLE

DECLARE
CURSOR name_cur IS

SELECT first_name, last_name
FROM student
WHERE ROWNUM <= 4;

TYPE name_type IS TABLE OF name_cur%ROWTYPE
INDEX BY BINARY_INTEGER;

name_tab name_type;
v_counter INTEGER := 0;

BEGIN
FOR name_rec IN name_cur LOOP

v_counter := v_counter + 1;

name_tab(v_counter).first_name := name_rec.first_name;
name_tab(v_counter).last_name := name_rec.last_name;

DBMS_OUTPUT.PUT_LINE('First Name('||v_counter||'): '||
name_tab(v_counter).first_name);

DBMS_OUTPUT.PUT_LINE('Last Name('||v_counter||'): '||
name_tab(v_counter).last_name);

END LOOP;
END;

L A B 16.3
373

▼

In the declaration portion of this example, you define the name_cur cursor, which returns the
first and last names of the first four students. Next, you define an associative array type whose
element type is based on the cursor defined previously using the %ROWTYPE attribute. Then
you define an associative array variable and the counter that is used later to reference individ-
ual rows of the associative array.

In the executable portion of the example, you populate the associative array and display its
records on the screen. Consider the notation used in the example when referencing individual
elements of the array:

name_tab(v_counter).first_name

and

name_tab(v_counter).last_name

Notice that to reference each row of the array, you use the counter variable, just like in all previ-
ous examples. However, because each row of this table is a record, you must also reference indi-
vidual fields of the underlying record.

This example produces the following output:

First Name(1): Fred
Last Name(1): Crocitto
First Name(2): J.
Last Name(2): Landry
First Name(3): Laetia
Last Name(3): Enison
First Name(4): Angel
Last Name(4): Moskowitz

PL/SQL procedure successfully completed.

L A B 1 6 . 3 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

16.3.1 Use Collections of Records

In this exercise, you learn more about collections of records.

Complete the following tasks:

A) Modify the script used earlier in this lab. Instead of using an associative array, use a nested table.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch16_4a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

CURSOR name_cur IS
SELECT first_name, last_name

L A B 16.3
374

Lab 16.3 Exercises

FROM student
WHERE ROWNUM <= 4;

TYPE name_type IS TABLE OF name_cur%ROWTYPE;

name_tab name_type := name_type();
v_counter INTEGER := 0;

BEGIN
FOR name_rec IN name_cur LOOP

v_counter := v_counter + 1;
name_tab.EXTEND;

name_tab(v_counter).first_name := name_rec.first_name;
name_tab(v_counter).last_name := name_rec.last_name;

DBMS_OUTPUT.PUT_LINE('First Name('||v_counter||'): '||
name_tab(v_counter).first_name);

DBMS_OUTPUT.PUT_LINE('Last Name('||v_counter||'): '||
name_tab(v_counter).last_name);

END LOOP;
END;

In the preceding script,name_tab is declared as a nested table. As a result, at the time of its
declaration, it is initialized. In other words,name_tab is empty but non-null. Furthermore, as
soon as the name_tab table is initialized, its size must be increased before it can be populated
with the next record.

B) Modify the script used earlier in this lab. Instead of using an associative array, use a varray.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch16_4b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

CURSOR name_cur IS
SELECT first_name, last_name
FROM student
WHERE ROWNUM <= 4;

TYPE name_type IS VARRAY(4) OF name_cur%ROWTYPE;

name_tab name_type := name_type();
v_counter INTEGER := 0;

BEGIN
FOR name_rec IN name_cur LOOP

v_counter := v_counter + 1;
name_tab.EXTEND;

name_tab(v_counter).first_name := name_rec.first_name;
name_tab(v_counter).last_name := name_rec.last_name;

DBMS_OUTPUT.PUT_LINE('First Name('||v_counter||'): '||
name_tab(v_counter).first_name);

L A B 16.3Lab 16.3 Exercises

375

DBMS_OUTPUT.PUT_LINE('Last Name('||v_counter||'): '||
name_tab(v_counter).last_name);

END LOOP;
END;

In this version of the script,name_tab is declared as a varray with four elements. As in the previ-
ous version, the collection is initialized and its size is incremented before it is populated with the
new record.

Both scripts, ch16_4a.sql and ch16_4b.sql, produce output identical to the original example:

First Name(1): Fred
Last Name(1): Crocitto
First Name(2): J.
Last Name(2): Landry
First Name(3): Laetia
Last Name(3): Enison
First Name(4): Angel
Last Name(4): Moskowitz

PL/SQL procedure successfully completed.

C) Modify the script used at the beginning of this lab. Instead of using a cursor-based record, use a
user-defined record. The new record should have three fields:first_name,last_name, and
enrollments. The last field will contain the total number of courses in which a student is
currently enrolled.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch16_4c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

CURSOR name_cur IS
SELECT first_name, last_name, COUNT(*) total
FROM student
JOIN enrollment USING (student_id)

GROUP BY first_name, last_name;

TYPE student_rec_type IS RECORD
(first_name VARCHAR2(15),
last_name VARCHAR2(30),
enrollments INTEGER);

TYPE name_type IS TABLE OF student_rec_type
INDEX BY BINARY_INTEGER;

name_tab name_type;
v_counter INTEGER := 0;

BEGIN
FOR name_rec IN name_cur LOOP

v_counter := v_counter + 1;

name_tab(v_counter).first_name := name_rec.first_name;
name_tab(v_counter).last_name := name_rec.last_name;

L A B 16.3
376

Lab 16.3 Exercises

name_tab(v_counter).enrollments := name_rec.total;

IF v_counter <= 4 THEN
DBMS_OUTPUT.PUT_LINE('First Name('||v_counter||'): '||

name_tab(v_counter).first_name);
DBMS_OUTPUT.PUT_LINE('Last Name('||v_counter||'): '||

name_tab(v_counter).last_name);
DBMS_OUTPUT.PUT_LINE('Enrollments('||v_counter||'): '||

name_tab(v_counter).enrollments);
DBMS_OUTPUT.PUT_LINE ('--------------------');

END IF;
END LOOP;

END;

In the declaration portion of the script, the cursor SELECT statement has been modified so that for
each student it returns the total number of enrollments. Next, the user-defined record type,
student_rec_type, is declared so that it can be used as the element type for the associative
array type,name_type.

In the executable portion of the script, the associative array,name_tab, is populated using the
cursor FOR loop. Next, the index counter variable,v_counter, is evaluated using the IF-THEN
statement so that only the first four records of the index-by table are displayed on the screen.

When run, this script produces the following output:

First Name(1): A.
Last Name(1): Tucker
Enrollments(1): 1

First Name(2): Adele
Last Name(2): Rothstein
Enrollments(2): 1

First Name(3): Adrienne
Last Name(3): Lopez
Enrollments(3): 1

First Name(4): Al
Last Name(4): Jamerncy
Enrollments(4): 1

PL/SQL procedure successfully completed.

L A B 16.3Lab 16.3 Exercises

377

▼ T R Y I T Y O U R S E L F

In this chapter, you’ve learned about various types of records, nested records, and collections of records.
Here are some projects that will help you test the depth of your understanding:

1) Create an associative array with the element type of a user-defined record. This record should
contain the first name, last name, and total number of courses that a particular instructor teaches.
Display the records of the associative array on the screen.

2) Modify the script you just created. Instead of using an associative array, use a nested table.

3) Modify the script you just created. Instead of using a nested table, use a varray.

4) Create a user-defined record with four fields:course_no,description,cost, and
prerequisite_rec. The last field,prerequisite_rec, should be a user-defined record
with three fields:prereq_no,prereq_desc, and prereq_cost. For any ten courses that
have a prerequisite course, populate the user-defined record with all the corresponding data, and
display its information on the screen.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

378 Try it Yourself

C H A P T E R 1 7

Native Dynamic SQL

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. EXECUTE IMMEDIATE statements

. OPEN-FOR, FETCH, and CLOSE statements

Generally, PL/SQL applications perform a specific task and manipulate a static
set of tables. For example, a stored procedure might accept a student ID and
return the student’s first and last names. In such a procedure, a SELECT state-
ment is known in advance and is compiled as part of the procedure. Such
SELECT statements are called static because they do not change from execution
to execution.

Now, consider a different type of PL/SQL application in which SQL statements
are built on the fly, based on a set of parameters specified at runtime. For
example, an application might need to build various reports based on SQL state-
ments where table and column names are not known in advance, or the sorting
and grouping of data are specified by a user requesting a report. Similarly,
another application might need to create or drop tables or other database objects
based on the action specified by a user at runtime. Because these SQL statements
are generated on the fly and might change from time to time, they are called
dynamic.

PL/SQL has a feature called native dynamic SQL (dynamic SQL for short) that
helps you build applications similar to those just described. The use of dynamic
SQL makes such applications flexible, versatile, and concise because it eliminates
the need for complicated programming approaches. Native dynamic SQL is more
convenient to use than the Oracle-supplied package DBMS_SQL, which has
similar functionality. In this chapter you will learn how to create and use
dynamic SQL.

L A B 1 7 . 1

EXECUTE IMMEDIATE
Statements

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use the EXECUTE IMMEDIATE statement

Generally, dynamic SQL statements are built by your program and are stored as character strings
based on the parameters specified at runtime. These strings must contain valid SQL statements
or PL/SQL code. Consider the following dynamic SQL statement:

FOR EXAMPLE

'SELECT first_name, last_name FROM student WHERE student_id =
:student_id'

This SELECT statement returns a student’s first and last name for a given student ID. The value
of the student ID is not known in advance and is specified with the help of a bind argument,
:student_id. The bind argument is a placeholder for an undeclared identifier, and its name
must be prefixed by a colon. As a result, PL/SQL does not differentiate between the following
statements:

'SELECT first_name, last_name FROM student WHERE student_id =
:student_id'

'SELECT first_name, last_name FROM student WHERE student_id = :id'

To process dynamic SQL statements, you use EXECUTE IMMEDIATE or OPEN-FOR, FETCH,
and CLOSE statements. EXECUTE IMMEDIATE is used for single-row SELECT statements, all
DML statements, and DDL statements. OPEN-FOR, FETCH, and CLOSE statements are used
for multirow SELECTs and reference cursors.

BY THE WAY

To improve the performance of dynamic SQL statements you can also use BULK EXECUTE IMMEDI-
ATE, BULK FETCH, FORALL, and COLLECT INTO statements. However, these statements are outside the
scope of this book and therefore are not covered. You can find detailed explanations and examples
of their usage in the online Oracle help.

L A B 17.1
380

THE EXECUTE IMMEDIATE STATEMENT

The EXECUTE IMMEDIATE statement parses a dynamic statement or a PL/SQL block for imme-
diate execution. Its structure is as follows (the reserved words and phrases in square brackets
are optional):

EXECUTE IMMEDIATE dynamic_SQL_string
[INTO defined_variable1, defined_variable2, ...]
[USING [IN | OUT | IN OUT] bind_argument1, bind_argument2,
...][{RETURNING | RETURN} field1, field2, ... INTO bind_argument1,
bind_argument2, ...]

dynamic_SQL_string is a string that contains a valid SQL statement or a PL/SQL block.
The INTO clause contains the list of predefined variables that hold values returned by the
SELECT statement. This clause is used when a dynamic SQL statement returns a single row
similar to a static SELECT INTO statement. Next, the USING clause contains a list of bind argu-
ments whose values are passed to the dynamic SQL statement or PL/SQL block. IN, OUT, and
IN OUT are modes for bind arguments. If no mode is specified, all bind arguments listed in the
USING clause are in IN mode. Finally, the RETURNING INTO or RETURN clause contains a list
of bind arguments that store values returned by the dynamic SQL statement or PL/SQL block.
Similar to the USING clause, the RETURNING INTO clause may also contain various argument
modes; however, if no mode is specified, all bind arguments are in OUT mode.

DID YOU KNOW?

When an EXECUTE IMMEDIATE statement contains both USING and RETURNING INTO clauses, the
USING clause may specify only IN arguments.

FOR EXAMPLE

DECLARE
sql_stmt VARCHAR2(100);
plsql_block VARCHAR2(300);
v_zip VARCHAR2(5) := '11106';
v_total_students NUMBER;
v_new_zip VARCHAR2(5);
v_student_id NUMBER := 151;

BEGIN
-- Create table MY_STUDENT
sql_stmt := 'CREATE TABLE my_student '||

'AS SELECT * FROM student WHERE zip = '||v_zip;
EXECUTE IMMEDIATE sql_stmt;

-- Select total number of records from MY_STUDENT table
-- and display results on the screen
EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM my_student'
INTO v_total_students;
DBMS_OUTPUT.PUT_LINE ('Students added: '||v_total_students);

L A B 17.1EXECUTE IMMEDIATE Statements

381

FOR EXAMPLE (continued)

-- Select current date and display it on the screen
plsql_block := 'DECLARE ' ||

' v_date DATE; ' ||
'BEGIN ' ||
' SELECT SYSDATE INTO v_date FROM DUAL; '||
' DBMS_OUTPUT.PUT_LINE (TO_CHAR(v_date,

''DD-MON-YYYY''))
;'||
'END;';

EXECUTE IMMEDIATE plsql_block;

-- Update record in MY_STUDENT table
sql_stmt := 'UPDATE my_student SET zip = 11105 WHERE student_id =

:1 '||
'RETURNING zip INTO :2';

EXECUTE IMMEDIATE sql_stmt USING v_student_id RETURNING INTO
v_new_zip;

DBMS_OUTPUT.PUT_LINE ('New zip code: '||v_new_zip);
END;

This script contains several examples of dynamic SQL.

First, you create the table MY_STUDENT and populate it with records for a specified value of
zip code. It is important to note that the variable v_zip is concatenated with the CREATE state-
ment instead of being passed in as a bind argument. This point is illustrated in the next example.

Second, you select the total number of students added to the MY_STUDENT table and display
it on the screen. You use the INTO option with the EXECUTE IMMEDIATE statement because
the SELECT statement returns a single row.

Third, you create a simple PL/SQL block in which you select the current date and display it on
the screen. Because the PL/SQL block does not contain any bind arguments, the EXECUTE
IMMEDIATE statement is used in its simplest form.

Finally, you update the MY_STUDENT table for a given student ID and return a new value of
zip code using the RETURNING statement. So, the EXECUTE IMMEDIATE command contains
both USING and RETURNING INTO options. The USING option allows you to pass a value of
student ID to the UPDATE statement at runtime, and the RETURNING INTO option allows you
to pass a new value of zip code from the UPDATE statement into your program.

When run, this example produces the following output:

Students added: 4
22-JUN-2003
New zip code: 11105

PL/SQL procedure successfully completed.

L A B 17.1
382

EXECUTE IMMEDIATE Statements

HOW TO AVOID COMMON ORA ERRORS WHEN USING EXECUTE IMMEDIATE

Consider the simplified yet incorrect version of the preceding example. Changes are shown
in bold.

FOR EXAMPLE

DECLARE
sql_stmt VARCHAR2(100);
v_zip VARCHAR2(5) := '11106';
v_total_students NUMBER;

BEGIN
-- Drop table MY_STUDENT
EXECUTE IMMEDIATE 'DROP TABLE my_student';

-- Create table MY_STUDENT
sql_stmt := 'CREATE TABLE my_student '||

'AS SELECT * FROM student '||
'WHERE zip = :zip';

EXECUTE IMMEDIATE sql_stmt USING v_zip;

-- Select total number of records from MY_STUDENT table
-- and display results on the screen
EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM my_student'
INTO v_total_students;
DBMS_OUTPUT.PUT_LINE ('Students added: '|| v_total_students);

END;

First, you drop the MY_STUDENT table created in the previous version of the example. Next,
you re-create the MY_STUDENT table, but in this case, you use a bind argument to pass a value
of zip code to the CREATE statement at runtime.

When run, this example produces the following error:

DECLARE
*
ERROR at line 1:
ORA-01027: bind variables not allowed for data definition operations
ORA-06512: at line 12

DID YOU KNOW?

A CREATE TABLE statement is a data definition statement. Therefore, it cannot accept any bind
arguments.

Next, consider another simplified version of the same example that also causes a syntax error.
In this version, you pass the table name as a bind argument to the SELECT statement. Changes
are shown in bold.

L A B 17.1EXECUTE IMMEDIATE Statements

383

FOR EXAMPLE

DECLARE
sql_stmt VARCHAR2(100);
v_zip VARCHAR2(5) := '11106';
v_total_students NUMBER;

BEGIN
-- Create table MY_STUDENT
sql_stmt := 'CREATE TABLE my_student '||

'AS SELECT * FROM student '|| 'WHERE zip ='|| v_zip;
EXECUTE IMMEDIATE sql_stmt;

-- Select total number of records from MY_STUDENT table
-- and display results on the screen
EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM :my_table'
INTO v_total_students
USING 'my_student';
DBMS_OUTPUT.PUT_LINE ('Students added: '|| v_total_students);

END;

When run, this example causes the following error:

DECLARE
*
ERROR at line 1:
ORA-00903: invalid table name
ORA-06512: at line 13

This example causes an error because you cannot pass names of schema objects to dynamic SQL
statements as bind arguments. To provide a table name at runtime, you need to concatenate this
example with the SELECT statement:

EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM '||my_table
INTO v_total_students;

As mentioned earlier, a dynamic SQL string can contain any SQL statement or PL/SQL block.
However, unlike static SQL statements, a dynamic SQL statement should not be terminated with
a semicolon (;). Similarly, a dynamic PL/SQL block should not be terminated with a slash (/).
Consider a different version of the same example in which the SELECT statement is terminated
with a semicolon. Changes are shown in bold.

WATCH OUT!

If you created the MY_STUDENT table based on the corrected version of the preceding script, you
need to drop it before running the following script. Otherwise, the error message generated by the
example will differ from the error message shown after the example.

L A B 17.1
384

EXECUTE IMMEDIATE Statements

FOR EXAMPLE

DECLARE
sql_stmt VARCHAR2(100);
v_zip VARCHAR2(5) := '11106';
v_total_students NUMBER;

BEGIN
-- Create table MY_STUDENT
sql_stmt := 'CREATE TABLE my_student '||

'AS SELECT * FROM student '|| 'WHERE zip = '||v_zip;
EXECUTE IMMEDIATE sql_stmt;

-- Select total number of records from MY_STUDENT table
-- and display results on the screen
EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM my_student;'
INTO v_total_students;
DBMS_OUTPUT.PUT_LINE ('Students added: '|| v_total_students);

END;

When run, this example produces the following error:

DECLARE
*
ERROR at line 1:
ORA-00911: invalid character
ORA-06512: at line 13

The semicolon added to the SELECT statement is treated as an invalid character when the state-
ment is created dynamically. A somewhat similar error is generated when a PL/SQL block is
terminated by a slash:

FOR EXAMPLE

DECLARE
plsql_block VARCHAR2(300);

BEGIN
-- Select current date and display it on the screen
plsql_block := 'DECLARE ' ||

' v_date DATE; ' ||
'BEGIN ' ||
' SELECT SYSDATE INTO v_date FROM DUAL; '||
' DBMS_OUTPUT.PUT_LINE (TO_CHAR(v_date,

''DD-MON-YYYY''));'||
'END;' ;

EXECUTE IMMEDIATE plsql_block;
END;

L A B 17.1EXECUTE IMMEDIATE Statements

385

This example produces the following error message:

DECLARE
*
ERROR at line 1:
ORA-06550: line 1, column 133:
PLS-00103: Encountered the symbol "/" The symbol "/" was ignored.
ORA-06512: at line 12

PASSING NULLS

In some cases you may need to pass a NULL value to a dynamic SQL statement as a value for a
bind argument. For example, suppose you need to update the COURSE table so that the
PREREQUISITE column is set to NULL. You can accomplish this with the following dynamic
SQL and the EXECUTE IMMEDIATE statement:

FOR EXAMPLE

DECLARE
sql_stmt VARCHAR2(100);

BEGIN
sql_stmt := 'UPDATE course'||

' SET prerequisite = :some_value';
EXECUTE IMMEDIATE sql_stmt
USING NULL;

END;

However, when run, this script causes the following error:

USING NULL;
*

ERROR at line 7:
ORA-06550: line 7, column 10:
PLS-00457: expressions have to be of SQL types
ORA-06550: line 6, column 4:
PL/SQL: Statement ignored

This error is generated because the literal NULL in the USING clause is not recognized as one
of the SQL types. To pass a NULL value to the dynamic SQL statement, you should modify this
example as follows (changes are shown in bold):

FOR EXAMPLE

DECLARE
sql_stmt VARCHAR2(100);
v_null VARCHAR2(1);

BEGIN
sql_stmt := 'UPDATE course'||

' SET prerequisite = :some_value';

L A B 17.1
386

EXECUTE IMMEDIATE Statements

▼

EXECUTE IMMEDIATE sql_stmt
USING v_null;

END;

To correct the script, you add an initialized variable v_null and replace the literal NULL in the
USING clause with this variable. Because the variable v_null has not been initialized, its value
remains NULL, and it is passed to the dynamic UPDATE statement at runtime. As a result, this
version of the script completes without any errors.

L A B 1 7 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

17.1.1 Use the EXECUTE IMMEDIATE Statement

Create the following PL/SQL script:

-- ch17_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

sql_stmt VARCHAR2(200);
v_student_id NUMBER := &sv_student_id;
v_first_name VARCHAR2(25);
v_last_name VARCHAR2(25);

BEGIN
sql_stmt := 'SELECT first_name, last_name'||

' FROM student' ||
' WHERE student_id = :1';

EXECUTE IMMEDIATE sql_stmt
INTO v_first_name, v_last_name
USING v_student_id;

DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);

END;

Execute the script, and then complete the following exercises:

A) Explain the preceding script.

ANSWER: The declaration portion of the script declares the string that contains the dynamic SQL
statement, and three variables to hold student’s ID, first name, and last name, respectively. The
executable portion of the script contains a dynamic SQL statement with one bind argument that
is used to pass the value of the student ID to the SELECT statement at runtime. The dynamic SQL
statement is executed using the EXECUTE IMMEDIATE statement with two options, INTO and
USING. The INTO clause contains two variables,v_first_name and v_last_name. These
variables contain results returned by the SELECT statement. The USING clause contains the vari-
able v_student_id, which is used to pass a value to the SELECT statement at runtime. Finally,
two DBMS_OUTPUT.PUT_LINE statements are used to display the results of the SELECT statement
on the screen.

L A B 17.1Lab 17.1 Exercises

387

When run, the script produces the following output:

Enter value for sv_student_id: 105
old 3: v_student_id NUMBER := &sv_student_id;
new 3: v_student_id NUMBER := 105;
First Name: Angel
Last Name: Moskowitz

PL/SQL procedure successfully completed.

B) Modify the script so that the student’s address (street, city, state, and zip code) is displayed on the
screen as well.

ANSWER: Your script should look similar to the following. Changes are shown in bold.

-- ch17_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

sql_stmt VARCHAR2(200);
v_student_id NUMBER := &sv_student_id;
v_first_name VARCHAR2(25);
v_last_name VARCHAR2(25);
v_street VARCHAR2(50);
v_city VARCHAR2(25);
v_state VARCHAR2(2);
v_zip VARCHAR2(5);

BEGIN
sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||

' ,b.city, b.state, b.zip' ||
' FROM student a, zipcode b' ||
' WHERE a.zip = b.zip' ||
' AND student_id = :1';

EXECUTE IMMEDIATE sql_stmt
INTO v_first_name, v_last_name, v_street, v_city, v_state, v_zip
USING v_student_id;

DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
DBMS_OUTPUT.PUT_LINE ('Street: '||v_street);
DBMS_OUTPUT.PUT_LINE ('City: '||v_city);
DBMS_OUTPUT.PUT_LINE ('State: '||v_state);
DBMS_OUTPUT.PUT_LINE ('Zip Code: '||v_zip);

END;

In the preceding script, you declare four new variables—v_street,v_city,v_state, and
v_zip. Next, you modify the dynamic SQL statement so that it can return the student’s address.
As a result, you modify the INTO clause by adding the new variables to it. Next, you add
DBMS_OUTPUT.PUT_LINE statements to display the student’s address on the screen.

When run, the script produces the following output:

Enter value for sv_student_id: 105
old 3: v_student_id NUMBER := &sv_student_id;
new 3: v_student_id NUMBER := 105;

L A B 17.1
388

Lab 17.1 Exercises

First Name: Angel
Last Name: Moskowitz
Street: 320 John St.
City: Ft. Lee
State: NJ
Zip Code: 07024

PL/SQL procedure successfully completed.

It is important to remember that the order of variables listed in the INTO clause must follow the
order of columns listed in the SELECT statement. In other words, if the INTO clause listed variables
so that v_zip and v_state were misplaced while the SELECT statement remained
unchanged, the scripts would generate an error:

SET SERVEROUTPUT ON
DECLARE

sql_stmt VARCHAR2(200);
v_student_id NUMBER := &sv_student_id;
v_first_name VARCHAR2(25);
v_last_name VARCHAR2(25);
v_street VARCHAR2(50);
v_city VARCHAR2(25);
v_state VARCHAR2(2);
v_zip VARCHAR2(5);

BEGIN
sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||

' ,b.city, b.state, b.zip' ||
' FROM student a, zipcode b' ||
' WHERE a.zip = b.zip' ||
' AND student_id = :1';

EXECUTE IMMEDIATE sql_stmt
-- variables v_state and v_zip are misplaced
INTO v_first_name, v_last_name, v_street, v_city, v_zip, v_state
USING v_student_id;

DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
DBMS_OUTPUT.PUT_LINE ('Street: '||v_street);
DBMS_OUTPUT.PUT_LINE ('City: '||v_city);
DBMS_OUTPUT.PUT_LINE ('State: '||v_state);
DBMS_OUTPUT.PUT_LINE ('Zip Code: '||v_zip);

END;

The error message is as follows:

Enter value for sv_student_id: 105
old 3: v_student_id NUMBER := &sv_student_id;
new 3: v_student_id NUMBER := 105;
DECLARE
*

L A B 17.1Lab 17.1 Exercises

389

ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 16

This error is generated because the variable v_state can hold up to two characters. However,
you are trying to store in it a value of zip code, which contains five characters.

C) Modify the script created in the previous exercise (ch17_1b.sql) so that the SELECT statement can
be run against either the STUDENT or INSTRUCTOR table. In other words, a user can specify the
table name used in the SELECT statement at runtime.

ANSWER: Your script should look similar to the following. Changes are shown in bold.

-- ch17_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

sql_stmt VARCHAR2(200);
v_table_name VARCHAR2(20) := '&sv_table_name';
v_id NUMBER := &sv_id;
v_first_name VARCHAR2(25);
v_last_name VARCHAR2(25);
v_street VARCHAR2(50);
v_city VARCHAR2(25);
v_state VARCHAR2(2);
v_zip VARCHAR2(5);

BEGIN
sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||

' ,b.city, b.state, b.zip' ||
' FROM '||v_table_name||' a, zipcode b' ||
' WHERE a.zip = b.zip' ||
' AND '||v_table_name||'_id = :1';

EXECUTE IMMEDIATE sql_stmt
INTO v_first_name, v_last_name, v_street, v_city, v_state, v_zip
USING v_id;

DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
DBMS_OUTPUT.PUT_LINE ('Street: '||v_street);
DBMS_OUTPUT.PUT_LINE ('City: '||v_city);
DBMS_OUTPUT.PUT_LINE ('State: '||v_state);
DBMS_OUTPUT.PUT_LINE ('Zip Code: '||v_zip);

END;

The declaration portion of the script contains a new variable,v_table_name, which holds the
name of a table provided at runtime by the user. In addition, the variable v_student_id has
been replaced by the variable v_id because it is not known in advance which table, STUDENT or
INSTRUCTOR, will be accessed at runtime.

The executable portion of the script contains a modified dynamic SQL statement. Notice that the
statement does not contain any information specific to the STUDENT or INSTRUCTOR tables. In
other words, the dynamic SQL statement used by the previous version (ch17_1b.sql)

sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||
' ,b.city, b.state, b.zip' ||

L A B 17.1
390

Lab 17.1 Exercises

' FROM student a, zipcode b' ||
' WHERE a.zip = b.zip' ||
' AND student_id = :1';

has been replaced by

sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||
' ,b.city, b.state, b.zip' ||
' FROM '||v_table_name||' a, zipcode b' ||
' WHERE a.zip = b.zip' ||
' AND '||v_table_name||'_id = :1';

The table name (student) has been replaced by the variable v_table_name in the FROM and
the WHERE clauses.

DID YOU KNOW?

Note that for the last two versions of the script you have used generic table aliases—a and b instead
of s and z or i and z, which are more descriptive. This technique allows you to create generic SQL
statements that are not based on a specific table, because you do not always know in advance
which table will be used.

This version of the script produces the following output. The first run is against the STUDENT
table, and the second run is against the INSTRUCTOR table:

Enter value for sv_table_name: student
old 3: v_table_name VARCHAR2(20) := '&sv_table_name';
new 3: v_table_name VARCHAR2(20) := 'student';
Enter value for sv_id: 105
old 4: v_id NUMBER := &sv_id;
new 4: v_id NUMBER := 105;
First Name: Angel
Last Name: Moskowitz
Street: 320 John St.
City: Ft. Lee
State: NJ
Zip Code: 07024

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor
old 3: v_table_name VARCHAR2(20) := '&sv_table_name';
new 3: v_table_name VARCHAR2(20) := 'instructor';
Enter value for sv_id: 105
old 4: v_id NUMBER := &sv_id;
new 4: v_id NUMBER := 105;
First Name: Anita
Last Name: Morris
Street: 34 Maiden Lane
City: New York
State: NY
Zip Code: 10015

PL/SQL procedure successfully completed.

L A B 17.1Lab 17.1 Exercises

391

L A B 1 7 . 2

OPEN-FOR, FETCH, and CLOSE
Statements

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use OPEN-FOR, FETCH, and CLOSE statements

The OPEN-FOR, FETCH, and CLOSE statements are used for multirow queries or cursors. This
concept is very similar to static cursor processing, which you encountered in Chapter 11,
“Introduction to Cursors.” As in the case of static cursors, first you associate a cursor variable
with a query. Next, you open the cursor variable so that it points to the first row of the result
set. Then you fetch one row at a time from the result set. Finally, when all rows have been
processed, you close the cursor (cursor variable).

OPENING CURSOR

In the case of dynamic SQL, the OPEN-FOR statement has an optional USING clause that allows
you to pass values to the bind arguments at runtime. The general syntax for an OPEN-FOR
statement is as follows (the reserved words and phrases in brackets are optional):

OPEN cursor_variable FOR dynamic_SQL_string
[USING bind_argument1, bind_argument2, ...]

cursor_variable is a variable of a weak REF CURSOR type, and
dynamic_SQL_string is a string that contains a multirow query.

FOR EXAMPLE

DECLARE
TYPE student_cur_type IS REF CURSOR;
student_cur student_cur_type;

v_zip VARCHAR2(5) := '&sv_zip';
v_first_name VARCHAR2(25);
v_last_name VARCHAR2(25);

BEGIN
OPEN student_cur FOR

L A B 17.2
392

'SELECT first_name, last_name FROM student '|| 'WHERE zip = :1'
USING v_zip;

...

In this code fragment, you define a weak cursor type, student_cur_type. Next, you define
a cursor variable student_cur based on the REF CURSOR type specified in the preceding
step. At runtime, the student_cur variable is associated with the SELECT statement that
returns the first and last names of students for a given value of zip.

FETCHING CURSOR

As mentioned earlier, the FETCH statement returns a single row from the result set into a list of
variables defined in a PL/SQL block and moves the cursor to the next row. If a loop is being
processed and there are no more rows to fetch, the EXIT WHEN statement evaluates to TRUE,
and control of the execution is passed outside the cursor loop. The general syntax for a FETCH
statement is as follows:

FETCH cursor_variable
INTO defined_variable1, defined_variable2, ...
EXIT WHEN cursor_variable%NOTFOUND;

Adding the previous example, you fetch the student’s first and last names into variables speci-
fied in the declaration section of the PL/SQL block. Next, you evaluate whether there are more
records to process using the EXIT WHEN statement. As long as there are more records to
process, the student’s first and last names are displayed on the screen. As soon as the last row is
fetched, the cursor loop terminates. Changes are shown in bold.

FOR EXAMPLE

DECLARE
TYPE student_cur_type IS REF CURSOR;
student_cur student_cur_type;

v_zip VARCHAR2(5) := '&sv_zip';
v_first_name VARCHAR2(25);
v_last_name VARCHAR2(25);

BEGIN
OPEN student_cur FOR

'SELECT first_name, last_name FROM student '|| 'WHERE zip = :1'
USING v_zip;

LOOP
FETCH student_cur INTO v_first_name, v_last_name;
EXIT WHEN student_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);

END LOOP;
...

L A B 17.2OPEN-FOR, FETCH, and CLOSE Statements

393

It is important to note that the number of variables listed in the INTO clause must correspond
to the number of columns returned by the cursor. Furthermore, the variables in the INTO clause
must be type-compatible with the cursor columns.

CLOSING CURSOR

The CLOSE statement disassociates the cursor variable with the multirow query. As a result,
after the CLOSE statement executes, the result set becomes undefined. The general syntax for a
CLOSE statement is as follows:

CLOSE cursor_variable;

Now consider the completed version of the example shown previously. Changes are shown in
bold.

FOR EXAMPLE

DECLARE
TYPE student_cur_type IS REF CURSOR;
student_cur student_cur_type;

v_zip VARCHAR2(5) := '&sv_zip';
v_first_name VARCHAR2(25);
v_last_name VARCHAR2(25);

BEGIN
OPEN student_cur FOR

'SELECT first_name, last_name FROM student '|| 'WHERE zip = :1'
USING v_zip;

LOOP
FETCH student_cur INTO v_first_name, v_last_name;
EXIT WHEN student_cur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);

END LOOP;
CLOSE student_cur;

EXCEPTION
WHEN OTHERS THEN

IF student_cur%ISOPEN THEN
CLOSE student_cur;

END IF;

DBMS_OUTPUT.PUT_LINE ('ERROR: '|| SUBSTR(SQLERRM, 1, 200));
END;

The IF statement in the exception-handling section evaluates to TRUE if an exception is encoun-
tered before the cursor processing is completed. In such a case, it is considered a good practice

L A B 17.2
394

OPEN-FOR, FETCH, and CLOSE Statements

▼

to check and see if a cursor is still open and, if it is, close it. Doing so frees all the resources asso-
ciated with the cursor before the program terminates.

When run, this example produces the following output:

Enter value for sv_zip: 11236
old 5: v_zip VARCHAR2(5) := '&sv_zip';
new 5: v_zip VARCHAR2(5) := '11236';
First Name: Derrick
Last Name: Baltazar
First Name: Michael
Last Name: Lefbowitz
First Name: Bridget
Last Name: Hagel

PL/SQL procedure successfully completed.

L A B 1 7 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

17.2.1 Use OPEN-FOR, FETCH, and CLOSE Statements

Create the following PL/SQL script:

-- ch17_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

TYPE zip_cur_type IS REF CURSOR;
zip_cur zip_cur_type;

sql_stmt VARCHAR2(500);
v_zip VARCHAR2(5);
v_total NUMBER;

v_count NUMBER;
BEGIN

sql_stmt := 'SELECT zip, COUNT(*) total'||
' FROM student ' ||
'GROUP BY zip';

v_count := 0;
OPEN zip_cur FOR sql_stmt;
LOOP

FETCH zip_cur INTO v_zip, v_total;
EXIT WHEN zip_cur%NOTFOUND;

-- Limit the number of lines printed on the
-- screen to 10

L A B 17.2Lab 17.2 Exercises

395

v_count := v_count + 1;
IF v_count <= 10 THEN

DBMS_OUTPUT.PUT_LINE ('Zip code: '||v_zip||
' Total: '||v_total);

END IF;
END LOOP;
CLOSE zip_cur;

EXCEPTION
WHEN OTHERS THEN

IF zip_cur%ISOPEN THEN
CLOSE zip_cur;

END IF;

DBMS_OUTPUT.PUT_LINE ('ERROR: '|| SUBSTR(SQLERRM, 1, 200));
END;

Consider the use of spaces in the SQL statements generated dynamically. In the preceding script, the
string that holds the dynamic SQL statement consists of three concatenated strings, where each string is
written on a separate line:

sql_stmt := 'SELECT zip, COUNT(*) total'||
' FROM student ' ||
'GROUP BY zip';

This format of the dynamic SELECT statement is very similar to the format of any static SELECT statement
that you have seen throughout this book. However, there is a subtle difference. In one instance, extra
spaces have been added for formatting reasons. For example, the FROM keyword is prefixed by two
spaces so that it aligns with the SELECT keyword. In another instance, a space has been added to sepa-
rate a reserved phrase. In this case, a space has been added after the STUDENT table to separate the
GROUP BY clause. This step is necessary because after the strings are concatenated, the resulting SELECT
statement looks like this:

SELECT zip, COUNT(*) total FROM student GROUP BY zip

If no space is added after the STUDENT table, the resulting SELECT statement

SELECT zip, COUNT(*) total FROM studentGROUP BY zip

causes this error:

ERROR: ORA-00933: SQL command not properly ended

PL/SQL procedure successfully completed.

Execute the script, and then complete the following exercises:

A) Explain the preceding script.

ANSWER: In the declaration portion of the script, you define a weak cursor type,
zip_cur_type, and a cursor variable,zip_cur, of the zip_cur_type type. Next, you
define a string variable to hold a dynamic SQL statement, and two variables,v_zip and
v_total, to hold data returned by the cursor. Finally, you define a counter variable so that only
the first ten rows returned by the cursor are displayed on the screen.

L A B 17.2
396

Lab 17.2 Exercises

In the executable portion of the script, you generate a dynamic SQL statement, associate it with
the cursor variable,zip_cur, and open the cursor. Next, for each row returned by the cursor, you
fetch values of zip code and total number of students into the variables v_zip and v_total,
respectively. Then, you check to see if there are more rows to fetch from the cursor. If there are
more rows to process, you increment the value of the counter variable by 1. As long as the value
of the counter is less than or equal to 10, you display the row returned by the cursor on the
screen. If there are no more rows to fetch, you close the cursor.

In the exception-handling section of the script, you check to see if the cursor is open. If it is, you
close the cursor and display an error message on the screen before terminating the script.

When run, the script should produce output similar to the following:

Zip code: 01247 Total: 1
Zip code: 02124 Total: 1
Zip code: 02155 Total: 1
Zip code: 02189 Total: 1
Zip code: 02563 Total: 1
Zip code: 06483 Total: 1
Zip code: 06605 Total: 1
Zip code: 06798 Total: 1
Zip code: 06820 Total: 3
Zip code: 06830 Total: 3

PL/SQL procedure successfully completed.

B) Modify the script you just created (ch17_2a.sql) so that the SELECT statement can be run against
either the STUDENT or INSTRUCTOR table. In other words, a user can specify the table name used
in the SELECT statement at runtime.

ANSWER: Your script should look similar to the following. Changes are shown in bold.

-- ch17_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

TYPE zip_cur_type IS REF CURSOR;
zip_cur zip_cur_type;

v_table_name VARCHAR2(20) := '&sv_table_name';
sql_stmt VARCHAR2(500);
v_zip VARCHAR2(5);
v_total NUMBER;

v_count NUMBER;
BEGIN

DBMS_OUTPUT.PUT_LINE ('Totals from '||v_table_name||
' table');

sql_stmt := 'SELECT zip, COUNT(*) total'||
' FROM '||v_table_name||' '||
'GROUP BY zip';

v_count := 0;
OPEN zip_cur FOR sql_stmt;
LOOP

L A B 17.2Lab 17.2 Exercises

397

FETCH zip_cur INTO v_zip, v_total;
EXIT WHEN zip_cur%NOTFOUND;

-- Limit the number of lines printed on the
-- screen to 10
v_count := v_count + 1;
IF v_count <= 10 THEN

DBMS_OUTPUT.PUT_LINE ('Zip code: '||v_zip||
' Total: '||v_total);

END IF;
END LOOP;
CLOSE zip_cur;

EXCEPTION
WHEN OTHERS THEN

IF zip_cur%ISOPEN THEN
CLOSE zip_cur;

END IF;

DBMS_OUTPUT.PUT_LINE ('ERROR: '|| SUBSTR(SQLERRM, 1, 200));
END;

In this version of the script, you add a variable,v_table_name, to hold the name of a table
provided at runtime. You also add a DBMS_OUTPUT.PUT_LINE table to display a message stating
what table the total numbers are coming from. Next, you modify the dynamic SQL statement as
follows:

sql_stmt := 'SELECT zip, COUNT(*) total'||
' FROM '||v_table_name||' '||
'GROUP BY zip';

The variable v_table_name has been inserted in place of the actual table name (STUDENT).
Note that you concatenate a space to the variable v_table_name so that the SELECT state-
ment does not cause any errors.

When run, this script produces the following output. The first run is based on the STUDENT table,
and the second run is based on the INSTRUCTOR table.

Enter value for sv_table_name: student
old 5: v_table_name VARCHAR2(20) := '&sv_table_name';
new 5: v_table_name VARCHAR2(20) := 'student';
Totals from student table
Zip code: 01247 Total: 1
Zip code: 02124 Total: 1
Zip code: 02155 Total: 1
Zip code: 02189 Total: 1
Zip code: 02563 Total: 1
Zip code: 06483 Total: 1
Zip code: 06605 Total: 1
Zip code: 06798 Total: 1
Zip code: 06820 Total: 3
Zip code: 06830 Total: 3

PL/SQL procedure successfully completed.

L A B 17.2
398

Lab 17.2 Exercises

Enter value for sv_table_name: instructor
old 5: v_table_name VARCHAR2(20) := '&sv_table_name';
new 5: v_table_name VARCHAR2(20) := 'instructor';
Totals from instructor table
Zip code: 10005 Total: 1
Zip code: 10015 Total: 3
Zip code: 10025 Total: 4
Zip code: 10035 Total: 1

PL/SQL procedure successfully completed.

So far you have seen that values returned by the dynamic SQL statements are stored in individual
variables such as v_last_name or v_first_name. In such cases, you list the variables in the
order of the corresponding columns returned by the SELECT statement. This approach becomes
somewhat cumbersome when a dynamic SQL statement returns more than a few columns. As a
result, PL/SQL allows you to store values returned by the dynamic SELECT statements in the vari-
ables of the record type.

Consider the modified version of the script used in this lab. In this version, instead of creating
separate variables, you create a user-defined record. This record is then used to fetch data from
the cursor and display it on the screen. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

TYPE zip_cur_type IS REF CURSOR;
zip_cur zip_cur_type;

TYPE zip_rec_type IS RECORD
(zip VARCHAR2(5),
total NUMBER);

zip_rec zip_rec_type;

v_table_name VARCHAR2(20) := '&sv_table_name';
sql_stmt VARCHAR2(500);
v_count NUMBER;

BEGIN
DBMS_OUTPUT.PUT_LINE ('Totals from '||v_table_name||

' table');

sql_stmt := 'SELECT zip, COUNT(*) total'||
' FROM '||v_table_name||' '||
'GROUP BY zip';

v_count := 0;
OPEN zip_cur FOR sql_stmt;
LOOP

FETCH zip_cur INTO zip_rec;
EXIT WHEN zip_cur%NOTFOUND;

-- Limit the number of lines printed on the
-- screen to 10
v_count := v_count + 1;

L A B 17.2Lab 17.2 Exercises

399

IF v_count <= 10 THEN
DBMS_OUTPUT.PUT_LINE ('Zip code: '||zip_rec.zip||

' Total: '||zip_rec.total);
END IF;

END LOOP;
CLOSE zip_cur;

EXCEPTION
WHEN OTHERS THEN

IF zip_cur%ISOPEN THEN
CLOSE zip_cur;

END IF;

DBMS_OUTPUT.PUT_LINE ('ERROR: '|| SUBSTR(SQLERRM, 1, 200));
END;

The output is as follows:

Enter value for sv_table_name: student
old 10: v_table_name VARCHAR2(20) := '&sv_table_name';
new 10: v_table_name VARCHAR2(20) := 'student';
Totals from student table
Zip code: 01247 Total: 1
Zip code: 02124 Total: 1
Zip code: 02155 Total: 1
Zip code: 02189 Total: 1
Zip code: 02563 Total: 1
Zip code: 06483 Total: 1
Zip code: 06605 Total: 1
Zip code: 06798 Total: 1
Zip code: 06820 Total: 3
Zip code: 06830 Total: 3

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor
old 10: v_table_name VARCHAR2(20) := '&sv_table_name';
new 10: v_table_name VARCHAR2(20) := 'instructor';
Totals from instructor table
Zip code: 10005 Total: 1
Zip code: 10015 Total: 3
Zip code: 10025 Total: 4
Zip code: 10035 Total: 1

PL/SQL procedure successfully completed.

L A B 17.2
400

Lab 17.2 Exercises

▼ T R Y I T Y O U R S E L F

This chapter has no Try It Yourself projects. Try It Yourself project 2 in Chapter 19,“Procedures,” extends
the material on native dynamic SQL and puts it to use within the context of stored procedures.

Try it Yourself 401

This page intentionally left blank

C H A P T E R 1 8

Bulk SQL

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. The FORALL statement

. The BULK COLLECT clause

In Chapter 1, “PL/SQL Concepts,” you learned that the PL/SQL engine sends
SQL statements to the SQL engine, which returns results to the PL/SQL engine.
The communication between the PL/SQL and SQL engines is called a context
switch. A certain amount of performance overhead is associated with these
context switches. However, the PL/SQL language has a number of features that
can minimize the performance overhead known as bulk SQL. Generally, if a SQL
statement affects four or more rows, bulk SQL may improve performance signif-
icantly. Bulk SQL supports batch processing of SQL statements and their results.
It consists of two features—the FORALL statement and the BULK COLLECT
clause.

L A B 1 8 . 1

The FORALL Statement

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use the FORALL statement

The FORALL statement sends INSERT, UPDATE, or DELETE statements in batches from
PL/SQL to SQL instead of one at a time. For example, consider an INSERT statement enclosed
in the numeric FOR loop that iterates ten times:

FOR i IN 1..10 LOOP
INSERT INTO table_name
VALUES (...);

END LOOP;

This INSERT statement is sent from PL/SQL to SQL ten times. In other words, ten context
switches take place. If you replace the FOR loop with the FORALL statement, the INSERT state-
ment is sent only once from PL/SQL to SQL, yet it is still executed ten times. In this case, there
is only one context switch between PL/SQL and SQL.

The FORALL statement has the following structure (the reserved words in brackets are
optional):

FORALL loop_counter IN bounds_clause
SQL_STATEMENT [SAVE EXCEPTIONS];

where bounds_clause is one of the following:

lower_limit..upper_limit

INDICES OF collection_name BETWEEN lower_limit..upper_limit

VALUES OF collection_name

The FORALL statement has an implicitly defined loop counter variable associated with it. The
values of the loop counter variable and the number of loop iterations are controlled by
bounds_clause, which has three forms. The first form specifies lower and upper limits for
the loop counter. This syntax is very similar to the numeric FOR loop. The second form,
INDICES OF..., references subscripts of the individual elements of a particular collection. This
collection may be a nested table or an associative array that has numeric subscripts.

L A B 18.1
404

DID YOU KNOW?

A collection referenced by the INDICES OF clause may be sparse. In other words, some of its
elements have been deleted.

The third form of bounds_clause, VALUES OF..., references values of the individual elements
of a particular collection, which is either a nested table or an associative array.

WATCH OUT!

When you use the VALUES OF option, the following restrictions apply:

. If the collection used in the VALUES OF clause is an associative array, it must be indexed by
PLS_INTEGER and BINARY_INTEGER.

. The elements of the collection used in the VALUES OF clause must be PLS_INTEGER or
BINARY_INTEGER.

. When the collection referenced by the VALUES OF clause is empty, the FORALL statement
causes an exception.

Next, SQL_STATEMENT is either a static or dynamic INSERT, UPDATE, or DELETE statement
that references one or more collections. Finally, the optional SAVE EXCEPTIONS clause allows
the FORALL statement to continue even when SQL_STATEMENT causes an exception.

Consider the following example that illustrates how the FORALL statement may be used. This
example, as well as other examples in this chapter, uses a test table created specifically for this
purpose. The rows from the TEST table can be easily inserted, updated, or deleted without
affecting the STUDENT schema or violating any integrity constraints.

FOR EXAMPLE

CREATE TABLE test (row_num NUMBER, row_text VARCHAR2(10));

DECLARE
-- Define collection types and variables
TYPE row_num_type IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
TYPE row_text_type IS TABLE OF VARCHAR2(10) INDEX BY PLS_INTEGER;

row_num_tab row_num_type;
row_text_tab row_text_type;

v_total NUMBER;

BEGIN
-- Populate collections
FOR i IN 1..10 LOOP

row_num_tab(i) := i;
row_text_tab(i) := 'row '||i;

END LOOP;

L A B 18.1The FORALL Statement

405

FOR EXAMPLE (continued)

-- Populate TEST table
FORALL i IN 1..10

INSERT INTO test (row_num, row_text)
VALUES (row_num_tab(i), row_text_tab(i));

COMMIT;

-- Check how many rows were inserted in the TEST table
-- and display it on the screen
SELECT COUNT(*)
INTO v_total
FROM TEST;

DBMS_OUTPUT.PUT_LINE
('There are '||v_total||' rows in the TEST table');

END;

As mentioned earlier, when SQL statements are used with FORALL statements, they reference
collection elements. So, in this script, you define two collection types as associative arrays and
two collections that are populated using the numeric FOR loop. Next, you populate the TEST
table with the data from two collections.

When run, this example produces the following output:

There are 10 rows in the TEST table

PL/SQL procedure successfully completed.

Next, consider another example, which demonstrates the performance gain when you use the
FORALL statement. In this example, you compare the execution times of the INSERT statements
issued against the TEST table. The first hundred inserts are enclosed by the numeric FOR loop,
and the second hundred inserts are enclosed by the FORALL statement.

FOR EXAMPLE

TRUNCATE TABLE test;

DECLARE
-- Define collection types and variables
TYPE row_num_type IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
TYPE row_text_type IS TABLE OF VARCHAR2(10) INDEX BY PLS_INTEGER;

row_num_tab row_num_type;
row_text_tab row_text_type;

v_total NUMBER;

L A B 18.1
406

The FORALL Statement

v_start_time INTEGER;
v_end_time INTEGER;

BEGIN
-- Populate collections
FOR i IN 1..100 LOOP

row_num_tab(i) := i;
row_text_tab(i) := 'row '||i;

END LOOP;

-- Record start time
v_start_time := DBMS_UTILITY.GET_TIME;

-- Insert first 100 rows
FOR i IN 1..100 LOOP

INSERT INTO test (row_num, row_text)
VALUES (row_num_tab(i), row_text_tab(i));

END LOOP;

-- Record end time
v_end_time := DBMS_UTILITY.GET_TIME;

-- Calculate and display elapsed time
DBMS_OUTPUT.PUT_LINE ('Duration of the FOR LOOP: '||

(v_end_time - v_start_time));

-- Record start time
v_start_time := DBMS_UTILITY.GET_TIME;

-- Insert second 100 rows
FORALL i IN 1..100

INSERT INTO test (row_num, row_text)
VALUES (row_num_tab(i), row_text_tab(i));

-- Record end time
v_end_time := DBMS_UTILITY.GET_TIME;

-- Calculate and display elapsed time
DBMS_OUTPUT.PUT_LINE ('Duration of the FORALL statement: '||

(v_end_time - v_start_time));

COMMIT;
END;

To calculate execution times of the FOR loop and the FORALL statement, you employ the
GET_TIME function from the DBMS_UTILITY package that is owned by the Oracle user SYS.

L A B 18.1The FORALL Statement

407

The GET_TIME function returns the current time down to hundredths of a second. Note the
output produced by this example:

Duration of the FOR LOOP: 3
Duration of the FORALL statement: 0

PL/SQL procedure successfully completed.

THE SAVE EXCEPTIONS OPTION

As mentioned previously, the SAVE EXCEPTIONS option enables the FORALL statement to
continue even when the corresponding SQL statement causes an exception. These exceptions
are stored in the cursor attribute called SQL%BULK_EXCEPTIONS. The SQL%BULK_
EXCEPTIONS cursor attribute is a collection of records in which each record consists of two
fields, ERROR_INDEX and ERROR_CODE. The ERROR_INDEX field stores the number of the
iteration of the FORALL statement during which an exception was encountered, and the
ERROR_CODE stores the Oracle error code corresponding to the raised exception.

The number of exceptions that occurred during the execution of the FORALL statement can be
retrieved using SQL%BULK_EXCEPTIONS.COUNT. Note that even though the individual error
messages are not saved, they can be looked up using the SQLERRM function.

Next, consider an example of the FORALL statement with the SAVE EXCEPTIONS option:

FOR EXAMPLE

TRUNCATE TABLE TEST;

DECLARE
-- Define collection types and variables
TYPE row_num_type IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
TYPE row_text_type IS TABLE OF VARCHAR2(11) INDEX BY PLS_INTEGER;

row_num_tab row_num_type;
row_text_tab row_text_type;

-- Define user-defined exception and associated Oracle
-- error number with it
errors EXCEPTION;
PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN
-- Populate collections
FOR i IN 1..10 LOOP

row_num_tab(i) := i;
row_text_tab(i) := 'row '||i;

END LOOP;

-- Modify 1, 5, and 7 elements of the V_ROW_TEXT collection
-- These rows will cause exception in the FORALL statement
row_text_tab(1) := RPAD(row_text_tab(1), 11, ' ');

L A B 18.1
408

The FORALL Statement

row_text_tab(5) := RPAD(row_text_tab(5), 11, ' ');
row_text_tab(7) := RPAD(row_text_tab(7), 11, ' ');

-- Populate TEST table
FORALL i IN 1..10 SAVE EXCEPTIONS

INSERT INTO test (row_num, row_text)
VALUES (row_num_tab(i), row_text_tab(i));

COMMIT;

EXCEPTION
WHEN errors THEN

-- Display total number of exceptions encountered
DBMS_OUTPUT.PUT_LINE

('There were '||SQL%BULK_EXCEPTIONS.COUNT||' exceptions');

-- Display detailed exception information
FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT LOOP

DBMS_OUTPUT.PUT_LINE ('Record '||
SQL%BULK_EXCEPTIONS(i).error_index||' caused error '||i||
': '||SQL%BULK_EXCEPTIONS(i).ERROR_CODE||' '||
SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));

END LOOP;
END;

In this example, you declare a user-defined exception and associate it with the ORA-24381
exception. This exception occurs when errors are encountered in an array DML statement—
which, in this case, is the INSERT statement that uses collection elements.

To cause exceptions, the row_text_tab elements 1, 5, and 7 are expanded to store 11 char-
acters instead of 10, and the exception-handling section is added to handle these errors. In the
exception-handling section, you display how many exceptions were encountered by invoking
the COUNT method on the SQL%BULK_EXCEPTIONS collection. You also display detailed
exception information such as which record number caused an exception and the error message
associated with this exception. To display the number of the record that caused an exception,
you use the error_index field. To display the error message itself, you employ the SQLERRM
function and error_code field. Note that when error_code is passed to the SQLERRM
function, it is prefixed by a minus sign.

When run, this script produces the following output:

There were 3 exceptions
Record 1 caused error 1: 12899 ORA-12899: value too large for column
(actual: , maximum:)
Record 5 caused error 2: 12899 ORA-12899: value too large for column
(actual: , maximum:)
Record 7 caused error 3: 12899 ORA-12899: value too large for column
(actual: , maximum:)

PL/SQL procedure successfully completed.

L A B 18.1The FORALL Statement

409

THE INDICES OF OPTION

As stated previously, the INDICES OF option enables you to loop through a sparse collection.
Recall that such a collection may be a nested table or an associative array. The use of the
INDICES OF option is illustrated in the following example:

FOR EXAMPLE

TRUNCATE TABLE TEST;

DECLARE
-- Define collection types and variables
TYPE row_num_type IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
TYPE row_text_type IS TABLE OF VARCHAR2(10) INDEX BY PLS_INTEGER;

row_num_tab row_num_type;
row_text_tab row_text_type;

v_total NUMBER;
BEGIN

-- Populate collections
FOR i IN 1..10 LOOP

row_num_tab(i) := i;
row_text_tab(i) := 'row '||i;

END LOOP;

-- Delete 1, 5, and 7 elements of collections
row_num_tab.DELETE(1); row_text_tab.DELETE(1);
row_num_tab.DELETE(5); row_text_tab.DELETE(5);
row_num_tab.DELETE(7); row_text_tab.DELETE(7);

-- Populate TEST table
FORALL i IN INDICES OF row_num_tab

INSERT INTO test (row_num, row_text)
VALUES (row_num_tab(i), row_text_tab(i));

COMMIT;

SELECT COUNT(*)
INTO v_total
FROM test;

DBMS_OUTPUT.PUT_LINE
('There are '||v_total||' rows in the TEST table');

END;

To make the nested tables sparse, the first, fifth, and seventh elements are deleted. As a result,
the FORALL statement iterates seven times, and seven rows are added to the TEST table. This
is illustrated by the following output:

L A B 18.1
410

The FORALL Statement

There are 7 rows in the TEST table

PL/SQL procedure successfully completed.

THE VALUES OF OPTION

The VALUES OF option specifies that the values of the loop counter in the FORALL statement
are based on the values of the elements of the specified collection. Essentially, this collection is
a group of indexes that the FORALL statement can loop through. Furthermore, these indexes
do not need to be unique and can be listed in arbitrary order. The following example demon-
strates the use of the VALUES OF option:

FOR EXAMPLE

CREATE TABLE TEST_EXC (row_num NUMBER, row_text VARCHAR2(50));

TRUNCATE TABLE TEST;

DECLARE
-- Define collection types and variables
TYPE row_num_type IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
TYPE row_text_type IS TABLE OF VARCHAR2(11) INDEX BY PLS_INTEGER;
TYPE exc_ind_type IS TABLE OF PLS_INTEGER INDEX BY PLS_INTEGER;

row_num_tab row_num_type;
row_text_tab row_text_type;
exc_ind_tab exc_ind_type;

-- Define user-defined exception and associated Oracle
-- error number with it
errors EXCEPTION;
PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN
-- Populate collections
FOR i IN 1..10 LOOP

row_num_tab(i) := i;
row_text_tab(i) := 'row '||i;

END LOOP;

-- Modify 1, 5, and 7 elements of the V_ROW_TEXT collection
-- These rows will cause exception in the FORALL statement
row_text_tab(1) := RPAD(row_text_tab(1), 11, ' ');
row_text_tab(5) := RPAD(row_text_tab(5), 11, ' ');
row_text_tab(7) := RPAD(row_text_tab(7), 11, ' ');

-- Populate TEST table
FORALL i IN 1..10 SAVE EXCEPTIONS

INSERT INTO test (row_num, row_text)

L A B 18.1The FORALL Statement

411

FOR EXAMPLE (continued)

VALUES (row_num_tab(i), row_text_tab(i));
COMMIT;

EXCEPTION
WHEN errors THEN

-- Populate V_EXC_IND_TAB collection to be used in the VALUES
-- OF clause
FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT LOOP

exc_ind_tab(i) := SQL%BULK_EXCEPTIONS(i).error_index;
END LOOP;

-- Insert records that caused exceptions in the TEST_EXC
-- table
FORALL i in VALUES OF exc_ind_tab

INSERT INTO test_exc (row_num, row_text)
VALUES (row_num_tab(i), row_text_tab(i));

COMMIT;
END;

In this script, you define the TEST_EXC table, which has the same structure as the TEST table,
but with expanded data type sizes. The newly created table is used to store records that cause
exceptions when they are inserted into the TEST table. Next, you define the new collection data
type exc_ind_type as a table of PLS_INTEGER indexed by PLS_INTEGER. This enables you
to reference this collection in the VALUES OF clause later.

Next, you modify the first, fifth, and seventh elements of the row_text_tab table to cause
exceptions in the FORALL statement. Then, in the exception-handling section, you populate the
exc_ind_tab collection with index values of rows that caused the exceptions. In this example,
these index values are 1, 5, and 7, and they are stored in the ERROR_INDEX field of the
SQL%BULK_EXCEPTION collection. After exc_ind_tab is populated, you use it to iterate
through the row_num_tab and row_test_tab collections again and insert erroneous
records in the TEST_EXC tab.

After this script is executed, the TEST and TEST_EXC tables contain the following records:

select * from test;

ROW_NUM ROW_TEXT
---------- ----------

2 row 2
3 row 3
4 row 4
6 row 6
8 row 8
9 row 9
10 row 10

L A B 18.1
412

The FORALL Statement

7 rows selected.

select * from test_exc;

ROW_NUM ROW_TEXT
---------- --

1 row 1
5 row 5
7 row 7

L A B 1 8 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

18.1.1 Use the FORALL Statement

In this exercise, you create a new table called MY_ZIPCODE that has the same structure as the ZIPCODE
table in the STUDENT schema. This table will be used throughout the exercises in this lab. You will popu-
late this table using the FORALL statement. Furthermore, in these exercises you will use various options
available for the FORALL statement, such as SAVE EXCEPTIONS, INDICES OF, and VALUES OF.

Create the MY_ZIPCODE table as follows:

CREATE TABLE my_zipcode AS
SELECT *
FROM zipcode
WHERE 1 = 2;

This statement creates an empty MY_ZIPCODE table because the criterion specified in the WHERE clause
does not return any records.

Create the following PL/SQL script:

-- ch18_1a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

-- Declare collection types
TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;
TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

-- Declare collection variables to be used by the FORALL
-- statement
zip_tab string_type;
city_tab string_type;
state_tab string_type;
cr_by_tab string_type;
cr_date_tab date_type;
mod_by_tab string_type;
mod_date_tab date_type;

L A B 18.1Lab 18.1 Exercises

413

▼

v_counter PLS_INTEGER := 0;
v_total INTEGER := 0;

BEGIN
-- Populate individual collections
FOR rec IN (SELECT *

FROM zipcode
WHERE state = 'CT')

LOOP
v_counter := v_counter + 1;
zip_tab(v_counter) := rec.zip;
city_tab(v_counter) := rec.city;
state_tab(v_counter) := rec.state;
cr_by_tab(v_counter) := rec.created_by;
cr_date_tab(v_counter) := rec.created_date;
mod_by_tab(v_counter) := rec.modified_by;
mod_date_tab(v_counter) := rec.modified_date;

END LOOP;

-- Populate MY_ZIPCODE table
FORALL i in 1..zip_tab.COUNT

INSERT INTO my_zipcode
(zip, city, state, created_by, created_date, modified_by,
modified_date)

VALUES
(zip_tab(i), city_tab(i), state_tab(i), cr_by_tab(i),
cr_date_tab(i), mod_by_tab(i), mod_date_tab(i));

COMMIT;

-- Check how many records were added to MY_ZIPCODE table
SELECT COUNT(*)
INTO v_total
FROM my_zipcode
WHERE state = 'CT';

DBMS_OUTPUT.PUT_LINE
(v_total||' records were added to MY_ZIPCODE table');

END;

Answer the following questions and complete the following tasks:

A) Explain the newly created script.

ANSWER: This script populates the MY_ZIPCODE table with records selected from the ZIPCODE
table. To enable use of the FORALL statement, it employs seven collections. Note that only two
collection types are associated with these collections. This is because the individual collections
store only two data types, VARCHAR2 and DATE. The script uses cursor FOR loop to populate
the individual collections and then uses them with the FORALL statement to populate the
MY_ZIPCODE table. Finally, it checks how many records were added to the MY_ZIPCODE table
and displays this on the screen, as shown here:

19 records were added to MY_ZIPCODE table

PL/SQL procedure successfully completed.

L A B 18.1
414

Lab 18.1 Exercises

B) Modify the previous version of the script as follows: Select data from the ZIPCODE table for a
different state, such as MA. Modify the selected records so that they will cause various exceptions
in the FORALL statement. Modify the FORALL statement so that it does not fail when an exception
occurs. Finally, display exception details on the screen.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch18_1b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

-- Declare collection types
TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;
TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

-- Declare collection variables to be used by the FORALL
-- statement
zip_tab string_type;
city_tab string_type;
state_tab string_type;
cr_by_tab string_type;
cr_date_tab date_type;
mod_by_tab string_type;
mod_date_tab date_type;

v_counter PLS_INTEGER := 0;
v_total INTEGER := 0;

-- Define user-defined exception and associated Oracle
-- error number with it
errors EXCEPTION;
PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN
-- Populate individual collections
FOR rec IN (SELECT *

FROM zipcode
WHERE state = 'MA')

LOOP
v_counter := v_counter + 1;
zip_tab(v_counter) := rec.zip;
city_tab(v_counter) := rec.city;
state_tab(v_counter) := rec.state;
cr_by_tab(v_counter) := rec.created_by;
cr_date_tab(v_counter) := rec.created_date;
mod_by_tab(v_counter) := rec.modified_by;
mod_date_tab(v_counter) := rec.modified_date;

END LOOP;

-- Modify individual collection records to produce various
-- exceptions
zip_tab(1) := NULL;
city_tab(2) := RPAD(city_tab(2), 26, ' ');
state_tab(3) := SYSDATE;

L A B 18.1Lab 18.1 Exercises

415

cr_by_tab(4) := RPAD(cr_by_tab(4), 31, ' ');
cr_date_tab(5) := NULL;

-- Populate MY_ZIPCODE table
FORALL i in 1..zip_tab.COUNT SAVE EXCEPTIONS

INSERT INTO my_zipcode
(zip, city, state, created_by, created_date, modified_by,
modified_date)

VALUES
(zip_tab(i), city_tab(i), state_tab(i), cr_by_tab(i),
cr_date_tab(i), mod_by_tab(i), mod_date_tab(i));

COMMIT;

-- Check how many records were added to MY_ZIPCODE table
SELECT COUNT(*)
INTO v_total
FROM my_zipcode
WHERE state = 'MA';

DBMS_OUTPUT.PUT_LINE
(v_total||' records were added to MY_ZIPCODE table');

EXCEPTION
WHEN errors THEN

-- Display total number of exceptions encountered
DBMS_OUTPUT.PUT_LINE

('There were '||SQL%BULK_EXCEPTIONS.COUNT||' exceptions');

-- Display detailed exception information
FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT LOOP

DBMS_OUTPUT.PUT_LINE ('Record '||
SQL%BULK_EXCEPTIONS(i).error_index||' caused error '||i||
': '||SQL%BULK_EXCEPTIONS(i).ERROR_CODE||' '||
SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));

END LOOP;

-- Commit records if any that were inserted successfully
COMMIT;

END;

In this script, you declare a user-defined exception and associate an Oracle error number with it
using the EXCEPTION_INIT pragma. Next, you populate individual collections with the cursor FOR
loop against the ZIPCODE table, and then you modify them so that they cause exceptions in the
FORALL statement. For example, the first record of the zip_tab collection is set to NULL. This
causes a constraint violation because the ZIP column in the MY_ZIPCODE table has a NOT NULL
constraint defined against it. Then, you add the SAVE EXCEPTIONS clause to the FORALL statement
and an exception-handling section to the PL/SQL block. In this section, you display the total
number of errors encountered, along with detailed exception information. Note the COMMIT
statement in the exception-handling section. This statement is added so that records that are
inserted successfully by the FORALL statement are committed when control of the execution is
passed to the exception-handling section of the block.

L A B 18.1
416

Lab 18.1 Exercises

When run, this version of the script produces the following output:

There were 5 exceptions
Record 1 caused error 1: 1400 ORA-01400: cannot insert NULL into ()
Record 2 caused error 2: 12899 ORA-12899: value too large for
column (actual: , maximum:)

Record 3 caused error 3: 12899 ORA-12899: value too large for
column actual: , maximum:)

Record 4 caused error 4: 12899 ORA-12899: value too large for
column actual: , maximum:)

Record 5 caused error 5: 1400 ORA-01400: cannot insert NULL into ()

PL/SQL procedure successfully completed.

C) Modify the previous version of the script as follows: Do not modify records selected from the
ZIPCODE table so that no exceptions are raised. Instead, delete the first three records from each
collection so that they become sparse. Then modify the FORALL statement accordingly.

ANSWER: This version of the script should look similar to the following. Changes are shown
in bold.

-- ch18_1c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

-- Declare collection types
TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;
TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

-- Declare collection variables to be used by the FORALL
-- statement
zip_tab string_type;
city_tab string_type;
state_tab string_type;
cr_by_tab string_type;
cr_date_tab date_type;
mod_by_tab string_type;
mod_date_tab date_type;

v_counter PLS_INTEGER := 0;
v_total INTEGER := 0;

-- Define user-defined exception and associated Oracle
-- error number with it
errors EXCEPTION;
PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN
-- Populate individual collections
FOR rec IN (SELECT *

FROM zipcode
WHERE state = 'MA')

LOOP
v_counter := v_counter + 1;

L A B 18.1Lab 18.1 Exercises

417

zip_tab(v_counter) := rec.zip;
city_tab(v_counter) := rec.city;
state_tab(v_counter) := rec.state;
cr_by_tab(v_counter) := rec.created_by;
cr_date_tab(v_counter) := rec.created_date;
mod_by_tab(v_counter) := rec.modified_by;
mod_date_tab(v_counter) := rec.modified_date;

END LOOP;

-- Delete first 3 records from each collection
zip_tab.DELETE(1,3);
city_tab.DELETE(1,3);
state_tab.DELETE(1,3);
cr_by_tab.DELETE(1,3);
cr_date_tab.DELETE(1,3);
mod_by_tab.DELETE(1,3);
mod_date_tab.DELETE(1,3);

-- Populate MY_ZIPCODE table
FORALL i IN INDICES OF zip_tab SAVE EXCEPTIONS

INSERT INTO my_zipcode
(zip, city, state, created_by, created_date, modified_by,
modified_date)

VALUES
(zip_tab(i), city_tab(i), state_tab(i), cr_by_tab(i),
cr_date_tab(i), mod_by_tab(i), mod_date_tab(i));

COMMIT;

-- Check how many records were added to MY_ZIPCODE table
SELECT COUNT(*)
INTO v_total
FROM my_zipcode
WHERE state = 'MA';

DBMS_OUTPUT.PUT_LINE
(v_total||' records were added to MY_ZIPCODE table');

EXCEPTION
WHEN errors THEN

-- Display total number of exceptions encountered
DBMS_OUTPUT.PUT_LINE

('There were '||SQL%BULK_EXCEPTIONS.COUNT||' exceptions');

-- Display detailed exception information
FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT LOOP

DBMS_OUTPUT.PUT_LINE ('Record '||
SQL%BULK_EXCEPTIONS(i).error_index||' caused error '||i||
': '||SQL%BULK_EXCEPTIONS(i).ERROR_CODE||' '||
SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));

END LOOP;

L A B 18.1
418

Lab 18.1 Exercises

-- Commit records if any that were inserted successfully
COMMIT;

END;

This version of the script contains two modifications. First, you delete the first three records from
each collection. Second, you modify the FORALL statement by replacing the lower and upper
limits for the counter variable with the INDICES OF clause.

When run, the script produces the following output:

2 records were added to MY_ZIPCODE table

PL/SQL procedure successfully completed.

D) Modify the second version of the script, ch18_1b.sql, as follows: Insert records that cause excep-
tions in a different table called MY_ZIPCODE_EXC.

ANSWER: The MY_ZIPCODE_EXC table may be created as follows:

CREATE TABLE MY_ZIPCODE_EXC
(ZIP VARCHAR2(100),
CITY VARCHAR2(100),
STATE VARCHAR2(100),
CREATED_BY VARCHAR2(100),
CREATED_DATE DATE,
MODIFIED_BY VARCHAR2(100),
MODIFIED_DATE DATE);

Note that even though this table has the same columns as the MY_ZIPCODE table, the column
sizes have been increased and all NOT NULL constraints removed. This ensures that records that
cause exceptions in the FORALL statements can be inserted into this table.

Next, the script is modified as follows. Changes are shown in bold.

-- ch18_1d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE

-- Declare collection types
TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;
TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;
TYPE exc_ind_type IS TABLE OF PLS_INTEGER INDEX BY PLS_INTEGER;

-- Declare collection variables to be used by the FORALL
-- statement
zip_tab string_type;
city_tab string_type;
state_tab string_type;
cr_by_tab string_type;
cr_date_tab date_type;
mod_by_tab string_type;
mod_date_tab date_type;
exc_ind_tab exc_ind_type;

v_counter PLS_INTEGER := 0;
v_total INTEGER := 0;

L A B 18.1Lab 18.1 Exercises

419

-- Define user-defined exception and associated Oracle
-- error number with it
errors EXCEPTION;
PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN
-- Populate individual collections
FOR rec IN (SELECT *

FROM zipcode
WHERE state = 'MA')

LOOP
v_counter := v_counter + 1;
zip_tab(v_counter) := rec.zip;
city_tab(v_counter) := rec.city;
state_tab(v_counter) := rec.state;
cr_by_tab(v_counter) := rec.created_by;
cr_date_tab(v_counter) := rec.created_date;
mod_by_tab(v_counter) := rec.modified_by;
mod_date_tab(v_counter) := rec.modified_date;

END LOOP;

-- Modify individual collection records to produce various
-- exceptions
zip_tab(1) := NULL;
city_tab(2) := RPAD(city_tab(2), 26, ' ');
state_tab(3) := SYSDATE;
cr_by_tab(4) := RPAD(cr_by_tab(4), 31, ' ');
cr_date_tab(5) := NULL;

-- Populate MY_ZIPCODE table
FORALL i in 1..zip_tab.COUNT SAVE EXCEPTIONS

INSERT INTO my_zipcode
(zip, city, state, created_by, created_date, modified_by,
modified_date)

VALUES
(zip_tab(i), city_tab(i), state_tab(i), cr_by_tab(i),
cr_date_tab(i), mod_by_tab(i), mod_date_tab(i));

COMMIT;

-- Check how many records were added to MY_ZIPCODE table
SELECT COUNT(*)
INTO v_total
FROM my_zipcode
WHERE state = 'MA';

DBMS_OUTPUT.PUT_LINE
(v_total||' records were added to MY_ZIPCODE table');

EXCEPTION
WHEN errors THEN

L A B 18.1
420

Lab 18.1 Exercises

-- Populate V_EXC_IND_TAB collection to be used in the VALUES
-- OF clause
FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT LOOP

exc_ind_tab(i) := SQL%BULK_EXCEPTIONS(i).error_index;
END LOOP;

-- Insert records that caused exceptions in the MY_ZIPCODE_EXC
-- table
FORALL i in VALUES OF exc_ind_tab

INSERT INTO my_zipcode_exc
(zip, city, state, created_by, created_date, modified_by,
modified_date)

VALUES
(zip_tab(i), city_tab(i), state_tab(i), cr_by_tab(i),
cr_date_tab(i), mod_by_tab(i), mod_date_tab(i));

COMMIT;
END;

In this version of the script, you modify the exception-handling section so that records causing
exceptions in the FORALL statement are inserted into the MY_ZIPCODE_EXC table created earlier.
First, you populate the collection EXC_IND_TAB with subscripts of records that caused exceptions
in the FORALL statement. Then you loop through this collection and insert erroneous records in
the MY_ZIPCODE_EXC table. After the script is executed, the MY_ZIPCODE_EXC table contains
these records.

L A B 18.1Lab 18.1 Exercises

421

L A B 1 8 . 2

The BULK COLLECT Clause

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use the BULK COLLECT clause

The BULK COLLECT clause fetches the batches of results and brings them back from SQL to
PL/SQL. For example, consider a cursor against the STUDENT table that returns the student’s
ID, first name, and last name. After this cursor is opened, the rows are fetched one by one until
all of them have been processed. Then this cursor is closed. These steps are illustrated in the
following example:

FOR EXAMPLE

DECLARE
CURSOR student_cur IS

SELECT student_id, first_name, last_name
FROM student;

BEGIN
FOR rec IN student_cur LOOP

DBMS_OUTPUT.PUT_LINE ('student_id: '||rec.student_id);
DBMS_OUTPUT.PUT_LINE ('first_name: '||rec.first_name);
DBMS_OUTPUT.PUT_LINE ('last_name: '||rec.last_name);

END LOOP;
END;

Recall that the cursor FOR loop opens and closes the cursor and fetches cursor records implicitly.

The same task of fetching records from the STUDENT table can be accomplished by employing
the BULK COLLECT clause. The difference here is that the BULK COLLECT clause fetches all
rows from the STUDENT table at once. Because BULK COLLECT fetches multiple rows, these
rows are stored in collection variables.

Consider a modified version of the previous example, in which the cursor processing is replaced
by the BULK COLLECT clause:

L A B 18.2
422

FOR EXAMPLE

DECLARE
-- Define collection type and variables to be used by the
-- BULK COLLECT clause

TYPE student_id_type IS TABLE OF student.student_id%TYPE;
TYPE first_name_type IS TABLE OF student.first_name%TYPE;
TYPE last_name_type IS TABLE OF student.last_name%TYPE;

student_id_tab student_id_type;
first_name_tab first_name_type;
last_name_tab last_name_type;

BEGIN
-- Fetch all student data at once via BULK COLLECT clause
SELECT student_id, first_name, last_name
BULK COLLECT INTO student_id_tab, first_name_tab, last_name_tab
FROM student;

FOR i IN student_id_tab.FIRST..student_id_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE ('student_id: '||student_id_tab(i));
DBMS_OUTPUT.PUT_LINE ('first_name: '||first_name_tab(i));
DBMS_OUTPUT.PUT_LINE ('last_name: '||last_name_tab(i));

END LOOP;
END;

This script declares three nested table types and variables. These variables are used to store data
returned by the SELECT statement with the BULK COLLECT clause.

DID YOU KNOW?

When nested tables are populated using the SELECT BULK COLLECT INTO statement, they are initial-
ized and extended automatically. Recall that typically a nested table must be initialized prior to its
use by calling a constructor function that has the same name as its nested table type. After it has
been initialized, it must be extended using the EXTEND method before the next value can be
assigned to it.

To display this data, the collections are looped through using a numeric FOR loop. Note how
lower and upper limits for the loop counter are specified using the FIRST and LAST methods.

The BULK COLLECT clause is similar to a cursor loop in that it does not raise a NO_DATA_
FOUND exception when the SELECT statement does not return any records. As a result, it is
considered a good practice to check if a resulting collection contains any data.

Because the BULK COLLECT clause does not restrict the size of a collection and extends it auto-
matically, it is also a good idea to limit the result set when a SELECT statement returns large

L A B 18.2The BULK COLLECT Clause

423

amounts of data. This can be achieved by using BULK COLLECT with a cursor SELECT and by
adding the LIMIT option.

FOR EXAMPLE

DECLARE
CURSOR student_cur IS

SELECT student_id, first_name, last_name
FROM student;

-- Define collection type and variables to be used by the
-- BULK COLLECT clause

TYPE student_id_type IS TABLE OF student.student_id%TYPE;
TYPE first_name_type IS TABLE OF student.first_name%TYPE;
TYPE last_name_type IS TABLE OF student.last_name%TYPE;

student_id_tab student_id_type;
first_name_tab first_name_type;
last_name_tab last_name_type;

-- Define variable to be used by the LIMIT clause
v_limit PLS_INTEGER := 50;

BEGIN
OPEN student_cur;
LOOP

-- Fetch 50 rows at once
FETCH student_cur
BULK COLLECT INTO student_id_tab, first_name_tab,
last_name_tab

LIMIT v_limit;

EXIT WHEN student_id_tab.COUNT = 0;

FOR i IN student_id_tab.FIRST..student_id_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE ('student_id: '||student_id_tab(i));
DBMS_OUTPUT.PUT_LINE ('first_name: '||first_name_tab(i));
DBMS_OUTPUT.PUT_LINE ('last_name: '||last_name_tab(i));

END LOOP;

END LOOP;
CLOSE student_cur;

END;

This script employs a BULK COLLECT clause with the LIMIT option to fetch 50 rows from the
STUDENT table at once. In other words, each collection contains, at most, 50 records. To
accomplish this, the BULK COLLECT clause is used in conjunction with the cursor loop. Note

L A B 18.2
424

The BULK COLLECT Clause

that in this case, the loop’s exit condition is based on the number of records in the collection
rather than the student_cur%NOTFOUND attribute.

Note how the numeric FOR loop that displays information on the screen has been moved inside
the cursor loop. This is done because every new batch of 50 records fetched by the BULK
COLLECT replaces the previous batch of 50 records fetched in the previous iteration.

So far you have seen examples of the BULK COLLECT clause fetching data into collections
where the underlying elements are simple data types such as NUMBER or VARCHAR2.
However, the BULK COLLECT clause can be used to fetch data into collections of records or
objects. Collections of objects are discussed in Chapter 23, “Object Types in Oracle.” Consider
a modified version of the previous example, in which student data is fetched into a collection of
user-defined records:

FOR EXAMPLE

DECLARE
CURSOR student_cur IS

SELECT student_id, first_name, last_name
FROM student;

-- Define record type
TYPE student_rec IS RECORD

(student_id student.student_id%TYPE,
first_name student.first_name%TYPE,
last_name student.last_name%TYPE);

-- Define collection type
TYPE student_type IS TABLE OF student_rec;

-- Define collection variable
student_tab student_type;

-- Define variable to be used by the LIMIT clause
v_limit PLS_INTEGER := 50;

BEGIN
OPEN student_cur;
LOOP

-- Fetch 50 rows at once
FETCH student_cur BULK COLLECT INTO student_tab LIMIT v_limit;

EXIT WHEN student_tab.COUNT = 0;

FOR i IN student_tab.FIRST..student_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE
('student_id: '||student_tab(i).student_id);

DBMS_OUTPUT.PUT_LINE
('first_name: '|| student_tab(i).first_name);

L A B 18.2The BULK COLLECT Clause

425

FOR EXAMPLE (continued)

DBMS_OUTPUT.PUT_LINE
('last_name: '|| student_tab(i).last_name);

END LOOP;

END LOOP;
CLOSE student_cur;

END;

So far you have seen how to use the BULK COLLECT clause with the SELECT statement.
However, often BULK COLLECT is used with the INSERT, UPDATE, and DELETE statements
as well. In this case, the BULK COLLECT clause is used in conjunction with the RETURNING
clause, as shown here:

FOR EXAMPLE

DECLARE
-- Define collection types and variables
TYPE row_num_type IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
TYPE row_text_type IS TABLE OF VARCHAR2(10) INDEX BY PLS_INTEGER;

row_num_tab row_num_type;
row_text_tab row_text_type;

BEGIN
DELETE FROM TEST
RETURNING row_num, row_text
BULK COLLECT INTO row_num_tab, row_text_tab;

DBMS_OUTPUT.PUT_LINE ('Deleted '||SQL%ROWCOUNT ||' rows:');
FOR i IN row_num_tab.FIRST..row_num_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE ('row_num = '||row_num_tab(i)||
' row_text = ' ||row_text_tab(i));

END LOOP;

COMMIT;
END;

This script deletes records from the TEST table created in Lab 18.1. Note that the DELETE state-
ment returns ROW_NUM and ROW_TEXT values using the RETURNING clause. These values
are then fetched by the BULK COLLECT clause into two collections, row_num_tab and
row_text_tab, which are displayed on the screen.

When run, this script produces the following output:

Deleted 7 rows:
row_num = 2 row_text = row 2

L A B 18.2
426

The BULK COLLECT Clause

row_num = 3 row_text = row 3
row_num = 4 row_text = row 4
row_num = 6 row_text = row 6
row_num = 8 row_text = row 8
row_num = 9 row_text = row 9
row_num = 10 row_text = row 10

PL/SQL procedure successfully completed.

Throughout this chapter you have seen how to use the FORALL statement and BULK COLLECT
clause. Next, consider an example that combines both. This example is based on the script
ch18_1a.sql, which selects some data from the ZIPCODE table and inserts it into the
MY_ZIPCODE table. Changes are shown in bold.

FOR EXAMPLE

DECLARE
-- Declare collection types
TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;
TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

-- Declare collection variables to be used by the FORALL statement
zip_tab string_type;
city_tab string_type;
state_tab string_type;
cr_by_tab string_type;
cr_date_tab date_type;
mod_by_tab string_type;
mod_date_tab date_type;

v_counter PLS_INTEGER := 0;
v_total INTEGER := 0;

BEGIN
-- Populate individual collections
SELECT *
BULK COLLECT INTO zip_tab, city_tab, state_tab, cr_by_tab,

cr_date_tab, mod_by_tab, mod_date_tab
FROM zipcode
WHERE state = 'CT';

-- Populate MY_ZIPCODE table
FORALL i in 1..zip_tab.COUNT

INSERT INTO my_zipcode
(zip, city, state, created_by, created_date, modified_by,
modified_date)

VALUES
(zip_tab(i), city_tab(i), state_tab(i), cr_by_tab(i),
cr_date_tab(i), mod_by_tab(i), mod_date_tab(i));

COMMIT;

L A B 18.2The BULK COLLECT Clause

427

▼

FOR EXAMPLE (continued)

-- Check how many records were added to MY_ZIPCODE table
SELECT COUNT(*)
INTO v_total
FROM my_zipcode
WHERE state = 'CT';

DBMS_OUTPUT.PUT_LINE
(v_total||' records were added to MY_ZIPCODE table');

END;

L A B 1 8 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

18.2.1 Use the BULK COLLECT Statement

In this exercise, you create various scripts that select and modify data in the MY_INSTRUCTOR table in
bulk.

Create the MY_INSTRUCTOR table as follows. If this table already exists, drop it and then re-create it.

CREATE TABLE my_instructor AS
SELECT *
FROM instructor;

Complete the following tasks:

A) Create the following script: Select the instructor ID, first name, and last name from the
MY_INSTRUCTOR table, and display them on the screen. Note that the data should be fetched
in bulk.

ANSWER: This script should look similar to the following:

-- ch18_2a.sql, version 1.0
SET SERVEROUTPUT ON;
DECLARE

-- Define collection types and variables to be used by the
-- BULK COLLECT clause
TYPE instructor_id_type IS TABLE OF

my_instructor.instructor_id%TYPE;
TYPE first_name_type IS TABLE OF my_instructor.first_name%TYPE;
TYPE last_name_type IS TABLE OF my_instructor.last_name%TYPE;

instructor_id_tab instructor_id_type;
first_name_tab first_name_type;
last_name_tab last_name_type;

BEGIN
-- Fetch all instructor data at once via BULK COLLECT clause

L A B 18.2
428

Lab 18.2 Exercises

SELECT instructor_id, first_name, last_name
BULK COLLECT INTO instructor_id_tab, first_name_tab,

last_name_tab
FROM my_instructor;

FOR i IN instructor_id_tab.FIRST..instructor_id_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE ('instructor_id: '||instructor_id_tab(i));
DBMS_OUTPUT.PUT_LINE ('first_name: '||first_name_tab(i));
DBMS_OUTPUT.PUT_LINE ('last_name: '||last_name_tab(i));

END LOOP;
END;

The declaration portion of this script contains definitions of three collection types and variables.
The executable portion of the script populates collection variables using the SELECT statement
with the BULK COLLECT clause. Finally, it displays on the screen data stored in the collection
variables by looping through them.

When run, this script produces the following output:

instructor_id: 101
first_name: Fernand
last_name: Hanks
instructor_id: 102
first_name: Tom
last_name: Wojick
instructor_id: 103
first_name: Nina
last_name: Schorin
instructor_id: 104
first_name: Gary
last_name: Pertez
instructor_id: 105
first_name: Anita
last_name: Morris
instructor_id: 106
first_name: Todd
last_name: Smythe
instructor_id: 107
first_name: Marilyn
last_name: Frantzen
instructor_id: 108
first_name: Charles
last_name: Lowry
instructor_id: 109
first_name: Rick
last_name: Chow
instructor_id: 110
first_name: Irene
last_name: Willig

PL/SQL procedure successfully completed.

L A B 18.2Lab 18.2 Exercises

429

As mentioned previously, the BULK COLLECT clause is similar to the cursor loop in that it does not
raise a NO_DATA_FOUND exception when the SELECT statement does not return any rows.
Consider deleting all the rows from the MY_INSTRUCTOR table and then executing this script
again. In this case the output is as follows:

SQL> DELETE FROM my_instructor;

10 rows deleted.

SQL> SET SERVEROUTPUT ON;
SQL> DECLARE
2 -- Define collection types and variables to be used by the
3 -- BULK COLLECT clause
4 TYPE instructor_id_type IS TABLE OF

my_instructor.instructor_id%TYPE;
5 TYPE first_name_type IS TABLE OF

my_instructor.first_name%TYPE;
6 TYPE last_name_type IS TABLE OF

my_instructor.last_name%TYPE;
7
8 instructor_id_tab instructor_id_type;
9 first_name_tab first_name_type;
10 last_name_tab last_name_type;
11
12 BEGIN
13 -- Fetch all instructor data at once via BULK COLLECT clause
14 SELECT instructor_id, first_name, last_name
15 BULK COLLECT INTO instructor_id_tab, first_name_tab,

last_name_tab
16 FROM my_instructor;
17
18 FOR i IN instructor_id_tab.FIRST..instructor_id_tab.LAST
19 LOOP
20 DBMS_OUTPUT.PUT_LINE ('instructor_id:

'||instructor_id_tab(i));
21 DBMS_OUTPUT.PUT_LINE ('first_name:

'||first_name_tab(i));
22 DBMS_OUTPUT.PUT_LINE ('last_name:

'||last_name_tab(i));
23 END LOOP;
24 END;
25 /

You see the following error message:

DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 18

Note that the error message refers to line 18, which contains a FOR loop that iterates through the
collections and displays the results on the screen. Note that the SELECT statement with the BULK

L A B 18.2
430

Lab 18.2 Exercises

COLLECT clause does not cause any errors. To prevent this error from happening, you can modify
the script as follows. Changes are shown in bold.

-- ch18_2b.sql, version 2.0
SET SERVEROUTPUT ON;
DECLARE

-- Define collection types and variables to be used by the
-- BULK COLLECT clause
TYPE instructor_id_type IS TABLE OF

my_instructor.instructor_id%TYPE;
TYPE first_name_type IS TABLE OF my_instructor.first_name%TYPE;
TYPE last_name_type IS TABLE OF my_instructor.last_name%TYPE;

instructor_id_tab instructor_id_type;
first_name_tab first_name_type;
last_name_tab last_name_type;

BEGIN
-- Fetch all instructor data at once via BULK COLLECT clause
SELECT instructor_id, first_name, last_name
BULK COLLECT INTO instructor_id_tab, first_name_tab,
last_name_tab

FROM my_instructor;

IF instructor_id_tab.COUNT > 0 THEN
FOR i IN instructor_id_tab.FIRST..instructor_id_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE ('instructor_id:
'||instructor_id_tab(i));

DBMS_OUTPUT.PUT_LINE ('first_name: '||first_name_tab(i));
DBMS_OUTPUT.PUT_LINE ('last_name: '||last_name_tab(i));

END LOOP;
END IF;

END;

This version of the script contains an IF-THEN statement that encloses the FOR loop. The IF-THEN
statement checks if one of the collections is nonempty, thus preventing the numeric or value
error.

WATCH OUT!

If you have deleted records from the MY_INSTRUCTOR table, you need to roll back your changes or
populate it with the records from the INSTRUCTOR table again before proceeding with the exercise.

B) Modify the newly created script as follows: Fetch no more than five rows at a time from the
MY_INSTRUCTOR table.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch18_2c.sql, version 3.0
SET SERVEROUTPUT ON;
DECLARE

CURSOR instructor_cur IS

L A B 18.2Lab 18.2 Exercises

431

SELECT instructor_id, first_name, last_name
FROM my_instructor;

-- Define collection types and variables to be used by the
-- BULK COLLECT clause
TYPE instructor_id_type IS TABLE OF

my_instructor.instructor_id%TYPE;
TYPE first_name_type IS TABLE OF my_instructor.first_name%TYPE;
TYPE last_name_type IS TABLE OF my_instructor.last_name%TYPE;

instructor_id_tab instructor_id_type;
first_name_tab first_name_type;
last_name_tab last_name_type;

v_limit PLS_INTEGER := 5;
BEGIN

OPEN instructor_cur;
LOOP

-- Fetch partial instructor data at once via BULK COLLECT
-- clause
FETCH instructor_cur
BULK COLLECT INTO instructor_id_tab, first_name_tab,

last_name_tab
LIMIT v_limit;

EXIT WHEN instructor_id_tab.COUNT = 0;

FOR i IN instructor_id_tab.FIRST..instructor_id_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE ('instructor_id:
'||instructor_id_tab(i));

DBMS_OUTPUT.PUT_LINE ('first_name: '||first_name_tab(i));
DBMS_OUTPUT.PUT_LINE ('last_name: '||last_name_tab(i));

END LOOP;
END LOOP;
CLOSE instructor_cur;

END;

In this version of the script, you declare a cursor against the MY_INSTRUCTOR table. This enables
you to do a partial fetch from the MY_INSTRUCTOR table. You process this cursor by fetching five
records at a time using the BULK COLLECT clause with the LIMIT option. This ensures that the
collection variables contain no more than five records for each iteration of the cursor loop. Finally,
to display all the results on the screen, you move the FOR loop inside the cursor FOR loop. This
version of the script produces output identical to the first version of the script.

C) Modify the newly created script as follows: Instead of fetching data from the MY_INSTRUCTOR
table into individual collections, fetch it into a single collection.

ANSWER: To accomplish this task, the new record type must be declared so that a single collec-
tion type can be based on this record type.

L A B 18.2
432

Lab 18.2 Exercises

This is shown next. Changes are shown in bold.

-- ch18_2d.sql, version 4.0
SET SERVEROUTPUT ON;
DECLARE

CURSOR instructor_cur IS
SELECT instructor_id, first_name, last_name
FROM my_instructor;

-- Define record type
TYPE instructor_rec IS RECORD

(instructor_id my_instructor.instructor_id%TYPE,
first_name my_instructor.first_name%TYPE,
last_name my_instructor.last_name%TYPE);

-- Define collection type and variable to be used by the
-- BULK COLLECT clause
TYPE instructor_type IS TABLE OF instructor_rec;

instructor_tab instructor_type;

v_limit PLS_INTEGER := 5;
BEGIN

OPEN instructor_cur;
LOOP

-- Fetch partial instructor data at once via BULK COLLECT
-- clause
FETCH instructor_cur
BULK COLLECT INTO instructor_tab
LIMIT v_limit;

EXIT WHEN instructor_tab.COUNT = 0;

FOR i IN instructor_tab.FIRST..instructor_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE
('instructor_id: '||instructor_tab(i).instructor_id);

DBMS_OUTPUT.PUT_LINE
('first_name: '||instructor_tab(i).first_name);

DBMS_OUTPUT.PUT_LINE
('last_name: '||instructor_tab(i).last_name);

END LOOP;
END LOOP;
CLOSE instructor_cur;

END;

In this version of the script, you declare a user-defined record type with three fields. Next, you
declare a single collection type based on this record type. Then you fetch the results of the cursor
into a collection of records that you then display on the screen.

L A B 18.2Lab 18.2 Exercises

433

Next, consider another version that also creates a collection of records. In this version, the collec-
tion type is based on the row type record returned by the cursor:

-- ch18_2e.sql, version 5.0
SET SERVEROUTPUT ON;
DECLARE

CURSOR instructor_cur IS
SELECT instructor_id, first_name, last_name
FROM my_instructor;

-- Define collection type and variable to be used by the
-- BULK COLLECT clause
TYPE instructor_type IS TABLE OF instructor_cur%ROWTYPE;

instructor_tab instructor_type;

v_limit PLS_INTEGER := 5;
BEGIN

OPEN instructor_cur;
LOOP

-- Fetch partial instructor data at once via BULK COLLECT
-- clause
FETCH instructor_cur
BULK COLLECT INTO instructor_tab
LIMIT v_limit;

EXIT WHEN instructor_tab.COUNT = 0;

FOR i IN instructor_tab.FIRST..instructor_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE
('instructor_id: '||instructor_tab(i).instructor_id);

DBMS_OUTPUT.PUT_LINE
('first_name: '||instructor_tab(i).first_name);

DBMS_OUTPUT.PUT_LINE
('last_name: '||instructor_tab(i).last_name);

END LOOP;
END LOOP;
CLOSE instructor_cur;

END;

D) Create the following script: Delete records from the MY_INSTRUCTOR table and display them on
the screen.

ANSWER: The script should look similar to the following:

-- ch18_3a.sql, version 1.0
SET SERVEROUTPUT ON;
DECLARE

-- Define collection types and variables to be used by the
-- BULK COLLECT clause
TYPE instructor_id_type IS TABLE OF

my_instructor.instructor_id%TYPE;

L A B 18.2
434

Lab 18.2 Exercises

TYPE first_name_type IS TABLE OF my_instructor.first_name%TYPE;
TYPE last_name_type IS TABLE OF my_instructor.last_name%TYPE;

instructor_id_tab instructor_id_type;
first_name_tab first_name_type;
last_name_tab last_name_type;

BEGIN
DELETE FROM MY_INSTRUCTOR
RETURNING instructor_id, first_name, last_name
BULK COLLECT INTO instructor_id_tab, first_name_tab,
last_name_tab;

DBMS_OUTPUT.PUT_LINE ('Deleted '||SQL%ROWCOUNT||' rows ');
IF instructor_id_tab.COUNT > 0 THEN

FOR i IN instructor_id_tab.FIRST..instructor_id_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE
('instructor_id: '||instructor_id_tab(i));

DBMS_OUTPUT.PUT_LINE ('first_name: '||first_name_tab(i));
DBMS_OUTPUT.PUT_LINE ('last_name: '||last_name_tab(i));

END LOOP;
END IF;
COMMIT;

END;

In this script, you store the instructor ID, first name, and last name in the collections by using the
RETURNING option with the BULK COLLECT clause. When run, this script produces the following
output:

Deleted 10 rows
instructor_id: 101
first_name: Fernand
last_name: Hanks
instructor_id: 102
first_name: Tom
last_name: Wojick
instructor_id: 103
first_name: Nina
last_name: Schorin
instructor_id: 104
first_name: Gary
last_name: Pertez
instructor_id: 105
first_name: Anita
last_name: Morris
instructor_id: 106
first_name: Todd
last_name: Smythe
instructor_id: 107
first_name: Marilyn
last_name: Frantzen

L A B 18.2Lab 18.2 Exercises

435

instructor_id: 108
first_name: Charles
last_name: Lowry
instructor_id: 109
first_name: Rick
last_name: Chow
instructor_id: 110
first_name: Irene
last_name: Willig

PL/SQL procedure successfully completed.

L A B 18.2
436

Lab 18.2 Exercises

▼ T R Y I T Y O U R S E L F

In this chapter, you’ve learned about bulk SQL—specifically, the FORALL statement and the BULK
COLLECT clause. Here are some projects that will help you test the depth of your understanding.

Before beginning these exercises, create the MY_SECTION table based on the SECTION table. This table
should be created empty.

1) Create the following script: Populate the MY_SECTION table using the FORALL statement with the
SAVE EXCEPTIONS clause. After MY_SECTION is populated, display how many records were
inserted.

2) Modify the script you just created. In addition to displaying the total number of records inserted
in the MY_SECTION table, display how many records were inserted for each course. Use the BULK
COLLECT statement to accomplish this step. Note that you should delete all the rows from the
MY_SECTION table before executing this version of the script.

3) Create the following script: Delete all the records from the MY_SECTION table, and display how
many records were deleted for each course. Use BULK COLLECT with the RETURNING option.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

Try it Yourself 437

This page intentionally left blank

C H A P T E R 1 9

Procedures

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Creating procedures

. Passing parameters into and out of procedures

All the PL/SQL you have written up to this point has been anonymous blocks
that were run as scripts and compiled by the database server at runtime. Now
you will begin using modular code. Modular code is a way to build a program
from distinct parts (modules), each of which performs a specific function or task
toward the program’s final objective. As soon as modular code is stored on the
database server, it becomes a database object, or subprogram, that is available to
other program units for repeated execution. To save code to the database, the
source code needs to be sent to the server so that it can be compiled into p-code
and stored in the database. This chapter and the next two describe this process.
This short chapter introduces stored procedures. Chapter 20, “Functions,” covers
the basics of stored functions. Chapter 21, “Packages,” pulls together all this
material.

In Lab 19.1, you will learn more about stored code and how to write the type of
stored code known as procedures. In Lab 19.2, you will learn about passing
parameters into and out of procedures.

BENEFITS OF MODULAR CODE

A PL/SQL module is any complete logical unit of work. The five types of PL/SQL
modules are anonymous blocks that are run with a text script (this is the type
you have used so far), procedures, functions, packages, and triggers.

Using modular code offers two main benefits: It is more reusable, and it is more
manageable.

You create a procedure either in SQL*Plus or in one of the many tools for creat-
ing and debugging stored PL/SQL code. If you are using SQL*Plus, you need to
write your code in a text editor and then run it at the SQL*Plus prompt.

BLOCK STRUCTURE

The block structure is common for all the module types. The block begins with a header (for
named blocks only), which consists of the module’s name and a parameter list (if used).

The declaration section consists of variables, cursors, and subblocks that are needed in the next
section.

The main part of the module is the executable section, which is where all the calculations and
processing are performed. This section contains executable code such as IF-THEN-ELSE, loops,
calls to other PL/SQL modules, and so on.

The last section of the module is an optional exception-handling section, which is where the
code to handle exceptions is placed.

ANONYMOUS BLOCK

So far, you have only written anonymous blocks. Anonymous blocks are much like modules,
except that anonymous blocks do not have headers. There are important differences, though. As
the name implies, anonymous blocks have no name and thus cannot be called by another block.
They are not stored in the database and must be compiled and then run each time the script is
loaded.

The PL/SQL block in a subprogram is a named block that can accept parameters and that can
be invoked from an application that can communicate with the Oracle database server. A
subprogram can be compiled and stored in the database. This allows the programmer to reuse
the program. It also allows for easier code maintenance. Subprograms are either procedures or
functions.

CHAPTER 19
440

▼

L A B 1 9 . 1

Creating Procedures

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Create procedures

. Query the data dictionary for information on procedures

A procedure is a module that performs one or more actions; it does not need to return any
values. The syntax for creating a procedure is as follows:

CREATE OR REPLACE PROCEDURE name
[(parameter[, parameter, ...])]

AS
[local declarations]

BEGIN
executable statements

[EXCEPTION
exception handlers]

END [name];

A procedure may have zero to many parameters, as covered in Lab 19.2. Every procedure has
three parts: the header portion, which comes before AS (sometimes you see IS; they are inter-
changeable); the keyword, which contains the procedure name and parameter list; and the body,
which is everything after the AS keyword. The word REPLACE is optional. When REPLACE is
not used in the header of the procedure, to change the code in the procedure, you must drop
and then re-create the procedure. Because it is very common to change a procedure’s code, espe-
cially when it is under development, it is strongly recommended that you use the OR REPLACE
option.

L A B 1 9 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

19.1.1 Create Procedures

In this exercise, you run a script that creates a procedure. Using a text editor such as Notepad, create a
file that contains the following script:

L A B 19.1
441

-- ch19_01a.sql
CREATE OR REPLACE PROCEDURE Discount
AS
CURSOR c_group_discount
IS
SELECT distinct s.course_no, c.description
FROM section s, enrollment e, course c
WHERE s.section_id = e.section_id
AND c.course_no = s.course_no

GROUP BY s.course_no, c.description,
e.section_id, s.section_id

HAVING COUNT(*) >=8;
BEGIN

FOR r_group_discount IN c_group_discount
LOOP

UPDATE course
SET cost = cost * .95

WHERE course_no = r_group_discount.course_no;
DBMS_OUTPUT.PUT_LINE
('A 5% discount has been given to '||
r_group_discount.course_no||' '||
r_group_discount.description
);

END LOOP;
END;

At a SQL*Plus session, run the previous script

Then answer the following questions:

A) What do you see on the screen? Explain what happens.

ANSWER: The procedure is created. The procedure named Discount is compiled into p-code and
stored in the database for later execution. If an error is generated, you must have made a typing
mistake. Check the code and recompile.

B) Execute the Discount procedure. How do you accomplish this? What results do you see on the
screen?

ANSWER:

SQL> EXECUTE Discount
5% discount has been given to 25 Adv. Word Perfect
.... (through each course with an enrollment over 8)
PL/SQL procedure successfully completed.

C) The script does not contain a COMMIT. Discuss the issues involved with placing a COMMIT in the
procedure, and indicate where the COMMIT could be placed.

ANSWER: Because this procedure does not have a COMMIT, the procedure will not update the
database. A COMMIT needs to be issued after the procedure is run if you want the changes to be
made. Alternatively, you can enter a COMMIT either before or after the end loop. If you put the
COMMIT before the end loop, you are committing the changes after every loop. If you put the
COMMIT after the end loop, the changes are not committed until the procedure is near comple-
tion. It is wiser to use the second option. This way, you are better prepared to handle errors.

L A B 19.1
442

Lab 19.1 Exercises

BY THE WAY

If you receive an error in SQL*Plus, enter this command:

show error

You can also use this command:

L start_line_number end_line_number

to see a portion of the code in order to isolate errors.

19.1.2 Query the Data Dictionary for Information on Procedures

Two main views in the data dictionary provide information on stored code. USER_OBJECTS shows you
information about the objects, and USER_SOURCE shows you the text of the source code. The data
dictionary also has ALL_ and DBA_ versions of these views.

Complete the following tasks:

A) Write a SELECT statement to get pertinent information from the USER_OBJECTS view about the
Discount procedure you just wrote. Run the query and describe the results.

ANSWER:

SELECT object_name, object_type, status
FROM user_objects
WHERE object_name = 'DISCOUNT';

The output is as follows:

OBJECT_NAME OBJECT_TYPE STATUS
-------------------- --------------- ------
DISCOUNT PROCEDURE VALID

The status indicates that the procedure was compiled successfully. An invalid procedure cannot
be executed.

B) Write a SELECT statement to display the source code from the USER_SOURCE view for the
Discount procedure.

ANSWER:

SQL> column text format a70
SELECT TO_CHAR(line, 99)||'>', text
FROM user_source

WHERE name = 'DISCOUNT'

BY THE WAY

A procedure can become invalid if the table it is based on is deleted or changed. You can recompile
an invalid procedure using this command:

alter procedure procedure_name compile

L A B 19.1Lab 19.1 Exercises

443

L A B 1 9 . 2

Passing Parameters into and
out of Procedures

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use IN and OUT parameters with procedures

Parameters are the means to pass values to and from the calling environment to the server. These
are the values that are processed or returned by executing the procedure. The three types of
parameter modes are IN, OUT, and IN OUT.

MODES

Modes specify whether the parameter passed is read in or a receptacle for what comes out.

Figure 19.1 illustrates the relationship between parameters when they are in the procedure
header versus when the procedure is executed.

L A B 19.2
444

EXECUTE FIND_NAME (127, NAME)

PROCEDURE FIND_NAME (ID IN NUMBER, NAME OUT VARCHAR2)

PROCEDURE HEADER:

PROCEDURE CALL:

FIGURE 19.1
Matching a procedure call to a procedure header

FORMAL AND ACTUAL PARAMETERS

Formal parameters are the names specified in parentheses as part of a module’s header. Actual
parameters are the values or expressions specified in parentheses as a parameter list when the

▼

module is called. The formal parameter and the related actual parameter must be of the same or
compatible datatypes. Table 19.1 explains the three types of parameters.

TABLE 19.1
Three Types of Parameters

MODE DESCRIPTION USAGE

IN Passes a value into the program Read-only value
Constants, literals, expressions
Cannot be changed within the program’s default mode

OUT Passes a value back from the program Write-only value
Cannot assign default values
Must be a variable
A value is assigned only if the program is successful

IN OUT Passes values in and also sends values back Has to be a variable

PASSING CONSTRAINTS (DATATYPE) WITH PARAMETER VALUES

Formal parameters do not require constraints in the datatype. For example, instead of specify-
ing a constraint such as VARCHAR2(60), you just say VARCHAR2 against the parameter name
in the formal parameter list. The constraint is passed with the value when a call is made.

MATCHING ACTUAL AND FORMAL PARAMETERS

You can use two methods to match actual and formal parameters: positional notation and named
notation. Positional notation is simply association by position: The order of the parameters used
when executing the procedure matches the order in the procedure’s header. Named notation is
explicit association using the symbol =>:

formal_parameter_name => argument_value

In named notation, the order does not matter. If you mix notation, list positional notation before
named notation.

Default values can be used if a call to the program does not include a value in the parameter list.
Note that it makes no difference which style is used; they function similarly.

L A B 1 9 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

19.2.1 Use IN and OUT Parameters with Procedures

Create the following text file in a text editor. Run the script at a SQL*Plus session.

-- ch19_02a.sql
CREATE OR REPLACE PROCEDURE find_sname
(i_student_id IN NUMBER,

L A B 19.2Lab 19.2 Exercises

445

o_first_name OUT VARCHAR2,
o_last_name OUT VARCHAR2
)

AS
BEGIN
SELECT first_name, last_name
INTO o_first_name, o_last_name
FROM student
WHERE student_id = i_student_id;

EXCEPTION
WHEN OTHERS
THEN
DBMS_OUTPUT.PUT_LINE('Error in finding student_id:
'||i_student_id);

END find_sname;

A) Explain what happens in the find_sname procedure. What parameters are passed into and out
of the procedure? How would you call the procedure? Call the find_sname script with the
following anonymous block:

-- ch19_03a.sql
DECLARE
v_local_first_name student.first_name%TYPE;
v_local_last_name student.last_name%TYPE;

BEGIN
find_sname
(145, v_local_first_name, v_local_last_name);

DBMS_OUTPUT.PUT_LINE
('Student 145 is: '||v_local_first_name||
' '|| v_local_last_name||'.'
);

END;

ANSWER: The procedure takes in a student_id using the parameter named
i_student_id. It passes out the parameters o_first_name and o_last_name.
The procedure is a simple select statement that retrieves the first_name and last_name
from the Student table, where the student_id matches the value of i_student_id.
i_student_id is the only in parameter that exists in the procedure. To call the procedure, a
value must be passed in for the i_student_id parameter.

B) Explain the relationship between the parameters that are in the procedure’s header definition
versus the parameters that are passed into and out of the procedure.

ANSWER: When calling the procedure find_sname, a valid student_id should be passed
in for i_student_id. If it is not a valid student_id, an exception is raised. Two variables
must also be listed when calling the procedure. These variables,v_local_first_name and
v_local_last_name, are used to hold the values of the parameters that are being passed
out. After the procedure has been executed, the local variables have a value and can then be
displayed with a DBMS_OUTPUT.PUT_LINE.

L A B 19.2
446

Lab 19.2 Exercises

▼ T R Y I T Y O U R S E L F

In this chapter, you’ve learned about creating procedures, with and without the use of parameters.
Additionally, you’ve learned about where information and source code for these procedures can be
found. Part I of this section contains exercises that cover the basics of procedures. Part 2 extends
the material on native dynamic SQL from Chapter 17 and puts it to use within the context of stored
procedures.

Part 1

1) Write a procedure with no parameters. The procedure should say whether the current day is a
weekend or weekday. Additionally, it should tell you the user’s name and the current time. It also
should specify how many valid and invalid procedures are in the database.

2) Write a procedure that takes in a zip code, city, and state and inserts the values into the zip code
table. It should check to see if the zip code is already in the database. If it is, an exception should
be raised, and an error message should be displayed. Write an anonymous block that uses the
procedure and inserts your zip code.

Part 2

1) Create a stored procedure based on the script ch17_1c.sql, version 3.0, created in Chapter 17. The
procedure should accept two parameters to hold a table name and an ID, and should return six
parameters with first name, last name, street, city, state, and zip code information.

2) Modify the procedure you just created. Instead of using six parameters to hold name and address
information, the procedure should return a user-defined record that contains six fields that hold
name and address information. Note: You may want to create a package in which you define a
record type. This record may be used later, such as when the procedure is invoked in a PL/SQL
block.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

Try it Yourself 447

This page intentionally left blank

C H A P T E R 2 0

Functions

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Creating and using functions

A function that is stored in the database is much like a procedure in that it is a
named PL/SQL block that can take parameters and be invoked. There are key
differences both in how it is created and how it is used. This short chapter covers
the basics of how to create, use, and drop a function. Chapter 21, “Packages,”
shows you how to extend functions when they are placed in packages.

L A B 2 0 . 1

Creating and Using Functions

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Create stored functions

. Make use of functions

. Invoke functions in SQL statements

. Write complex functions

FUNCTION BASICS

Functions are another type of stored code and are very similar to procedures. The significant
difference is that a function is a PL/SQL block that returns a single value. Functions can accept
one, many, or no parameters, but a function must have a return clause in the executable section
of the function. The datatype of the return value must be declared in the header of the function.
A function is not a stand-alone executable in the same way a procedure is: It must be used in
some context. You can think of it as a sentence fragment. A function has output that needs to
be assigned to a variable, or it can be used in a SELECT statement.

FUNCTION SYNTAX

The syntax for creating a function is as follows:

CREATE [OR REPLACE] FUNCTION function_name
(parameter list)
RETURN datatype

IS
BEGIN

<body>
RETURN (return_value);

END;

The function does not necessarily have any parameters, but it must have a RETURN value whose
datatype is declared in the header, and it must return values for all the varying possible execu-
tion streams. The RETURN statement does not have to appear as the last line of the main execu-
tion section, and there may be more than one RETURN statement (there should be a RETURN
statement for each exception). A function may have IN, OUT, or IN OUT parameters, but you
rarely see anything except IN parameters because it is bad programming practice to do otherwise.

L A B 20.1
450

▼

FOR EXAMPLE

-- ch20_01a.sql ver 1.0
CREATE OR REPLACE FUNCTION show_description
(i_course_no course.course_no%TYPE)

RETURN varchar2
AS
v_description varchar2(50);

BEGIN
SELECT description
INTO v_description
FROM course
WHERE course_no = i_course_no;
RETURN v_description;

EXCEPTION
WHEN NO_DATA_FOUND
THEN
RETURN(‘The Course is not in the database');

WHEN OTHERS
THEN
RETURN(‘Error in running show_description');

END;

L A B 2 0 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

20.1.1 Create Stored Functions

This exercise starts by creating your first function.

A) Put the create script for the function in the preceding example into a text file. Open SQL*Plus, log
into the student schema, and run the script from the preceding example. What do you expect to
see? Explain the function line by line.

ANSWER: When a function has been compiled without errors, the SQL*Plus session returns the
following:

Function created.

This indicates that the function compiled successfully.

The script creates the function show_description. The function heading indicates that it
accepts a parameter of the NUMBER datatype,i_course_no, and returns a value of VARCHAR2
datatype. The function declares a VARCHAR2(5) variable called v_description that is used
later on by the RETURN clause. This variable stores the value of the description of the course
provided at the run time, and is initialized via the SELECT INTO statement. Once initialized, the
value of the v_description variable is returned to the calling environment via the RETURN
clause. Note the two exceptions employed by the function. The first is the NO_DATA_FOUND
exception, the one most likely to occur. The second exception is the OTHERS exception, which is

L A B 20.1Lab 20.1 Exercises

451

being used as a catchall for any other error that may occur. It is important to note that both
exception sections include the RETURN clause as the function must always return a value as the
control of the execution is passed to the calling environment after the RETURN clause is issued.

B) Create another function using the following script. Explain what is happening in this function. Pay
close attention to the method of creating the Boolean return.

-- ch20_01b.sql, version 1.0
CREATE OR REPLACE FUNCTION id_is_good
(i_student_id IN NUMBER)
RETURN BOOLEAN

AS
v_id_cnt NUMBER;

BEGIN
SELECT COUNT(*)
INTO v_id_cnt
FROM student
WHERE student_id = i_student_id;
RETURN 1 = v_id_cnt;

EXCEPTION
WHEN OTHERS
THEN
RETURN FALSE;

END id_is_good;

ANSWER: The function id_is_good is a check to see if the student ID passed in exists in the
database. The function takes in a NUMBER datatype (which is assumed to be a student ID) and
returns a BOOLEAN value. The function uses the variable v_id_cnt as a means to process the
data. The SELECT INTO statement determines a total number of students with the ID that was
passed in. If the student with such ID is already in the database, the value of v_id_cnt is 1. This
is because the student_id column is the primary key and as such enforces uniqueness on the
values stored in it. If the student with provided ID is not in the database, the value of v_id_cnt
is 0. Note that the SELECT INTO statement does not cause a NO_DATA_FOUND exception as the
COUNT(*) function returns 0 for non-existent student ID. Next, the RETURN clause returns TRUE if
the value of the v_id_cnt is 1 because the expression 1 = v_id_cnt evaluates to TRUE,
and FALSE if the value of the v_id_cnt is 0 because the expression 1 = v_id_cnt evalu-
ates to FALSE. The function will also return FALSE when it encounters an exception.

20.1.2 Make Use of Functions

In this exercise, you will learn how to use the stored functions you created in Exercise 20.1.1.

A) Use the following anonymous block to run the function. When prompted, enter 350. Then try
other numbers. What is produced?

SET SERVEROUTPUT ON
DECLARE
v_description VARCHAR2(50);

BEGIN
v_description := show_description(&sv_cnumber);
DBMS_OUTPUT.PUT_LINE(v_description);
END;

L A B 20.1
452

Lab 20.1 Exercises

ANSWER: Because the PL/SQL block has a lexical parameter of &cnumber, the user is
prompted as follows:

Enter value for cnumber:

If you enter 350, you see the following:

old 4: v_descript := show_description(&sv_cnumber);
new 4: v_descript := show_description(350);
Java Developer II
PL/SQL procedure successfully completed.

This means that the value for &sv_cnumber has been replaced with 350. The function
show_description returns a VARCHAR2 value, which is the course description for the
course number that is passed in. The PL/SQL block initializes the v_description value with
the return from the show_description function. This value is then displayed with the
DBMS_OUTPUT package.

B) Create a similar anonymous block to make use of the function id_is_good. Try running it for a
number of different IDs.

ANSWER: The following is one method of testing the id_is_good function:

DECLARE
v_id number;

BEGIN
v_id := &id;
IF id_is_good(v_id)
THEN

DBMS_OUTPUT.PUT_LINE
('Student ID: '||v_id||' is a valid.');

ELSE
DBMS_OUTPUT.PUT_LINE

('Student ID: '||v_id||' is not valid.');
END IF;

END;

This PL/SQL block evaluates the return from the function and then determines which output to
project. Because the function id_is_good returns a Boolean, the easiest way to use this func-
tion is to run it and use the result (which will be either TRUE or FALSE) in an IF statement. In this
case, if the function id_is_good returns TRUE, the first DBSM_OUTPUT.PUT_LINE statement
displays the message stating that the student ID is valid. Similarly, if the function returns FALSE,
the second DBMS_OUTPUT.PUT_LINE statement displays the message on the screen stating that
the student ID is not valid.

20.1.3 Invoke Functions in SQL Statements

Functions return a single value and can be very useful in a SELECT statement. In this exercise you will
learn to use user-defined functions in the SQL statements. This exercise starts by creating your first func-
tion that can be used in a SELECT statement.

A) Now you will try another method of using a stored function. Before you type the following SELECT
statement, think about what the function show_description is doing. Will this statement
produce an error? If not, what will be displayed?

SELECT course_no, show_description(course_no)
FROM course;

L A B 20.1Lab 20.1 Exercises

453

ANSWER: This SELECT statement is identical to the following SELECT statement:

SELECT course_no, description
FROM course.

Functions can be used in a SQL statement. In fact, you have been using them all along and
may not have realized it. As a simple example, imagine using the function UPPER in a SELECT
statement:

SELECT UPPER('bill') FROM DUAL;

The Oracle-supplied function UPPER is a function that returns the uppercase value of the parame-
ter that was passed in.

Note that for a user-defined function to be called in a SQL expression, it must be a ROW function,
not a GROUP function, and the datatypes must be SQL datatypes. The datatypes cannot be
PL/SQL datatypes such as Boolean, table, or record. Additionally, the function is not allowed to
have any DML (insert, update, delete).

Note that for you to use a function in a SELECT statement, the function must have a certain level
of purity. This is accomplished with the PRAGMA RESTRICT_REFERENCES clause. This is discussed
in detail in the next chapter in the context of functions within packages.

20.1.4 Write Complex Functions

In this exercise you will create a more complex function. In some cases functions can become elaborate
and multifaceted.

A) Create the function using the following script. Before you execute the function, analyze this script
and explain line by line what the function does. When could you use this function? Hint: You will
use it in the package for the next chapter.

-- ch20_01c.sql, version 1.0
CREATE OR REPLACE FUNCTION new_instructor_id

RETURN instructor.instructor_id%TYPE
AS

v_new_instid instructor.instructor_id%TYPE;
BEGIN

SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
INTO v_new_instid
FROM dual;

RETURN v_new_instid;
EXCEPTION

WHEN OTHERS
THEN

DECLARE
v_sqlerrm VARCHAR2(250) := SUBSTR(SQLERRM,1,250);

BEGIN
RAISE_APPLICATION_ERROR(-20003,

'Error in instructor_id: '||v_sqlerrm);
END;

END new_instructor_id;

ANSWER: This simple function is used to generate a new instructor ID. If the sequence fails to
generate a new instructor ID, the function raises an exception.

L A B 20.1
454

Lab 20.1 Exercises

▼ T R Y I T Y O U R S E L F

In this chapter, you have learned about functions. Here are some projects that will help you test the
depth of your understanding:

1) Write a stored function called new_student_id that takes in no parameters and returns a
student.student_id%TYPE. The value returned will be used when inserting a new
student into the CTA application. It will be derived by using the formula
student_id_seq.NEXTVAL.

2) Write a stored function called zip_does_not_exist that takes in a
zipcode.zip%TYPE and returns a Boolean. The function will return TRUE if the zip code
passed into it does not exist. It will return a FALSE if the zip code does exist. Hint: Here’s an
example of how this might be used:

DECLARE
cons_zip CONSTANT zipcode.zip%TYPE := '&sv_zipcode';
e_zipcode_is_not_valid EXCEPTION;

BEGIN
IF zipcode_does_not_exist(cons_zip)
THEN

RAISE e_zipcode_is_not_valid;
ELSE

-- An insert of an instructor's record which
-- makes use of the checked zipcode might go here.
NULL;

END IF;
EXCEPTION

WHEN e_zipcode_is_not_valid
THEN

RAISE_APPLICATION_ERROR
(-20003, 'Could not find zipcode '||
cons_zip||'.'
);

END;

3) Create a new function. For a given instructor, determine how many sections he or she is teaching.
If the number is greater than or equal to 3, return a message saying that the instructor needs a
vacation. Otherwise, return a message saying how many sections this instructor is teaching.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion
Web site.

Try it Yourself 455

This page intentionally left blank

C H A P T E R 2 1

Packages

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. The benefits of using packages

. Cursor variables

. Extending the package

A package is a collection of PL/SQL objects grouped under one package name.
Packages include procedures, functions, cursors, declarations, types, and vari-
ables. Collecting objects into a package offers numerous benefits. In this chapter,
you learn what these benefits are and how to take advantage of them.

L A B 2 1 . 1

The Benefits of Using Packages

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Create package specifications

. Create package bodies

. Call stored packages

. Create private objects

. Create package variables and cursors

Using packages as a method to bundle your functions and procedures offers numerous benefits.
The first is that a well-designed package is a logical grouping of objects such as functions, proce-
dures, global variables, and cursors. All the code (parse tree and pseudocode [p-code]) is loaded
into memory (the Shared Global Area [SGA] of the Oracle Server) on the package’s first call. This
means that the first call to the package is very expensive (it involves a lot of processing on the
server), but all subsequent calls result in improved performance. Therefore, packages are often
used in applications that use procedures and functions repeatedly.

Packages allow you to incorporate some of the concepts involved in object-oriented program-
ming, even though PL/SQL is not a “true” object-oriented programming language. The PL/SQL
package allows you to collect like functions and procedures and give them a context. It also
allows you to encapsulate them. Because all the package code has been loaded into memory, you
can also write your code so that similar code fragments are placed in the package in a manner
that allows multiple procedures and functions to call them. You would want to do this if the
logic for the calculation is fairly intensive and you want to keep it in one place.

AN EXAMPLE OF A BASIC CURRENCY CONVERSION

When you have the same calculation written in multiple places, you have a large maintenance job
every time the calculation increases in complexity. For example, basic currency conversion is fairly
simple. An amount is multiplied by an exchange rate. In actuality, though, currency conversion has
become more complex. For example, after the European Union was formed, individual currencies
became phased out as each country adopted the euro currency. The European Union then adopted
a complex policy on how these “dead” currencies would be converted. This would be important if
contracts were set up when the currency was in place and eventually the currency was phased out.
If you had an old contract in German deutsche marks, and that amount needed to be converted into
U.S. dollars, it needed to go through a process. First the amount was converted from deutsche marks
to euros based on the prevailing rate. Then the amount would be rounded based on a standard

L A B 21.1
458

rounding for deutsche marks to euros, and then it would be converted from euros to dollars at the
prevailing rate. If your programs have many places where currency is converted, it would make more
sense to encapsulate the conversion process into one function that encompasses this euro scenario.
This function could be a public or private function (explained later in this chapter) that all other
procedures in the same package make calls to.

Using packages offers an additional level of security. When a user executes a procedure in a
package (or stored procedures and functions), the procedure operates with the same permis-
sions as its owner. Packages let you create private functions and procedures, which can be called
only from other functions and procedures in the package. This enforces information hiding. The
package’s structure thus encourages top-down design.

THE PACKAGE SPECIFICATION

The package specification contains information about the package’s contents, but not the code
for the procedures and functions. It also contains declarations of global/public variables. Any-
thing placed in the declaration section of a PL/SQL block may be coded in a package specifica-
tion. All objects placed in the package specification are called public objects. Any function or
procedure not in the package specification but coded in a package body is called a private func-
tion or procedure. When public procedures and functions are called from a package, the
programmer writing the “calling” process needs only the information in the package specifica-
tion. This provides all the required information needed to call one of the procedures or func-
tions within the package. The syntax for the package specification is as follows; note that
optional information is enclosed in square brackets:

PACKAGE package_name
IS
[declarations of variables and types]
[specifications of cursors]
[specifications of modules]
END [package_name];

THE PACKAGE BODY

The package body contains the actual executable code for the objects described in the package
specification. The package body contains code for all procedures and functions described in the
specification. It also may contain code for objects not declared in the specification. The latter
type of packaged object is invisible outside the package and is referred to as hidden. When
creating stored packages, you can compile the package specification and body separately. The
syntax for the package body is as follows; note that optional information is enclosed in square
brackets:

PACKAGE BODY package_name
IS
[declarations of variables and types]
[specification and SELECT statement of cursors]
[specification and body of modules]
[BEGIN
executable statements]

L A B 21.1The Benefits of Using Packages

459

▼

[EXCEPTION
exception handlers]
END [package_name];

RULES FOR THE PACKAGE BODY

You must follow several rules in the package body code:

. There must be an exact match between the cursor and module headers and their defini-
tions in the package specification.

. Do not repeat in the body the declaration of variables, exceptions, types, or constants in
the specification.

. Any element declared in the specification can be referenced in the body.

REFERENCING PACKAGE ELEMENTS

Use the following syntax when calling packaged elements from outside the package:

package_name.element

You do not need to qualify elements when they are declared and referenced inside the body of
the package or when they are declared in a specification and referenced inside the body of the
same package.

L A B 2 1 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

21.1.1 Create Package Specifications

In this exercise, you learn more about table-based and cursor-based records.

Create the following PL/SQL script:

-- ch21_1a.sql
1 CREATE OR REPLACE PACKAGE manage_students
2 AS
3 PROCEDURE find_sname
4 (i_student_id IN student.student_id%TYPE,
5 o_first_name OUT student.first_name%TYPE,
6 o_last_name OUT student.last_name%TYPE
7);
8 FUNCTION id_is_good
9 (i_student_id IN student.student_id%TYPE)
10 RETURN BOOLEAN;
11 END manage_students;

L A B 21.1
460

Lab 21.1 Exercises

Complete the following tasks, and answer the following questions:

A) Type the preceding code into a text file and run the script in a SQL*Plus session. Explain what
happens.

ANSWER: The specification for the package manage_students is compiled into the data-
base. The specification for the package indicates that there is one procedure and one function.
The procedure,find_sname, requires one IN parameter—the student ID—and it returns two
OUT parameters—the student’s first and last names. The function,id_is_good, takes in a
single parameter of a student ID and returns a Boolean (true or false). Although the body has not
yet been entered into the database, the package is still available for other applications. For
example, if you included a call to one of these procedures in another stored procedure, that
procedure would compile (but would not execute).

B) If the following script were run from a SQL*Plus session, what would be the result, and why?

-- ch21_2a.sql
SET SERVEROUTPUT ON
DECLARE

v_first_name student.first_name%TYPE;
v_last_name student.last_name%TYPE;

BEGIN
manage_students.find_sname

(125, v_first_name, v_last_name);
DBMS_OUTPUT.PUT_LINE(v_first_name||' '||v_last_name);

END;

ANSWER: The procedure cannot run because the specification for the procedure exists only in
the database, not the body. The SQL*Plus session returns the following:

ERROR at line 1:
ORA-04068: existing state of packages has been discarded
ORA-04067: not executed, package body

"STUDENT.MANAGE_STUDENTS" does not exist
ORA-06508: PL/SQL: could not find program

unit being called
ORA-06512: at line 5

C) Create a package specification for a package named school_api. The package contains the
procedure discount from Chapter 19 and the function new_instructor_id from
Chapter 20.

ANSWER:

-- ch21_3a.sql
CREATE OR REPLACE PACKAGE school_api as

PROCEDURE discount;
FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE;

END school_api;

L A B 21.1Lab 21.1 Exercises

461

21.1.2 Create Package Bodies

In this exercise, you create the body of the manage_students and school_api packages, which
were specified in the preceding section.

FOR EXAMPLE

-- ch21_4a.sql
1 CREATE OR REPLACE PACKAGE BODY manage_students
2 AS
3 PROCEDURE find_sname
4 (i_student_id IN student.student_id%TYPE,
5 o_first_name OUT student.first_name%TYPE,
6 o_last_name OUT student.last_name%TYPE
7)
8 IS
9 v_student_id student.student_id%TYPE;
10 BEGIN
11 SELECT first_name, last_name
12 INTO o_first_name, o_last_name
13 FROM student
14 WHERE student_id = i_student_id;
15 EXCEPTION
16 WHEN OTHERS
17 THEN
18 DBMS_OUTPUT.PUT_LINE
19 ('Error in finding student_id: '||v_student_id);
20 END find_sname;
21 FUNCTION id_is_good
22 (i_student_id IN student.student_id%TYPE)
23 RETURN BOOLEAN
24 IS
25 v_id_cnt number;
26 BEGIN
27 SELECT COUNT(*)
28 INTO v_id_cnt
29 FROM student
30 WHERE student_id = i_student_id;
31 RETURN 1 = v_id_cnt;
32 EXCEPTION
33 WHEN OTHERS
34 THEN
35 RETURN FALSE;
36 END id_is_good;
37 END manage_students;

A) Type the preceding code into a text file and run the script in a SQL*Plus session. Explain what
happens.

ANSWER: The specification for the package manage_students is compiled into the data-
base. The specification for the package indicates that there is one procedure and one function.

L A B 21.1
462

Lab 21.1 Exercises

The procedure,find_sname, requires one IN parameter—the student ID—and it returns two
OUT parameters—the student’s first and last names. The function,id_is_good, takes in a
single parameter of a student ID and returns a Boolean (true or false). Although the body has not
yet been entered into the database, the package is still available for other applications. For
example, if you included a call to one of these procedures in another stored procedure, that
procedure would compile (but would not execute).

B) Create a package body for the package named school_api that you created in the previous
exercise. This will contain the procedure discount from Chapter 19 and the function
new_instructor_id from Chapter 20.

ANSWER:

-- ch21_5a.sql
1 CREATE OR REPLACE PACKAGE BODY school_api AS
2 PROCEDURE discount
3 IS
4 CURSOR c_group_discount
5 IS
6 SELECT distinct s.course_no, c.description
7 FROM section s, enrollment e, course c
8 WHERE s.section_id = e.section_id
9 GROUP BY s.course_no, c.description,
10 e.section_id, s.section_id
11 HAVING COUNT(*) >=8;
12 BEGIN
13 FOR r_group_discount IN c_group_discount
14 LOOP
15 UPDATE course
16 SET cost = cost * .95
17 WHERE course_no = r_group_discount.course_no;
18 DBMS_OUTPUT.PUT_LINE
19 ('A 5% discount has been given to'
20 ||r_group_discount.course_no||'
21 '||r_group_discount.description);
22 END LOOP;
23 END discount_cost;
24 FUNCTION new_instructor_id
25 RETURN instructor.instructor_id%TYPE
26 IS
27 v_new_instid instructor.instructor_id%TYPE;
28 BEGIN
29 SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
30 INTO v_new_instid
31 FROM dual;
32 RETURN v_new_instid;
33 EXCEPTION
34 WHEN OTHERS
35 THEN
36 DECLARE
37 v_sqlerrm VARCHAR2(250) :=

SUBSTR(SQLERRM,1,250);
38 BEGIN

L A B 21.1Lab 21.1 Exercises

463

39 RAISE_APPLICATION_ERROR(-20003,
40 'Error in instructor_id: '||v_sqlerrm);
41 END;
42 END new_instructor_id;
43 END school_api;

21.1.3 Call Stored Packages

In this exercise, you use elements of the manage_student package in another code block.

FOR EXAMPLE

-- ch21_6a.sql
SET SERVEROUTPUT ON
DECLARE
v_first_name student.first_name%TYPE;
v_last_name student.last_name%TYPE;

BEGIN
IF manage_students.id_is_good(&&v_id)
THEN
manage_students.find_sname(&&v_id, v_first_name,

v_last_name);
DBMS_OUTPUT.PUT_LINE('Student No. '||&&v_id||' is '

||v_last_name||', '||v_first_name);
ELSE

DBMS_OUTPUT.PUT_LINE
('Student ID: '||&&v_id||' is not in the database.');

END IF;
END;

A) This example displays how a procedure within a package is executed. What results would you
expect to see if you ran this PL/SQL block?

ANSWER: This is a correct PL/SQL block for running the function and the procedure in the
package manage_students. If an existing student_id is entered, the student’s name is
displayed. If the ID is not valid, an error message is displayed.

B) Run the script and view the results. How does this compare with what you expected? Explain
what the script does line by line.

ANSWER: Initially the following appears:

Enter value for v_id:

If you enter 145, you see the following:

old 5: IF manage_students.id_is_good(&v_id)
new 5: IF manage_students.id_is_good(145)
old 7: manage_students.find_sname(&&v_id, v_first_name,
new 7: manage_students.find_sname(145, v_first_name,
old 9: DBMS_OUTPUT.PUT_LINE('Student No. '||&&v_id||' is '
new 9: DBMS_OUTPUT.PUT_LINE('Student No. '||145||' is '
old 14: ('Student ID: '||&&v_id||' is not in the database.');
new 14: ('Student ID: '||145||' is not in the database.');
Student No. 145 is Lefkowitz, Paul
PL/SQL procedure successfully completed.

L A B 21.1
464

Lab 21.1 Exercises

The function id_is_good returns TRUE for an existing student_id such as 145. Control
then flows to the first part of the IF statement. The procedure manage_students.find_
sname finds the first and last name for student_id 145, which happens to be Lefkowitz, Paul.

C) Create a script that tests the school_api package.

ANSWER:

-- ch21_7a.sql
SET SERVEROUTPUT ON
DECLARE

V_instructor_id instructor.instructor_id%TYPE;
BEGIN

School_api.Discount_Cost;
v_instructor_id := school_api.new_instructor_id;
DBMS_OUTPUT.PUT_LINE

('The new id is: '||v_instructor_id);
END;

21.1.4 Create Private Objects

Public elements are elements defined in the package specification. If an object is defined only in the
package body, it is private. Private elements cannot be accessed directly by any programs outside of the
package. You can think of the package specification as being a “menu” of packaged items that are avail-
able to users. Other objects might be working behind the scenes, but they are inaccessible. They cannot
be called or utilized in any way. They are available as part of the package’s internal “menu” and can be
called only by other elements of the package.

A) Replace the last lines of the manage_students package specification in ch21_1a.sql with the
following, and recompile the package specification:

11 PROCEDURE display_student_count;
12 END manage_students;

Replace the end of the body with the following, and recompile the package body. Lines 1 through
36 are unchanged from lines 1 through 36 of ch21_4a.sql.

37 FUNCTION student_count_priv
38 RETURN NUMBER
39 IS
40 v_count NUMBER;
41 BEGIN
42 select count(*)
43 into v_count
44 from student;
45 return v_count;
46 EXCEPTION
47 WHEN OTHERS
48 THEN
49 return(0);
50 END student_count_priv;
51 PROCEDURE display_student_count
52 is
53 v_count NUMBER;
54 BEGIN
55 v_count := student_count_priv;

L A B 21.1Lab 21.1 Exercises

465

56 DBMS_OUTPUT.PUT_LINE
57 ('There are '||v_count||' students.');
58 END display_student_count;
59 END manage_students;

What have you added to the manage_student package?

ANSWER: You have added a private function,student_count_priv, and a public proce-
dure,display_student_count, calling the private function.

B) If you run the following from your SQL*Plus session, what are the results?

DECLARE
V_count NUMBER;

BEGIN
V_count := Manage_students.student_count_priv;
DBMS_OUTPUT.PUT_LINE(v_count);

END;

ANSWER: If you have decided that a function is to be private, this means that you don’t want it
to be called as a stand alone function. It should only be called from another function or procedure
within the same package. Because the private function,student_count_priv, cannot be
called from outside the package, you receive the following error message:

ERROR at line 1:
ORA-06550: line 4, column 31:
PLS-00302: component 'STUDENT_COUNT_PRIV' must be declared
ORA-06550: line 4, column 3:
PL/SQL: Statement ignored

When trying to call the function on its own, it will appear as if the private function does not exist.
This is important to keep in mind.

This can be useful when you are writing PL/SQL packages used by other developers. Private
elements have no meaning to another developer—that is just calling the public objects in the
package. To simplify the package for developers making use of public elements in a package, the
developers only need to see the package specification. This way, they know what is being passed
into the procedures and functions and what is being returned. They do not need to see the inner
workings.

If a number of procedures use the same logic, it may make more sense to put them in a private
function called by the procedures. This is also a good method to keep in mind if one calculation
will be used in many other procedures in the same package, yet you don’t want to expose the
calculation publicly. For example, we just created a function to count students. Maybe you have
other procedures that will need to make use of this function. For example, a change in the price of
all courses may occur as soon as the student count reaches a certain number.

C) If you were to run the following, what would you expect to see?

SET SERVEROUTPUT ON
Execute manage_students.display_student_count;

ANSWER: This is a valid method of running a procedure. A line is displayed indicating the
number of students in the database. Note that the procedure in the package manage_
students is using the private function student_count_priv to retrieve the student
count.

L A B 21.1
466

Lab 21.1 Exercises

Note that if you forget to include a procedure or function in a package specification, it becomes
private. On the other hand, if you declare a procedure or function in the package specification,
and then you do not define it when you create the body, you receive the following error message:

PLS-00323: subprogram or cursor 'procedure_name' is declared in
a package specification and must be defined in the package body

D) Add a private function to the school_api called get_course_descript_private. It
accepts a course.course_no%TYPE and returns a course.description%TYPE. It
searches for and returns the course description for the course number passed to it. If the course
does not exist or if an error occurs, it returns a NULL.

ANSWER: The complete package specification and body are as follows. Nothing needs to be
added to the package specification, because you are adding only a private object.

The package specification for manage_students is now as follows:

-- ch21_7b.sql
CREATE OR REPLACE PACKAGE manage_students
AS

PROCEDURE find_sname
(i_student_id IN student.student_id%TYPE,
o_first_name OUT student.first_name%TYPE,
o_last_name OUT student.last_name%TYPE
);

FUNCTION id_is_good
(i_student_id IN student.student_id%TYPE)
RETURN BOOLEAN;

PROCEDURE display_student_count;
END manage_students;

The package body for manage_students is now as follows:

-- ch21_7c.sql
CREATE OR REPLACE PACKAGE BODY manage_students
AS
PROCEDURE find_sname
(i_student_id IN student.student_id%TYPE,
o_first_name OUT student.first_name%TYPE,
o_last_name OUT student.last_name%TYPE
)

IS
v_student_id student.student_id%TYPE;
BEGIN

SELECT first_name, last_name
INTO o_first_name, o_last_name
FROM student
WHERE student_id = i_student_id;

EXCEPTION
WHEN OTHERS
THEN
DBMS_OUTPUT.PUT_LINE

('Error in finding student_id: '||v_student_id);
END find_sname;
FUNCTION id_is_good

L A B 21.1Lab 21.1 Exercises

467

(i_student_id IN student.student_id%TYPE)
RETURN BOOLEAN

IS
v_id_cnt number;

BEGIN
SELECT COUNT(*)
INTO v_id_cnt
FROM student
WHERE student_id = i_student_id;
RETURN 1 = v_id_cnt;

EXCEPTION
WHEN OTHERS
THEN
RETURN FALSE;

END id_is_good;
FUNCTION student_count_priv
RETURN NUMBER
IS
v_count NUMBER;
BEGIN
select count(*)
into v_count
from student;
return v_count;
EXCEPTION
WHEN OTHERS
THEN
return(0);

END student_count_priv;
PROCEDURE display_student_count
is
v_count NUMBER;
BEGIN
v_count := student_count_priv;
DBMS_OUTPUT.PUT_LINE

('There are '||v_count||' students.');
END display_student_count;
FUNCTION get_course_descript_private

(i_course_no course.course_no%TYPE)
RETURN course.description%TYPE

IS
v_course_descript course.description%TYPE;

BEGIN
SELECT description
INTO v_course_descript
FROM course
WHERE course_no = i_course_no;
RETURN v_course_descript;

EXCEPTION
WHEN OTHERS

L A B 21.1
468

Lab 21.1 Exercises

THEN
RETURN NULL;

END get_course_descript_private;
END manage_students;

21.1.5 Create Package Variables and Cursors

The first time a package is called within a user session, the code in the package’s initialization section is
executed if it exists. This is done only once and is not repeated if the user calls other procedures or func-
tions for that package.

Variables, cursors, and user-defined datatypes used by numerous procedures and functions can be
declared once at the beginning of the package specification. Then they can be used by the functions
and procedures within the package without having to be declared again.

A) Add a package global variable called v_current_date to student_api.

ANSWER: Add the following line to the beginning of the package specification:

-- ch21_8a.sql
CREATE OR REPLACE PACKAGE school_api as

v_current_date DATE;
PROCEDURE Discount_Cost;
FUNCTION new_instructor_id

RETURN instructor.instructor_id%TYPE;
END school_api;

B) Add an initialization section that assigns the current sysdate to the variable v_current_date.
This variable can then be used in any procedure in the package that needs to make use of the
current date.

ANSWER: Add the following to the end of the package body:

-- ch21_8b.sql
CREATE OR REPLACE PACKAGE BODY school_api AS

PROCEDURE discount_cost
IS

CURSOR c_group_discount
IS
SELECT distinct s.course_no, c.description
FROM section s, enrollment e, course c
WHERE s.section_id = e.section_id
GROUP BY s.course_no, c.description,

e.section_id, s.section_id
HAVING COUNT(*) >=8;

BEGIN
FOR r_group_discount IN c_group_discount
LOOP
UPDATE course

SET cost = cost * .95
WHERE course_no = r_group_discount.course_no;
DBMS_OUTPUT.PUT_LINE
('A 5% discount has been given to'
||r_group_discount.course_no||'
'||r_group_discount.description);

END LOOP;

L A B 21.1Lab 21.1 Exercises

469

END discount_cost;
FUNCTION new_instructor_id

RETURN instructor.instructor_id%TYPE
IS

v_new_instid instructor.instructor_id%TYPE;
BEGIN

SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
INTO v_new_instid
FROM dual;

RETURN v_new_instid;
EXCEPTION

WHEN OTHERS
THEN
DECLARE

v_sqlerrm VARCHAR2(250) :=
SUBSTR(SQLERRM,1,250);

BEGIN
RAISE_APPLICATION_ERROR(-20003,
'Error in instructor_id: '||v_sqlerrm);

END;
END new_instructor_id;

BEGIN
SELECT trunc(sysdate, 'DD')
INTO v_current_date
FROM dual;

END school_api;

L A B 21.1
470

Lab 21.1 Exercises

L A B 2 1 . 2

Cursor Variables

L A B O B J E C T I V E
After completing this lab, you will be able to

. Make use of cursor variables

Up to this point in this book you have seen cursors used to gather specific data from a single
SELECT statement. At the beginning of this chapter you learned how to bring a number of
procedures into a large program called a package. A package may have one cursor that is used
by a few procedures. In this case, each of the procedures that uses the same cursor would have
to declare, open, fetch, and close the cursor. In the current version of PL/SQL, cursors can be
declared and manipulated like any other PL/SQL variable. This type of variable is called a cursor
variable or a REF CURSOR. A cursor variable is just a reference or a handle to a static cursor. It
permits a programmer to pass this reference to the same cursor among all the program’s units
that need access to the cursor. A cursor variable binds the cursor’s SELECT statement dynami-
cally at runtime.

Explicit cursors are used to name a work area that holds the information of a multirow query. A
cursor variable may be used to point to the area in memory where the result of a multirow query
is stored. The cursor always refers to the same information in a work area, whereas a cursor vari-
able can point to different work areas. Cursors are static, but cursor variables can be seen as
dynamic because they are not tied to any one query. Cursor variables give you easy access to
centralized data retrieval.

You can use a cursor variable to pass the result set of a query between stored procedures and
various clients. A query work area remains accessible as long as a cursor variable points to it. So
you can freely pass a cursor variable from one scope to another. The two types of cursor vari-
ables are strong and weak.

To execute a multirow query, the Oracle server opens a work area called a cursor to store
processing information. To access the information, you either name the work area, or you use a
cursor variable that points to it. A cursor always refers to the same work area, but a cursor vari-
able can refer to different work areas. Hence, cursors and cursor variables are not interchange-
able. An explicit cursor is static and is associated with one SQL statement. A cursor variable can
be associated with different statements at runtime. Primarily you use a cursor variable to pass a
pointer to query result sets between PL/SQL stored subprograms and various clients, such as a
client Oracle Developer Forms application. None of them owns the result set; they simply share

L A B 21.2
471

a pointer to the query work area that stores the result set. You can declare a cursor variable on
the client side, open and fetch from it on the server side, and then continue to fetch from it on
the client side.

Cursor variables differ from cursors in the same way that constants differ from variables. A
cursor is static; a cursor variable is dynamic. In PL/SQL a cursor variable has a REF CURSOR
datatype, where REF stands for reference and CURSOR stands for the class of the object. You
will now learn the syntax for declaring and using a cursor variable.

To create a cursor variable, first you need to define a REF CURSOR type, and then you declare
a variable of that type.

Before you declare the REF CURSOR of a strong type, you must declare a record that has the
datatypes of the result set of the SELECT statement you plan to use (note that this is not neces-
sary for a weak REF CURSOR).

FOR EXAMPLE

TYPE inst_city_type IS RECORD
(first_name instructor.first_name%TYPE;
last_name instructor.last_name%TYPE;
city zipcode.city%TYPE;
state zipcode.state%TYPE)

Second, you must declare a composite datatype for the cursor variable that is of the type REF
CURSOR. The syntax is as follows:

TYPE ref_type_name is REF CURSOR [RETURN return_type];

ref_type_name is a type specified in subsequent declarations. return_type is a record
type for a strong cursor; a weak cursor does not have a specific return type but can handle any
combination of data items in a SELECT statement. The REF CURSOR keyword indicates that
the new type will be a pointer to the defined type. return_type indicates the type of SELECT
list that the cursor variable eventually returns. The return type must be a record type.

FOR EXAMPLE

TYPE inst_city_cur IS REF CURSOR RETURN inst_city_type;

A cursor variable can be strong (restrictive) or weak (nonrestrictive). A strong cursor variable is
a REF CURSOR type definition that specifies a return_type; a weak definition does not.
PL/SQL enables you to associate a strong type with type-comparable queries only, whereas a
weak type can be associated with any query. This makes a strong cursor variable less error-prone
but weak REF CURSOR types more flexible.

L A B 21.2
472

Cursor Variables

These are the key steps for handling a cursor variable:

1. Define and declare the cursor variable.

Open the cursor variable. Associate the cursor variable with a multirow SELECT state-
ment, execute the query, and identify the result set. An OPEN FOR statement can open
the same cursor variable for different queries. You do not need to close a cursor variable
before reopening it. Keep in mind that when you reopen a cursor variable for a different
query, the previous query is lost. Good programming technique would be to close the
cursor variables before reopening them later in the program.

2. Fetch rows from the result set.

Retrieve rows from the result set one at a time. Note that the return type of the cursor
variable must be compatible with the variable named in the INTO clause of the FETCH
statement.

The FETCH statement retrieves rows from the result set one at a time. PL/SQL verifies that
the return type of the cursor variable is compatible with the INTO clause of the FETCH
statement. For each query column value returned, the INTO clause must have a type-
comparable variable. Also, the number of query column values must equal the number of
variables. In case of a mismatch in number or type, the error occurs at compile time for
strongly typed cursor variables and at runtime for weakly typed cursor variables.

3. Close the cursor variable.

The following is a complete example showing the use of a cursor variable in a package.

FOR EXAMPLE

-- ch21_9a.sql
CREATE OR REPLACE PACKAGE course_pkg AS
TYPE course_rec_typ IS RECORD
(first_name student.first_name%TYPE,
last_name student.last_name%TYPE,
course_no course.course_no%TYPE,
description course.description%TYPE,
section_no section.section_no%TYPE
);

TYPE course_cur IS REF CURSOR RETURN course_rec_typ;
PROCEDURE get_course_list
(p_student_id NUMBER ,
p_instructor_id NUMBER ,
course_list_cv IN OUT course_cur);

END course_pkg;
/

CREATE OR REPLACE PACKAGE BODY course_pkg AS
PROCEDURE get_course_list

L A B 21.2Cursor Variables

473

FOR EXAMPLE (continued)

(p_student_id NUMBER ,
p_instructor_id NUMBER ,
course_list_cv IN OUT course_cur)

IS
BEGIN
IF p_student_id IS NULL AND p_instructor_id
IS NULL THEN
OPEN course_list_cv FOR
SELECT 'Please choose a student-' First_name,

'instructor combination' Last_name,
NULL course_no,
NULL description,
NULL section_no
FROM dual;

ELSIF p_student_id IS NULL THEN
OPEN course_list_cv FOR
SELECT s.first_name first_name,
s.last_name last_name,
c.course_no course_no,
c.description description,
se.section_no section_no

FROM instructor i, student s,
section se, course c, enrollment e

WHERE i.instructor_id = p_instructor_id
AND i.instructor_id = se.instructor_id
AND se.course_no = c.course_no
AND e.student_id = s.student_id
AND e.section_id = se.section_id
ORDER BY c.course_no, se.section_no;
ELSIF p_instructor_id IS NULL THEN
OPEN course_list_cv FOR

SELECT i.first_name first_name,
i.last_name last_name,
c.course_no course_no,
c.description description,
se.section_no section_no

FROM instructor i, student s,
section se, course c, enrollment e

WHERE s.student_id = p_student_id
AND i.instructor_id = se.instructor_id
AND se.course_no = c.course_no
AND e.student_id = s.student_id
AND e.section_id = se.section_id

ORDER BY c.course_no, se.section_no;
END IF;

END get_course_list;

END course_pkg;

L A B 21.2
474

Cursor Variables

▼

You can pass query result sets between PL/SQL stored subprograms and various clients. This
works because PL/SQL and its clients share a pointer to the query work area identifying the
result set. This can be done in a client program such as SQL*Plus by defining a host variable
with a datatype of REF CURSOR to hold the query result generated from a REF CURSOR in a
stored program. To see what is being stored in the SQL*Plus variable, use the SQL*Plus PRINT
command. Optionally you can have the SQL*Plus command SET AUTOPRINT ON to display
the query results automatically.

L A B 2 1 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

21.2.1 Make Use of Cursor Variables

A) Take a look at the preceding example, script ch21_9a.sql, and explain why the package has two
different TYPE declarations. Also explain how the procedure get_course_list uses the
cursor variable.

ANSWER: In script ch21_9a.sql, the first TYPE declaration is for the record type course_rec_
type. This record type is declared to define the result set of the SELECT statements that will be
used for the cursor variable. When data items in a record do not match a single table, it is neces-
sary to create a record type. The second TYPE declaration is for the cursor variable, also known as
REF CURSOR. The variable has the name course_cur, and it is declared as a strong cursor,
meaning that it can be used for only a single record type. The record type is course_rec_
type. The procedure get_course_list in the course_pkg is made so that it can return
a cursor variable that holds three different result sets. Each result set is of the same record type.
The first type is for when both IN parameters of student ID and instructor ID are null. This
produces a result set that is a message,Please choose a student-instructor
combination. The next way the procedure runs is if the instructor_id is passed in
but the student_id is null. (Note that the logic of the procedure is a reverse negative.
Saying in the second clause of the IF statement p_student_id IS NULL means when the
instructor_id is passed in.) This runs a SELECT statement to populate the cursor variable
that holds a list of all the courses this instructor teaches and the students enrolled in these
classes. The last way this can run is for a student_id and no instructor_id. This
produces a result set of all the courses the student is enrolled in and the instructors for each
section. Also be aware that after the cursor variable is opened, it is never closed until you specifi-
cally close it.

B) Create a SQL*Plus variable that is a cursor variable type.

ANSWER:

SQL> VARIABLE course_cv REFCURSOR

C) Execute the procedure course_pkg.get_course_list, with three different types of vari-
able combinations to show the three possible result sets. After you execute the procedure, display
the values of the SQL*Plus variable you declared in question A).

ANSWER: There are three ways to execute this procedure. The first way is to pass a student ID
but not an instructor ID:

SQL> exec course_pkg.get_course_list(102, NULL, :course_cv);

PL/SQL procedure successfully completed.

L A B 21.2Lab 21.2 Exercises

475

SQL> print course_cv

FIRST_NAME LAST_NAME COURSE_NO DESCRIPTION SECTION_NO
---------- ---------- ---------- ---------------------- ----------
Charles Lowry 25 Intro to Programming 2
Nina Schorin 25 Intro to Programming 5

The next method is to pass an instructor ID but not a student ID:

SQL> exec course_pkg.get_course_list(NULL, 102, :course_cv);

PL/SQL procedure successfully completed.

SQL> print course_cv

FIRST_NAME LAST_NAME COURSE_NO DESCRIPTION SECTION_NO
----------- ----------- --------- ------------------------ ----------
Jeff Runyan 10 Technology Concepts 2
Dawn Dennis 25 Intro to Programming 4
May Jodoin 25 Intro to Programming 4
Jim Joas 25 Intro to Programming 4
Arun Griffen 25 Intro to Programming 4
Alfred Hutheesing 25 Intro to Programming 4
Lula Oates 100 Hands-On Windows 1
Regina Bose 100 Hands-On Windows 1
Jenny Goldsmith 100 Hands-On Windows 1
Roger Snow 100 Hands-On Windows 1
Rommel Frost 100 Hands-On Windows 1
Debra Boyce 100 Hands-On Windows 1
Janet Jung 120 Intro to Java Programming 4
John Smith 124 Advanced Java Programming 1
Charles Caro 124 Advanced Java Programming 1
Sharon Thompson 124 Advanced Java Programming 1
Evan Fielding 124 Advanced Java Programming 1
Ronald Tangaribuan 124 Advanced Java Programming 1
N Kuehn 146 Java for C/C++ Programmers 2
Derrick Baltazar 146 Java for C/C++ Programmers 2
Angela Torres 240 Intro to the Basic Language 2

The last method is to pass neither the student ID nor the instructor ID:

SQL> exec course_pkg.get_course_list(NULL, NULL, :course_cv);

PL/SQL procedure successfully completed.

SQL> print course_cv

FIRST_NAME LAST_NAME C DESCRIPTION S
----------------------- ------------------------- - ---------------
Please choose a student-instructor combination

L A B 21.2
476

Lab 21.2 Exercises

D) Create another package called student_info_pkg that has a single procedure called
get_student_info. The get_student_info package will have three parameters. The
first is student_id, the second is a number called p_choice, and the last is a weak cursor
variable.p_choice indicates what information about the student will be delivered. If it is 1,
return the information about the student from the STUDENT table. If it is 2, list all the courses the
student is enrolled in, with the names of the students who are enrolled in the same section as the
student with the student_id that was passed in. If it is 3, return the instructor name for that
student, with the information about the courses the student is enrolled in.

ANSWER:

-- ch21_10a.sql
CREATE OR REPLACE PACKAGE student_info_pkg AS

TYPE student_details IS REF CURSOR;

PROCEDURE get_student_info
(p_student_id NUMBER ,
p_choice NUMBER ,
details_cv IN OUT student_details);

END student_info_pkg;
/
CREATE OR REPLACE PACKAGE BODY student_info_pkg AS
PROCEDURE get_student_info
(p_student_id NUMBER ,
p_choice NUMBER ,
details_cv IN OUT student_details)

IS
BEGIN
IF p_choice = 1 THEN
OPEN details_cv FOR
SELECT s.first_name first_name,

s.last_name last_name,
s.street_address address,
z.city city,
z.state state,
z.zip zip

FROM student s, zipcode z
WHERE s.student_id = p_student_id
AND z.zip = s.zip;

ELSIF p_choice = 2 THEN
OPEN details_cv FOR
SELECT c.course_no course_no,

c.description description,
se.section_no section_no,
s.first_name first_name,
s.last_name last_name

FROM student s, section se,
course c, enrollment e

WHERE se.course_no = c.course_no
AND e.student_id = s.student_id
AND e.section_id = se.section_id

L A B 21.2Lab 21.2 Exercises

477

AND se.section_id in (SELECT e.section_id
FROM student s,

enrollment e
WHERE s.student_id =

p_student_id
AND s.student_id =

e.student_id)
ORDER BY c.course_no;
ELSIF p_choice = 3 THEN
OPEN details_cv FOR
SELECT i.first_name first_name,

i.last_name last_name,
c.course_no course_no,
c.description description,
se.section_no section_no

FROM instructor i, student s,
section se, course c, enrollment e

WHERE s.student_id = p_student_id
AND i.instructor_id = se.instructor_id
AND se.course_no = c.course_no
AND e.student_id = s.student_id
AND e.section_id = se.section_id

ORDER BY c.course_no, se.section_no;
END IF;

END get_student_info;

END student_info_pkg;

E) Run the get_student_info procedure in SQL*Plus, and display the results.

ANSWER:

SQL> VARIABLE student_cv REFCURSOR
SQL> execute student_info_pkg.GET_STUDENT_INFO

(102, 1, :student_cv);
PL/SQL procedure successfully completed.

SQL> print student_cv
FIRST_ LAST_NAM ADDRESS CITY ST ZIP
------ -------- ------------------ --------------- -- -----
Fred Crocitto 101-09 120th St. Richmond Hill NY 11419

SQL> execute student_info_pkg.GET_STUDENT_INFO
(102, 2, :student_cv);

PL/SQL procedure successfully completed.

SQL> print student_cv
COURSE_NO DESCRIPTION SECTION_NO FIRST_NAME LAST_NAME
---------- ------------------ ---------- ---------- -----------

25 Intro to Programming 2 Fred Crocitto
25 Intro to Programming 2 Judy Sethi
25 Intro to Programming 2 Jenny Goldsmith

L A B 21.2
478

Lab 21.2 Exercises

25 Intro to Programming 2 Barbara Robichaud
25 Intro to Programming 2 Jeffrey Citron
25 Intro to Programming 2 George Kocka
25 Intro to Programming 5 Fred Crocitto
25 Intro to Programming 5 Hazel Lasseter
25 Intro to Programming 5 James Miller
25 Intro to Programming 5 Regina Gates
25 Intro to Programming 5 Arlyne Sheppard
25 Intro to Programming 5 Thomas Edwards
25 Intro to Programming 5 Sylvia Perrin
25 Intro to Programming 5 M. Diokno
25 Intro to Programming 5 Edgar Moffat
25 Intro to Programming 5 Bessie Heedles
25 Intro to Programming 5 Walter Boremmann
25 Intro to Programming 5 Lorrane Velasco

SQL> execute student_info_pkg.GET_STUDENT_INFO
(214, 3, :student_cv);

PL/SQL procedure successfully completed.

SQL> print student_cv
FIRST_NAME LAST_NAME COURSE_NO DESCRIPTION SECTION_NO
---------- ----------- ---------- --------------------------
Marilyn Frantzen 120 Intro to Java Programming 1
Fernand Hanks 122 Intermediate Java Programming 5
Gary Pertez 130 Intro to Unix 2
Marilyn Frantzen 145 Internet Protocols 1

RULES FOR USING CURSOR VARIABLES

. Cursor variables cannot be defined in a package specification.

. You cannot use cursor variables with remote subprograms on another server, so you cannot
pass cursor variables to a procedure that is called through a database link.

. Do not use FOR UPDATE with OPEN FOR in processing a cursor variable.

. You cannot use comparison operators to test cursor variables for equality, inequality, or nullity.

. A cursor variable cannot be assigned a null value.

. A REF CURSOR type cannot be used in a CREATE TABLE or VIEW statement, because there is no
equivalent datatype for a database column.

. A stored procedure that uses a cursor variable can be used only as a query block data source;
it cannot be used for a DML block data source. Using a REF CURSOR is ideal for queries that
are dependent only on variations in SQL statements, not PL/SQL.

. You cannot store cursor variables in an associative array, nested table, or varray.

. If you pass a host cursor variable to PL/SQL, you cannot fetch from it on the server side unless
you also open it there on the same server call.

L A B 21.2Lab 21.2 Exercises

479

▼

L A B 2 1 . 3

Extending the Package

L A B O B J E C T I V E
After completing this lab, you will be able to

. Extend the package

In this lab you use previously learned concepts to extend the packages you have created and
create a new one. Only through extensive exercises will you become more comfortable with
programming in PL/SQL. It is very important when writing your PL/SQL code that you carefully
consider all aspects of the business requirements. A good rule of thumb is to think ahead and
write your code in reusable components so that it will be easy to extend and maintain your
PL/SQL code.

L A B 2 1 . 3 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

21.3.1 Extend the Package

A) Create a new package specification called manage_grades. This package will perform a
number of calculations on grades and will need two package level cursors. The first one is for
grade types and will be called c_grade_type. It will have an IN parameter of a section ID. It
will list all the grade types (such as quiz or homework) for a given section that are needed to
calculate a student’s grade in that section. The return items from the cursor will be the grade type
code, the number of that grade type for this section, the percentage of the final grade, and the
drop-lowest indicator. First, write a SELECT statement to make sure that you have the correct
items, and then write this as a cursor in the package.

ANSWER:

-- ch21_11a.sql
CREATE OR REPLACE PACKAGE MANAGE_GRADES AS
-- Cursor to loop through all grade types for a given section.

CURSOR c_grade_type
(pc_section_id section.section_id%TYPE,
PC_student_ID student.student_id%TYPE)
IS

SELECT GRADE_TYPE_CODE,
NUMBER_PER_SECTION,

L A B 21.3
480

PERCENT_OF_FINAL_GRADE,
DROP_LOWEST

FROM grade_Type_weight
WHERE section_id = pc_section_id
AND section_id IN (SELECT section_id

FROM grade
WHERE student_id = pc_student_id);

END MANAGE_GRADES;

B) Add a second package cursor to the package Manage_Grades called c_grades. This cursor
will take a grade type code, student ID, and section ID and return all the grades for that student
for that section of that grade type. For example, if Alice were registered in “Intro to Java
Programming,” this cursor could be used to gather all her quiz grades.

ANSWER:

-- ch21_11b.sql
CREATE OR REPLACE PACKAGE MANAGE_GRADES AS
-- Cursor to loop through all grade types for a given section.

CURSOR c_grade_type
(pc_section_id section.section_id%TYPE,
PC_student_ID student.student_id%TYPE)
IS

SELECT GRADE_TYPE_CODE,
NUMBER_PER_SECTION,
PERCENT_OF_FINAL_GRADE,
DROP_LOWEST

FROM grade_Type_weight
WHERE section_id = pc_section_id
AND section_id IN (SELECT section_id

FROM grade
WHERE student_id = pc_student_id);

-- Cursor to loop through all grades for a given student
-- in a given section.
CURSOR c_grades

(p_grade_type_code
grade_Type_weight.grade_type_code%TYPE,

pc_student_id student.student_id%TYPE,
pc_section_id section.section_id%TYPE) IS

SELECT grade_type_code,grade_code_occurrence,
numeric_grade

FROM grade
WHERE student_id = pc_student_id
AND section_id = pc_section_id
AND grade_type_code = p_grade_type_code;

END MANAGE_GRADES;

C) Add a procedure to this package specification called final_grade. This function will have
parameters of student ID and section ID. It will return a number that is that student’s final grade in
that section, as well as an exit code. You are adding an exit code instead of raising exceptions
because this makes the procedure more flexible and allows the calling program to choose how to
proceed depending on what the error code is.

L A B 21.3Lab 21.3 Exercises

481

ANSWER:

-- ch21_11c.sql
CREATE OR REPLACE PACKAGE MANAGE_GRADES AS
-- Cursor to loop through all grade types for a given section.

CURSOR c_grade_type
(pc_section_id section.section_id%TYPE,
PC_student_ID student.student_id%TYPE)
IS

SELECT GRADE_TYPE_CODE,
NUMBER_PER_SECTION,
PERCENT_OF_FINAL_GRADE,
DROP_LOWEST

FROM grade_Type_weight
WHERE section_id = pc_section_id
AND section_id IN (SELECT section_id

FROM grade
WHERE student_id = pc_student_id);

-- Cursor to loop through all grades for a given student
-- in a given section.
CURSOR c_grades

(p_grade_type_code
grade_Type_weight.grade_type_code%TYPE,

pc_student_id student.student_id%TYPE,
pc_section_id section.section_id%TYPE) IS

SELECT grade_type_code,grade_code_occurrence,
numeric_grade

FROM grade
WHERE student_id = pc_student_id
AND section_id = pc_section_id
AND grade_type_code = p_grade_type_code;

-- Function to calcuate a student's final grade
-- in one section

Procedure final_grade
(P_student_id IN student.student_id%type,
P_section_id IN section.section_id%TYPE,
P_Final_grade OUT enrollment.final_grade%TYPE,
P_Exit_Code OUT CHAR);

END MANAGE_GRADES;

D) Add the function to the package body. To perform this calculation, you need a number of vari-
ables to hold values as the calculation is performed.

This exercise is also a very good review of data relationships among the student tables. Before you
begin this exercise, review Appendix B,“Student Database Schema,” which lists the student
schema and describes the tables and their columns. When calculating the final grade, keep in
mind the following:

. Each student is enrolled in a course, and this information is captured in the enrollment
table.

. The enrollment table holds the final grade only for each student enrollment in one section.

L A B 21.3
482

Lab 21.3 Exercises

. Each section has its own set of elements that are evaluated to come up with the final
grade.

. All grades for these elements (which have been entered, meaning that there is no NULL
value in the database) are in the Grade table.

. Every grade has a grade type code. These codes represent the grade type. For example, the
grade type QZ stands for quiz. The descriptions of each GRADE_TYPE come from the
GRADE_TYPE table.

. The GRADE_TYPE_WEIGHT table holds key information for this calculation. It has one entry
for each grade type that is used in a given section (not all grade types exist for each
section).

. In the GRADE_TYPE_WEIGHT table, the NUMBER_PER_SECTION column lists how many
times a grade type should be entered to compute the final grade for a particular student in
a particular section of a particular course. This helps you determine if all grades for a given
grade type have been entered, or even if too many grades for a given grade type have been
entered.

. You also must consider the DROP_LOWEST flag. It can hold a value of Y (yes) or N (no). If the
DROP_LOWEST flag is Y, you must drop the lowest grade from the grade type when calcu-
lating the final grade. The PERCENT_OF_FINAL_GRADE column refers to all the grades for a
given grade type. For example, if homework is 20% of the final grade, and there are five
homeworks and a DROP_LOWEST flag, each remaining homework is worth 5%. When
calculating the final grade, you should divide the PERCENT_OF_FINAL_GRADE by the
NUMBER_PER_SECTION. (That would be NUMBER_PER_SECTION – 1 if DROP_LOWEST = Y.)

Exit codes should be defined as follows:

. S: Success. The final grade has been computed. If the grade cannot be computed, the
final grade is NULL, and the exit code will be one of the following:

. I: Incomplete. Not all the required grades have been entered for this student in this
section.

. T: Too many grades exist for this student. For example, there should be only four home-
work grades, but instead there are six.

. N: No grades have been entered for this student in this section.

. E: A general computation error occurred (exception when_others). Having this type
of exit code allows the procedure to compute final grades when it can. If an Oracle error
is somehow raised by some of the grades, the calling program can still proceed with the
grades that have been computed.

To process the calcuation, you need a number of variables to hold temporary values during the
calculation. Create all the variables for the procedure final_grade. Leave the main block with the
statement NULL; doing so allows you to compile the procedure to check all the syntax for the vari-
able declaration. Explain how each variable will be used.

ANSWER: The student_id, section_id, and grade_type_code are values carried from one part of
the program to another. That is why a variable is created for each of them. Each instance of a
grade is computed to find out what its percentage of the final grade is. A counter is needed while
processing each grade to ensure that enough grades exist for the given grade count. A lowest-
grade variable helps hold each grade to see if it is the lowest. When the lowest grade for a given
grade type is known, it can be removed from the final grade. Additionally, two variables are used
as row counters to ensure that the cursor was opened.

L A B 21.3Lab 21.3 Exercises

483

-- ch21_11d.sql
CREATE OR REPLACE PACKAGE BODY MANAGE_GRADES AS

Procedure final_grade
(P_student_id IN student.student_id%type,
P_section_id IN section.section_id%TYPE,
P_Final_grade OUT enrollment.final_grade%TYPE,
P_Exit_Code OUT CHAR)

IS
v_student_id student.student_id%TYPE;
v_section_id section.section_id%TYPE;
v_grade_type_code grade_type_weight.grade_type_code%TYPE;
v_grade_percent NUMBER;
v_final_grade NUMBER;
v_grade_count NUMBER;
v_lowest_grade NUMBER;
v_exit_code CHAR(1) := 'S';
v_no_rows1 CHAR(1) := 'N';
v_no_rows2 CHAR(1) := 'N';
e_no_grade EXCEPTION;

BEGIN
NULL;

END;
END MANAGE_GRADES;

E) Complete the procedure final_grade. Comment each section to explain what is being
processed in each part of the code.

ANSWER:

-- ch21_11e.sql
CREATE OR REPLACE PACKAGE BODY MANAGE_GRADES AS

Procedure final_grade
(P_student_id IN student.student_id%type,
P_section_id IN section.section_id%TYPE,
P_Final_grade OUT enrollment.final_grade%TYPE,
P_Exit_Code OUT CHAR)

IS
v_student_id student.student_id%TYPE;
v_section_id section.section_id%TYPE;
v_grade_type_code grade_type_weight.grade_type_code%TYPE;
v_grade_percent NUMBER;
v_final_grade NUMBER;
v_grade_count NUMBER;
v_lowest_grade NUMBER;
v_exit_code CHAR(1) := 'S';
v_no_rows1 CHAR(1) := 'N';
v_no_rows2 CHAR(1) := 'N';
e_no_grade EXCEPTION;

BEGIN
v_section_id := p_section_id;
v_student_id := p_student_id;
-- Start loop of grade types for the section.

L A B 21.3
484

Lab 21.3 Exercises

FOR r_grade in c_grade_type(v_section_id, v_student_id)
LOOP

-- Since cursor is open it has a result
-- set; change indicator.

v_no_rows1 := 'Y';
-- To hold the number of grades per section,
-- reset to 0 before detailed cursor loops

v_grade_count := 0;
v_grade_type_code := r_grade.GRADE_TYPE_CODE;

-- Variable to hold the lowest grade.
-- 500 will not be the lowest grade.

v_lowest_grade := 500;
-- Determine what to multiply a grade by to
-- compute final grade. Must take into consideration
-- if the drop lowest grade indicator is Y.

SELECT (r_grade.percent_of_final_grade /
DECODE(r_grade.drop_lowest, 'Y',

(r_grade.number_per_section - 1),
r_grade.number_per_section

))* 0.01
INTO v_grade_percent
FROM dual;

-- Open cursor of detailed grade for a student in a
-- given section.

FOR r_detail in c_grades(v_grade_type_code,
v_student_id, v_section_id) LOOP

-- Since cursor is open it has a result
-- set; change indicator.

v_no_rows2 := 'Y';
v_grade_count := v_grade_count + 1;

-- Handle the situation where there are more
-- entries for grades of a given grade type
-- than there should be for that section.

If v_grade_count > r_grade.number_per_section THEN
v_exit_code := 'T';
raise e_no_grade;

END IF;
-- If drop lowest flag is Y, determine which is lowest
-- grade to drop

IF r_grade.drop_lowest = 'Y' THEN
IF nvl(v_lowest_grade, 0) >=

r_detail.numeric_grade
THEN

v_lowest_grade := r_detail.numeric_grade;
END IF;

END IF;
-- Increment the final grade with percentage of current
-- grade in the detail loop.

v_final_grade := nvl(v_final_grade, 0) +
(r_detail.numeric_grade * v_grade_percent);

L A B 21.3Lab 21.3 Exercises

485

END LOOP;
-- Once detailed loop is finished, if the number of grades
-- for a given student for a given grade type and section
-- is less than the required amount, raise an exception.

IF v_grade_count < r_grade.NUMBER_PER_SECTION THEN
v_exit_code := 'I';
raise e_no_grade;

END IF;
-- If the drop lowest flag was Y, you need to take
-- the lowest grade out of the final grade. It was not
-- known when it was added which was the lowest grade
-- to drop until all grades were examined.

IF r_grade.drop_lowest = 'Y' THEN
v_final_grade := nvl(v_final_grade, 0) -

(v_lowest_grade * v_grade_percent);
END IF;

END LOOP;
-- If either cursor had no rows, there is an error.
IF v_no_rows1 = 'N' OR v_no_rows2 = 'N' THEN

v_exit_code := 'N';
raise e_no_grade;

END IF;
P_final_grade := v_final_grade;
P_exit_code := v_exit_code;
EXCEPTION
WHEN e_no_grade THEN
P_final_grade := null;
P_exit_code := v_exit_code;

WHEN OTHERS THEN
P_final_grade := null;
P_exit_code := 'E';

END final_grade;
END MANAGE_GRADES;

F) Write an anonymous block to test your final_grade procedure. The block should ask for a
student_id and a section_id and return the final grade and an exit code.

ANSWER: It is often a good idea to run a describe command on a procedure to make sure that
all the parameters are in the correct order:

SQL> desc manage_grades
PROCEDURE FINAL_GRADE
Argument Name Type In/Out Default?
------------------------------ --------------------- ------ --------
P_STUDENT_ID NUMBER(8) IN
P_SECTION_ID NUMBER(8) IN
P_FINAL_GRADE NUMBER(3) OUT
P_EXIT_CODE CHAR OUT

Now that you have the parameters, the procedure can be called:

-- ch21_11f.sql
SET SERVEROUTPUT ON

L A B 21.3
486

Lab 21.3 Exercises

DECLARE
v_student_id student.student_id%TYPE := &sv_student_id;
v_section_id section.section_id%TYPE := &sv_section_id;
v_final_grade enrollment.final_grade%TYPE;
v_exit_code CHAR;
BEGIN
manage_grades.final_grade(v_student_id, v_section_id,

v_final_grade, v_exit_code);
DBMS_OUTPUT.PUT_LINE('The Final Grade is '||v_final_grade);
DBMS_OUTPUT.PUT_LINE('The Exit Code is '||v_exit_code);

END;

If you were to run this for a student_id of 102 in section 89, you would get this result:

Enter value for sv_student_id: 102
old 2: v_student_id student.student_id%TYPE := &sv_student_id;
new 2: v_student_id student.student_id%TYPE := 102;
Enter value for sv_section_id: 86
old 3: v_section_id section.section_id%TYPE := &sv_section_id;
new 3: v_section_id section.section_id%TYPE := 86;
The Final Grade is 89
The Exit Code is S
PL/SQL procedure successfully completed.

G) Add a function to the manage_grades package specification called median_grade that
takes in a course number (p_course_number), a section number (p_section_number),
and a grade type (p_grade_type) and returns a work_grade.grade%TYPE. Create any
cursors or types that the function requires.

ANSWER:

-- ch21_11g.sql
CREATE OR REPLACE PACKAGE MANAGE_GRADES AS
-- Cursor to loop through all grade types for a given section.

CURSOR c_grade_type
(pc_section_id section.section_id%TYPE,
PC_student_ID student.student_id%TYPE)
IS

SELECT GRADE_TYPE_CODE,
NUMBER_PER_SECTION,
PERCENT_OF_FINAL_GRADE,
DROP_LOWEST

FROM grade_Type_weight
WHERE section_id = pc_section_id
AND section_id IN (SELECT section_id

FROM grade
WHERE student_id = pc_student_id);

-- Cursor to loop through all grades for a given student
-- in a given section.
CURSOR c_grades

(p_grade_type_code
grade_Type_weight.grade_type_code%TYPE,

pc_student_id student.student_id%TYPE,
pc_section_id section.section_id%TYPE) IS

L A B 21.3Lab 21.3 Exercises

487

SELECT grade_type_code,grade_code_occurrence,
numeric_grade

FROM grade
WHERE student_id = pc_student_id
AND section_id = pc_section_id
AND grade_type_code = p_grade_type_code;

-- Function to calcuate a student's final grade
-- in one section

Procedure final_grade
(P_student_id IN student.student_id%type,
P_section_id IN section.section_id%TYPE,
P_Final_grade OUT enrollment.final_grade%TYPE,
P_Exit_Code OUT CHAR);

-- ---
-- Function to calculate the median grade
FUNCTION median_grade

(p_course_number section.course_no%TYPE,
p_section_number section.section_no%TYPE,
p_grade_type grade.grade_type_code%TYPE)

RETURN grade.numeric_grade%TYPE;
CURSOR c_work_grade

(p_course_no section.course_no%TYPE,
p_section_no section.section_no%TYPE,
p_grade_type_code grade.grade_type_code%TYPE
)IS

SELECT distinct numeric_grade
FROM grade
WHERE section_id = (SELECT section_id

FROM section
WHERE course_no= p_course_no
AND section_no = p_section_no)

AND grade_type_code = p_grade_type_code
ORDER BY numeric_grade;

TYPE t_grade_type IS TABLE OF c_work_grade%ROWTYPE
INDEX BY BINARY_INTEGER;

t_grade t_grade_type;
END MANAGE_GRADES;

H) Add a function to the manage_grades package specification called median_grade that
takes in a course number (p_cnumber), a section number (p_snumber), and a grade type
(p_grade_type). The function should return the median grade (work_grade.
grade%TYPE datatype) based on those three components. For example, you might use this
function to answer the question,“What is the median grade of homework assignments in ‘Intro to
Java Programming’ section 2?” A true median can contain two values. Because this function can
return only one value, if the median is made up of two values, return the average of the two.

ANSWER:

-- ch21_11h.sql
CREATE OR REPLACE PACKAGE BODY MANAGE_GRADES AS

Procedure final_grade
(P_student_id IN student.student_id%type,

L A B 21.3
488

Lab 21.3 Exercises

P_section_id IN section.section_id%TYPE,
P_Final_grade OUT enrollment.final_grade%TYPE,
P_Exit_Code OUT CHAR)

IS
v_student_id student.student_id%TYPE;
v_section_id section.section_id%TYPE;
v_grade_type_code grade_type_weight.grade_type_code%TYPE;
v_grade_percent NUMBER;
v_final_grade NUMBER;
v_grade_count NUMBER;
v_lowest_grade NUMBER;
v_exit_code CHAR(1) := 'S';

-- Next two variables are used to calculate whether a cursor
-- has no result set.
v_no_rows1 CHAR(1) := 'N';
v_no_rows2 CHAR(1) := 'N';
e_no_grade EXCEPTION;

BEGIN
v_section_id := p_section_id;
v_student_id := p_student_id;
-- Start loop of grade types for the section.

FOR r_grade in c_grade_type(v_section_id, v_student_id)
LOOP

-- Since cursor is open it has a result
-- set; change indicator.

v_no_rows1 := 'Y';
-- To hold the number of grades per section,
-- reset to 0 before detailed cursor loops

v_grade_count := 0;
v_grade_type_code := r_grade.GRADE_TYPE_CODE;

-- Variable to hold the lowest grade.
-- 500 will not be the lowest grade.

v_lowest_grade := 500;
-- Determine what to multiply a grade by to
-- compute final grade. Must take into consideration
-- if the drop lowest grade indicator is Y.

SELECT (r_grade.percent_of_final_grade /
DECODE(r_grade.drop_lowest, 'Y',

(r_grade.number_per_section - 1),
r_grade.number_per_section

))* 0.01
INTO v_grade_percent
FROM dual;

-- Open cursor of detailed grade for a student in a
-- given section.

FOR r_detail in c_grades(v_grade_type_code,
v_student_id, v_section_id) LOOP

-- Since cursor is open it has a result
-- set; change indicator.

v_no_rows2 := 'Y';

L A B 21.3Lab 21.3 Exercises

489

v_grade_count := v_grade_count + 1;
-- Handle the situation where there are more
-- entries for grades of a given grade type
-- than there should be for that section.

If v_grade_count > r_grade.number_per_section THEN
v_exit_code := 'T';
raise e_no_grade;

END IF;
-- If drop lowest flag is Y determine which is lowest
-- grade to drop

IF r_grade.drop_lowest = 'Y' THEN
IF nvl(v_lowest_grade, 0) >=

r_detail.numeric_grade
THEN

v_lowest_grade := r_detail.numeric_grade;
END IF;

END IF;
-- Increment the final grade with percentage of current
-- grade in the detail loop.

v_final_grade := nvl(v_final_grade, 0) +
(r_detail.numeric_grade * v_grade_percent);

END LOOP;
-- Once detailed loop is finished, if the number of grades
-- for a given student for a given grade type and section
-- is less than the required amount, raise an exception.

IF v_grade_count < r_grade.NUMBER_PER_SECTION THEN
v_exit_code := 'I';
raise e_no_grade;

END IF;
-- If the drop lowest flag was Y, you need to take
-- the lowest grade out of the final grade. It was not
-- known when it was added which was the lowest grade
-- to drop until all grades were examined.

IF r_grade.drop_lowest = 'Y' THEN
v_final_grade := nvl(v_final_grade, 0) -

(v_lowest_grade * v_grade_percent);
END IF;

END LOOP;
-- If either cursor had no rows then there is an error.
IF v_no_rows1 = 'N' OR v_no_rows2 = 'N' THEN

v_exit_code := 'N';
raise e_no_grade;

END IF;
P_final_grade := v_final_grade;
P_exit_code := v_exit_code;
EXCEPTION
WHEN e_no_grade THEN
P_final_grade := null;
P_exit_code := v_exit_code;

WHEN OTHERS THEN

L A B 21.3
490

Lab 21.3 Exercises

P_final_grade := null;
P_exit_code := 'E';

END final_grade;

FUNCTION median_grade
(p_course_number section.course_no%TYPE,
p_section_number section.section_no%TYPE,
p_grade_type grade.grade_type_code%TYPE)

RETURN grade.numeric_grade%TYPE
IS
BEGIN
FOR r_work_grade

IN c_work_grade(p_course_number, p_section_number,
p_grade_type)

LOOP
t_grade(NVL(t_grade.COUNT,0) + 1).numeric_grade :=
r_work_grade.numeric_grade;

END LOOP;
IF t_grade.COUNT = 0
THEN
RETURN NULL;

ELSE
IF MOD(t_grade.COUNT, 2) = 0
THEN
-- There is an even number of work grades. Find the middle
-- two and average them.
RETURN (t_grade(t_grade.COUNT / 2).numeric_grade +

t_grade((t_grade.COUNT / 2) + 1).numeric_grade
) / 2;

ELSE
-- There is an odd number of grades. Return the one in
-- the middle.
RETURN t_grade(TRUNC(t_grade.COUNT / 2, 0) +
1).numeric_grade;

END IF;
END IF;

EXCEPTION
WHEN OTHERS
THEN
RETURN NULL;

END median_grade;
END MANAGE_GRADES;

I) Write a SELECT statement that uses the function median_grade and shows the median grade
for all grade types in sections 1 and 2 of course 25.

ANSWER:

-- ch21_11i.sql
SELECT COURSE_NO,

COURSE_NAME,
SECTION_NO,

L A B 21.3Lab 21.3 Exercises

491

GRADE_TYPE,
manage_grades.median_grade

(COURSE_NO,
SECTION_NO,
GRADE_TYPE)

median_grade
FROM
(SELECT DISTINCT

C.COURSE_NO COURSE_NO,
C.DESCRIPTION COURSE_NAME,
S.SECTION_NO SECTION_NO,
G.GRADE_TYPE_CODE GRADE_TYPE

FROM SECTION S, COURSE C, ENROLLMENT E, GRADE G
WHERE C.course_no = s.course_no
AND s.section_id = e.section_id
AND e.student_id = g.student_id
AND c.course_no = 25
AND s.section_no between 1 and 2
ORDER BY 1, 4, 3) grade_source

J) What would be the results for all grade types in sections 1 and 2 of course 25?

ANSWER:

COURSE_NO COURSE_NAME SECTION_NO GRADE_TYPE MEDIAN_GRADE
---------- ------------------------------------ ------------

25 Intro to Programming 1 FI 98
25 Intro to Programming 2 FI 71
25 Intro to Programming 1 HM 76
25 Intro to Programming 2 HM 83
25 Intro to Programming 1 MT 86
25 Intro to Programming 2 MT 89
25 Intro to Programming 1 PA 91
25 Intro to Programming 2 PA 97
25 Intro to Programming 1 QZ 71
25 Intro to Programming 2 QZ 78

10 rows selected.

If you prefer to see the Grade Type Description rather than the Grade Type Code, then you can use
the DESCRIPTION column in the GRADE_TYPE table rather then the GRADE_TYPE_CODE, which
was used in the previous SQL statement. This would have a result of ‘Participation’ for PA and
‘Midterm’ for MT.

L A B 21.3
492

Lab 21.3 Exercises

▼ T R Y I T Y O U R S E L F

In this chapter, you have learned about packages. Here are some projects that will help you test the
depth of your understanding:

1) Add a procedure to the school_api package called remove_student. This procedure
accepts a student_id and returns nothing. Based on the student ID passed in, it removes the
student from the database. If the student does not exist or if a problem occurs while removing the
student (such as a foreign key constraint violation), let the calling program handle it.

2) Alter remove_student in the school_api package body to accept an additional parame-
ter. This new parameter should be a VARCHAR2 and should be called p_ri. Make p_ri default
to R. The new parameter may contain a value of R or C. If R is received, it represents DELETE
RESTRICT, and the procedure acts as it does now. If there are enrollments for the student, the
delete is disallowed. If a C is received, it represents DELETE CASCADE. This functionally means that
the remove_student procedure locates all records for the student in all the Student
Database tables. It removes them from the database before attempting to remove the student
from the student table. Decide how to handle the situation when the user passes in a code other
than C or R.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

Try it Yourself 493

This page intentionally left blank

C H A P T E R 2 2

Stored Code

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Gathering information about stored code

In Chapter 19 you learned about procedures, in Chapter 20 you learned about
functions, and in Chapter 21 you learned about the process of grouping func-
tions and procedures into a package. Now you will learn more about what it
means to have code bundled into a package. You can use numerous data diction-
ary views to gather information about the objects in a package.

Functions in packages are also required to meet additional restrictions to be used
in a SELECT statement. In this chapter, you learn what they are and how to
enforce them. You will also learn an advanced technique to overload a function
or procedure so that it executes different code, depending on the type of the
parameter passed in.

▼

L A B 2 2 . 1

Gathering Information About
Stored Code

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Get stored code information from the data dictionary

. Enforce the purity level with the RESTRICT_REFERENCES pragma

. Overload modules

Stored programs are stored in compiled form in the database. Information about the stored
programs is accessible through various data dictionary views. In Chapter 19, “Procedures,” you
learned about the two data dictionary views USER_OBJECTS and USER_SOURCE. A few more
data dictionary views are useful for obtaining information about stored code. In this lab, you
will learn how to take advantage of these.

L A B 2 2 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

22.1.1 Get Stored Code Information from the Data Dictionary

Complete the following tasks, and answer the following questions:

A) Query the data dictionary to determine all the stored procedures, functions, and packages in the
current schema of the database. Also include the current status of the stored code. Write the
SELECT statement.

ANSWER: You can use the USER_OBJECTS view you learned about in Chapter 19. This view has
information about all database objects in the schema of the current user. Remember, if you want
to see all the objects in other schemas that the current user has access to, use the ALL_OBJECTS
view. There is also a DBA_OBJECTS view for a list of all objects in the database, regardless of privi-
lege. The STATUS is either VALID or INVALID. An object can change status from VALID to INVALID if
an underlying table is altered or privileges on a referenced object have been revoked from the
creator of the function, procedure, or package. The following SELECT statement produces the
answer you are looking for:

L A B 22.1
496

SELECT OBJECT_TYPE, OBJECT_NAME, STATUS
FROM USER_OBJECTS
WHERE OBJECT_TYPE IN

('FUNCTION', 'PROCEDURE', 'PACKAGE',
'PACKAGE_BODY')

ORDER BY OBJECT_TYPE;

B) Type the following script into a text file, and run the script in SQL*Plus. It creates the function
scode_at_line. Explain the purpose of this function. What is accomplished by running it?
When does a developer find it useful?

-- ch22_1a.sql
CREATE OR REPLACE FUNCTION scode_at_line

(i_name_in IN VARCHAR2,
i_line_in IN INTEGER := 1,
i_type_in IN VARCHAR2 := NULL)

RETURN VARCHAR2
IS

CURSOR scode_cur IS
SELECT text
FROM user_source
WHERE name = UPPER (i_name_in)
AND (type = UPPER (i_type_in)
OR i_type_in IS NULL)
AND line = i_line_in;

scode_rec scode_cur%ROWTYPE;
BEGIN

OPEN scode_cur;
FETCH scode_cur INTO scode_rec;
IF scode_cur%NOTFOUND

THEN
CLOSE scode_cur;
RETURN NULL;

ELSE
CLOSE scode_cur;
RETURN scode_rec.text;

END IF;
END;

ANSWER: The scode_at_line function provides an easy mechanism for retrieving the text
from a stored program for a specified line number. This is useful if a developer receives a compila-
tion error message referring to a particular line number in an object. The developer can then use
this function to find the text that is in error.

The function uses three parameters:

. name_in: The name of the stored object.

. line_in: The line number of the line you want to retrieve. The default value is 1.

. type_in: The type of object you want to view. The default for type_in is NULL.

The default values are designed to make this function as easy as possible to use.

L A B 22.1Lab 22.1 Exercises

497

BY THE WAY

The output from a call to SHOW ERRORS in SQL*Plus displays the line number on which an error
occurred, but the line number doesn’t correspond to the line in your text file. Instead, it relates
directly to the line number stored with the source code in the USER_SOURCE view.

C) Enter desc user_errors. What do you see? In what way do you think this view is useful
for you?

ANSWER: This view stores current errors on the user’s stored objects. The text file contains the
text of the error. This is useful in determining the details of a compilation error. The next exercise
walks you through using this view.

Name Null? Type
-------------------- -------- -----------
NAME NOT NULL VARCHAR2(30)
TYPE VARCHAR2(12)
SEQUENCE NOT NULL NUMBER
LINE NOT NULL NUMBER
POSITION NOT NULL NUMBER
TEXT NOT NULL VARCHAR2(2000) ---

D) Enter the following script to force an error:

CREATE OR REPLACE PROCEDURE FORCE_ERROR
as
BEGIN

SELECT course_no
INTO v_temp
FROM course;

END;

Now enter the following:

SHO ERR

What do you see?

ANSWER:

Errors for PROCEDURE FORCE_ERROR:
LINE/COL ERROR
-------- --
4/4 PL/SQL: SQL Statement ignored
5/9 PLS-00201: identifier 'V_TEMP' must be declared
6/4 PL/SQL: ORA-00904: : invalid identifier

E) How can you retrieve information from the USER_ERRORS view?

ANSWER:

SELECT line||'/'||position “LINE/COL”, TEXT “ERROR”
FROM user_errors
WHERE name = 'FORCE_ERROR'

It is important for you to know how to retrieve this information from the USER_ERRORS view,
because the SHO ERR command shows you only the most recent errors. If you run a script creat-
ing a number of objects, you have to rely on the USER_ERRORS view.

L A B 22.1
498

Lab 22.1 Exercises

F) Enter desc user_dependencies. What do you see? How can you make use of this view?

ANSWER: The USER_DEPENDENCIES view is useful for analyzing the impact of table changes or
changes to other stored procedures. If tables are about to be redesigned, an impact assessment
can be made from the information in USER_DEPENDENCIES. ALL_DEPENDENCIES and DBA_
DEPENDENCIES show all dependencies for procedures, functions, package specifications, and
package bodies.

Name Null? Type
------------------------------- -------- ----
NAME NOT NULL VARCHAR2(30)
TYPE VARCHAR2(12)
REFERENCED_OWNER VARCHAR2(30)
REFERENCED_NAME NOT NULL VARCHAR2(30)
REFERENCED_TYPE VARCHAR2(12)
REFERENCED_LINK_NAME VARCHAR2(30)

G) Enter the following:

SELECT referenced_name
FROM user_dependencies
WHERE name = 'SCHOOL_API';

Analyze what you see, and explain how it is useful.

ANSWER:

REFERENCED_NAME

STANDARD
STANDARD
DUAL
DBMS_STANDARD
DBMS_OUTPUT
COURSE
ENROLLMENT
INSTRUCTOR
INSTRUCTOR
INSTRUCTOR_ID_SEQ
SCHOOL_API
SECTION

This list of dependencies for the school_api package lists all objects referenced in the
package. This includes tables, sequences, and procedures (even Oracle-supplied packages). This
information is very useful when you are planning a change to the database structure. You can
easily pinpoint the ramifications of any database changes.

H) Enter desc school_api. What do you see?

ANSWER:

SQL> desc school_api
PROCEDURE DISCOUNT_COST
FUNCTION NEW_INSTRUCTOR_ID RETURNS NUMBER(8)

L A B 22.1Lab 22.1 Exercises

499

I) Explain what you are seeing. How is this different from the USER_DEPENDENCIES view?

ANSWER: The desc command you have been using to describe the columns in a table is also
used for procedures, packages, and functions. The desc command shows all the parameters, with
their default values and an indication of whether they are IN or OUT. If the object is a function, the
return datatype is displayed. This is very different from the USER_DEPENDENCIES view, which has
information on all the objects that are referenced in a package, function, or procedure.

DEPTREE

An Oracle-supplied utility called DEPTREE shows you, for a given object, which other objects are
dependent on it. This utility has three pieces. You need to have DBA access to the database to use
this utility.

Script: utldtree.sql
Procedure: DEPTREE_FILL(type, schema, object_name)
View: ideptree

First, run utldtree.sql in your schema. This creates the necessary objects to map the dependencies.
The location of utldtree.sql depends on your particular installation, so ask your DBA. The file will be
found under the directory that your Oracle server is installed in. This directory is refered to as the
ORACLE_HOME. The subdirectory would be as follows:

($ORACLE_HOME/rdbms/admin/utldtree.sql)

Second, fill the DEPTREE e_temptab table by running DEPTREE_FILL.

Example:

SQL> exec DEPTREE_FILL('TABLE', USER, 'COURSE')

Finally, look at the DEPTREE information in ideptree view.

Example:

SQL> SELECT * FROM ideptree;

The result contains the following kind of information:

DEPENDENCIES

FUNCTION STUDENT.SHOW_DESCRIPTION
PACKAGE BODY STUDENT.SCHOOL_API
PACKAGE STUDENT.COURSE_PKG
PACKAGE BODY STUDENT.STUDENT_INFO_PKG
PROCEDURE STUDENT.FORCE_ERROR

TABLE STUDENT.COURSE
PROCEDURE STUDENT.DISCOUNT
PACKAGE BODY STUDENT.MANAGE_STUDENTS

PACKAGE BODY STUDENT.COURSE_PKG
PACKAGE BODY STUDENT.COURSE_PKG

10 rows selected

22.1.2 Enforce the Purity Level with the RESTRICT_REFERENCES Pragma

The RESTRICT_REFERENCES pragma is now used for backward compatibility only. In Oracle Database
versions prior to 8.1.5 (Oracle 8i), programmers used the pragma RESTRICT_REFERENCES to assert a

L A B 22.1
500

Lab 22.1 Exercises

subprogram’s purity level (the extent to which it is free of side effects). In subsequent versions, use the
hints parallel_enable and deterministic instead to communicate subprogram purity to
the Oracle Database. The pragma RESTRICT_REFERENCES can be removed from code. However, you may
keep it for backward compatibility.

Complete the following tasks, and answer the following questions:

A) Add the following function to the school_api package specification you created in
Chapter 21,“Packages”:

-- ch22_2a.sql
CREATE OR REPLACE PACKAGE school_api as

v_current_date DATE;
PROCEDURE Discount_Cost;
FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE;

FUNCTION total_cost_for_student
(i_student_id IN student.student_id%TYPE)

RETURN course.cost%TYPE;
END school_api;

Append to the body so that the new package code is as follows:

-- ch22_2b.sql
CREATE OR REPLACE PACKAGE BODY school_api AS

PROCEDURE discount_cost
IS

CURSOR c_group_discount
IS
SELECT distinct s.course_no, c.description
FROM section s, enrollment e, course c
WHERE s.section_id = e.section_id
GROUP BY s.course_no, c.description,

e.section_id, s.section_id
HAVING COUNT(*) >=8;

BEGIN
FOR r_group_discount IN c_group_discount
LOOP
UPDATE course

SET cost = cost * .95
WHERE course_no = r_group_discount.course_no;
DBMS_OUTPUT.PUT_LINE
('A 5% discount has been given to'
||r_group_discount.course_no||'
'||r_group_discount.description);

END LOOP;
END discount_cost;
FUNCTION new_instructor_id

RETURN instructor.instructor_id%TYPE
IS

v_new_instid instructor.instructor_id%TYPE;
BEGIN

SELECT INSTRUCTOR_ID_SEQ.NEXTVAL

L A B 22.1Lab 22.1 Exercises

501

INTO v_new_instid
FROM dual;

RETURN v_new_instid;
EXCEPTION

WHEN OTHERS
THEN
DECLARE

v_sqlerrm VARCHAR2(250) :=
SUBSTR(SQLERRM,1,250);

BEGIN
RAISE_APPLICATION_ERROR(-20003,
'Error in instructor_id: '||v_sqlerrm);

END;
END new_instructor_id;

FUNCTION total_cost_for_student
(i_student_id IN student.student_id%TYPE)
RETURN course.cost%TYPE

IS
v_cost course.cost%TYPE;

BEGIN
SELECT sum(cost)
INTO v_cost
FROM course c, section s, enrollment e
WHERE c.course_no = s.course_no
AND e.section_id = s.section_id
AND e.student_id = i_student_id;

RETURN v_cost;
EXCEPTION

WHEN OTHERS THEN
RETURN NULL;

END total_cost_for_student;
BEGIN
SELECT trunc(sysdate, 'DD')
INTO v_current_date
FROM dual;

END school_api;

If you performed the following SELECT statement, what would you expect to see?

SELECT school_api.total_cost_for_student(student_id),
student_id

FROM student;

ANSWER: At first glance you might think you would see a list of student_ids, with the total
cost of the courses they took. But instead you may get the following error (depending on the
version of Oracle; in Oracle 11g you do not get this error):

ERROR at line 1:
ORA-06571: Function TOTAL_COST_FOR_STUDENT
does not guarantee not to update database

Although functions can be used in a SELECT statement, if a function is in a package, it requires
some additional definitions to enforce its purity.

L A B 22.1
502

Lab 22.1 Exercises

A pragma is a special directive to the PL/SQL compiler. You use the RESTRICT_REFERENCES
pragma to tell the compiler about the purity level of a packaged function.

To assert the purity level, use this syntax (the meaning of each code will be explained later in this
chapter):

PRAGMA RESTRICT_REFERENCES
(function_name, WNDS [,WNPS], [,RNDS] [,RNPS])

REQUIREMENTS FOR STORED FUNCTIONS IN SQL

. The function must be stored in the database (not in the library of an Oracle tool).

. The function must be a row-specific function and not a column or group function.

. As for all functions (whether to be used in SQL statements or not), parameters must be in the
IN mode.

Numerous function side effects must be considered. Modifying database tables in stored func-
tions may have a ripple effect on queries using the function. Modifying package variables can
have an impact on other stored functions or procedures, or in turn on the SQL statement using
the stored function. Stored functions in the WHERE clause may subvert the query optimization
process. A SQL statement may use a stand-alone function or package function as an operator on
one or more columns, provided that the function returns a valid Oracle database type.

A user-defined function may select from database tables or call other procedures or functions,
whether stand-alone or packaged. When a function is used in a SELECT statement, it may not
modify data in any database table with an INSERT, UPDATE, or DELETE statement, or read or write
package variables across user sessions.

The Oracle server automatically enforces the rules for stand-alone functions, but not with a stored
function in a package. The purity level of a function in a package must be stated explicitly. This is
done using a pragma.

The error message was received because the pragma was not used. You will now learn how to use
a pragma.

B) Alter the package specification for school_api as follows:

-- ch22_2c.sql
CREATE OR REPLACE PACKAGE school_api as

v_current_date DATE;
PROCEDURE Discount_Cost;
FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE;

FUNCTION total_cost_for_student
(i_student_id IN student.student_id%TYPE)

RETURN course.cost%TYPE;
PRAGMA RESTRICT_REFERENCES

(total_cost_for_student, WNDS, WNPS, RNPS);
END school_api;

Now run the SELECT statement from question A). What do you expect to see?

ANSWER: The pragma restriction is added to the package specification. It ensures that the func-
tion total_cost_for_student meets the required purity restriction for a function to be
in a SELECT statement. The SELECT statement now functions properly; it projects a list of the total
cost for each student and the student’s ID.

L A B 22.1Lab 22.1 Exercises

503

RULES FOR USING PRAGMA RESTRICTIONS

. You can declare the pragma RESTRICT_REFERENCES only in a package spec or object type
spec. You can specify up to four constraints (RNDS, RNPS, WNDS, WNPS) in any order. To call a
function from parallel queries, you must specify all four constraints. No constraint implies
another. Typically, this pragma is specified for functions. If a function calls procedures, specify
the pragma for those procedures as well.

. When you specify TRUST, the function body is not checked for violations of the constraints
listed in the pragma. The function is trusted not to violate them. Skipping these checks can
improve performance.

. If you specify DEFAULT instead of a subprogram name, the pragma applies to all subprograms
in the package spec or object type spec (including the system-defined constructor for object
types). You can still declare the pragma for individual subprograms, overriding the default
pragma.

. A RESTRICT_REFERENCES pragma can apply to only one subprogram declaration. A pragma
that references the name of overloaded subprograms always applies to the most recent
subprogram declaration.

. The pragma must come after the function declaration in the package specification.

C) What is the purity level of the function school_api.total_cost_for_student?

ANSWER: The extent to which a function is free of side effects is its purity level. The function is
now very pure. It has the following levels of purity: WNDS means write no database state; that is, it
does not make any changes to database tables. WNPS means that the function writes no package
state; that is, the function does not alter the values of any package variables. RNPS means that it
reads no package state; that is, no package variables are read to calculate the return for the func-
tion. There is also an RNDS pragma, which means that no database tables are read. If this is added,
the function is too pure for your needs here and cannot be used in a SELECT statement.

Table 22.1 summarizes the codes and their meanings.

TABLE 22.1
Pragma Restrictions

PURITY LEVEL CODE DESCRIPTION ASSERTION

WNDS Writes no database state No modification of any database table

WNPS Writes no package state No modification of any packaged variable

RNDS Reads no database state No reading of any database table

RNPS Reads no package state No reading of any package variable

D) If you add the following three lines, will the package compile without error?

UPDATE STUDENT
SET Employer = 'Prentice Hall'
WHERE employer is NULL;

So that the entire package body would now look like this:

-- ch22_2c.sql
CREATE OR REPLACE PACKAGE BODY school_api AS

PROCEDURE discount_cost

L A B 22.1
504

Lab 22.1 Exercises

IS
CURSOR c_group_discount
IS
SELECT distinct s.course_no, c.description
FROM section s, enrollment e, course c
WHERE s.section_id = e.section_id
GROUP BY s.course_no, c.description,

e.section_id, s.section_id
HAVING COUNT(*) >=8;

BEGIN
FOR r_group_discount IN c_group_discount
LOOP
UPDATE course

SET cost = cost * .95
WHERE course_no = r_group_discount.course_no;
DBMS_OUTPUT.PUT_LINE
('A 5% discount has been given to'
||r_group_discount.course_no||'
'||r_group_discount.description);

END LOOP;
END discount_cost;
FUNCTION new_instructor_id

RETURN instructor.instructor_id%TYPE
IS

v_new_instid instructor.instructor_id%TYPE;
BEGIN

SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
INTO v_new_instid
FROM dual;

RETURN v_new_instid;
EXCEPTION

WHEN OTHERS
THEN
DECLARE

v_sqlerrm VARCHAR2(250) :=
SUBSTR(SQLERRM,1,250);

BEGIN
RAISE_APPLICATION_ERROR(-20003,
'Error in instructor_id: '||v_sqlerrm);

END;
END new_instructor_id;

FUNCTION total_cost_for_student
(i_student_id IN student.student_id%TYPE)
RETURN course.cost%TYPE

IS
v_cost course.cost%TYPE;

BEGIN
SELECT sum(cost)
INTO v_cost
FROM course c, section s, enrollment e

L A B 22.1Lab 22.1 Exercises

505

WHERE c.course_no = s.course_no
AND e.section_id = s.section_id
AND e.student_id = i_student_id;

UPDATE STUDENT
SET employer = 'Prentice Hall'

WHERE employer is null;
RETURN v_cost;

EXCEPTION
WHEN OTHERS THEN

RETURN NULL;
END total_cost_for_student;
BEGIN
SELECT trunc(sysdate, 'DD')
INTO v_current_date
FROM dual;

END school_api;

ANSWER: No. You added an update statement and violated the purity level of the pragma
restriction WNDS (writes no database state). You receive the following error message when you try
to compile the new package:

Errors for PACKAGE BODY SCHOOL_API:

LINE/COL ERROR
-------- ---
44/3 PLS-00452: Subprogram 'TOTAL_COST_FOR_STUDENT' violates its

associated pragmaErrors for PACKAGE BODY SCHOOL_API:

22.1.3 Overload Modules

When you overload modules, you give two or more modules the same name. The modules’ parameter
lists must differ in a manner significant enough for the compiler (and runtime engine) to distinguish
between the different versions.

You can overload modules in three contexts:

. In a local module in the same PL/SQL block

. In a package specification

. In a package body

Complete the following tasks:

A) Add the following lines to the package specification of school_api. Then recompile the
package specification. Explain what you have created.

-- ch22_3a.sql
CREATE OR REPLACE PACKAGE school_api as

v_current_date DATE;
PROCEDURE Discount_Cost;
FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE;

FUNCTION total_cost_for_student
(i_student_id IN student.student_id%TYPE)

L A B 22.1
506

Lab 22.1 Exercises

RETURN course.cost%TYPE;
PRAGMA RESTRICT_REFERENCES

(total_cost_for_student, WNDS, WNPS, RNPS);
PROCEDURE get_student_info

(i_student_id IN student.student_id%TYPE,
o_last_name OUT student.last_name%TYPE,
o_first_name OUT student.first_name%TYPE,
o_zip OUT student.zip%TYPE,
o_return_code OUT NUMBER);

PROCEDURE get_student_info
(i_last_name IN student.last_name%TYPE,
i_first_name IN student.first_name%TYPE,
o_student_id OUT student.student_id%TYPE,
o_zip OUT student.zip%TYPE,
o_return_code OUT NUMBER);

END school_api;

ANSWER: No, you have not created Frankenstein; it’s just an overloaded procedure. The specifica-
tion has two procedures with the same name and different IN parameters in both number and
datatype. The OUT parameters also differ in number and datatype. This overloaded function
accepts either of the two sets of IN parameters and performs the version of the function corre-
sponding to the datatype passed in.

B) Add the following code to the body of the package school_api. Explain what is
accomplished.

-- ch22_4a.sql
CREATE OR REPLACE PACKAGE BODY school_api AS

PROCEDURE discount_cost
IS

CURSOR c_group_discount
IS
SELECT distinct s.course_no, c.description
FROM section s, enrollment e, course c
WHERE s.section_id = e.section_id
GROUP BY s.course_no, c.description,

e.section_id, s.section_id
HAVING COUNT(*) >=8;

BEGIN
FOR r_group_discount IN c_group_discount
LOOP
UPDATE course

SET cost = cost * .95
WHERE course_no = r_group_discount.course_no;
DBMS_OUTPUT.PUT_LINE
('A 5% discount has been given to'
||r_group_discount.course_no||'
'||r_group_discount.description);

END LOOP;
END discount_cost;
FUNCTION new_instructor_id

RETURN instructor.instructor_id%TYPE

L A B 22.1Lab 22.1 Exercises

507

IS
v_new_instid instructor.instructor_id%TYPE;

BEGIN
SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
INTO v_new_instid
FROM dual;

RETURN v_new_instid;
EXCEPTION

WHEN OTHERS
THEN
DECLARE

v_sqlerrm VARCHAR2(250) :=
SUBSTR(SQLERRM,1,250);

BEGIN
RAISE_APPLICATION_ERROR(-20003,
'Error in instructor_id: '||v_sqlerrm);

END;
END new_instructor_id;

FUNCTION total_cost_for_student
(i_student_id IN student.student_id%TYPE)
RETURN course.cost%TYPE

IS
v_cost course.cost%TYPE;

BEGIN
SELECT sum(cost)
INTO v_cost
FROM course c, section s, enrollment e
WHERE c.course_no = s.course_no
AND e.section_id = s.section_id
AND e.student_id = i_student_id;

RETURN v_cost;
EXCEPTION

WHEN OTHERS THEN
RETURN NULL;

END total_cost_for_student;

PROCEDURE get_student_info
(i_student_id IN student.student_id%TYPE,
o_last_name OUT student.last_name%TYPE,
o_first_name OUT student.first_name%TYPE,
o_zip OUT student.zip%TYPE,
o_return_code OUT NUMBER)

IS
BEGIN
SELECT last_name, first_name, zip
INTO o_last_name, o_first_name, o_zip
FROM student
WHERE student.student_id = i_student_id;
o_return_code := 0;

L A B 22.1
508

Lab 22.1 Exercises

EXCEPTION
WHEN NO_DATA_FOUND
THEN

DBMS_OUTPUT.PUT_LINE
('Student ID is not valid.');

o_return_code := -100;
o_last_name := NULL;
o_first_name := NULL;
o_zip := NULL;

WHEN OTHERS
THEN
DBMS_OUTPUT.PUT_LINE

('Error in procedure get_student_info');
END get_student_info;
PROCEDURE get_student_info
(i_last_name IN student.last_name%TYPE,
i_first_name IN student.first_name%TYPE,
o_student_id OUT student.student_id%TYPE,
o_zip OUT student.zip%TYPE,
o_return_code OUT NUMBER)

IS
BEGIN
SELECT student_id, zip
INTO o_student_id, o_zip
FROM student
WHERE UPPER(last_name) = UPPER(i_last_name)
AND UPPER(first_name) = UPPER(i_first_name);

o_return_code := 0;
EXCEPTION
WHEN NO_DATA_FOUND
THEN
DBMS_OUTPUT.PUT_LINE

('Student name is not valid.');
o_return_code := -100;
o_student_id := NULL;
o_zip := NULL;

WHEN OTHERS
THEN
DBMS_OUTPUT.PUT_LINE

('Error in procedure get_student_info');
END get_student_info;
BEGIN
SELECT TRUNC(sysdate, 'DD')
INTO v_current_date
FROM dual;

END school_api;

ANSWER: A single function name,get_student_info, accepts either a single IN parameter
of student_id or two parameters consisting of a student’s last_name and first_name.
If a number is passed in, the procedure looks for the student’s name and zip code. If it finds them,

L A B 22.1Lab 22.1 Exercises

509

they are returned, as well as a return code of 0. If they cannot be found, null values are returned, as
well as a return code of 100. If two VARCHAR2 parameters are passed in, the procedure searches
for the student_id corresponding to the names passed in. As with the other version of this
procedure, if a match is found, the procedure returns a student_id, the student’s zip code, and
a return code of 0. If a match is not found, the values returned are null and an exit code of –100.

PL/SQL uses overloading in many common functions and built-in packages. For example,
TO_CHAR converts both numbers and dates to strings. Overloading makes it easy for other
programmers to use your code in an API.

The main benefits of overloading are as follows:

. It simplifies the call interface of packages and reduces many program names to one.

. Modules are easier to use and therefore are more likely to be used. The software deter-
mines the context.

. The volume of code is reduced because the code required for different datatypes is often
the same.

BY THE WAY

The rules for overloading are as follows:

. The compiler must be able to distinguish between the two calls at runtime. Distinguishing
between the uses of the overloaded module is what is important, not solely the spec or
header.

. The formal parameters must differ in number, order, or datatype family.

. You cannot overload the names of stand-alone modules.

. Functions differing only in RETURN datatypes cannot be overloaded.

C) Write a PL/SQL block using the overloaded function you just created.

ANSWER: A suitable bride for Frankenstein is as follows:

DECLARE
v_student_ID student.student_id%TYPE;
v_last_name student.last_name%TYPE;
v_first_name student.first_name%TYPE;
v_zip student.zip%TYPE;
v_return_code NUMBER;

BEGIN
school_api.get_student_info

(&&p_id, v_last_name, v_first_name,
v_zip,v_return_code);

IF v_return_code = 0
THEN
DBMS_OUTPUT.PUT_LINE

('Student with ID '||&&p_id||' is '||v_first_name
||' '||v_last_name
);

ELSE
DBMS_OUTPUT.PUT_LINE

('The ID '||&&p_id||'is not in the database'
);

L A B 22.1
510

Lab 22.1 Exercises

END IF;
school_api.get_student_info

(&&p_last_name , &&p_first_name, v_student_id,
v_zip , v_return_code);

IF v_return_code = 0
THEN

DBMS_OUTPUT.PUT_LINE
(&&p_first_name||' '|| &&p_last_name||
' has an ID of '||v_student_id
);

ELSE
DBMS_OUTPUT.PUT_LINE
(&&p_first_name||' '|| &&p_last_name||
'is not in the database'
);

END IF;
END;

When you run this code, respond as follows:

Enter value for p_id: 149
Enter value for p_last_name: 'Prochaska'
Enter value for p_first_name: 'Judith'

It is important to realize the benefits of using a && variable. The value for the variable needs to be
entered only once. If you run the code a second time, you are not prompted to enter the value
again, because it is now in memory.

Here are a few things to keep in mind when you overload functions or procedures. These two
procedures cannot be overloaded:

PROCEDURE calc_total (reg_in IN CHAR);
PROCEDURE calc_total (reg_in IN VARCHAR2);

In these two versions of calc_total, the two different IN variables cannot be distinguished
from each other. In the following example, an anchored type (%TYPE) is relied on to establish the
datatype of the second calc’s parameter:

DECLARE
PROCEDURE calc (comp_id_IN IN NUMBER)

IS
BEGIN ... END;
PROCEDURE calc
(comp_id_IN IN company.comp_id%TYPE)

IS
BEGIN ... END;

PL/SQL does not find a conflict at compile time with overloading even though comp_id is a
numeric column. Instead, you get the following message at runtime:

PLS-00307: too many declarations of '<program>' match this call

L A B 22.1Lab 22.1 Exercises

511

▼ T R Y I T Y O U R S E L F

In this chapter you’ve learned about stored code. Here are some projects to help you test the depth of
your understanding:

1) Add a function to the school_api package specification called get_course_descript.
The caller takes a course.cnumber%TYPE parameter, and it returns a
course.description%TYPE.

2) Create a function in the school_api package body called get_course_description.
A caller passes in a course number, and it returns the course description. Instead of searching for
the description itself, it makes a call to get_course_descript_private. It passes its
course number to get_course_descript_private. It passes back to the caller the
description it gets back from get_course_descript_private.

3) Add a PRAGMA RESTRICT_REFERENCES to school_api for get_course_description
specifying the following: It writes no database state, it writes no package state, and it reads no
package state.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers can be found in Appendix D and on this book’s companion Web site. Visit the Web
site periodically to share and discuss your answers.

512 Try it Yourself

C H A P T E R 2 3

Object Types in Oracle

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Object types

. Object type methods

In Oracle, object types are the main ingredient of object-oriented programming.
They are used to model real-world tangible entities, such as a student, instruc-
tor, or bank account, as well as abstract entities, such as a zip code, geometric
shape, or chemical reaction.

In this chapter you will learn how to create object types and how to nest object
types within collection types. In addition, you will learn about different kinds of
object type methods and their usage.

This chapter is introductory and does not cover more advanced topics such as
object type inheritance and evolution, REF modifiers, and object type tables (not
to be confused with collections). These topics, along with many others, are
covered in the Oracle documentation—specifically, the Database Application
Developer’s Guide, Object-Relational Features.

L A B 2 3 . 1

Object Types

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Use object types

. Use object types with collections

Object types generally consist of two parts—attributes (data) and methods (functions and
procedures). Attributes are essential characteristics that describe object types. For example,
some attributes of the student object type may include first and last names, contact information,
and enrollment information. Methods are functions and procedures defined in an object type
and are optional. They represent actions that are likely to be performed on the object attributes.
For example, some methods of the student object type may include updating student contact
information, getting a student name, and displaying student information.

By combining attributes and methods, object types facilitate encapsulation of data with the
operations that may be performed on that data, as illustrated in Figure 23.1.

Figure 23.1 shows object type Student. Some of the attributes of the Student object type are
Student ID, First Name, Zip, and Enrollment. Some of the methods are Update Contact Info,
Get Student ID, and Get Student Name. Figure 23.1 also shows two instances of object types
Student 1 and Student 2. The object instance is a value of an object type. In other words, the
instances Student 1 and Student 2 of the Student object type contain actual student data so that
the Get Student ID method returns student ID 102 for instance Student 1 and 103 for instance
Student 2.

BY THE WAY

An object instance is often called an object.

In Oracle, an object type is created with the CREATE OR REPLACE TYPE clause and is stored
in the database schema. This means that object types cannot be created within a PL/SQL block
or stored subprogram. After an object type has been created and stored in the database schema,
a PL/SQL block or subprogram may reference that object type.

L A B 23.1
514

L A B 23.1Object Types

515

Object Type: Student

Attributes
Student ID
First Name
Last Name
Street Address
City
State
Zip
Phone
Employer

Methods
Update Contact Info
Update Employer
Get Student ID
Get Student Name
Display Student Info

Object Instance: Student 1

Attributes
Student ID: 102
First Name: Fred
Last Name: Crocitto
Street Address: 101-09 120th St.
City: Richmond Hill
State: NY
Zip: 11419
Phone: 718-555-5555
Employer: Albert Hildegard Co.

Methods
Update Contact Info
Update Employer
Get Student ID
Get Student Name
Display Student Info

Object Instance: Student 2

Attributes
Student ID: 103
First Name: Jane
Last Name: Landry
Street Address: 7435 Boulevard East # 4
City: North Bergen
State: NY
Zip: 07047
Phone: 201-555-5555
Employer: Albert Hildegard Co.

Methods
Update Contact Info
Update Employer
Get Student ID
Get Student Name
Display Student Info

FIGURE 23.1
Object type Student

The general syntax for creating an object type is as follows (the reserved words and phrases in
brackets are optional):

CREATE [OR REPLACE] TYPE type_name AS OBJECT
(attribute_name1 attribute_type,
attribute_name2 attribute_type,
...
attribute_nameN attribute_type,
[method1 specification],
[method2 specification],
...
[methodN specification]);

[CREATE [OR REPLACE] TYPE BODY type_name AS
method1 body;
method2 body;
...
methodN body;]

END;

Notice that the creation of an object type has two parts: object type specification and object type
body. Object type specification contains declarations of attributes and any methods that may be
used with that object. ATTRIBUTE_TYPE may be an element PL/SQL type such as NUMBER or
VARCHAR2, or a complex user-defined type such as a collection, record, or another object type.
The method specification consists of the method type, its name, and any input and output
parameters it needs.

Object specification is a required part when creating an object type. Any attributes and methods
defined in the object type specification are visible to the outside world (a PL/SQL block, subpro-
gram, or Java application). Object type specification is also called the public interface, and the
methods defined in it are called public methods. As mentioned earlier, methods are optional
when creating object types. However, if an object type has method specification, it requires an
object type body.

The object type body is optional when creating an object type. It contains bodies (executable
statements) of the methods defined in the object type specification. In addition, the object type
body may contain methods that have not been defined in the object type specification. These
methods are private because they are not visible to the outside world. Some types of methods
include a constructor, member, and static. Different method types, their usage, and restrictions
are discussed in detail in Lab 23.2.

Note that the concepts just explained are very similar to those you learned about in Chapter 21,
“Packages.” Thus, the rules that apply to the package specification and body mostly apply to the
object type specification and body as well. For example, the header of the method defined in
the object type specification must match the method header in the object type body.

Consider the following example of the zipcode_obj_type object type specification:

FOR EXAMPLE

CREATE OR REPLACE TYPE zipcode_obj_type AS OBJECT
(zip VARCHAR2(5),
city VARCHAR2(25),
state VARCHAR2(2),
created_by VARCHAR2(30),
created_date DATE,
modified_by VARCHAR2(30),
modified_date DATE);

Note that this object type does not have any methods associated with it, and its syntax is some-
what similar to the CREATE TABLE syntax.

L A B 23.1
516

Object Types

After this object type has been created, it can be used as shown here:

FOR EXAMPLE

DECLARE
v_zip_obj zipcode_obj_type;

BEGIN
SELECT zipcode_obj_type(zip, city, state, null, null, null, null)
INTO v_zip_obj
FROM zipcode
WHERE zip = '06883';

DBMS_OUTPUT.PUT_LINE ('Zip: '||v_zip_obj.zip);
DBMS_OUTPUT.PUT_LINE ('City: '||v_zip_obj.city);
DBMS_OUTPUT.PUT_LINE ('State: '||v_zip_obj.state);

END;

This script defines instance v_zip_obj of the object type zipcode_obj_type. Then it
initializes some of the object attributes and displays those values on the screen.

The object attributes are initialized using the SELECT INTO statement. Note how the SELECT
clause uses an object type constructor. Recall that you learned about constructors for nested
table types in Chapter 15, “Collections.” Default constructors for object types are similar in that
they are system-defined functions that have the same name as their corresponding object type.
In Lab 23.2 you will learn how to define your own constructor functions.

When run, the script produces the following output:

Zip: 06883
City: Weston
State: CT

PL/SQL procedure successfully completed.

UNINITIALIZED OBJECTS

When an object instance is defined, its value is null. This means that not only are its individual
attributes null, but the object itself is null as well. The object remains null until its constructor
method is called, as shown in the following example:

FOR EXAMPLE

DECLARE
v_zip_obj zipcode_obj_type;

BEGIN
DBMS_OUTPUT.PUT_LINE ('Object instance has not been initialized');

IF v_zip_obj IS NULL
THEN

DBMS_OUTPUT.PUT_LINE ('v_zip_obj instance is null');

L A B 23.1Object Types

517

FOR EXAMPLE (continued)

ELSE
DBMS_OUTPUT.PUT_LINE ('v_zip_obj instance is not null');

END IF;

IF v_zip_obj.zip IS NULL
THEN

DBMS_OUTPUT.PUT_LINE ('v_zip_obj.zip is null');
END IF;

-- Initialize v_zip_obj_instance
v_zip_obj := zipcode_obj_type(null, null, null, null, null, null,

null);
DBMS_OUTPUT.PUT_LINE ('Object instance has been initialized');

IF v_zip_obj IS NULL
THEN

DBMS_OUTPUT.PUT_LINE ('v_zip_obj instance is null');
ELSE

DBMS_OUTPUT.PUT_LINE ('v_zip_obj instance is not null');
END IF;

IF v_zip_obj.zip IS NULL
THEN

DBMS_OUTPUT.PUT_LINE ('v_zip_obj.zip is null');
END IF;

END;

When run, this script produces the following output:

Object instance has not been initialized
v_zip_obj instance is null
v_zip_obj.zip is null
Object instance has been initialized
v_zip_obj instance is not null
v_zip_obj.zip is null

PL/SQL procedure successfully completed.

Note that both the object instance and its attributes are null before the initialization. After the
object instance has been initialized with the help of its default constructor, it is not null
anymore, even though its individual attributes remain null.

WATCH OUT!

Referencing individual attributes of an uninitialized object instance causes an ORA-06530:
Reference to uninitialized composite error:

DECLARE
v_zip_obj zipcode_obj_type;

L A B 23.1
518

Object Types

BEGIN
v_zip_obj.zip := '12345';

END;

DECLARE
*
ERROR at line 1:
ORA-06530: Reference to uninitialized composite
ORA-06512: at line 4

Note that this error occurs only when the object type attribute being referenced is a nonnumeric
datatype or a numeric datatype that does not have specified precision. This behavior is as follows:

CREATE OR REPLACE TYPE obj_type AS OBJECT
(attribute1 NUMBER(3)
,attribute2 VARCHAR2(3));

/
Type created.

DECLARE
v_obj obj_type;

BEGIN
v_obj.attribute1 := 123;

DBMS_OUTPUT.PUT_LINE ('v_obj.attribute1: '||
v_obj.attribute1);

END;
/
v_obj.attribute1: 123

PL/SQL procedure successfully completed.

DECLARE
v_obj obj_type;

BEGIN
v_obj.attribute1 := 123;
v_obj.attribute2 := 'ABC';

DBMS_OUTPUT.PUT_LINE ('v_obj.attribute1: '||
v_obj.attribute1);

DBMS_OUTPUT.PUT_LINE ('v_obj.attribute2: '||
v_obj.attribute2);

END;
/
DECLARE
*
ERROR at line 1:
ORA-06530: Reference to uninitialized composite
ORA-06512: at line 5

L A B 23.1Object Types

519

Note that the first PL/SQL script executes successfully because it does not reference attribute2,
which is defined as VARCHAR2(3). The second PL/SQL script causes an ORA-06530 error because it
references attribute2.

As a result, it is a good practice to always initialize a newly created object type instance.

COLLECTIONS OF OBJECT TYPES

As mentioned previously, object types and collection types may be nested inside each other.
Consider the following collection of zip code objects:

FOR EXAMPLE

DECLARE
TYPE v_zip_type IS TABLE OF zipcode_obj_type

INDEX BY BINARY_INTEGER;
v_zip_tab v_zip_type;

BEGIN
SELECT zipcode_obj_type(zip, city, state, null, null, null, null)
BULK COLLECT INTO v_zip_tab
FROM zipcode
WHERE rownum <= 5;

FOR i in 1..v_zip_tab.count
LOOP

DBMS_OUTPUT.PUT_LINE ('Zip: '||v_zip_tab(i).zip);
DBMS_OUTPUT.PUT_LINE ('City: '||v_zip_tab(i).city);
DBMS_OUTPUT.PUT_LINE ('State: '||v_zip_tab(i).state);
DBMS_OUTPUT.PUT_LINE ('-----------------------');

END LOOP;
END;

This script declares an associative array of objects. Next, it populates this table of objects using
the BULK SELECT statement. Finally, it displays data from the associative array on the screen.

Note how individual object type attributes are referenced by the DBMS_OUTPUT.PUT_LINE
statement. Each attribute is prefixed by the table name and row subscript, without any reference
to the object type itself.

When run, this example produces the following output:

Zip: 00914
City: Santurce
State: PR

Zip: 01247
City: North Adams
State: MA

L A B 23.1
520

Object Types

Zip: 02124
City: Dorchester
State: MA

Zip: 02155
City: Tufts Univ. Bedford
State: MA

Zip: 02189
City: Weymouth
State: MA

PL/SQL procedure successfully completed.

In this example you can see how to populate an associative array of objects with data. PL/SQL
also supports selecting the data from a collection of objects. Note that in this case the collection
type should be a nested table or varray type that is created and stored in the database schema just as
its corresponding object type. This is illustrated in the following example:

FOR EXAMPLE

CREATE OR REPLACE TYPE v_zip_tab_type IS TABLE OF zipcode_obj_type;
/
DECLARE

v_zip_tab v_zip_tab_type := v_zip_tab_type();
v_zip VARCHAR2(5);
v_city VARCHAR2(20);
v_state VARCHAR2(2);

BEGIN
SELECT zipcode_obj_type(zip, city, state, null, null, null, null)
BULK COLLECT INTO v_zip_tab
FROM zipcode
WHERE rownum <= 5;

SELECT zip, city, state
INTO v_zip, v_city, v_state
FROM table(cast(v_zip_tab as v_zip_tab_type))
where rownum < 2;

DBMS_OUTPUT.PUT_LINE ('Zip: '||v_zip);
DBMS_OUTPUT.PUT_LINE ('City: '||v_city);
DBMS_OUTPUT.PUT_LINE ('State: '||v_state);

END;

First, this script creates a nested table type, v_zip_tab_type, in the student schema. This
table type is then used by the preceding PL/SQL block. Creating and storing a nested table type
in the STUDENT schema enables you to use TABLE and CAST functions later in the script.

L A B 23.1Object Types

521

▼

Next, take a closer look at the second SELECT INTO statement. This statement uses CAST and
TABLE functions, which essentially enable you to query a nested table of objects as if it were a
regular table.

When run, this example produces the following output:

Zip: 00914
City: Santurce
State: PR

PL/SQL procedure successfully completed.

L A B 2 3 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

23.1.1 Use Object Types

In this exercise, you continue exploring object types.

Complete the following tasks:

A) Create object type ENROLLMENT_OBJ_TYPE, which has the following attributes:

ATTRIBUTE NAME DATA TYPE PRECISION
-------------- --------- ---------
student_id NUMBER 8
first_name VARCHAR2 25
last_name VARCHAR2 25
course_no NUMBER 8
section_no NUMBER 3
enroll_date DATE
final_grade NUMBER 3

ANSWER: The creation script should look similar to the following:

-- ch23_1a.sql, version 1.0
CREATE OR REPLACE TYPE ENROLLMENT_OBJ_TYPE AS OBJECT

(student_id NUMBER(8),
first_name VARCHAR2(25),
last_name VARCHAR2(25),
course_no NUMBER(8),
section_no NUMBER(3),
enroll_date DATE,
final_grade NUMBER(3));

B) The following script uses the newly created object type. Execute it and explain the output
produced.

-- ch23_2a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

v_enrollment_obj enrollment_obj_type;

L A B 23.1
522

Lab 23.1 Exercises

BEGIN
v_enrollment_obj.student_id := 102;
v_enrollment_obj.first_name := 'Fred';
v_enrollment_obj.last_name := 'Crocitto';
v_enrollment_obj.course_no := 25;

END;

ANSWER: The output of the script should look similar to the following:

DECLARE
*
ERROR at line 1:
ORA-06530: Reference to uninitialized composite
ORA-06512: at line 6

This version of the script causes an ORA-06530 error because it references individual attributes of
the uninitialized object type instance. Before the object attribute can be referenced, the object
must be initialized with the help of the constructor method.

C) Modify the script created in the preceding exercise (ch23_2a.sql) so that it does not produce an
ORA-06530 error.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch23_2b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

v_enrollment_obj enrollment_obj_type;

BEGIN
v_enrollment_obj :=

enrollment_obj_type(102, 'Fred', 'Crocitto', 25, null, null,
null);

END;

D) Modify this script (ch23_2b.sql) so that all object attributes are populated with corresponding
values selected from the appropriate tables.

ANSWER: The script should look similar to one of the following scripts. Changes are shown
in bold.

The first version of the script employs the SELECT INTO statement along with the constructor to
initialize other attributes as well. Note that the SELECT INTO statement specifies WHERE criteria for
the SECTION_NO in addition to the criteria for the STUDENT_ID and COURSE_NO. This ensures
that the SELECT INTO statement does not cause an ORA-01422: exact fetch returns
more than requested number of rows error.

-- ch23_2c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_enrollment_obj enrollment_obj_type;

BEGIN
SELECT

enrollment_obj_type(st.student_id, st.first_name, st.last_name,
c.course_no, se.section_no, e.enroll_date,
e.final_grade)

INTO v_enrollment_obj

L A B 23.1Lab 23.1 Exercises

523

FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student_id = 102
AND c.course_no = 25
AND se.section_no = 2;

END;

The SELECT statement in the preceding script can be modified according to the ANSI 1999 SQL
standard:

SELECT enrollment_obj_type(st.student_id, st.first_name,
st.last_name, c.course_no, se.section_no,
e.enroll_date, e.final_grade)

INTO v_enrollment_obj
FROM enrollment e
JOIN student st
ON e.student_id = st.student_id

JOIN section se
ON e.section_id = se.section_id

JOIN course c
ON se.course_no = c.course_no

WHERE st.student_id = 102
AND c.course_no = 25
AND se.section_no = 2;

The preceding SELECT statement uses the ON syntax to specify the join condition between four
tables. This type of join becomes especially useful when the columns participating in the join do
not have the same name.

BY THE WAY

You will find detailed explanations and examples of the statements using the new ANSI 1999 SQL
standard in Appendix C and in the Oracle help. Throughout this book we have tried to provide you
with examples illustrating both standards; however, our main focus has remained on PL/SQL features
rather than SQL.

The second version of the script uses a cursor FOR loop. This approach eliminates the need for
additional criteria against the SECTION_NO.

-- ch23_2d.sql, version 4.0
SET SERVEROUTPUT ON
DECLARE

v_enrollment_obj enrollment_obj_type;

BEGIN
FOR REC IN (SELECT st.student_id, st.first_name, st.last_name,

c.course_no, se.section_no, e.enroll_date,
e.final_grade

FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no

L A B 23.1
524

Lab 23.1 Exercises

AND se.section_id = e.section_id
AND st.student_id = 102
AND c.course_no = 25)

LOOP
v_enrollment_obj :=

enrollment_obj_type(rec.student_id, rec.first_name,
rec.last_name, rec.course_no,
rec.section_no, rec.enroll_date,
rec.final_grade);

END LOOP;
END;

E) Modify one of the scripts created in the previous exercises (use either ch23_2c.sql or ch23_2d.sql)
so that attribute values are displayed on the screen.

ANSWER: The script should look similar to the following. All changes are shown in bold.

-- ch23_2e.sql, version 5.0
SET SERVEROUTPUT ON
DECLARE

v_enrollment_obj enrollment_obj_type;

BEGIN
FOR REC IN (SELECT st.student_id, st.first_name, st.last_name,

c.course_no, se.section_no, e.enroll_date,
e.final_grade

FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student_id = 102
AND c.course_no = 25)

LOOP
v_enrollment_obj :=

enrollment_obj_type(rec.student_id, rec.first_name,
rec.last_name, rec.course_no,
rec.section_no, rec.enroll_date,
rec.final_grade);

DBMS_OUTPUT.PUT_LINE ('student_id: '||
v_enrollment_obj.student_id);

DBMS_OUTPUT.PUT_LINE ('first_name: '||
v_enrollment_obj.first_name);

DBMS_OUTPUT.PUT_LINE ('last_name: '||
v_enrollment_obj.last_name);

DBMS_OUTPUT.PUT_LINE ('course_no: '||
v_enrollment_obj.course_no);

DBMS_OUTPUT.PUT_LINE ('section_no: '||
v_enrollment_obj.section_no);

DBMS_OUTPUT.PUT_LINE ('enroll_date: '||
v_enrollment_obj.enroll_date);

L A B 23.1Lab 23.1 Exercises

525

DBMS_OUTPUT.PUT_LINE ('final_grade: '||
v_enrollment_obj.final_grade);

END LOOP;
END;

This version of the script produces the following output:

student_id: 102
first_name: Fred
last_name: Crocitto
course_no: 25
section_no: 2
enroll_date: 30-JAN-07
final_grade:
student_id: 102
first_name: Fred
last_name: Crocitto
course_no: 25
section_no: 5
enroll_date: 30-JAN-07
final_grade: 92

PL/SQL procedure successfully completed.

23.1.2 Use Object Types with Collections

In this exercise, you continue exploring how object types may be used with collections.

Complete the following tasks:

A) Modify script ch23_2e.sql, created in the preceding exercise. In the new version of the script,
populate an associative array of objects. Use multiple student IDs for this exercise—102, 103,
and 104.

ANSWER: The script should look similar to the following:

-- ch23_3a.sql, version 1.0
SET SERVEROUTPUT ON
DECLARE

TYPE enroll_tab_type IS TABLE OF enrollment_obj_type
INDEX BY BINARY_INTEGER;

v_enrollment_tab enroll_tab_type;

v_counter integer := 0;

BEGIN
FOR REC IN (SELECT st.student_id, st.first_name, st.last_name,

c.course_no, se.section_no, e.enroll_date,
e.final_grade

FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student_id in (102, 103, 104))

L A B 23.1
526

Lab 23.1 Exercises

LOOP
v_counter := v_counter + 1;
v_enrollment_tab(v_counter) :=

enrollment_obj_type(rec.student_id, rec.first_name,
rec.last_name, rec.course_no,
rec.section_no, rec.enroll_date,
rec.final_grade);

DBMS_OUTPUT.PUT_LINE ('student_id: '||
v_enrollment_tab(v_counter).student_id);

DBMS_OUTPUT.PUT_LINE ('first_name: '||
v_enrollment_tab(v_counter).first_name);

DBMS_OUTPUT.PUT_LINE ('last_name: '||
v_enrollment_tab(v_counter).last_name);

DBMS_OUTPUT.PUT_LINE ('course_no: '||
v_enrollment_tab(v_counter).course_no);

DBMS_OUTPUT.PUT_LINE ('section_no: '||
v_enrollment_tab(v_counter).section_no);

DBMS_OUTPUT.PUT_LINE ('enroll_date: '||
v_enrollment_tab(v_counter).enroll_date);

DBMS_OUTPUT.PUT_LINE ('final_grade: '||
v_enrollment_tab(v_counter).final_grade);

DBMS_OUTPUT.PUT_LINE ('------------------');
END LOOP;

END;

The preceding script defines an associative array of objects that is populated with the help of the
cursor FOR loop. After a single row of the associative array has been initialized, it is displayed on
the screen.

Take a closer look at how each row of the associative array is initialized:

v_enrollment_tab(v_counter) :=
enrollment_obj_type(rec.student_id, rec.first_name,

rec.last_name, rec.course_no,
rec.section_no, rec.enroll_date,
rec.final_grade);

A row is referenced by a subscript. In this case it is a variable,v_counter. Because each row
represents an object instance, it is initialized by referencing the default constructor method asso-
ciated with the corresponding object type.

When run, the script produces the following output:

student_id: 102
first_name: Fred
last_name: Crocitto
course_no: 25
section_no: 2
enroll_date: 30-JAN-07
final_grade:

L A B 23.1Lab 23.1 Exercises

527

student_id: 102
first_name: Fred
last_name: Crocitto
course_no: 25
section_no: 5
enroll_date: 30-JAN-07
final_grade: 92

student_id: 103
first_name: J.
last_name: Landry
course_no: 20
section_no: 2
enroll_date: 30-JAN-07
final_grade:

student_id: 104
first_name: Laetia
last_name: Enison
course_no: 20
section_no: 2
enroll_date: 30-JAN-07
final_grade:

PL/SQL procedure successfully completed.

B) Modify the script so that the table of objects is populated using the BULK SELECT INTO statement.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch23_3b.sql, version 2.0
SET SERVEROUTPUT ON
DECLARE

TYPE enroll_tab_type IS TABLE OF enrollment_obj_type
INDEX BY BINARY_INTEGER;

v_enrollment_tab enroll_tab_type;

BEGIN
SELECT

enrollment_obj_type(st.student_id, st.first_name, st.last_name,
c.course_no, se.section_no, e.enroll_date,
e.final_grade)

BULK COLLECT INTO v_enrollment_tab
FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student_id in (102, 103, 104);

FOR i IN 1..v_enrollment_tab.COUNT
LOOP

L A B 23.1
528

Lab 23.1 Exercises

DBMS_OUTPUT.PUT_LINE ('student_id: '||
v_enrollment_tab(i).student_id);

DBMS_OUTPUT.PUT_LINE ('first_name: '||
v_enrollment_tab(i).first_name);

DBMS_OUTPUT.PUT_LINE ('last_name: '||
v_enrollment_tab(i).last_name);

DBMS_OUTPUT.PUT_LINE ('course_no: '||
v_enrollment_tab(i).course_no);

DBMS_OUTPUT.PUT_LINE ('section_no: '||
v_enrollment_tab(i).section_no);

DBMS_OUTPUT.PUT_LINE ('enroll_date: '||
v_enrollment_tab(i).enroll_date);

DBMS_OUTPUT.PUT_LINE ('final_grade: '||
v_enrollment_tab(i).final_grade);

DBMS_OUTPUT.PUT_LINE ('------------------');
END LOOP;

END;

In this version of the script, the cursor FOR loop has been replaced by the BULK SELECT INTO
statement. As a result, the cursor FOR loop is replaced by the numeric FOR loop to display data on
the screen. These changes eliminate the need for the variable v_counter, which was used to
reference individual rows of the associative array.

When run, this version of the script produces output that is identical to the previous version.

C) Modify the script so that data stored in the table of objects can be retrieved using the SELECT
INTO statement as well.

ANSWER: As mentioned previously, for you to select data from a table of objects, the underlying
table type must be either a nested table or a varray that is created and stored in the database
schema. This is accomplished by the following statement:

CREATE OR REPLACE TYPE enroll_tab_type AS TABLE OF
enrollment_obj_type;

/

After the nested table type is created, the script is modified as follows. Changes are shown in bold.

-- ch23_3c.sql, version 3.0
SET SERVEROUTPUT ON
DECLARE

v_enrollment_tab enroll_tab_type;

BEGIN
SELECT

enrollment_obj_type(st.student_id, st.first_name, st.last_name,
c.course_no, se.section_no, e.enroll_date,
e.final_grade)

BULK COLLECT INTO v_enrollment_tab
FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student_id in (102, 103, 104);

L A B 23.1Lab 23.1 Exercises

529

FOR rec IN (SELECT *
FROM TABLE(CAST(v_enrollment_tab AS
enroll_tab_type)))

LOOP
DBMS_OUTPUT.PUT_LINE ('student_id: '||rec.student_id);
DBMS_OUTPUT.PUT_LINE ('first_name: '||rec.first_name);
DBMS_OUTPUT.PUT_LINE ('last_name: '||rec.last_name);
DBMS_OUTPUT.PUT_LINE ('course_no: '||rec.course_no);
DBMS_OUTPUT.PUT_LINE ('section_no: '||rec.section_no);
DBMS_OUTPUT.PUT_LINE ('enroll_date: '||rec.enroll_date);
DBMS_OUTPUT.PUT_LINE ('final_grade: '||rec.final_grade);
DBMS_OUTPUT.PUT_LINE ('------------------');

END LOOP;
END;

Note that in this version of the script, the numeric FOR loop is replaced by the cursor FOR loop
against the nested table of objects. Note that the DBMS_OUTPUT.PUT_LINE statements are also
changed so that they reference records returned by the cursor.

L A B 23.1
530

Lab 23.1 Exercises

L A B 2 3 . 2

Object Type Methods

L A B O B J E C T I V E
After completing this lab, you will be able to

. Use object type methods

In Lab 23.1 you learned that object type methods are functions and procedures that specify
actions that may be performed on the object type attributes and that they are defined in the
object type specification. You also have seen how to use default system-defined constructor
methods. The constructor is only one of the method types that PL/SQL supports. Some other
method types are member, static, map, and order. The method type typically is determined by
the actions that a particular method performs. For example, constructor methods are used to
initialize object instances, and map and order methods are used to compare and sort object
instances.

Often object type methods use a built-in parameter called SELF. This parameter represents a
particular instance of the object type. As such, it is available to the methods that are invoked on
that object type instance. You will see various examples of the SELF parameter in the following
discussions.

CONSTRUCTOR METHODS

As discussed previously, a constructor method is a default method that is implicitly created by
the system whenever a new object type is created. It is a function that has the same name as its
object type. Its input parameters have the same names and datatypes as the object type attrib-
utes and are listed in the same order as the object type attributes. The constructor method
returns a new instance of the object type. In other words, it initializes a new object instance and
assigns values to the object attributes. Consider the following code fragments, which illustrate
calls to the default constructor method for the zipcode_obj_type created earlier:

FOR EXAMPLE

zip_obj1 := ZIPCODE_OBJ_TYPE('00914', 'Santurce', 'PR', USER, SYSDATE,
USER, SYSDATE);

or

zip_obj2 := ZIPCODE_OBJ_TYPE(NULL, NULL, NULL, NULL, NULL,
NULL NULL);

L A B 23.2
531

The first call to the constructor method returns a new instance, zip_obj1, of zipcode_obj_
type with attributes initialized to non-null values. The second call creates a new instance,
zip_obj2, with NULL attribute values.

Note that both calls produce non-null instances of the zipcode_obj_type. The difference is
in the values assigned to the individual attributes.

In the preceding examples, calls to the default constructor method use positional notation.
Recall that positional notation associates values with corresponding parameters by their position
in the header of the function, procedure, or, in this case, constructor. Next, consider the call to
the default constructor method that uses named notation. Note that in this case, the order of
parameters does not correspond to the order of the attributes in zipcode_obj_type. Instead,
they are referenced by their names:

FOR EXAMPLE

zip_obj3 := ZIPCODE_OBJ_TYPE(created_by => USER,
created_date => SYSDATE,
modified_by => USER,
modified_date => SYSDATE,
zip =>'00914',
city => 'Santurce',
state => 'PR');

PL/SQL lets you create your own (user-defined) constructors. User-defined constructors offer
flexibility that default constructors lack. For example, you may want to define a constructor on
the zipcode_obj_type that initializes only some of the attributes of the newly created object
instance. In this case, the system initializes to NULL any attributes for which you do not specify
values. In addition, you can control the number and types of parameters that your constructor
may require.

Consider the following example of the user-defined constructors for the zipcode_obj_type.

FOR EXAMPLE

Note that before recreating zipcode_obj_type you must drop the nested table type
v_zip_tab_type, created in Lab 23.1, to prevent the following error message:

CREATE OR REPLACE TYPE zipcode_obj_type AS OBJECT
*
ERROR at line 1:
ORA-02303: cannot drop or replace a type with type or table

dependents

The nested table type can be dropped as follows:

DROP TYPE v_zip_tab_type;

The object type can be recreated as shown here:

CREATE OR REPLACE TYPE zipcode_obj_type AS OBJECT
(zip VARCHAR2(5),

L A B 23.2
532

Object Type Methods

city VARCHAR2(25),
state VARCHAR2(2),
created_by VARCHAR2(30),
created_date DATE,
modified_by VARCHAR2(30),
modified_date DATE,

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2)

RETURN SELF AS RESULT,

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2,
city VARCHAR2, state VARCHAR2)

RETURN SELF AS RESULT);
/

CREATE OR REPLACE TYPE BODY zipcode_obj_type AS

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY zipcode_obj_type, zip VARCHAR2)

RETURN SELF AS RESULT
IS
BEGIN

SELF.zip := zip;

SELECT city, state
INTO SELF.city, SELF.state
FROM zipcode
WHERE zip = SELF.zip;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2, city VARCHAR2,
state VARCHAR2)

RETURN SELF AS RESULT
IS
BEGIN

SELF.zip := zip;
SELF.city := city;
SELF.state := state;

RETURN;
END;

END;
/

L A B 23.2Object Type Methods

533

This script overloads two constructor methods for zip_code_obj_type. Overloading allows
two methods or subprograms to use the same name as long as their parameters differ in either
datatypes or their number. In the preceding example, the first constructor method expects two
parameters, and the second constructor method expects four parameters.

Both constructors use the default parameter SELF as an IN OUT parameter and as a return
datatype in the RETURN clause. As stated previously, SELF references a particular object type
instance. Note the use of the NOCOPY compiler hint. This hint typically is used with OUT and
IN OUT parameters. By default, OUT and IN OUT parameters are passed by value. This means
that the values of the parameters are copied before the subprogram or method is executed.
Then, during execution, temporary variables are used to hold values of the OUT parameters. For
the parameters that represent complex datatypes such as collections, records, and object type
instances, the copying step can add significant processing overhead. By adding a NOCOPY hint,
you instruct the PL/SQL compiler to pass OUT and IN OUT parameters by reference and elim-
inate the copying step.

Next, both constructor methods populate the city, state, and zip attributes. Note how these
attributes are referenced using the SELF parameter.

MEMBER METHODS

Member methods provide access to the object instance data. As such, a member method should
be defined for each action that object type must perform. For example, you may need to return
city, state, and zip code values associated with an object instance to the calling application, as
shown in the following example:

FOR EXAMPLE

CREATE OR REPLACE TYPE zipcode_obj_type AS OBJECT
(zip VARCHAR2(5),
city VARCHAR2(25),
state VARCHAR2(2),
created_by VARCHAR2(30),
created_date DATE,
modified_by VARCHAR2(30),
modified_date DATE,

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2)

RETURN SELF AS RESULT,

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2,
city VARCHAR2, state VARCHAR2)

RETURN SELF AS RESULT,

MEMBER PROCEDURE get_zipcode_info
(out_zip OUT VARCHAR2, out_city OUT VARCHAR2,
out_state OUT VARCHAR2)

L A B 23.2
534

Object Type Methods

);
/

CREATE OR REPLACE TYPE BODY zipcode_obj_type AS

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY zipcode_obj_type, zip VARCHAR2)

RETURN SELF AS RESULT
IS
BEGIN

SELF.zip := zip;

SELECT city, state
INTO SELF.city, SELF.state
FROM zipcode
WHERE zip = SELF.zip;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2, city VARCHAR2,
state VARCHAR2)

RETURN SELF AS RESULT
IS
BEGIN

SELF.zip := zip;
SELF.city := city;
SELF.state := state;

RETURN;
END;

MEMBER PROCEDURE get_zipcode_info
(out_zip OUT VARCHAR2, out_city OUT VARCHAR2, out_state OUT

VARCHAR2)
IS
BEGIN

out_zip := SELF.zip;
out_city := SELF.city;
out_state := SELF.state;

END;

END;
/

L A B 23.2Object Type Methods

535

In this version of the script, you add a member procedure that returns values of zip code, city,
and state associated with a particular instance of the zip_code_obj_type object type. Note
that the reference to the SELF parameter in this procedure is optional, and that the preceding
assignment statements can be modified as follows:

out_zip := zip;
out_city := city;
out_state := state;

These statements initialize OUT parameters associated with individual attributes of a particular
object instance, just like the statements that include the reference to the SELF parameter.

STATIC METHODS

Static methods are created for actions that do not need to access data associated with a particu-
lar object instance. As such, these methods are created for the object type itself and describe
actions that are global to that object type. Because static methods do not have access to the data
associated with a particular object type instance, they may not reference the default parameter
SELF. Consider the following example of the static method that displays zip code information:

FOR EXAMPLE

CREATE OR REPLACE TYPE zipcode_obj_type AS OBJECT
(zip VARCHAR2(5),
city VARCHAR2(25),
state VARCHAR2(2),
created_by VARCHAR2(30),
created_date DATE,
modified_by VARCHAR2(30),
modified_date DATE,

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2)

RETURN SELF AS RESULT,

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2,
city VARCHAR2, state VARCHAR2)

RETURN SELF AS RESULT,

MEMBER PROCEDURE get_zipcode_info
(out_zip OUT VARCHAR2, out_city OUT VARCHAR2,
out_state OUT VARCHAR2),

STATIC PROCEDURE display_zipcode_info
(in_zip_obj IN ZIPCODE_OBJ_TYPE)

);
/

CREATE OR REPLACE TYPE BODY zipcode_obj_type AS

L A B 23.2
536

Object Type Methods

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY zipcode_obj_type, zip VARCHAR2)

RETURN SELF AS RESULT
IS
BEGIN

SELF.zip := zip;

SELECT city, state
INTO SELF.city, SELF.state
FROM zipcode
WHERE zip = SELF.zip;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2, city VARCHAR2,
state VARCHAR2)

RETURN SELF AS RESULT
IS
BEGIN

SELF.zip := zip;
SELF.city := city;
SELF.state := state;

RETURN;
END;

MEMBER PROCEDURE get_zipcode_info
(out_zip OUT VARCHAR2, out_city OUT VARCHAR2, out_state OUT

VARCHAR2)
IS
BEGIN

out_zip := SELF.zip;
out_city := SELF.city;
out_state := SELF.state;

END;

STATIC PROCEDURE display_zipcode_info
(in_zip_obj IN ZIPCODE_OBJ_TYPE)

IS
BEGIN

DBMS_OUTPUT.PUT_LINE ('Zip: ' ||in_zip_obj.zip);
DBMS_OUTPUT.PUT_LINE ('City: ' ||in_zip_obj.city);
DBMS_OUTPUT.PUT_LINE ('State: '||in_zip_obj.state);

END;

END;
/

L A B 23.2Object Type Methods

537

In this version of the script, the static method displays zip code information on the screen. It is
important to note that even though this method references data associated with some object
instance, this object instance is created elsewhere (such as in another PL/SQL script, function,
or procedure) and then passed into this method.

COMPARING OBJECTS

In PL/SQL, element datatypes such as VARCH AR2, NUMBER, and DATE have a predefined
order that enables them to be compared to each other or sorted. For example, the comparison
operator > determines which variable contains a greater value, and the IF-THEN-ELSE state-
ment evaluates to TRUE, FALSE, or NULL accordingly:

IF v_num1 > v_num2 THEN
-- Do something

ELSE
-- Do something else

END IF;

However, an object type may contain multiple attributes of different datatypes and therefore
does not have a predefined order. Then, to be able to compare and sort object instances of the
same object type, you must specify how these object instances should be compared and ordered.
You can do this using two types of optional member methods—map and order.

MAP METHODS

Map methods compare and order object instances, essentially by mapping an object instance
to an element (scalar) datatype such as DATE, NUMBER, or VARCHAR2. This mapping is used
to position an object instance on the axis (DATE, NUMBER, or VARCHAR2) used for the
comparison.

A map method is a member function that does not accept any parameters and returns an
element datatype, as demonstrated in the following example:

FOR EXAMPLE

CREATE OR REPLACE TYPE zipcode_obj_type AS OBJECT
(zip VARCHAR2(5),
city VARCHAR2(25),
state VARCHAR2(2),
created_by VARCHAR2(30),
created_date DATE,
modified_by VARCHAR2(30),
modified_date DATE,

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2)

RETURN SELF AS RESULT,

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2,

L A B 23.2
538

Object Type Methods

city VARCHAR2, state VARCHAR2)
RETURN SELF AS RESULT,

MEMBER PROCEDURE get_zipcode_info
(out_zip OUT VARCHAR2, out_city OUT VARCHAR2,
out_state OUT VARCHAR2),

STATIC PROCEDURE display_zipcode_info
(in_zip_obj IN ZIPCODE_OBJ_TYPE),

MAP MEMBER FUNCTION zipcode RETURN VARCHAR2
);
/

CREATE OR REPLACE TYPE BODY zipcode_obj_type AS

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY zipcode_obj_type, zip VARCHAR2)

RETURN SELF AS RESULT
IS
BEGIN

SELF.zip := zip;

SELECT city, state
INTO SELF.city, SELF.state
FROM zipcode
WHERE zip = SELF.zip;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2, city VARCHAR2,
state VARCHAR2)

RETURN SELF AS RESULT
IS
BEGIN

SELF.zip := zip;
SELF.city := city;
SELF.state := state;

RETURN;
END;

MEMBER PROCEDURE get_zipcode_info
(out_zip OUT VARCHAR2, out_city OUT VARCHAR2, out_state OUT

VARCHAR2)

L A B 23.2Object Type Methods

539

IS
BEGIN

out_zip := SELF.zip;
out_city := SELF.city;
out_state := SELF.state;

END;

STATIC PROCEDURE display_zipcode_info
(in_zip_obj IN ZIPCODE_OBJ_TYPE)

IS
BEGIN

DBMS_OUTPUT.PUT_LINE ('Zip: ' ||in_zip_obj.zip);
DBMS_OUTPUT.PUT_LINE ('City: ' ||in_zip_obj.city);
DBMS_OUTPUT.PUT_LINE ('State: '||in_zip_obj.state);

END;

MAP MEMBER FUNCTION zipcode RETURN VARCHAR2
IS
BEGIN

RETURN (zip);
END;

END;
/

In this version of the script, the map member function returns the value of the zip attribute
that has been defined as VARCHAR2.

After the map method is added to the object type, the object type instances may be compared
or ordered similar to the element datatypes. For example, if V_ZIP_OBJ1 and V_ZIP_OBJ2 are
two instances of the ZIPCODE_OBJ_TYPE, they can be compared like this:

v_zip_obj1 > v_zip_obj2

or

v_zip_obj1.zipcode() > v_zip_obj2.zipcode()

Note that the second statement uses dot notation to reference the map function.

Consider the following example, which demonstrates how the various object type methods
created so far may be used:

FOR EXAMPLE

DECLARE
v_zip_obj1 zipcode_obj_type;
v_zip_obj2 zipcode_obj_type;

BEGIN
-- Initialize object instances with user-defined constructor
-- methods

L A B 23.2
540

Object Type Methods

v_zip_obj1 :=
zipcode_obj_type (zip => '12345',

city => 'Some City', state => 'AB');

v_zip_obj2 := zipcode_obj_type (zip => '48104');

-- Compare object instances via map methods
IF v_zip_obj1 > v_zip_obj2
THEN

DBMS_OUTPUT.PUT_LINE ('v_zip_obj1 is greater than v_zip_obj2');
ELSE

DBMS_OUTPUT.PUT_LINE
('v_zip_obj1 is not greater than v_zip_obj2');

END IF;
END;

Note that when user-defined constructors are invoked, the call statements have no reference to
the SELF default parameter.

When run, the script produces the following output:

v_zip_obj1 is not greater than v_zip_obj2

PL/SQL procedure successfully completed.

ORDER METHODS

Order methods use a different technique when comparing and ordering object instances. They
do not map object instances to an external axis such as NUMBER or DATE. Instead, an order
method compares the current object instance with another object instance of the same object
type based on some criterion specified in the method.

An order method is a member function with a single IN parameter of the same object type
that returns INTEGER as its return type. Furthermore, the method must return a negative
number, 0, or a positive number. This number indicates that the object instance referenced by
the SELF parameter is less than, equal to, or greater than the object instance referenced by the
IN parameter.

DID YOU KNOW?

The map and order methods have the following restrictions:

. An object type may contain either an order or map method.

. An object type derived from another object type may not define an order method.

Consider the following example of the order method for the zipcode_obj_type:

L A B 23.2Object Type Methods

541

FOR EXAMPLE

CREATE OR REPLACE TYPE zipcode_obj_type AS OBJECT
(zip VARCHAR2(5),
city VARCHAR2(25),
state VARCHAR2(2),
created_by VARCHAR2(30),
created_date DATE,
modified_by VARCHAR2(30),
modified_date DATE,

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2)

RETURN SELF AS RESULT,

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2,
city VARCHAR2, state VARCHAR2)

RETURN SELF AS RESULT,

MEMBER PROCEDURE get_zipcode_info
(out_zip OUT VARCHAR2, out_city OUT VARCHAR2,
out_state OUT VARCHAR2),

STATIC PROCEDURE display_zipcode_info
(in_zip_obj IN ZIPCODE_OBJ_TYPE),

ORDER MEMBER FUNCTION zipcode (zip_obj ZIPCODE_OBJ_TYPE)
RETURN INTEGER);

/

CREATE OR REPLACE TYPE BODY zipcode_obj_type AS

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY zipcode_obj_type, zip VARCHAR2)

RETURN SELF AS RESULT
IS
BEGIN

SELF.zip := zip;

SELECT city, state
INTO SELF.city, SELF.state
FROM zipcode
WHERE zip = SELF.zip;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;

L A B 23.2
542

Object Type Methods

CONSTRUCTOR FUNCTION zipcode_obj_type
(SELF IN OUT NOCOPY ZIPCODE_OBJ_TYPE, zip VARCHAR2, city VARCHAR2,
state VARCHAR2)

RETURN SELF AS RESULT
IS
BEGIN

SELF.zip := zip;
SELF.city := city;
SELF.state := state;

RETURN;
END;

MEMBER PROCEDURE get_zipcode_info
(out_zip OUT VARCHAR2, out_city OUT VARCHAR2, out_state OUT

VARCHAR2)
IS
BEGIN

out_zip := SELF.zip;
out_city := SELF.city;
out_state := SELF.state;

END;

STATIC PROCEDURE display_zipcode_info
(in_zip_obj IN ZIPCODE_OBJ_TYPE)

IS
BEGIN

DBMS_OUTPUT.PUT_LINE ('Zip: ' ||in_zip_obj.zip);
DBMS_OUTPUT.PUT_LINE ('City: ' ||in_zip_obj.city);
DBMS_OUTPUT.PUT_LINE ('State: '||in_zip_obj.state);

END;

ORDER MEMBER FUNCTION zipcode (zip_obj ZIPCODE_OBJ_TYPE)
RETURN INTEGER
IS
BEGIN

IF zip < zip_obj.zip THEN RETURN -1;
ELSIF zip = zip_obj.zip THEN RETURN 0;
ELSIF zip > zip_obj.zip THEN RETURN 1;
END IF;

END;

END;
/

In this version of the script, the map member function is replaced by the order member func-
tion. Notice that similar to the map method, the order method uses the zip attribute as a basis
of comparison for the two object type instances.

L A B 23.2Object Type Methods

543

▼

Consider the following script, which demonstrates how an order method may be used:

DECLARE
v_zip_obj1 zipcode_obj_type;
v_zip_obj2 zipcode_obj_type;

v_result INTEGER;
BEGIN

-- Initialize object instances with user-defined constructor
-- methods
v_zip_obj1 := zipcode_obj_type ('12345', 'Some City', 'AB');
v_zip_obj2 := zipcode_obj_type ('48104');

v_result := v_zip_obj1.zipcode(v_zip_obj2);
DBMS_OUTPUT.PUT_LINE ('The result of comparison is '||v_result);

IF v_result = 1
THEN

DBMS_OUTPUT.PUT_LINE ('v_zip_obj1 is greater than v_zip_obj2');

ELSIF v_result = 0
THEN

DBMS_OUTPUT.PUT_LINE ('v_zip_obj1 is equal to v_zip_obj2');

ELSIF v_result = -1
THEN

DBMS_OUTPUT.PUT_LINE ('v_zip_ob1 is less than v_zip_obj2');
END IF;

END;

In this script, the result of the order method is assigned to the v_result variable, defined as
INTEGER. Then, the decision is made based on the value of this variable.

When run, this script produces the following output:

The result of comparison is -1
v_zip_ob1 is less than v_zip_obj2

PL/SQL procedure successfully completed.

L A B 2 3 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

23.2.1 Use Object Type Methods

In this exercise, you create various methods for the enrollment_obj_type you created in the
exercises portion of Lab 23.1. Note that before proceeding with this exercise, you need to drop the
nested table type you created in the preceding lab:

DROP TYPE enroll_tab_type;

L A B 23.2
544

Lab 23.2 Exercises

Recall that you created enrollment_obj_type as follows:

CREATE OR REPLACE TYPE ENROLLMENT_OBJ_TYPE AS OBJECT
(student_id NUMBER(8),
first_name VARCHAR2(25),
last_name VARCHAR2(25),
course_no NUMBER(8),
section_no NUMBER(3),
enroll_date DATE,
final_grade NUMBER(3));

Create the following methods for the enrollment_obj_type:

A) Create a user-defined constructor method that populates object type attributes by selecting data
from the corresponding tables based on the incoming values for student ID, course, and section
numbers.

ANSWER: The script should look similar to the following:

-- ch23_4a.sql, version 1.0
CREATE OR REPLACE TYPE enrollment_obj_type AS OBJECT

(student_id NUMBER(8),
first_name VARCHAR2(25),
last_name VARCHAR2(25),
course_no NUMBER(8),
section_no NUMBER(3),
enroll_date DATE,
final_grade NUMBER(3),

CONSTRUCTOR FUNCTION enrollment_obj_type
(SELF IN OUT NOCOPY enrollment_obj_type, in_student_id NUMBER,
in_course_no NUMBER, in_section_no NUMBER)

RETURN SELF AS RESULT);
/

CREATE OR REPLACE TYPE BODY enrollment_obj_type AS

CONSTRUCTOR FUNCTION enrollment_obj_type
(SELF IN OUT NOCOPY enrollment_obj_type, in_student_id NUMBER,
in_course_no NUMBER, in_section_no NUMBER)

RETURN SELF AS RESULT
IS
BEGIN

SELECT st.student_id, st.first_name, st.last_name, c.course_no,
se.section_no, e.enroll_date, e.final_grade

INTO SELF.student_id, SELF.first_name, SELF.last_name,
SELF.course_no, SELF.section_no, SELF.enroll_date,
SELF.final_grade

FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student_id = in_student_id

L A B 23.2Lab 23.2 Exercises

545

AND c.course_no = in_course_no
AND se.section_no = in_section_no;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;
END;
/

Take a closer look at the SELECT INTO statement of this constructor method. This statement is very
similar to the SELECT INTO statement used in Lab 23.1:

SELECT
enrollment_obj_type(st.student_id, st.first_name, st.last_name,

c.course_no, se.section_no, e.enroll_date,
e.final_grade)

INTO v_enrollment_obj
FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student_id = 102
AND c.course_no = 25
AND se.section_no = 2;

Note that the SELECT INTO statement in the constructor body does not reference the system-
defined default constructor. Instead, it uses the built-in SELF parameter to reference individual
attributes of the current object instance.

You may test the newly added constructor method as follows:

SET SERVEROUTPUT ON;
DECLARE

v_enrollment_obj enrollment_obj_type;
BEGIN

v_enrollment_obj :=
enrollment_obj_type(102, 25, 2);

DBMS_OUTPUT.PUT_LINE ('student_id:
'||v_enrollment_obj.student_id);

DBMS_OUTPUT.PUT_LINE ('first_name:
'||v_enrollment_obj.first_name);

DBMS_OUTPUT.PUT_LINE ('last_name:
'||v_enrollment_obj.last_name);

DBMS_OUTPUT.PUT_LINE ('course_no:
'||v_enrollment_obj.course_no);

DBMS_OUTPUT.PUT_LINE ('section_no:
'||v_enrollment_obj.section_no);

DBMS_OUTPUT.PUT_LINE ('enroll_date:
'||v_enrollment_obj.enroll_date);

L A B 23.2
546

Lab 23.2 Exercises

DBMS_OUTPUT.PUT_LINE ('final_grade:
'||v_enrollment_obj.final_grade);

END;

The test script produces the following output:

student_id: 102
first_name: Fred
last_name: Crocitto
course_no: 25
section_no: 2
enroll_date: 30-JAN-07
final_grade:

PL/SQL procedure successfully completed.

B) Add a member procedure method, GET_ENROLLMENT_INFO, that returns attribute values.

ANSWER: This member procedure method should look similar to the following. Changes are
shown in bold.

-- ch23_4b.sql, version 2.0
CREATE OR REPLACE TYPE enrollment_obj_type AS OBJECT

(student_id NUMBER(8),
first_name VARCHAR2(25),
last_name VARCHAR2(25),
course_no NUMBER(8),
section_no NUMBER(3),
enroll_date DATE,
final_grade NUMBER(3),
CONSTRUCTOR FUNCTION enrollment_obj_type

(SELF IN OUT NOCOPY enrollment_obj_type, in_student_id NUMBER,
in_course_no NUMBER, in_section_no NUMBER)

RETURN SELF AS RESULT,

MEMBER PROCEDURE get_enrollment_ifo
(out_student_id OUT NUMBER, out_first_name OUT VARCHAR2,
out_last_name OUT VARCHAR2, out_course_no OUT NUMBER,
out_section_no OUT NUMBER, out_enroll_date OUT DATE,
out_final_grade OUT NUMBER))

/

CREATE OR REPLACE TYPE BODY enrollment_obj_type AS

CONSTRUCTOR FUNCTION enrollment_obj_type
(SELF IN OUT NOCOPY enrollment_obj_type, in_student_id NUMBER,
in_course_no NUMBER, in_section_no NUMBER)

RETURN SELF AS RESULT
IS
BEGIN

SELECT st.student_id, st.first_name, st.last_name, c.course_no,
se.section_no, e.enroll_date, e.final_grade

L A B 23.2Lab 23.2 Exercises

547

INTO SELF.student_id, SELF.first_name, SELF.last_name,
SELF.course_no, SELF.section_no, SELF.enroll_date,
SELF.final_grade

FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student_id = in_student_id
AND c.course_no = in_course_no
AND se.section_no = in_section_no;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;

MEMBER PROCEDURE get_enrollment_ifo
(out_student_id OUT NUMBER, out_first_name OUT VARCHAR2,
out_last_name OUT VARCHAR2, out_course_no OUT NUMBER,
out_section_no OUT NUMBER, out_enroll_date OUT DATE,
out_final_grade OUT NUMBER)

IS
BEGIN

out_student_id := student_id;
out_first_name := first_name;
out_last_name := last_name;
out_course_no := course_no;
out_section_no := section_no;
out_enroll_date := enroll_date;
out_final_grade := final_grade;

END;

END;
/

C) Add a static method to the enrollment_obj_type object type that displays values of indi-
vidual attributes on the screen.

ANSWER: The script should look similar to the following. Changes are shown in bold.

-- ch23_4c.sql, version 3.0
CREATE OR REPLACE TYPE enrollment_obj_type AS OBJECT

(student_id NUMBER(8),
first_name VARCHAR2(25),
last_name VARCHAR2(25),
course_no NUMBER(8),
section_no NUMBER(3),
enroll_date DATE,
final_grade NUMBER(3),
CONSTRUCTOR FUNCTION enrollment_obj_type

L A B 23.2
548

Lab 23.2 Exercises

(SELF IN OUT NOCOPY enrollment_obj_type, in_student_id NUMBER,
in_course_no NUMBER, in_section_no NUMBER)

RETURN SELF AS RESULT,

MEMBER PROCEDURE get_enrollment_ifo
(out_student_id OUT NUMBER, out_first_name OUT VARCHAR2,
out_last_name OUT VARCHAR2, out_course_no OUT NUMBER,
out_section_no OUT NUMBER, out_enroll_date OUT DATE,
out_final_grade OUT NUMBER),

STATIC PROCEDURE display_enrollment_info
(enrollment_obj enrollment_obj_type))

/

CREATE OR REPLACE TYPE BODY enrollment_obj_type AS

CONSTRUCTOR FUNCTION enrollment_obj_type
(SELF IN OUT NOCOPY enrollment_obj_type, in_student_id NUMBER,
in_course_no NUMBER, in_section_no NUMBER)

RETURN SELF AS RESULT
IS
BEGIN

SELECT st.student_id, st.first_name, st.last_name, c.course_no,
se.section_no, e.enroll_date, e.final_grade

INTO SELF.student_id, SELF.first_name, SELF.last_name,
SELF.course_no, SELF.section_no, SELF.enroll_date,
SELF.final_grade

FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student_id = in_student_id
AND c.course_no = in_course_no
AND se.section_no = in_section_no;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;

MEMBER PROCEDURE get_enrollment_ifo
(out_student_id OUT NUMBER, out_first_name OUT VARCHAR2,
out_last_name OUT VARCHAR2, out_course_no OUT NUMBER,
out_section_no OUT NUMBER, out_enroll_date OUT DATE,
out_final_grade OUT NUMBER)

IS
BEGIN

out_student_id := student_id;
out_first_name := first_name;

L A B 23.2Lab 23.2 Exercises

549

out_last_name := last_name;
out_course_no := course_no;
out_section_no := section_no;
out_enroll_date := enroll_date;
out_final_grade := final_grade;

END;

STATIC PROCEDURE display_enrollment_info
(enrollment_obj enrollment_obj_type)

IS
BEGIN

DBMS_OUTPUT.PUT_LINE
('student_id: '||enrollment_obj.student_id);

DBMS_OUTPUT.PUT_LINE
('first_name: '||enrollment_obj.first_name);

DBMS_OUTPUT.PUT_LINE
('last_name: '||enrollment_obj.last_name);

DBMS_OUTPUT.PUT_LINE
('course_no: '||enrollment_obj.course_no);

DBMS_OUTPUT.PUT_LINE
('section_no: '||enrollment_obj.section_no);

DBMS_OUTPUT.PUT_LINE
('enroll_date: '||enrollment_obj.enroll_date);

DBMS_OUTPUT.PUT_LINE
('final_grade: '||enrollment_obj.final_grade);

END;

END;
/

Recall that static methods are created for actions that do not need to access data associated with
a particular object instance. As such, they may not reference the default parameter SELF. Then, to
display attribute data associated with some object instance, the instance itself is passed to the
method.

The newly created method may be tested as follows:

SET SERVEROUTPUT ON;
DECLARE

v_enrollment_obj enrollment_obj_type;
BEGIN

v_enrollment_obj := enrollment_obj_type(102, 25, 2);

enrollment_obj_type.display_enrollment_info (v_enrollment_obj);
END;

Note the invocation call to the static method. The call to the static method is qualified with the
object type name, not with the object type instance name.

The test script produces the following output:

student_id: 102
first_name: Fred
last_name: Crocitto

L A B 23.2
550

Lab 23.2 Exercises

course_no: 25
section_no: 2
enroll_date: 30-JAN-07
final_grade:

PL/SQL procedure successfully completed.

D) Add the method to the object type enrollment_obj_type so that its instances may be
compared and/or sorted. The object instances should be compared based on the values of the
course_no,section_no, and student_id attributes.

ANSWER: Recall that for you to compare and sort object instances, their corresponding type
must have either map or order methods. For the purposes of this exercise, the map method is
added to the type definition as follows. Changes are shown in bold.

-- ch23_4d.sql, version 3.0
CREATE OR REPLACE TYPE enrollment_obj_type AS OBJECT

(student_id NUMBER(8),
first_name VARCHAR2(25),
last_name VARCHAR2(25),
course_no NUMBER(8),
section_no NUMBER(3),
enroll_date DATE,
final_grade NUMBER(3),
CONSTRUCTOR FUNCTION enrollment_obj_type

(SELF IN OUT NOCOPY enrollment_obj_type, in_student_id NUMBER,
in_course_no NUMBER, in_section_no NUMBER)

RETURN SELF AS RESULT,

MEMBER PROCEDURE get_enrollment_ifo
(out_student_id OUT NUMBER, out_first_name OUT VARCHAR2,
out_last_name OUT VARCHAR2, out_course_no OUT NUMBER,
out_section_no OUT NUMBER, out_enroll_date OUT DATE,
out_final_grade OUT NUMBER),

STATIC PROCEDURE display_enrollment_info
(enrollment_obj enrollment_obj_type),

MAP MEMBER FUNCTION enrollment RETURN VARCHAR2)
/

CREATE OR REPLACE TYPE BODY enrollment_obj_type AS

CONSTRUCTOR FUNCTION enrollment_obj_type
(SELF IN OUT NOCOPY enrollment_obj_type, in_student_id NUMBER,
in_course_no NUMBER, in_section_no NUMBER)

RETURN SELF AS RESULT
IS
BEGIN

SELECT st.student_id, st.first_name, st.last_name, c.course_no,
se.section_no, e.enroll_date, e.final_grade

INTO SELF.student_id, SELF.first_name, SELF.last_name,
SELF.course_no, SELF.section_no, SELF.enroll_date,

L A B 23.2Lab 23.2 Exercises

551

SELF.final_grade
FROM student st, course c, section se, enrollment e
WHERE st.student_id = e.student_id
AND c.course_no = se.course_no
AND se.section_id = e.section_id
AND st.student_id = in_student_id
AND c.course_no = in_course_no
AND se.section_no = in_section_no;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;

MEMBER PROCEDURE get_enrollment_ifo
(out_student_id OUT NUMBER, out_first_name OUT VARCHAR2,
out_last_name OUT VARCHAR2, out_course_no OUT NUMBER,
out_section_no OUT NUMBER, out_enroll_date OUT DATE,
out_final_grade OUT NUMBER)

IS
BEGIN

out_student_id := student_id;
out_first_name := first_name;
out_last_name := last_name;
out_course_no := course_no;
out_section_no := section_no;
out_enroll_date := enroll_date;
out_final_grade := final_grade;

END;

STATIC PROCEDURE display_enrollment_info
(enrollment_obj enrollment_obj_type)

IS
BEGIN

DBMS_OUTPUT.PUT_LINE ('student_id: '||enrollment_obj.student_id);
DBMS_OUTPUT.PUT_LINE ('first_name: '||enrollment_obj.first_name);
DBMS_OUTPUT.PUT_LINE ('last_name: '||enrollment_obj.last_name);
DBMS_OUTPUT.PUT_LINE ('course_no: '||enrollment_obj.course_no);
DBMS_OUTPUT.PUT_LINE ('section_no: '||enrollment_obj.section_no);
DBMS_OUTPUT.PUT_LINE ('enroll_date: '||enrollment_obj.enroll_date);
DBMS_OUTPUT.PUT_LINE ('final_grade: '||enrollment_obj.final_grade);

END;

MAP MEMBER FUNCTION enrollment RETURN VARCHAR2
IS
BEGIN

RETURN (course_no||'-'||section_no||'-'||student_id);
END;

END;
/

L A B 23.2
552

Lab 23.2 Exercises

The newly added function concatenates values stored in the course_no,section_no, and
section_id attributes. The resulting string value may now be used to compare different
object instances:

SET SERVEROUTPUT ON;
DECLARE

v_enrollment_obj1 enrollment_obj_type;
v_enrollment_obj2 enrollment_obj_type;

BEGIN
v_enrollment_obj1 := enrollment_obj_type(102, 25, 2);
v_enrollment_obj2 := enrollment_obj_type(104, 20, 2);

enrollment_obj_type.display_enrollment_info (v_enrollment_obj1);
DBMS_OUTPUT.PUT_LINE ('--------------------');
enrollment_obj_type.display_enrollment_info (v_enrollment_obj2);

IF v_enrollment_obj1 > v_enrollment_obj2
THEN

DBMS_OUTPUT.PUT_LINE ('Instance 1 is greater than instacne2');
ELSE

DBMS_OUTPUT.PUT_LINE
('Instance 1 is not greater than instance 2');

END IF;
END;

When run, the test script produces the following output:

student_id: 102
first_name: Fred
last_name: Crocitto
course_no: 25
section_no: 2
enroll_date: 30-JAN-07
final_grade:

student_id: 104
first_name: Laetia
last_name: Enison
course_no: 20
section_no: 2
enroll_date: 30-JAN-07
final_grade:
Instance 1 is greater than instance2

PL/SQL procedure successfully completed.

L A B 23.2Lab 23.2 Exercises

553

▼ T R Y I T Y O U R S E L F

In this chapter, you’ve learned about object types, object type methods, and collections of object types.
Here are some projects that will help you test the depth of your understanding:

1) Create the object type student_obj_type with attributes derived from the STUDENT table.

2) Add a user-defined constructor function, member procedure, static procedure, and order function
methods. You should determine on your own how these methods should be structured.

The projects in this section are meant to have you use all the skills you have acquired throughout this
chapter. The answers to these projects can be found in Appendix D and on this book’s companion Web
site. Visit the Web site periodically to share and discuss your answers.

554 Try it Yourself

C H A P T E R 2 4

Oracle Supplied Packages

C H A P T E R O B J E C T I V E S
In this chapter, you will learn about

. Making use of Oracle-supplied packages to profile PL/SQL, access files, and
schedule jobs

. Making use of Oracle-supplied packages to generate an explain plan and
create HTML pages

. Creating Web pages with the Oracle Web Toolkit

Oracle has built into the Database more than 130 packages that extend what
you can achieve with PL/SQL. Usually, each new version of the database comes
with new supplied packages. Oracle introduced about 17 new packages in each
upgrade to versions 9.2 and 10.0. Oracle 11g had 45 new packages and eight
that were updated. These packages offer functionality that you would not be able
to achieve with PL/SQL alone. The reason is that the Oracle-supplied packages
use the C programming language; this is not something that you can do with
ordinary PL/SQL packages. This means that Oracle-supplied packages have full
access to the operating system and other aspects of the Oracle Server that are
not available to ordinary PL/SQL packages. You are already familiar with the
DBMS_OUTPUT package’s procedure PUT_LINE, which is used to gather
debugging information into the buffer for output. This chapter introduces a few
key Oracle supplied packages; you will learn their basic features and how to use
them.

L A B 2 4 . 1

Making Use of Oracle Supplied
Packages to Profile PL/SQL,
Access Files, and Schedule Jobs

L A B O B J E C T I V E S
After completing this lab, you will be able to

. Access files with UTL_FILE

. Schedule jobs with DBMS_JOB

. Submit jobs

PROFILE PL/SQL WITH DBMS_HPROF

In Oracle 11g the package for PL/SQL profiling known previously as DBMS_PROFILER was
extended. The Hierarchical Profiler expands DBMS_PROFILER through DBMS_HPROF by adding
information about which programs are calling the section of code that is running for a long time.
This a tool to locate execution bottlenecks in your stored PL/SQL code. The Profiler indicates how
many times each line of code is executed, how long it is executed, and other information.

The DBMS_HPROF package is installed by default. To use it, the DBA must grant execute priv-
ileges on the package to the appropriate users and provide a directory on the server to write the
profile information to. This will be a text file. You can do this by connecting as SYS (the owner
of the package) as follows:

GRANT EXECUTE ON dbms_hprof TO public;
CREATE OR REPLACE DIRECTORY profiler_dir AS 'c:/temp';
GRANT READ, WRITE ON DIRECTORY profiler_dir TO public;

To analyze the results, the user needs to install the related tables. They can be found in the
Oracle home. While logged on as your STUDENT user, run this script to create the tables:

@?/rdbms/admin/dbmshptab.sql

The first lines are drop tables. If you don’t have the tables, you see an error, which you
can ignore. The tables DBMSHP_PARENT_CHILD_INFO, DBMSHP_FUNCTION_INFO, and
DBMSHP_RUNS are created, as well as the sequence DBMSHP_RUNNUMBER.

L A B 24.1
556

The following procedures do not do anything of value; they just call each other. They can be
used to show a simple case of utilizing the Profiler:

CREATE OR REPLACE PROCEDURE count_student
(p_zip IN NUMBER)
AS
v_count number;
BEGIN
SELECT COUNT(*)
INTO V_count
FROM STUDENT
where zip = p_zip;

END;

CREATE OR REPLACE PROCEDURE count_instructor
(p_zip IN NUMBER)
AS
v_count number;
BEGIN
SELECT COUNT(*)
INTO V_count
FROM INSTRUCTOR
where zip = p_zip;

END;

CREATE OR REPLACE PROCEDURE loop_Zipcode
AS
BEGIN
FOR r in (SELECT * from zipcode) LOOP

count_student (r.zip);
count_instructor (r.zip);

END LOOP;
END;

Next you start the Hierarchical Profiler using the START_PROFILING procedure:

BEGIN
DBMS_HPROF.start_profiling (
location => 'PROFILER_DIR',
filename => 'profiler.txt');

loop_Zipcode;

DBMS_HPROF.stop_profiling;
END;

After the profiling is done, you run the ANALYZE function so that the raw data can be analyzed
and placed in the appropriate Profiler tables.

SET SERVEROUTPUT ON
DECLARE
l_runid NUMBER;

L A B 24.1Making Use of Oracle Supplied Packages to Profile PL/SQL, Access Files, and Schedule Jobs

557

BEGIN
l_runid := DBMS_HPROF.analyze (

location => 'PROFILER_DIR',
filename => 'profiler.txt',
run_comment => 'Test run.');

DBMS_OUTPUT.put_line('l_runid=' || l_runid);
END;

The output shows the runid of the analyze run:

l_runid=1
PL/SQL procedure successfully completed

This can also be obtained with this SQL:

SELECT runid,
run_timestamp,
total_elapsed_time,
run_comment

FROM dbmshp_runs
ORDER BY runid;

RUNID RUN_TIMESTAMP TOTAL_ELAPSED_TIME RUN_COMMENT
------ ------------------------------ ------------------ -----------

1 21-MAY-08 11.07.53.468000 PM 138976 Test run.

This runid is used to query the DBMSHP_FUNCTION_INFO table as follows:

SELECT symbolid,
owner,
module,
type,
function

FROM dbmshp_function_info
WHERE runid = 1
ORDER BY symbolid;

SYMBOLID OWNER MODULE TYPE FUNCTION
-------- ------- ---------------- ------------ -----------------------

1 STUDENT COUNT_INSTRUCTOR PROCEDURE COUNT_INSTRUCTOR
2 STUDENT COUNT_STUDENT PROCEDURE COUNT_STUDENT
3 STUDENT LOOP_ZIPCODE PROCEDURE LOOP_ZIPCODE
4 SYS DBMS_HPROF PACKAGE BODY STOP_PROFILING
5 STUDENT COUNT_INSTRUCTOR PROCEDURE __static_sql_exec_line6
6 STUDENT COUNT_STUDENT PROCEDURE __static_sql_exec_line6
7 STUDENT LOOP_ZIPCODE PROCEDURE __sql_fetch_line5

This output helps you find the SYMBOLID of the top-level procedure. This is LOOP_ZIPCODE,
which has a SYMBOLID of 3. Now this can be used to query the hierarchical information.

L A B 24.1
558

Making Use of Oracle Supplied Packages to Profile PL/SQL, Access Files, and Schedule Jobs

SET LINESIZE 130

COLUMN name FORMAT A30

COLUMN function FORMAT A25

SELECT RPAD(' ', level*2, ' ') || fi.owner || '.' || fi.module AS name,

fi.function,

pci.subtree_elapsed_time,

pci.function_elapsed_time,

pci.calls

FROM dbmshp_parent_child_info pci

JOIN dbmshp_function_info fi ON pci.runid = fi.runid AND

pci.childsymid = fi.symbolid

WHERE pci.runid = 1

CONNECT BY PRIOR childsymid = parentsymid

START WITH pci.parentsymid = 3;

NAME FUNCTION SUBTREE_ FUNCTION_ CALLS

ELAPSED_ ELAPSED_

TIME TIME

------------------------ ----------------------- -------- --------- -----

STUDENT.COUNT_INSTRUCTOR COUNT_INSTRUCTOR 36501 1440 227

STUDENT.COUNT_INSTRUCTOR __static_sql_exec_line6 35061 35061 227

STUDENT.COUNT_STUDENT COUNT_STUDENT 65704 1559 227

STUDENT.COUNT_STUDENT __static_sql_exec_line6 64145 64145 227

STUDENT.LOOP_ZIPCODE __sql_fetch_line5 34582 34582 3

The results display the hierarchy of function calls, along with elapsed times for the function and
the subtree as a whole. The dbms_hprof PL/SQL built-in package and the related dbmshp_
parent_child_info table are used to help plot the execution and debugging of PL/SQL,
revealing the hierarchy of calls to other PL/SQL functions.

ACCESSING FILES WITHIN PL/SQL WITH UTL_FILE

The UTL_FILE package provides text file input and output capabilities within PL/SQL. Oracle
introduced the UTL_FILE package with database version 7.3. This means that you can either
read input from the operating system files or write to operating system files. This could be useful
if you have data from another system that you want to load into the database. For instance, if
you have logs from a Web server that you want to place in your data warehouse, the UTL_FILE
package would allow you to read the text file logs and then parse them to load the data into the
correct tables and columns in the data warehouse. The package also allows you to write data to
a file. This is useful if you want to produce logs or capture current information about the data-
base and store it in a text file, or extract data into a text file that another application can process.

It is important to note that this is a server-side text file access. UTL_FILE cannot read binary
files. For that, you use the DBMS_LOB package. The files that you access must be mapped to a
drive on the server. What directories you can access is controlled by a setting in the INIT.ORA
file. You set the drives that can be accessed with the UTL_FILE_DIR initialization parameter.

L A B 24.1Making Use of Oracle Supplied Packages to Profile PL/SQL, Access Files, and Schedule Jobs

559

FOR EXAMPLE

UTL_FILE_DIR = 'C:\WORKING\'

You can also bypass all server-side security and allow all files to be accessed with the UTL_FILE
package using the following setting:

UTL_FILE_DIR = *

If you do not have access to the INIT.ORA file on the database server, you can query the Data
Dictionary to find the value that has been set in your database with the following SQL:

SELECT name, value
FROM V$SYSTEM_PARAMETER
WHERE name = 'utl_file_dir'

BY THE WAY

It is not advisable to allow UTL_FILE access to all files in a production environment. This means that
all files, including important files that manage the operation of the database, are accessible. This
allows developers to write a procedure that corrupts the database.

The method of using the UTL_FILE file package is to open the text file, process the file by
writing to the file and getting lines from the file, and then close the file. If you do not close the
file, your operating system will think that the file is in use and will not allow you to write to the
file until it is closed. Table 24.1 lists the major functions, procedures, and datatypes in the
UTL_FILE packages. Table 24.2 describes the exceptions in this package.

TABLE 24.1
UTL_FILE Functions, Procedures, and Datatypes

FUNCTION, PROCEDURE,
OR DATATYPE DESCRIPTION

FILE_TYPE The datatype for a file handle.

IS_OPEN This function has a return datatype of BOOLEAN. It returns true if
the file is open and false if the file is closed.

FOPEN This function opens a file for input or output. The function return
value is the form handle in the FILE_TYPE datatype.

The modes to open a file are
R: read mode
W: write mode
A: append mode

FCLOSE This procedure closes an open file.

FCLOSE_ALL This procedure closes all files that are open in the current session.
(It is a good idea to place this procedure in your exception to make
sure you don’t leave any files locked.)

L A B 24.1
560

Making Use of Oracle Supplied Packages to Profile PL/SQL, Access Files, and Schedule Jobs

FUNCTION, PROCEDURE,
OR DATATYPE DESCRIPTION

FFLUSH This procedure takes all the data buffered in memory and writes it
to a file.

GET_LINE This procedure gets one line of text from the opened file and places
the text into the OUT parameter of the procedure.

PUT_LINE This procedure writes a string of text from the IN parameter to the
opened file. Afterwards, a line terminator is placed into the text file.

PUT This procedure is the same as PUT_LINE, except that no line termina-
tor is placed in the open file.

PUTF This procedure puts formatted text into the opened file.

NEW_LINE This procedure inserts a new line terminator into the opened
text file.

TABLE 24.2
UTL_FILE Exceptions

EXCEPTION NAME DESCRIPTION

INVALID_PATH The file location or filename is not valid.

INVALID_MODE This exception is for FOPEN only. The mode for the OPEN_MODE
parameter is not valid.

INVALID_FILEHANDLE The file handle is not valid.

INVALID_OPERATION The file could not be opened or operated on in the manner
requested.

READ_ERROR An operating system error prevented the read file operation from
occurring.

WRITE_ERROR An operating system error prevented the write file operation from
occurring.

INTERNAL_ERROR An unspecified PL/SQL error occurred.

The following example demonstrates a procedure that writes to a log file the date, time, and
number of users who are currently logged on. In the exercises you will create a more involved
procedure that makes use of UTL_FILE. For this example, the user STUDENT needs privileges
to access the v$session table. The DBA can grant access to STUDENT as follows:

GRANT SELECT ON sys.v_$session TO student;

FOR EXAMPLE

-- ch24_1a.sql
CREATE OR REPLACE PROCEDURE LOG_USER_COUNT

(PI_DIRECTORY IN VARCHAR2,
PI_FILE_NAME IN VARCHAR2)

L A B 24.1Making Use of Oracle Supplied Packages to Profile PL/SQL, Access Files, and Schedule Jobs

561

FOR EXAMPLE (continued)

AS
V_File_handle UTL_FILE.FILE_TYPE;
V_user_count number;

BEGIN
SELECT count(*)
INTO V_user_count
FROM v$session
WHERE username is not null;

V_File_handle :=
UTL_FILE.FOPEN(PI_DIRECTORY, PI_FILE_NAME, 'A');

UTL_FILE.NEW_LINE(V_File_handle);
UTL_FILE.PUT_LINE(V_File_handle , '---- User log -----');
UTL_FILE.NEW_LINE(V_File_handle);
UTL_FILE.PUT_LINE(V_File_handle , 'on '||

TO_CHAR(SYSDATE, 'MM/DD/YY HH24:MI'));
UTL_FILE.PUT_LINE(V_File_handle ,

'Number of users logged on: '|| V_user_count);
UTL_FILE.PUT_LINE(V_File_handle , '---- End log -----');
UTL_FILE.NEW_LINE(V_File_handle);
UTL_FILE.FCLOSE(V_File_handle);

EXCEPTION
WHEN UTL_FILE.INVALID_FILENAME THEN

DBMS_OUTPUT.PUT_LINE('File is invalid');
WHEN UTL_FILE.WRITE_ERROR THEN

DBMS_OUTPUT.PUT_LINE('Oracle is not able to write to file');
END;

The LOG_USER_COUNT procedure can be executed to log the number of users into the file
c:\working\user.log.

FOR EXAMPLE

SQL> exec LOG_USER_COUNT('C:\working\', 'USER.LOG');

PL/SQL procedure successfully completed.

USER.LOG contents:
---- User log -----

on 07/05/03 13:09
Number of users logged on: 1
---- End log -----

L A B 24.1
562

Making Use of Oracle Supplied Packages to Profile PL/SQL, Access Files, and Schedule Jobs

▼ L A B 2 4 . 1 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

24.1.1 Access Files with UTL_FILE

Complete the following exercises:

A) Create a companion procedure to the sample procedure LOG_USER_COUNT that you just made.
Name your new procedure READ_LOG. This procedure will read a text file and display each line
using DBMS_OUTPUT.PUT_LINE.

ANSWER: The following PL/SQL creates a procedure to read a file and display the contents. Note
that the exception WHEN NO_DATA_FOUND is raised when the last line of the file has been read
and there are no more lines to read.

CREATE OR REPLACE PROCEDURE READ_FILE
(PI_DIRECTORY IN VARCHAR2,
PI_FILE_NAME IN VARCHAR2)

AS
V_File_handle UTL_FILE.FILE_TYPE;
V_FILE_Line VARCHAR2(1024);

BEGIN
V_File_handle :=

UTL_FILE.FOPEN(PI_DIRECTORY, PI_FILE_NAME, 'R');
LOOP

UTL_FILE.GET_LINE(V_File_handle , v_file_line);
DBMS_OUTPUT.PUT_LINE(v_file_line);

END LOOP;
EXCEPTION

WHEN NO_DATA_FOUND
THEN UTL_FILE.FCLOSE(V_File_handle);

END;

B) Run the procedure LOG_USER_COUNT, and then run the procedure READ_LOG for the same file.

ANSWER: Before the procedures are executed, it is important to submit the SQL*Plus command
SET SERVEROUTPUT ON.

SQL> EXEC LOG_USER_COUNT('C:\working\', 'User.Log');
SQL> EXEC READ_FILE('C:\working\', 'User.Log');

24.1.2 Schedule Jobs with DBMS_JOB

The Oracle-supplied package DBMS_JOB allows you to schedule the execution of a PL/SQL procedure. It
was introduced in PL/SQL version 2.2. DBMS_JOB is an Oracle PL/SQL package provided to users. A job is
submitted to a job queue and runs at the specified time. The user can also input a parameter that speci-
fies how often the job should run. A job can consist of any PL/SQL code. As shown in Table 24.3, the
DBMS_JOB package has procedures for submitting jobs for scheduled execution, executing a job that
has been submitted outside of its schedule, changing the execution parameters of a previously submit-
ted job, suspending a job, and removing jobs from the schedule. The primary reason you would want to
use this feature would be to run a batch program during off times when there are fewer users, or to
maintain a log.

L A B 24.1Lab 24.1 Exercises

563

TABLE 24.3
The Main Procedures in the DBMS_JOB Package

PROCEDURE NAME DESCRIPTION

SUBMIT Enters a PL/SQL procedure as a job into the job queue.

REMOVE Removes a previously submitted PL/SQL procedure from the job queue.

CHANGE Changes the parameters that have been set for a previously submitted job
(description, next run time, or interval).

BROKEN Disables a job in the job queue.

INTERVAL Alters the interval set for an existing job in the job queue.

NEXT_DATE Changes the next time an existing job is set to run.

RUN Forces the run of a job in the job queue regardless of the job’s schedule.

The job queue is governed by the SNP process that runs in the background. This process is used to
implement data snapshots as well as job queues. If the process fails, the database attempts to restart the
process. The database initialization parameter (set in the INIT.ORA file and viewable in the DBA view
V$SYSTEM_PARAMETER) JOB_QUEUE_PROCESSES determines how many processes can start. It must be
set to a number greater than 0 (note that the default is 0).

WATCH OUT!

SNP background processes do not execute jobs if the system has been started in restricted mode. It
is expected behavior for jobs not to be executed while the database is in restricted mode. However,
you can use the ALTER SYSTEM command to turn this behavior on and off as follows:

ALTER SYSTEM ENABLE RESTRICTED SESSION;

ALTER SYSTEM DISABLE RESTRICTED SESSION;

24.1.3 Submit Jobs

An important first step when submitting jobs to the queue is to be sure that your PL/SQL procedure is
valid and executes the way you expect it to run. Before submitting a PL/SQL procedure, make sure you
have thoroughly tested the functionality. Job submission assumes that your job is valid. The SUBMIT pro-
cedure takes four in parameters and returns one out parameter, as shown in Table 24.4. The out parameter
is the job number of the job you have submitted. This job number is also visible in the DBA_JOBS view.

TABLE 24.4
Parameters for the DBMS_JOB.SUBMIT Procedure

PARAMETER NAME MODE DESCRIPTION

JOB OUT The unique number that identifies the job in the job queue.

WHAT IN The PL/SQL procedure and parameters that execute as part of
this job.

NEXT_DATE IN The next execution date for the job.

INTERVAL IN The calculation to compute the next date of the job. This can
make use of SYSDATE and any date function.

NO_PARSE IN A Boolean indicator as to whether to run the job at job submis-
sion. The default is FALSE.

L A B 24.1
564

Lab 24.1 Exercises

The following example submits the LOG_USER_COUNT procedure (created with ch24_1a.sql) to run
every six hours:

FOR EXAMPLE

DECLARE
V_JOB_NO NUMBER;

BEGIN
DBMS_JOB.SUBMIT(JOB => v_job_no,

WHAT => 'LOG_USER_COUNT
(''C:\WORKING\'', ''USER.LOG'');',

NEXT_DATE => SYSDATE,
INTERVAL => 'SYSDATE + 1/4 ');

Commit;
DBMS_OUTPUT.PUT_LINE(v_job_no);
END;

To see the job in the queue, query the DBA_JOBS view. For STUDENT to be able to perform this query,
the DBA needs to perform the following grant:

GRANT SELECT on DBA_JOBS to STUDENT;

FOR EXAMPLE

SELECT JOB, NEXT_DATE, NEXT_SEC, BROKEN, WHAT
FROM DBA_JOBS;

JOB NEXT_DATE NEXT_SEC B WHAT
---- --------- -------- - --

1 05-JUL-03 16:56:30 N LOG_USER_COUNT('D:\WORKING', 'USER.LOG');

To force job number 1 to run or change, use the RUN or CHANGE procedure. To remove job number 1
from the job queue, use the REMOVE procedure:

FOR EXAMPLE

-- execute job number 1
exec dbms_job.run(1);

-- remove job number 1 from the job queue
exec dbms_job.remove(1);

-- change job #1 to run immediately and then every hour of
-- the day
exec DBMS_JOB.CHANGE(1, null, SYSDATE, 'SYSDATE + 1/24 ');

After the job fails, it is marked as broken in the job queue. Broken jobs do not run. You can also force a
job to be flagged as broken. You may want to do this if you have entered all the parameters correctly but

L A B 24.1Lab 24.1 Exercises

565

you don’t want the job to run its normal cycle while you work on altering one of its dependencies. You
can then comment the job again by forcing the broken flag off:

FOR EXAMPLE

-- set job 1 to be broken
exec dbms_job.BROKEN(1, TRUE);

-- set job 1 not to be broken
exec dbms_job.BROKEN(1, FALSE);

When jobs are running, you see their activity in the view DBA_JOBS_RUNNING. After the run has
completed, it no longer is visible in this view.

Complete the following exercises:

A) Create a procedure DELETE_ENROLL that deletes a student’s enrollment if there are no grades in
the GRADE table for that student and the start date of the section is already one month past.

ANSWER:

CREATE or REPLACE procedure DELETE_ENROLL
AS
CURSOR C_NO_GRADES is

SELECT st.student_id, se.section_id
FROM student st,

enrollment e,
section se

WHERE st.student_id = e.student_id
AND e.section_id = se.section_id
AND se.start_date_time < ADD_MONTHS(SYSDATE, -1)
AND NOT EXISTS (SELECT g.student_id, g.section_id

FROM grade g
WHERE g.student_id = st.student_id
AND g.section_id = se.section_id);

BEGIN
FOR R in C_NO_GRADES LOOP

DELETE enrollment
WHERE section_id = r.section_id
AND student_id = r.student_id;

END LOOP;
COMMIT;

EXCEPTION
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM);
END;

L A B 24.1
566

Lab 24.1 Exercises

B) Submit the procedure DELETE_ENROLL to the job queue to execute once a month.

ANSWER:

SQL> VARIABLE V_JOB NUMBER
SQL> EXEC DBMS_JOB.SUBMIT(:v_job, 'DELETE_ENROLL;',SYSDATE,
'ADD_MONTHS(SYSDATE, 1)');

PL/SQL procedure successfully completed
SQL> commit;

Commit complete.

SQL> print v_job

V_JOB

2

L A B 24.1Lab 24.1 Exercises

567

L A B 2 4 . 2

Making Use of Oracle-Supplied
Packages to Generate an Explain
Plan and Create HTML Pages

L A B O B J E C T I V E
After completing this lab, you will be able to

. Generate an explain plan with DBMS_XPLAN

EXPLAIN PLAN WITH DBMS_XPLAN

The DBMS_XPLAN package became available in Oracle version 9.2. This package helps display
the execution plan of a SQL statement that is displayed as the output of the explain plan
command. This package displays the output in an easier manner than was possible in prior
versions of Oracle. The SQL execution plan and runtime statistics are stored in V$SQL_PLAN.
V$SQL and PLAN_STATISTICS are displayed with the DBMS_XPLAN package. The SQL
command for creating an explain plan takes this information and populates the PLAN_TABLE.
You must know a great deal about query optimization to make use of an explain plan.

BY THE WAY

For details on SQL optimization and how to use the results in an explain plan, see Oracle SQL by
Example, Third Edition, by Alice Rischert (Prentice Hall PTR, 2004).

The DBMS_XPLAN depends on a table called the PLAN_TABLE. This table holds the results of
running an explain plan on a SELECT statement. The DDL to create the PLAN_TABLE is as
follows:

-- ch24_2a.sql
create table PLAN_TABLE (

statement_id varchar2(30),
plan_id number,
timestamp date,
remarks varchar2(4000),
operation varchar2(30),
options varchar2(255),
object_node varchar2(128),

L A B 24.2
568

object_owner varchar2(30),
object_name varchar2(30),
object_alias varchar2(65),
object_instance numeric,
object_type varchar2(30),
optimizer varchar2(255),
search_columns number,
id numeric,
parent_id numeric,
depth numeric,
position numeric,
cost numeric,
cardinality numeric,
bytes numeric,
other_tag varchar2(255),
partition_start varchar2(255),
partition_stop varchar2(255),
partition_id numeric,
other long,
distribution varchar2(30),
cpu_cost numeric,
io_cost numeric,
temp_space numeric,
access_predicates varchar2(4000),
filter_predicates varchar2(4000),
projection varchar2(4000),
time numeric,
qblock_name varchar2(30),
other_xml clob

);

BY THE WAY

The RDBMS/ADMIN/ subdirectory under your Oracle Home directory always contains the most up-
to-date DDL script to create the PLAN_TABLE. You can connect as the SYS DBA to create this table so
that it is available to all users. The following statements can be used to create the PLAN_TABLE
under the SYS schema and create a public schema and all users to make use of the PLAN_TABLE.

SQL> CONN sys/password AS SYSDBA
Connected
SQL> @$ORACLE_HOME/rdbms/admin/utlxplan.sql
SQL> GRANT ALL ON sys.plan_table TO public;

SQL> CREATE PUBLIC SYNONYM plan_table FOR sys.plan_table;

By default, if several plans in the plan table match the statement_id parameter passed to the
display table function (the default value is NULL), only the plan corresponding to the last
EXPLAIN PLAN command is displayed. Hence, there is no need to purge the plan table after
each EXPLAIN PLAN. However, you should purge the plan table regularly (for example, by
using the TRUNCATE TABLE command) to ensure good performance in the execution of the
DISPLAY table function.

L A B 24.2Making Use of Oracle-Supplied Packages to Generate an Explain Plan and Create HTML Pages

569

Prior versions of Oracle had a number of options. For example, you could use the SQL*Plus
command SET AUTOTRACE TRACE EXPLAIN to generate an immediate explain plan.

FOR EXAMPLE

SQL> SET AUTOTRACE TRACE EXPLAIN

1 SELECT s.course_no,
2 c.description,
3 i.first_name,
4 i.last_name,
5 s.section_no,
6 TO_CHAR(s.start_date_time, 'Mon-DD-YYYY HH:MIAM'),
7 s.location
8 FROM section s,
9 course c,
10 instructor i
11 WHERE s.course_no = c.course_no
12* AND s.instructor_id= i.instructor_id

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=9 Card=78
Bytes=4368)

1 0 HASH JOIN (Cost=9 Card=78 Bytes=4368)
2 1 HASH JOIN (Cost=6 Card=78 Bytes=2574)
3 2 TABLE ACCESS (FULL) OF 'INSTRUCTOR' (Cost=3 Card=10

Bytes=140)
4 2 TABLE ACCESS (FULL) OF 'SECTION' (Cost=3 Card=78

Bytes=1482)
5 1 TABLE ACCESS (FULL) OF 'COURSE' (Cost=3 Card=30

Bytes=690)

You can also generate an explain plan that would be stored in the PLAN_TABLE and then query
the results of an explain plan:

FOR EXAMPLE

SQL> explain plan for
2 SELECT s.course_no,
3 c.description,
4 i.first_name,
5 i.last_name,
6 s.section_no,
7 TO_CHAR(s.start_date_time,'Mon-DD-YYYY HH:MIAM'),
8 s.location
9 FROM section s,
10 course c,
11 instructor i

L A B 24.2
570

Making Use of Oracle-Supplied Packages to Generate an Explain Plan and Create HTML Pages

12 WHERE s.course_no = c.course_no
13 AND s.instructor_id= i.instructor_id;

Explained.

-- ch24_2b.sql
select rtrim (lpad (' ', 2*level) ||

rtrim (operation) || ' ' ||
rtrim (options) || ' ' ||
object_name || ' ' ||
partition_start || ' ' ||
partition_stop || ' ' ||
to_char (partition_id)

) the_query_plan
from plan_table
connect by prior id = parent_id
start with id = 0;

THE_QUERY_PLAN

SELECT STATEMENT
HASH JOIN
HASH JOIN
TABLE ACCESS BY INDEX ROWID SECTION
INDEX FULL SCAN SECT_INST_FK_I

SORT JOIN
TABLE ACCESS FULL INSTRUCTOR

TABLE ACCESS FULL COURSE

To make use of the DBMS_XPLAN procedure, use the SELECT * FROM TABLE(DBMS_XPLAN.
DISPLAY) command to generate the explain plan:

FOR EXAMPLE

SQL> explain plan for
2 SELECT s.course_no,
3 c.description,
4 i.first_name,
5 i.last_name,
6 s.section_no,
7 TO_CHAR(s.start_date_time,'Mon-DD-YYYY HH:MIAM'),
8 s.location
9 FROM section s,
10 course c,
11 instructor i
12 WHERE s.course_no = c.course_no
13 AND s.instructor_id= i.instructor_id;

L A B 24.2Making Use of Oracle-Supplied Packages to Generate an Explain Plan and Create HTML Pages

571

▼

Explained.

SQL> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

PLAN_TABLE_OUTPUT

--

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 78 | 4368 | 9 (34)| *00:00:01 |

|* 1 | HASH JOIN | | 78 | 4368 | 9 (34)| 00:00:01 |

|* 2 | HASH JOIN | | 78 | 2574 | 6 (34)| 00:00:01 |

| 3 | TABLE ACCESS FULL| INSTRUCTOR | 10 | 140 | 3 (34)| 00:00:01 |

| 4 | TABLE ACCESS FULL| SECTION | 78 | 1482 | 3 (34)| 00:00:01 |

| 5 | TABLE ACCESS FULL | COURSE | 30 | 690 | 3 (34)| 00:00:01 |

--

Predicate Information (identified by operation id):

1 - access("S"."COURSE_NO"="C"."COURSE_NO")

2 - access("S"."INSTRUCTOR_ID"="I"."INSTRUCTOR_ID")

17 rows selected.

L A B 2 4 . 2 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

24.2.1 Generate an Explain Plan with DBMS_XPLAN

Complete the following tasks:

A) Find out if your schema has a table named PLAN_TABLE that matches the DDL in the plan table
script ch24_2a.sql. If it does not, use the ch24_2a.sq script to create the PLAN_TABLE.

ANSWER: Describe PLAN_TABLE. If this does not match the values in ch24_2a.sql, run the script.

B) Compute statistics on all tables in your schema using a single SQL statement to generate the
command.

ANSWER:

SQL> Spool compute.sql
SQL> set pagesize 500
SQL> select 'Analyze table '||table_name||' compute statistics;'

from user_tables;

L A B 24.2
572

Lab 24.2 Exercises

SQL> Spool off
SQL> @compute.sql

C) The following SQL statement generates a list of the open sections in courses that the student with
an ID of 214 is not enrolled in. Many different SQL statements would produce the same result.
Because various inline views are required, it is important to examine the execution plan to deter-
mine which plan will produce the result with the least cost to the database. Run the SQL as
follows to generate a SQL plan:

-- ch24_3a.sql
EXPLAIN PLAN FOR
SELECT c.course_no course_no,

c.description description,
b.section_no section_no,
s.section_id section_id,
i.first_name first_name,
i.last_name last_name

FROM course c,
instructor i,
section s,
(SELECT

a.course_no course_no,
MIN(a.section_no) section_no

FROM (SELECT count(*) enrolled,
se.CAPACITY capacity,
se.course_no course_no,
se.section_no section_no,
e.section_id section_id

FROM section se,
enrollment e

WHERE se.section_id = e.section_id
AND e.student_id <> 214

GROUP BY
se.CAPACITY,
se.course_no,
e.section_id,
se.section_no

HAVING count(*) < se.CAPACITY) a
GROUP BY

a.course_no) b
WHERE c.course_no = b.course_no
AND b.course_no = s.course_no
AND s.section_no = b.section_no
AND s.instructor_id = i.instructor_id;

ANSWER: When executed properly, the SQL*Plus session just displays the word Explained. If
you have another error, the PLAN_TABLE most likely is incorrect.

L A B 24.2Lab 24.2 Exercises

573

D) Use the DBMS_XPLAN package to see the execution plan of the SQL statement.

ANSWER:

PLAN_TABLE_OUTPUT

--

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 12 | 888 | 15 (40)| 00:00:01 |

|* 1 | HASH JOIN | | 12 | 888 | 15 (40)| 00:00:01 |

|* 2 | HASH JOIN | | 12 | 612 | 12 (42)| 00:00:01 |

|* 3 | HASH JOIN | | 78 | 1950 | 6 (34)| 00:00:01 |

| 4 | TABLE ACCESS FULL | INSTRUCTOR | 10 | 140 | 3 (34)| 00:00:01 |

| 5 | TABLE ACCESS FULL | SECTION | 78 | 858 | 3 (34)| 00:00:01 |

| 6 | VIEW | | 12 | 312 | 6 (100)| 00:00:01 |

| 7 | SORT GROUP BY | | 12 | 192 | 6 (50)| 00:00:01 |

| 8 | VIEW | | 12 | 192 | 6 (100)| 00:00:01 |

|* 9 | FILTER | | | | | |

| 10 | SORT GROUP BY | | 12 | 192 | 6 (50)| 00:00:01 |

|* 11 | HASH JOIN | | 225 | 3600 | 5 (40)| 00:00:01 |

| 12 | TABLE ACCESS FULL| SECTION | 78 | 780 | 3 (34)| 00:00:01 |

|* 13 | INDEX FULL SCAN | ENR_PK | 225 | 1350 | 2 (50)| 00:00:01 |

| 14 | TABLE ACCESS FULL | COURSE | 30 | 690 | 3 (34)| 00:00:01 |

--

Predicate Information (identified by operation id):

1 - access("C"."COURSE_NO"="B"."COURSE_NO")

2 - access("B"."COURSE_NO"="S"."COURSE_NO" AND

"S"."SECTION_NO"="B"."SECTION_NO")

3 - access("S"."INSTRUCTOR_ID"="I"."INSTRUCTOR_ID")

9 - filter("SE"."CAPACITY">COUNT(*))

11 - access("SE"."SECTION_ID"="E"."SECTION_ID")

13 - filter("E"."STUDENT_ID"<>214)

31 rows selected.

E) Generate an alternative SQL that produces the same results, and then examine the explain plan.

ANSWER:

1 EXPLAIN PLAN FOR

2 SELECT s.course_no, description, s.section_no,

s.section_id, i.first_name, i.last_name

3 FROM section s, course c, instructor i

4 WHERE c.course_no = s.course_no

5 AND s.instructor_id = i.instructor_id

6 AND section_id IN

7 (SELECT MIN(section_id)

8 FROM section s

9 WHERE section_id IN

L A B 24.2
574

Lab 24.2 Exercises

10 (SELECT section_id

11 from enrollment e

12 GROUP BY section_id

13 HAVING COUNT(*) <

14 (SELECT capacity

15 FROM section

16 WHERE e.section_id = section_id))

17 GROUP BY course_no)

18 AND s.course_no NOT IN

19 (SELECT s.course_no

20 FROM section s, enrollment e

21 WHERE s.section_id = e.section_id

22 AND student_id = 214)

23* ORDER BY s.course_no

Explained.

SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 61 | 15 (40)| 00:00:01 |

| 1 | SORT ORDER BY | | 1 | 61 | 12 (42)| 00:00:01 |

|* 2 | FILTER | | | | | |

| 3 | NESTED LOOPS | | 1 | 61 | 11 (37)| 00:00:01 |

| 4 | NESTED LOOPS | | 1 | 38 | 10 (40)| 00:00:01 |

|* 5 | HASH JOIN SEMI | | 1 | 24 | 9 (45)| 00:00:01 |

| 6 | TABLE ACCESS FULL | SECTION | 4 | 44 | 3 (34)| 00:00:01 |

| 7 | VIEW | VW_NSO_2 | 4 | 52 | 6 (100)| 00:00:01 |

| 8 | SORT GROUP BY | | 4 | 36 | 6 (50)| 00:00:01 |

|* 9 | HASH JOIN | | 4 | 36 | 5 (40)| 00:00:01 |

| 10 | VIEW | VW_NSO_1 | 4 | 12 | 2 (100)| 00:00:01 |

|* 11 | FILTER | | | | | |

| 12 | SORT GROUP BY | | 4 | 12 | 2 (50)| 00:00:01 |

| 13 | INDEX FULL SCAN | ENR_SECT_FK_I | 226 | 678 | 2 (50)| 00:00:01 |

| 14 | TABLE ACCESS BY INDEX ROWID| SECTION | 1 | 5 | 2 (50)| 00:00:01 |

|* 15 | INDEX UNIQUE SCAN | SECT_PK | 1 | | 1 (100)| 00:00:01 |

| 16 | TABLE ACCESS FULL | SECTION | 78 | 468 | 3 (34)| 00:00:01 |

| 17 | TABLE ACCESS BY INDEX ROWID | INSTRUCTOR | 10 | 140 | 2 (50)| 00:00:01 |

|* 18 | INDEX UNIQUE SCAN | INST_PK | 1 | | 1 (100)| 00:00:01 |

| 19 | TABLE ACCESS BY INDEX ROWID | COURSE | 30 | 690 | 2 (50)| 00:00:01 |

|* 20 | INDEX UNIQUE SCAN | CRSE_PK | 1 | | 1 (100)| 00:00:01 |

| 21 | NESTED LOOPS | | 1 | 12 | 3 (34)| 00:00:01 |

|* 22 | INDEX RANGE SCAN | ENR_PK | 1 | 6 | 2 (50)| 00:00:01 |

|* 23 | TABLE ACCESS BY INDEX ROWID | SECTION | 1 | 6 | 2 (50)| 00:00:01 |

|* 24 | INDEX UNIQUE SCAN | SECT_PK | 1 | | 1 (100)| 00:00:01 |

L A B 24.2Lab 24.2 Exercises

575

Predicate Information (identified by operation id):

2 - filter(NOT EXISTS (SELECT /*+ */ 0 FROM "ENROLLMENT" "E","SECTION" "S" WHERE

"S"."SECTION_ID"="E"."SECTION_ID" AND LNNVL("S"."COURSE_NO"<>:B1) AND "STUDENT_ID"=214))

5 - access("SECTION_ID"="$nso_col_1")

9 - access("SECTION_ID"="$nso_col_1")

11 - filter(COUNT(*)< (SELECT "CAPACITY" FROM "SECTION" "SECTION" WHERE "SECTION_ID"=:B1))

15 - access("SECTION_ID"=:B1)

18 - access("S"."INSTRUCTOR_ID"="I"."INSTRUCTOR_ID")

20 - access("C"."COURSE_NO"="S"."COURSE_NO")

22 - access("STUDENT_ID"=214)

23 - filter(LNNVL("S"."COURSE_NO"<>:B1))

24 - access("S"."SECTION_ID"="E"."SECTION_ID")

45 rows selected.

- another alternative SQL would be

1 EXPLAIN PLAN FOR

2 SELECT * FROM

3 (

4 SELECT s.course_no course,

5 description,

6 e.section_id sec_id,

7 section_no,

8 i.first_name || ' ' || i.last_name i_full_name,

9 Rank() over (PARTITION BY s.course_no

10 order by count(e.student_id) ASC,

11 min(section_no) ASC) as RANK_WITHIN_SEC

12 FROM section s, enrollment e, course c, instructor i

13 WHERE s.section_id = e.section_id and

14 s.instructor_id = i.instructor_id and

15 c.course_no = s.course_no and

16 s.course_no not in (SELECT ss.course_no

17 FROM section ss, enrollment ee

18 WHERE ss.section_id = ee.section_id and

19 ee.student_id = 214)

20 GROUP BY s.course_no,

21 description,

22 e.section_id,

23 section_no,

24 i.first_name || ' ' || i.last_name

25)

26* WHERE RANK_WITHIN_SEC = 1

Explained.

SQL> select * from table(dbms_xplan.display);

L A B 24.2
576

Lab 24.2 Exercises

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 14 | 1484 | 32 (38)| 00:00:01 |

|* 1 | VIEW | | 14 | 1484 | 32 (100)| 00:00:01 |

|* 2 | WINDOW SORT PUSHED RANK | | 14 | 714 | 11 (46)| 00:00:01 |

| 3 | SORT GROUP BY | | 14 | 714 | 11 (46)| 00:00:01 |

|* 4 | FILTER | | | | | |

|* 5 | HASH JOIN | | 14 | 714 | 9 (34)| 00:00:01 |

| 6 | NESTED LOOPS | | 14 | 392 | 6 (34)| 00:00:01 |

|* 7 | HASH JOIN | | 4 | 100 | 6 (34)| 00:00:01 |

| 8 | TABLE ACCESS FULL | SECTION | 4 | 44 | 3 (34)| 00:00:01 |

| 9 | TABLE ACCESS FULL | INSTRUCTOR | 10 | 140 | 3 (34)| 00:00:01 |

|* 10 | INDEX RANGE SCAN | ENR_SECT_FK_I | 226 | 678 | 1 (100)| 00:00:01 |

| 11 | TABLE ACCESS FULL | COURSE | 30 | 690 | 3 (34)| 00:00:01 |

| 12 | NESTED LOOPS | | 1 | 12 | 3 (34)| 00:00:01 |

|* 13 | INDEX RANGE SCAN | ENR_PK | 1 | 6 | 2 (50)| 00:00:01 |

|* 14 | TABLE ACCESS BY INDEX ROWID| SECTION | 1 | 6 | 2 (50)| 00:00:01 |

|* 15 | INDEX UNIQUE SCAN | SECT_PK | 1 | | 1 (100)| 00:00:01 |

--

Predicate Information (identified by operation id):

1 - filter("RANK_WITHIN_SEC"=1)

2 - filter(RANK() OVER (PARTITION BY "S"."COURSE_NO" ORDER BY

COUNT(*),MIN("SECTION_NO"))<=1)

4 - filter(NOT EXISTS (SELECT /*+ */ 0 FROM "ENROLLMENT" "EE","SECTION" "SS" WHERE

"SS"."SECTION_ID"="EE"."SECTION_ID" AND LNNVL("SS"."COURSE_NO"<>:B1) AND

"EE"."STUDENT_ID"=214))

5 - access("C"."COURSE_NO"="S"."COURSE_NO")

7 - access("S"."INSTRUCTOR_ID"="I"."INSTRUCTOR_ID")

10 - access("S"."SECTION_ID"="E"."SECTION_ID")

13 - access("EE"."STUDENT_ID"=214)

14 - filter(LNNVL("SS"."COURSE_NO"<>:B1))

15 - access("SS"."SECTION_ID"="EE"."SECTION_ID")

37 rows selected.

In some cases, the explain plan is not what you expect to see. This may be because the SQL was
adjusted by having a QUERY RE-WRITE setting turned on. The resulting explain plan is for the SQL
that the database rewrote, which is why table alias names may be unfamiliar. Also note that if you
have unnamed views inside the SQL, they are given system names, and that is what is referred to
in the explain plan.

L A B 24.2Lab 24.2 Exercises

577

L A B 2 4 . 3

Creating Web Pages with the
Oracle Web Toolkit

L A B O B J E C T I V E
After completing this lab, you will be able to

. Create an HTML page with the Oracle Web Toolkit

Oracle Application Server 11g integrates many technologies required to build and deliver an
e-business Web site. Oracle Application Server 11g generates dynamic Web content from
PL/SQL procedures and delivers it to a client’s Web browser. Oracle Application Server 11g
provides the middleware component of the Oracle Internet Platform and delivers and manages
applications and data requested by client browsers. The two other components of the Oracle
Internet Platform are the Oracle Database 11g and the Oracle Internet Developer Suite.

In June 2000, Oracle released a revamped version of its Application Server called Oracle 9i
Application Server. The earlier version had fewer features and was called the Oracle (Web)
Application Server (OAS). The OAS was first released in 1995. The last production version of
the OAS was released as version 4.0.8.2 in 1999. Oracle stopped supporting the OAS in October
2002 because the new Oracle 9i Application Server had become the standard. The basic func-
tionality of the OAS and the current version of the Oracle Application Server 10g are similar,
but the back-end architecture and configuration are considerably different. Oracle Application
Server 10g can support a much larger array of technologies and languages. You can generate
Web pages using the PL/SQL Web Toolkit with the OAS, but you cannot use PL/SQL Server
Pages (PSP).

BY THE WAY

At the time this book was published, Oracle had not yet released Oracle Application Server 11g.
Refer to the documentation on Oracle.com when the new version is released for any additional
features new to Oracle Application Server 11g.

In Oracle’s multitier architecture, Oracle Application Server 10g is the middleware. It incorpo-
rates both a Web server and an application server. Oracle Application Server 10g resides
between the client and the back-end database, moving application logic from the client. It is the
central, middle tier in shared enterprise applications, providing such services as security,
message brokering, database connectivity, transaction management, and process isolation.

L A B 24.3
578

Oracle Application Server 10g enables users to deploy applications on the Web. Web browsers
are “thin” clients that do not need any additional software installation because they are access-
ing the middle tier through HTTP. The only thing the user needs is a URL to launch the appli-
cation. A server tier houses the original database so that transaction processing can be optimized
on the database. This multitiered model offers great savings in administration and maintenance
costs when deploying applications.

The HTTP entry point to Oracle Application Server 10g is the Oracle HTTP Server powered by
the Apache Web server. Oracle Application Server 10g functions as both a simple Web server
and an application server. The function of a Web server is to translate a URL into a filename on
the server and to send that file back to the client’s Web browser over the Internet or an intranet.
The function of an application server is to run a program or component and to generate dynamic
content. This dynamic content results in an HTML file being sent back to the client’s browser.
The output is the result of running a program or script.

The Oracle HTTP Server functions as an HTTP listener and request dispatcher. Based on the
Apache Server, the Oracle HTTP Server is mostly C code that runs on top of the operating
system. The Oracle HTTP Server receives HTTP requests from clients and can serve static files
from the file system. It routes requests that are not static to other services through modules
(such as mod_plsql). These modules, often simply called mods, are plug-ins to the HTTP
Server. A plug-in is a program that extends the functionality of another program, and could be
considered a subprogram. The mods are plug-ins that offer native services (such as mod_ssl,
which handles a Secure Socket Layer). Or they serve as a dispatcher for requests requiring exter-
nal processes (such as mod_jserv, which dispatches requests to the Apache JServ). In addi-
tion to the compiled Apache mods provided with Oracle HTTP Server, Oracle has enhanced
several of the standard mods and has added Oracle-specific mods such as mod_plsql.

The server determines which module to hand the request to based on the URL. The first section
of the URL is the name of the server, and the next section is the name of the module. For
example, a request for mod_plsql has a URL that begins with http://ServerName/pls/... . The
pls portion indicates to the Oracle HTTP Server that this is a request for the module
mod_plsql.

The Oracle Application Server 10g Communication Services are responsible for handling requests
from the different clients. The Oracle HTTP Server may directly process a portion of the client
requests. Other requests may be routed to other components of the Oracle Application Server 10g
for processing. Oracle Application Server 10g can be used to support wireless technologies as
well, although this book focuses on the HTTP services of Oracle Application Server 10g.

Oracle Application Server 10g provides several features and capabilities that are commonly
supplied by separate products. An example of a recent impressive addition to the array of
components is Oracle Application Server 10g Unified Messaging. It gives you access to e-mail,
voice mail, and faxes from any device, including computers, telephones, personal digital assis-
tants, and pagers. Oracle Application Server 10g is under constant development, so you will see
many services being added and modified in the coming years.

L A B 24.3Creating Web Pages with the Oracle Web Toolkit

579

THE CLIENT TIER

Clients access PL/SQL Web Applications through a browser using the Web protocol HTTP.
Oracle Application Server 10g application components generate HTML, which is returned to the
browser and displayed as Web pages. Because Web browsers behave in a similar manner across
platforms, and they all read HTML and JavaScript, it does not matter what type of operating
system a client’s Web browser is operating on.

THE DATABASE TIER

PL/SQL Web Applications are developed as PL/SQL packages and procedures and are stored in
an Oracle database. You can access database tables through these packages and present the data
as dynamic information in your generated Web pages. First introduced with the Oracle
Application Server available with Oracle 8i, Oracle Application Server 10g provides a collection
of PL/SQL packages called the PL/SQL Web Toolkit. These packages are also stored in the data-
base and are used in Web-based application packages to generate Web page components and
other related functionality.

THE APPLICATION SERVER TIER: THE PL/SQL GATEWAY

The PL/SQL Gateway enables you to call PL/SQL programs from a Web browser. The PL/SQL
programs run on the server and return HTML to the browser. Application Server 10g acts as the
intermediary between the database and the browser.

ORACLE HTTP SERVER MODULES (MODS)

The compiled Apache modules (called mods in this chapter) provided with Oracle HTTP Server
support current Internet application technologies to deliver dynamic Web pages. In addition,
Oracle has enhanced several of the standard Apache mods and has added Oracle-specific mods.
For more information, refer to http://www.apache.org/docs/mod/index.html. The mod that
makes use of the Oracle Web Toolkit is mod_plsql. This module is an HTTP Server plug-in
that dispatches requests for PL/SQL and Java stored procedures to an Oracle database.
mod_plsql is the most efficient SQL interface for generating HTML. The HTTP Server identi-
fies the request as belonging to this module. Based on the URL from the client, HTTP requests
that are identified are handed from the HTTP Server to mod_plsql. These requests are then
mapped to database stored procedures. The module maintains database connections specified
by database access descriptors (DADs).

BY THE WAY

For information on how to configure Oracle Application Server, instruction in HTML and JavaScript,
and detailed instructions on how to use the Oracle Web Toolkit (with hundreds of pages of exam-
ples), see Oracle Web Application Programming for PL/SQL Developers by Susan Boardman, Melanie
Caffrey, Solomon Morse, and Benjamin Rosenzweig (Prentice Hall PTR, 2002).

L A B 24.3
580

Creating Web Pages with the Oracle Web Toolkit

http://www.apache.org/docs/mod/index.html

GENERATE HTML FROM THE WEB TOOLKIT WITHOUT ORACLE APPLICATION
SERVER 10G

The Oracle Web Toolkit Packages are intended to generate HTML pages over the Internet or an
intranet with Oracle Application Server 10g acting as the Web server. In testing mode you can
generate the HTML as text files using SQL*Plus. For the purposes of this book, the exercises are
done in testing mode. This way, you do not have to address all the setup issues involved with
Oracle Application Server 10g, and you can still learn how to make use of this Oracle-supplied
package.

WEB TOOLKIT PACKAGES

Table 24.5 briefly describes all the Web Toolkit packages.

TABLE 24.5
Web Toolkit Packages

PACKAGE NAME DESCRIPTION

HTP Generates HTML through procedures.

HTF Generates HTML through functions.

OWA_CACHE Caches Web pages for improved performance using the PL/SQL
Gateway cache.

OWA_COOKIE Sends and retrieves cookies.

OWA_IMAGE Creates an image map.

OWA_OPT_LOCK Handles optimistic locking of data.

OWA_PATTERN Searches for and replaces values in text strings; pattern matching.

OWA_SEC Security subprograms.

OWA_TEXT Other types of string manipulation.

OWA_UTIL Retrieves environment variables. Redirects users to another site. Other
utilities such as printing query results directly in a table.

OVERVIEW OF HTP PROCEDURES

The HTP package is the principal package used to generate HTML. The P or PRN procedure
generates HTML in much the same manner as the DBMS_OUTPUT.PUT_LINE procedure takes
its IN parameter and generates a display in SQL*Plus. All text in the IN parameter of HTP.P
transforms into HTML. Many other procedures generate more complex HTML structures.

Table 24.6 lists some of the commonly used HTP procedures and output. For a comprehensive
list of HTP procedures, check Oracle’s online documentation.

L A B 24.3Creating Web Pages with the Oracle Web Toolkit

581

TABLE 24.6
HTP Procedures

HTP PROCEDURE OUTPUT

htp.p('<P> text goes here </P>'); <P> text goes here </P>

htp.htmlOpen; <HTML>

htp.headOpen; <HEAD>

htp.title('My Title'); <TITLE> My Title<TITLE>

htp.headClose; </HEAD>

htp.bodyOpen; <BODY>

htp.header(1, 'My Heading'); <H1> My Heading</H1>

htp.anchor('url', 'Anchor Name', <A HREF="url" NAME="Anchor
'Click Here'); Name"> Click Here

htp.line; <HR>

htp.bold;

htp.paragraph; <P>

htp.tableOpen; <TABLE>

htp.tableCaption; <CAPTION></CAPTION>

htp.tableRowOpen; <TR>

htp.tableHeader('Emp ID'); <TH>Emp ID</TH>

htp.tableData('data'); <TD>data</TD>

htp.tableRowClose; </TR>

htp.tableClose; </TABLE>

htp.bodyClose; </BODY>

htp.htmlClose; </HTML>

htp.script('alert("This is an <SCRIPT LANGUAGE="JavaScript">
alert!");','JavaScript'); alert("This is an alert!");

</SCRIPT>

You can generate a simple Web page by using the procedure in the HTP package:

FOR EXAMPLE

CREATE OR REPLACE PROCEDURE my_first_page
AS

BEGIN
htp.htmlOpen;
htp.headOpen;
htp.title('My First Page');

L A B 24.3
582

Creating Web Pages with the Oracle Web Toolkit

htp.headClose;
htp.bodyOpen;
htp.p('Hello world.
');
htp.bodyClose;
htp.htmlClose;

EXCEPTION
WHEN OTHERS THEN
htp.p('An error occurred on this page.

Please try again later.');
END;

This code generates the following HTML:

<HTML>
<HEAD>
<TITLE>My First Page</TITLE>
</HEAD>
<BODY>
Hello world.

</BODY>
</HTML>

In testing, the procedure can be executed from the development tool provided with Oracle 11g,
called Oracle SQL Developer. This is installed with your Oracle Server. You can find it on the Start
menu under Oracle Home\Application Development\Oracle SQL Developer. When you start the
application, you must connect to the Oracle Database much as you do with SQL*Plus. To work
here, you must run your SQL from a SQL file. First you create a new SQL file and associate it
with a database connection to your student database. Oracle SQL Developer has three panes, as
shown in Figure 24.1. The left side is an object explorer, the top panel on the right is for the code
you will execute, and the bottom panel is for seeing the results. To see the results for a PL/SQL
Web toolkit procedure, look at the OWA Output tab. Click the comment call out button to
display the OWA output. Each time you run new code, you can click the eraser icon to clear it.
You can also save the output and open it from Internet Explorer to see how your Web page will
appear. The application is slightly different from SQL*Plus. To execute a procedure, you must
enclose it in an anonymous block. Figure 24.1 shows that the procedure my_first_page was
executed from the green triangle; the result appears in the OWA Output tab.

Some procedures such as HTP.HEADER take more than one parameter to generate varieties of
similar HTML codes (multiple levels of headers). Other procedures such as HTP.TABLEDATA
enclose the IN parameter in all the HTML codes required for a table row in HTML. The next
example shows the HTML page that needs to be generated from the database (a list of instruc-
tor names). The example after that shows the PL/SQL code that is used to generate the Web
page.

L A B 24.3Creating Web Pages with the Oracle Web Toolkit

583

L A B 24.3
584

Creating Web Pages with the Oracle Web Toolkit

FIGURE 24.1
Oracle SQL Developer, with OWA output

FOR EXAMPLE

<HTML>
<HEAD>
<TITLE>Instructor List</TITLE>
</HEAD>
<BODY>
<H1>List of Instructors</H1>
The time is 11:36
<TABLE BORDER=1
BORDERCOLOR="teal" CELLPADDING=5>
<TR>
<TH>First Name</TH>
<TH>Last Name</TH>
</TR>
<TR>
<TD>Rick</TD>
<TD>Chow</TD>

</TR>
<TR>
<TD>Marilyn</TD>
<TD>Frantzen</TD>
</TR>
<TR>
<TD>Fernand</TD>
<TD>Hanks</TD>
</TR>
<TR>
<TD>Charles</TD>
<TD>Lowry</TD>
</TR>
<TR>
<TD>Anita</TD>
<TD>Morris</TD>
</TR>
<TR>
<TD>Gary</TD>
<TD>Pertez</TD>
</TR>
<TR>
<TD>Nina</TD>
<TD>Schorin</TD>
</TR>
<TR>
<TD>Todd</TD>
<TD>Smythe</TD>
</TR>
<TR>
<TD>Irene</TD>
<TD>Willig</TD>
</TR>
<TR>
<TD>Tom</TD>
<TD>Wojick</TD>
</TR>
</TABLE>
</BODY>
</HTML>

FOR EXAMPLE

CREATE OR REPLACE PROCEDURE instructor_list IS
v_string VARCHAR2(100);
cursor c_instruct is
SELECT first_name, last_name
FROM instructor

L A B 24.3Creating Web Pages with the Oracle Web Toolkit

585

FOR EXAMPLE (continued)

ORDER by 2;
BEGIN

htp.htmlOpen;
htp.headOpen;
htp.title('Instructor List');
htp.headClose;
HTP.bodyOpen;
htp.header(1,'List of Instructors');
HTP.P('The time is '||to_char(sysdate,'HH:MI'));
-- Open Table.
htp.tableOpen('BORDER=1 BORDERCOLOR="teal" CELLPADDING=5');
htp.tableRowOpen;
htp.tableHeader('First Name');
htp.tableHeader('Last Name');
htp.tableRowClose;
FOR rec in c_instruct LOOP
htp.tableRowOpen;

htp.tableData(rec.first_name);
htp.tableData(rec.last_name);

htp.tableRowClose;
END LOOP;
htp.tableClose;
htp.bodyClose;
htp.htmlClose;

EXCEPTION
WHEN OTHERS THEN
HTP.P('An error occurred: '||SQLERRM||'. Please try again

later.');
END;

HTP VERSUS HTF

Every HTP procedure that generates HTML tags has a corresponding HTF function with iden-
tical parameters. The function versions do not directly generate output in your Web page.
Instead, they pass their output as return values to the statements that invoked them. Use these
functions when you need to nest calls. To learn more about HTF functions, look up the corre-
sponding HTP procedures in the Oracle software documentation. They respond in similar ways.

FOR EXAMPLE

htp.tableData (htf.formOpen('pr_update_class')||
htf.formSubmit()||htf.formClose);

This example generates the following:

<TD><FORM ACTION="pr_update_class" METHOD="POST">
<INPUT TYPE="submit" VALUE="Submit"></FORM></TD>

L A B 24.3
586

Creating Web Pages with the Oracle Web Toolkit

WEB TOOLKIT FRAMESET PROCEDURES

Oracle provides procedures specifically for generating framesets in the HTP package.

Table 24.7 lists some of the commonly used frame-related procedures and their output. For a
comprehensive list of HTP procedures, check Oracle’s online documentation.

TABLE 24.7
Additional HTP Procedures for Frames and Framesets

HTP PROCEDURE HTML OUTPUT

htp.frame('instructors_left_nav', <FRAME SRC="instructors_
'instructors_left'); left_nav "NAME="instructors_left">

htp.frame('instructors_left_nav', <FRAME SRC="instructors_
'instructors_left', '0', '0', left_nav"NAME="instructors_
'AUTO', 'Y'); left"MARGINWIDTH="0"MARGINHEIGHT=

"0"SCROLLING="AUTO"NORESIZE>

htp.framesetOpen(NULL, '125,*'); <FRAMESET COLS="125, *">

htp.framesetOpen('*,65%', NULL); <FRAMESET ROWS="*,65%">

htp.framesetOpen('*,65%'); <FRAMESET ROWS="*,65%">

htp.framesetClose; </FRAMESET>

htp.noframesOpen; <NOFRAMES>

htp.noframesClose; </NOFRAMES>

BY THE WAY

See Chapter 10,“Web Toolkit I: HTML and JavaScript with PL/SQL,” of the book Oracle Web Application
Programming for PL/SQL Developers. Here you will find frame-related Web Toolkit procedures and HTP
procedures that can be used to rewrite the htp.frame,instructors_frame.

WEB TOOLKIT FORM PROCEDURES

Oracle has supplied a number of procedures for creating form elements. You can use HTP.P with
HTML, as you just saw, or you can use the HTP procedures listed in Table 24.8. The resulting
HTML is the same, and the performance is unaffected by which one you choose.

L A B 24.3Creating Web Pages with the Oracle Web Toolkit

587

TABLE 24.8
Additional HTP Procedures for Forms and Form Elements

HTP PROCEDURE OUTPUT

htp.formOpen('show_zipcode'); <FORM ACTION="show_zipcode"
METHOD="POST">

htp.formOpen('show_zipcode', <FORM ACTION="show_zipcode"
'GET','main_window',null, METHOD="GET" TARGET="main_window"
'NAME="my_form"'); NAME="my_form">

htp.formText('p_name','20'); <INPUT TYPE="text" NAME="p_name"
SIZE="20">

htp.formHidden('p_id','101'); <INPUT TYPE="hidden"
NAME="p_id"VALUE="101">

htp.formCheckbox('cname', <INPUT TYPE="checkbox" NAME="cname"
'cvalue'); VALUE="cvalue">

htp.formCheckbox('cname', <INPUT TYPE="checkbox"
'cvalue', 'CHECKED'); 'CHECKED');NAME="cname" VALUE="cvalue"

CHECKED>

htp.formRadio('p_salutation', <INPUT TYPE="radio" NAME=
'Mr.'); htp.p('Mr.');

"p_salutation" VALUE="Mr."> Mr. htp.formRadio('p_salutation','Mrs.',
'CHECKED'); htp.p('Mrs.'); <INPUT TYPE="radio" NAME="p_salutation"

VALUE="Mrs." CHECKED> Mrs.

htp.formSelectOpen('p_salary', Select a Salutation:<SELECT
'Select a Salutation:','1'); NAME="p_salary" SIZE="1">

htp.formSelectOption('Less than <OPTION VALUE="low">Less than 5000
5000',cattributes =>
'VALUE="low"');

htp.formSelectOption('5001 to <OPTION VALUE="medium" SELECTED>5001
20000',cattributes => to 20000
'VALUE="medium" SELECTED');

htp.FormSelectOption('Greater <OPTION VALUE="high">Greater than
than 20000','VALUE="high"'); cattributes => 20000

htp.formSelectClose; </SELECT>

htp.FormSubmit(null, 'Save', <INPUT TYPE="submit" VALUE="Save"
'cattributes'); cattributes>

htp.formReset('Reset the Form', <INPUT TYPE="reset" VALUE="Reset the
'cattributes'); Form" cattributes>

htp.FormClose; </FORM>

HTML FORMS AS CONTAINERS FOR SENDING DATA

HTML forms are containers for collecting data. The most common tag used in forms, <INPUT>,
points to the purpose of form elements: to collect user input and send it off for processing. As

L A B 24.3
588

Creating Web Pages with the Oracle Web Toolkit

described in Chapter 5, “Introduction to HTML: Basic Tags, Tables, Frames,” of the book Oracle
Web Application Programming for PL/SQL Developers, the HTML form’s ACTION attribute indi-
cates where the form data will be sent, and therefore how it will be acted upon. Without a value
for the ACTION attribute, a form does nothing. Similarly, a completed paper job application
accomplishes nothing sitting on your desk. You must send it to the employer, who can act upon
the data collected in the form. The data collected in an HTML form needs a destination for
meaningful action to take place. It is important to consider where form data should be sent, and
what the consequences will be.

The values that are collected in HTML form elements must be passed to a program that can
handle them. This could be a Common Gateway Interface (CGI) script, Perl script, ASP, or JSP.
In the example used here, where all HTML files are being generated by PL/SQL stored proce-
dures by means of Oracle Application Server 10g, another PL/SQL procedure is the action of the
HTML form and receives the form’s data. PL/SQL can read these incoming values and use them
to update a database or help build the next screen the user sees.

It is important to name your HTML form elements because only named form elements are sent
to the form handler procedure. If an HTML form element is not given a name, it is not sent to
the form handler.

The HTML form handler procedure must have an IN parameter that corresponds to each named
form element. These IN parameters must have exactly the same names as the form elements. If
a form element is named p_first_name, the form handler procedure must have an IN param-
eter called p_first_name. The IN parameters must have datatypes that correspond to the
type of data being passed in.

WEB TOOLKIT IMAGE PROCEDURES

The Oracle Web Toolkit has a number of procedures to handle HTML image tags. Images that
have clickable areas with hyperlinks are handled with HTML image maps. The Oracle Web
Toolkit has procedures to handle both server-side HTML image maps and client-side HTML
image maps.

BY THE WAY

For information on how to handle HTML images (with extensive examples and exercises), see
Chapter 13 of Oracle Web Application Programming for PL/SQL Developers.

SERVER-SIDE HTML IMAGE MAPS

In a server-side HTML image map, the image displayed on the client (the HTML file) is a form
input of the type IMAGE. This means that when the user clicks the image, the form is submit-
ted. The x- and y-coordinates where the user clicked are received as IN parameters by the form
handling procedure. Note that you do not need a Submit button for this type of form. The
<INPUT> tag with TYPE="image" is the only required input element in the form. This input
type creates an image field on which the user can click and cause the form to be submitted
immediately. The coordinates of the selected point are measured in pixels and are returned

L A B 24.3Creating Web Pages with the Oracle Web Toolkit

589

(along with other contents of the form) in two named value pairs. The x-coordinate is submit-
ted under the name of the field with .x appended, and the y-coordinate with .y appended. Any
VALUE attribute is ignored. The image input HTML syntax is as follows:

<INPUT TYPE="image" NAME="p_image" SRC="/images/picture1.jpg">

The type here is "image". The name is required because this will be the name of the parame-
ter that is being sent to the form’s action.

The OWA_IMAGE package has a number of elements for generating this HTML. The preceding
example can be generated by using the Oracle-supplied htp.formImage procedure; its syntax
is as follows:

htp.formImage (cname in varchar2
csrc in varchar2
calign in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

The parameters for this procedure are detailed in Table 24.9. Here is an example (only the first
two parameters are passed in here):

htp.formImage('v_image','/images/location.gif');

It generates the following HTML:

<INPUT TYPE="image" NAME="p_image" SRC="/images/location.gif">

An HTML form needs a form handler procedure that can be used as the form’s action. This
procedure must be able to accept what is sent by the image-input item. The IN parameter for
the image supplied to the form handler procedure must have the same name as the image input,
and a datatype of OWA_IMAGE.POINT, which Oracle supplies. This datatype contains both the
X and Y values of a coordinate, so the image has only one IN parameter.

TABLE 24.9
Parameters for the htp.formImage Procedure

PARAMETER DESCRIPTION

CNAME The value for the NAME attribute, the name of the parameter to be submitted.

CSRC The value for the SRC attribute, which specifies the image file.

CALIGN The value for the ALIGN attribute, which is optional.

CATTRIBUTES Any other attributes to be included as-is in the tag.

Two more functions in the OWA_IMAGE package can extract the x- or y-coordinate from an
OWA_IMAGE.POINT datatype. These functions are OWA_IMAGE.GET_X for the x-coordinate
and OWA_IMAGE.GET_Y for the y-coordinate.

Using the OWA_IMAGE.GET_X and OWA_IMAGE.GET_Y functions, the form handler proce-
dure can access the coordinates the user clicked and can work with these numbers.

L A B 24.3
590

Creating Web Pages with the Oracle Web Toolkit

In the following example, when the user clicks anywhere on the image, a new page appears,
showing the x- and y-coordinates where the user clicked. The following example has two proce-
dures called find_coords. The first one is display_image. It uses the procedure
htp.formImage to create the image input. The next procedure, show_cords, is the action
of the display_image procedure. This means that the IN parameter named for the image
must be the OWA_IMAGE.POINT datatype. The show_coords procedure uses the functions
OWA_IMAGE.GET_X and OWA_IMAGE.GET_Y to determine the x- and y-coordinates and
then displays them on a new Web page.

FOR EXAMPLE

CREATE OR REPLACE Package find_coords
AS
PROCEDURE display_image;
PROCEDURE show_coords (p_image IN owa_image.Point);

END find_coords;
/
CREATE OR REPLACE PACKAGE BODY find_coords AS
PROCEDURE display_image IS
BEGIN

htp.headOpen;
htp.title('Display the Image');
htp.headClose;
htp.p('<BODY bgcolor="khaki">');
htp.header(1,'Find the Coordinates');
htp.p('Click on the image and you will see the x,y

coordinates on the next page');
htp.formOpen('find_coords.show_coords');
htp.formImage('p_image','/images/location.gif');
htp.formClose;
htp.p('</BODY>');
htp.p('</HTML>');

EXCEPTION
WHEN OTHERS THEN
htp.p('An error occurred: '||SQLERRM||'. Please try again
later.');

END display_image;
Procedure show_coords
(p_image IN owa_image.Point)

IS
x_in NUMBER(4) := owa_image.Get_X(P_image);
y_in NUMBER(4) := owa_image.Get_Y(P_image);

BEGIN
htp.headOpen;
htp.title('Find Your coordinates');
htp.headClose;
htp.p('<BODY bgcolor="khaki">');
htp.header(1,'These are the Coordinates you clicked on:');
htp.p('<P>

L A B 24.3Creating Web Pages with the Oracle Web Toolkit

591

FOR EXAMPLE (continued)

You have selected '||x_in||' as your X coordinate </p>');
htp.p('<P>

You have selected '||Y_in||' as your Y coordinate </p>');
htp.p('</BODY>');
htp.p('</HTML>');

EXCEPTION
WHEN OTHERS THEN
htp.p('An error occurred: '||SQLERRM||'. Please try again
later.');

END ;
END find_coords;

The display_image procedure creates the following HTML file:

<HTML>
<HEAD>
<TITLE>Display the Image</TITLE>
</HEAD>
<BODY bgcolor="khaki">
<H1>Find the Coordinates</H1>
Click on the image and you will see the x,y
coordinates on the next page
<FORM ACTION="find_coords.show_coords" METHOD="POST">
<INPUT TYPE="image" NAME="p_image" SRC="/images/location.gif">
</BODY>
</HTML>

CLIENT-SIDE IMAGE MAPS

Two steps are involved in creating a client-side image map in HTML:

1. Set up an image map.

2. Show an image, and use the image map.

You can think of the initial image map as being similar to a JavaScript function that is defined
in the beginning of an HTML file and is used later.

CREATE THE IMAGE MAP

The first tag in an image map is <MAP>. This tag must have a NAME attribute, or it cannot be
referenced later in the file. The image map contains a number of areas that are each a hyperlink.
Each area uses an <AREA> tag. Each <AREA> tag must have a SHAPE attribute to indicate the
shape of the area and an HREF attribute to indicate where clicking the map directs the user. The
various types of shapes have different sets of coordinates used to define the shape. The coordi-
nates used to define an image map’s shape are supplied in the value for the COORDS attribute.
The following HTML creates an image map for a square with four inner squares, each one hyper-
linking to a different Web page. The shape that is called “default” indicates the hyperlink for any

L A B 24.3
592

Creating Web Pages with the Oracle Web Toolkit

area of the image that is not covered by one of the shapes. The coordinates used here are mean-
ingless and are just used to complete the example.

<map name="MyMap">
<area shape="rect" href="first.htm" coords="20,20,70,60">
<area shape="rect" href="second.htm" coords="90,20,140,60">
<area shape="rect" href="third.htm" coords="20,80,70,120">
<area shape="rect" href="fourth.htm" coords="90,80,140,120">
<area shape="default" href="default.htm">
</map>

IMAGE MAPS IN PL/SQL

The method to generate this in PL/SQL, using the supplied Oracle packages within the Oracle
Web Toolkit, involves the following steps:

1. Name the map.

2. Divide it into clickable areas.

3. Specify the image to be used.

Using PL/SQL, you use the htp.mapOpen and htp.mapClose procedures to open and close
the map definition. You use the htp.area procedure to define the areas within the map. Then,
when you display the image, you use the htp.img2 procedure to create the HTML tag
with the corresponding image map. These procedures are described in Table 24.10.

TABLE 24.10
Procedures Used to Create an Image Map

PROCEDURE RESULTING HTML DESCRIPTION

htp.mapOpen('map1'); <MAP NAME="map1"> Names the map.
<AREA SHAPE="rect">

htp.area ('0,0,50,50', COORDS="0,0,50,50"HREF= Specifies the regions.
rect,'www.prenhall.com'); "www.prenhall.com">

htp.mapClose; </MAP> Closes the map.

htp.img2('MyImage.gif', <IMG SRC="MyImage.gif" Specifies the image and
cismap=>'1',cusemap=> ISMAP USEMAP="#map1"> link to the region.
'#map1');

The ISMAP that is generated in the tag indicates that this image will use an image map.
USEMAP= determines the name of the image map to be used. The image map must have been
previously defined in the HTML for the page, or the image map will not function.

At runtime, click the image. The browser processes the coordinates.

L A B 24.3Creating Web Pages with the Oracle Web Toolkit

593

▼ L A B 2 4 . 3 E X E R C I S E S

This section provides exercises and suggested answers, with discussion related to how those answers
resulted. The most important thing to realize is whether your answer works. You should figure out the
implications of the answers and what the effects are of any different answers you may come up with.

24.3.1 Create an HTML Page with the Oracle Web Toolkit

In these exercises you create a Web page by using the Oracle-supplied packages known as the Oracle
Web Toolkit.

A) Create a PL/SQL procedure that generates the following HTML page:

<HTML>
<HEAD>
<TITLE>Section Location Update Form</TITLE>
</HEAD>
<BODY>
<H1>Change Section Location</H1>
<FORM ACTION="update_section"
METHOD="GET">
Section ID:
<INPUT TYPE="text" NAME="p_section" SIZE="8" MAXLENGTH="8"
VALUE="150">

Course No:
<INPUT TYPE="text" NAME="" SIZE="8" VALUE="120">
<SELECT NAME="p_location" SIZE="10">
<OPTION VALUE=H310>H310
<OPTION VALUE=L206>L206
<OPTION SELECTED VALUE=L210>L210
<OPTION VALUE=L211>L211
<OPTION VALUE=L214>L214
<OPTION VALUE=L500>L500
<OPTION VALUE=L507>L507
<OPTION VALUE=L509>L509
<OPTION VALUE=L511>L511
<OPTION VALUE=M200>M200
<OPTION VALUE=M311>M311
<OPTION VALUE=M500>M500
</SELECT>
<INPUT TYPE="submit" VALUE="Change the location">
</FORM>
</BODY>
</HTML>

ANSWER:

CREATE OR REPLACE PROCEDURE section_form IS
v_string VARCHAR2(100);
v_section_id SECTION.section_id%TYPE;
v_location SECTION.location%TYPE; -- Use %TYPE whenever

-- possible.
v_course_no SECTION.course_no%TYPE;
cursor c_location is

L A B 24.3
594

Lab 24.3 Exercises

select distinct location from section
order by location;

BEGIN
SELECT section_id, location, course_no
INTO v_section_id, v_location, v_course_no
FROM section
WHERE section_id=150;
htp.htmlOpen;
htp.headOpen;
htp.title('Section Location Update Form');
htp.headClose;
htp.bodyOpen;
htp.header(1,'Change Section Location');
htp.FormOpen('update_section', 'GET');
htp.p('Section ID:');
htp.formText('p_section', 8, 8,v_section_id);
htp.p('Course No: ');
htp.formText(cname=>null, csize=>8,cvalue=>v_course_no);
htp.FormSelectOpen(cname=>'p_location', nsize=>10);
FOR rec in c_location LOOP

IF rec.location = v_location THEN
htp.FormSelectOption(rec.location,'SELECTED',

cattributes=>'VALUE='||rec.location);
ELSE
htp.FormSelectOption(rec.location,

cattributes=>'VALUE='||rec.location);
END IF;

END LOOP;
htp.FormSelectClose;
htp.FormSubmit(cvalue=>'Change the location');
htp.FormClose;
htp.bodyClose;
htp.htmlClose;

EXCEPTION
WHEN OTHERS THEN
HTP.P('An error occurred: '||SQLERRM||

'. Please try again later.');
END;

B) Generate an update page for the form action in the last HTML page. This update will be the form
handler for the Submit button. It will commit the changes to the database and then refresh
the page.

ANSWER:

CREATE OR REPLACE PROCEDURE update_section
(p_section IN SECTION.section_id%TYPE,
p_location IN SECTION.location%TYPE)

IS
BEGIN

UPDATE section
SET location = p_location

L A B 24.3Lab 24.3 Exercises

595

WHERE section_id = p_section;
COMMIT;
section_form;
htp.p('The section '||p_section||' is moved to

'||p_location||'.');
EXCEPTION

WHEN OTHERS THEN
HTP.P('An error occurred: '||SQLERRM||'. Please try again
later.');

END;

BY THE WAY

This chapter does not have a “Try It Yourself” section.

L A B 24.3
596

Lab 24.3 Exercises

A P P E N D I X A

PL/SQL Formatting Guide

This appendix summarizes some of the PL/SQL formatting guidelines used
throughout this book. Formatting guidelines are not a required part of PL/SQL,
but they act as best practices that facilitate code’s quality, readability, and ease of
maintenance.

Case

PL/SQL, like SQL, is case-insensitive. The general guidelines here are as follows:

. Use uppercase for keywords (BEGIN, EXCEPTION, END, IF THEN ELSE,
LOOP, END LOOP), data types (VARCHAR2, NUMBER), built-in functions
(LEAST, SUBSTR), and user-defined subroutines (procedures, functions,
packages).

. Use lowercase for variable names as well as column and table names in
SQL.

White Space

White space (extra lines and spaces) is as important in PL/SQL as it is in SQL. It
is a main factor in providing readability. In other words, you can reveal the
program’s logical structure by using indentation in your code. Here are some
suggestions:

. Put spaces on both sides of an equals sign or comparison operator.

. Line up structure words on the left (DECLARE, BEGIN, EXCEPTION, END,
IF and END IF, LOOP and END LOOP). In addition, indent three spaces
(using the spacebar, not the Tab key) for structures within structures.

. Put blank lines between major sections to separate them.

. Put different logical parts of the same structure on separate lines even if the
structure is short. For example, IF and THEN are placed on one line,
whereas ELSE and END IF are placed on separate lines.

Naming Conventions

To prevent conflicts with keywords and column/table names, it is helpful to use the following
prefixes:

. v_variable_name

. con_constant_name

. i_in_parameter_name, o_out_parameter_name,
io_in_out_parameter_name

. c_cursor_name or name_cur

. rc_reference_cursor_name

. r_record_name or name_rec

. FOR r_stud IN c_stud LOOP...

. FOR stud_rec IN stud_cur LOOP

. type_name, name_type (for user-defined types)

. t_table, name_tab (for PL/SQL tables)

. rec_record_name, name_rec (for record variables)

. e_exception_name (for user-defined exceptions)

The name of a package should be the name of the larger context of the actions performed by the
procedures and functions contained in the package.

The name of a procedure should describe the action the procedure performs. The name of a
function should describe the return variable.

FOR EXAMPLE

PACKAGE student_admin
-- admin suffix may be used for administration.

PROCEDURE remove_student (i_student_id IN student.studid%TYPE);

FUNCTION student_enroll_count (i_student_id student.studid%TYPE)
RETURN INTEGER;

Comments

Comments in PL/SQL are as important as in SQL. They should explain the main sections of the
program and any major nontrivial logic steps.

APPENDIX A: PL/SQL Formatting Guide598

Use single-line comments (--) instead of multiline comments (/*). Although PL/SQL treats
these comments in the same way, it will be easier for you to debug the code after it is completed,
because you cannot embed multiline comments within multiline comments. In other words,
you can comment out portions of code that contain single-line comments, but you can’t
comment out portions of code that contain multiline comments.

Other Suggestions

. For SQL statements embedded in PL/SQL, use the same formatting guidelines to deter-
mine how the statements should appear in a block.

. Provide a comment header that explains the intent of the block and lists the creation date
and author’s name. Also have a line for each revision, with the author’s name, the date,
and a description of the revision.

FOR EXAMPLE

The following example shows the aforementioned suggestions. Notice that it also uses a mono-
spaced font (Courier New). This makes formatting easier, because each character takes up the
same amount of space. Proportionally spaced fonts can hide spaces and make lining up clauses
difficult. Most text and programming editors by default use a monospaced font.

REM **
REM * filename: coursediscount01.sql version: 1
REM * purpose: To give discounts to courses that have at
REM * least one section with an enrollment of more
REM * than 10 students.
REM * args: none
REM *
REM * created by: s.tashi date: January 1, 2000
REM * modified by: y.sonam date: February 1, 2000
REM * description: Fixed cursor, added indentation and
REM * comments.
REM **
DECLARE

-- C_DISCOUNT_COURSE finds a list of courses that have
-- at least one section with an enrollment of at least 10
-- students.
CURSOR c_discount_course IS

SELECT DISTINCT course_no
FROM section sect
WHERE 10 <= (SELECT COUNT(*)

FROM enrollment enr
WHERE enr.section_id = sect.section_id
);

-- discount rate for courses that cost more than $2000.00
con_discount_2000 CONSTANT NUMBER := .90;

APPENDIX A: PL/SQL Formatting Guide 599

-- discount rate for courses that cost between $1001.00
-- and $2000.00
con_discount_other CONSTANT NUMBER := .95;

v_current_course_cost course.cost%TYPE;
v_discount_all NUMBER;
e_update_is_problematic EXCEPTION;

BEGIN
-- For courses to be discounted, determine the current
-- and new cost values
FOR r_discount_course in c_discount_course LOOP

SELECT cost
INTO v_current_course_cost
FROM course
WHERE course_no = r_discount_course.course_no;

IF v_current_course_cost > 2000 THEN
v_discount_all := con_discount_2000;

ELSE
IF v_current_course_cost > 1000 THEN

v_discount_all := con_discount_other;
ELSE

v_discount_all := 1;
END IF;

END IF;

BEGIN
UPDATE course

SET cost = cost * v_discount_all
WHERE course_no = r_discount_course.course_no;

EXCEPTION
WHEN OTHERS THEN

RAISE e_update_is_problematic;
END; -- end of sub-block to update record

END LOOP; -- end of main LOOP

COMMIT;

EXCEPTION
WHEN e_update_is_problematic THEN

-- Undo all transactions in this run of the program
ROLLBACK;
DBMS_OUTPUT.PUT_LINE

('There was a problem updating a course cost.');
WHEN OTHERS THEN

NULL;
END;
/

APPENDIX A: PL/SQL Formatting Guide600

A P P E N D I X B

Student Database Schema

Table and Column Descriptions

COURSE: Information for a course

COLUMN NAME NULL TYPE DESCRIPTION

COURSE_NO NOT NULL NUMBER(8, 0) The unique course number

DESCRIPTION NULL VARCHAR2(50) The full name of this course

COST NULL NUMBER(9,2) The dollar amount charged for
enrollment in this course

PREREQUISITE NULL NUMBER(8, 0) The ID number of the course
that must be taken as a
prerequisite to this course

CREATED_BY NOT NULL VARCHAR2(30) Audit column—indicates who
inserted data

CREATED_DATE NOT NULL DATE Audit column—indicates the
date of insertion

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column—indicates who
made the last update

MODIFIED_DATE NOT NULL DATE Audit column—date of the
last update

SECTION: Information for an individual section (class) of a particular course

COLUMN NAME NULL TYPE DESCRIPTION

SECTION_ID NOT NULL NUMBER(8,0) The unique ID for a section

COURSE_NO NOT NULL NUMBER(8,0) The course number for which
this is a section

SECTION_NO NOT NULL NUMBER(3) The individual section number
within this course

START_DATE_TIME NULL DATE The date and time when this
section meets

LOCATION NULL VARCHAR2(50) The meeting room for the
section

INSTRUCTOR_ID NOT NULL NUMBER(8,0) The ID number of the instructor
who teaches this section

APPENDIX B: Student Database Schema602

SECTION: Information for an individual section (class) of a particular course (continued)

COLUMN NAME NULL TYPE DESCRIPTION

CAPACITY NULL NUMBER(3,0) The maximum number of students allowed in
this section

CREATED_BY NOT NULL VARCHAR2(30) Audit column—indicates who inserted data

CREATED_DATE NOT NULL DATE Audit column—indicates the date of insertion

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column—indicates who made the
last update

MODIFIED_DATE NOT NULL DATE Audit column—date of the last update

STUDENT: Profile information for a student

COLUMN NAME NULL TYPE DESCRIPTION

STUDENT_ID NOT NULL NUMBER(8,0) A unique ID for the student

SALUTATION NULL VARCHAR2(5) This student’s title (Ms., Mr., Dr.)

FIRST_NAME NULL VARCHAR2(25) This student’s first name

LAST_NAME NOT NULL VARCHAR2(25) This student’s last name

STREET_ADDRESS NULL VARCHAR2(50) This student’s street address

ZIP NOT NULL VARCHAR2(5) This student’s zip code

PHONE NULL VARCHAR2(15) This student’s phone number, including
area code

EMPLOYER NULL VARCHAR2(50) The name of the company where this
student is employed

REGISTRATION_DATE NOT NULL DATE The date this student registered in the
program

CREATED_BY NOT NULL VARCHAR2(30) Audit column—indicates who inserted
data

CREATED_DATE NOT NULL DATE Audit column—indicates the date of
insertion

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column—indicates who made the
last update

MODIFIED_DATE NOT NULL DATE Audit column—date of the last update

ENROLLMENT: Information for a student registered for a particular section of a particular
course (class)

COLUMN NAME NULL TYPE DESCRIPTION

STUDENT_ID NOT NULL NUMBER(8,0) The ID for a student

SECTION_ID NOT NULL NUMBER(8,0) The ID for a section

ENROLL_DATE NOT NULL DATE The date this student registered for this section

COLUMN NAME NULL TYPE DESCRIPTION

FINAL_GRADE NULL NUMBER(3,0) The final grade given to this student for all the
work in this section (class)

CREATED_BY NOT NULL VARCHAR2(30) Audit column—indicates who inserted data

CREATED_DATE NOT NULL DATE Audit column—indicates the date of insertion

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column—indicates who made the
last update

MODIFIED_DATE NOT NULL DATE Audit column—date of the last update

INSTRUCTOR: Profile information for an instructor

COLUMN NAME NULL TYPE DESCRIPTION

INSTRUCTOR_ID NOT NULL NUMBER(8) The unique ID for an instructor

SALUTATION NULL VARCHAR2(5) This instructor’s title (Mr., Ms., Dr., Rev.)

FIRST_NAME NULL VARCHAR2(25) This instructor’s first name

LAST_NAME NULL VARCHAR2(25) This instructor’s last name

STREET_ADDRESS NULL VARCHAR2(50) This instructor’s street address

ZIP NULL VARCHAR2(5) This instructor’s zip code

PHONE NULL VARCHAR2(15) This instructor’s phone number, including
area code

CREATED_BY NOT NULL VARCHAR2(30) Audit column—indicates who inserted data

CREATED_DATE NOT NULL DATE Audit column—indicates the date of insertion

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column—indicates who made the
last update

MODIFIED_DATE NOT NULL DATE Audit column—date of the last update

ZIPCODE: City, state, and zip code information

COLUMN NAME NULL TYPE DESCRIPTION

ZIP NOT NULL VARCHAR2(5) The zip code, unique for a city and state

CITY NULL VARCHAR2(25) The city name for this zip code

STATE NULL VARCHAR2(2) The postal abbreviation for the U.S. state

CREATED_BY NOT NULL VARCHAR2(30) Audit column—indicates who inserted data

CREATED_DATE NOT NULL DATE Audit column—indicates the date of insertion

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column—indicates who made the
last update

MODIFIED_DATE NOT NULL DATE Audit column—date of the last update

APPENDIX B: Student Database Schema 603

GRADE_TYPE: Lookup table of a grade type (code) and its description

COLUMN NAME NULL TYPE DESCRIPTION

GRADE_TYPE_CODE NOT NULL CHAR(2) The unique code that identifies a
category of grade (such as MT or HW)

DESCRIPTION NOT NULL VARCHAR2(50) The description for this code (such as
Midterm or Homework)

CREATED_BY NOT NULL VARCHAR2(30) Audit column—indicates who inserted
data

CREATED_DATE NOT NULL DATE Audit column—indicates the date of
insertion

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column—indicates who made the
last update

MODIFIED_DATE NOT NULL DATE Audit column—date of the last update

GRADE_TYPE_WEIGHT: Information on how the final grade for a particular section is computed; for
example, the midterm constitutes 50%, the quiz 10%, and the final examination 40% of the final grade

COLUMN NAME NULL TYPE DESCRIPTION

SECTION_ID NOT NULL NUMBER(8) The ID for a section

GRADE_TYPE_CODE NOT NULL CHAR(2) The code that identifies a category
of grade

NUMBER_PER_ SECTION NOT NULL NUMBER(3) How many of these grade types can
be used in this section (for example,
there may be three quizzes)

PERCENT_OF_FINAL_ GRADE NOT NULL NUMBER(3) The percentage that this category of
grade contributes to the final grade

DROP_LOWEST NOT NULL CHAR(1) Is the lowest grade in this type
removed when determining the
final grade? (Y/N)

CREATED_BY NOT NULL VARCHAR2(30) Audit column—indicates who
inserted data

CREATED_DATE NOT NULL DATE Audit column—indicates the date
of insertion

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column—indicates who made
the last update

MODIFIED_DATE NOT NULL DATE Audit column—date of the last
update

APPENDIX B: Student Database Schema604

GRADE: The individual grades a student received for a particular section (class)

COLUMN NAME NULL TYPE DESCRIPTION

STUDENT_ID NOT NULL NUMBER(8) The ID for a student

SECTION_ID NOT NULL NUMBER(8) The ID for a section

GRADE_TYPE_CODE NOT NULL CHAR(2) The code that identifies a category
of grade

GRADE_CODE_ OCCURRENCE NOT NULL NUMBER(38) The sequence number of one
grade type for one section.
For example, there could be
multiple assignments numbered
1, 2, 3, and so on.

NUMERIC_GRADE NOT NULL NUMBER(3) Numeric grade value (such as
70 or 75)

COMMENTS NULL VARCHAR2(2000) Instructor’s comments on this
grade

CREATED_BY NOT NULL VARCHAR2(30) Audit column—indicates who
inserted data

CREATED_DATE NOT NULL DATE Audit column—indicates the date
of insertion

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column—indicates who
made the last update

MODIFIED_DATE NOT NULL DATE Audit column—date of the last
update

GRADE_CONVERSION: Converts a number grade to a letter grade

COLUMN NAME NULL TYPE DESCRIPTION

LETTER_GRADE NOT NULL VARCHAR(2) The unique grade as a letter (A, A–, B+, B,
and so on)

GRADE_POINT NOT NULL NUMBER(3,2) The number grade on a scale from 0 (F) to 4 (A)

MAX_GRADE NOT NULL NUMBER(3) The highest grade number that corresponds to
this letter grade

MIN_GRADE NOT NULL NUMBER(3) The lowest grade number that corresponds to
this letter grade

CREATED_BY NOT NULL VARCHAR2(30) Audit column—indicates who inserted data

CREATED_DATE NOT NULL DATE Audit column—indicates the date of insertion

MODIFIED_BY NOT NULL VARCHAR2(30) Audit column—indicates who made the last
update

MODIFIED_DATE NOT NULL DATE Audit column—date of the last update

APPENDIX B: Student Database Schema 605

This page intentionally left blank

A P P E N D I X C

ANSI SQL Standards

The American National Standards Institute (http://www.ansi.org) first published
a standard SQL specification in 1989. The ANSI SQL standard was later revised
in 1992, and is often referred to as SQL-92 or SQL-2. This was revised again,
giving rise to the latest standard, known as SQL-99. Sometimes it is called
SQL-3. Database vendors and third-party software companies have had varying
levels of conformance to this standard. Most major database vendors support the
SQL-92 standard. Generally what you find is that most vendors have their own
extensions to the SQL language. Oracle is no exception. Nonetheless, Oracle has
made efforts to maintain the ANSI standard. The reason for this is to provide an
easier migration to third-party applications without a need to modify the SQL
code. Starting with version 8i, Oracle has introduced a number of enhancements
to conform to the SQL-99 standard. This appendix reviews the main enhance-
ments that you see in this book by means of examples. It is important to realize
that although many of these features were introduced in Oracle 9i, they have
existed in other programming languages. For example, the CASE statement has
been a part of Microsoft SQL Server for some time and has been used in COBOL
and C since their inception.

JOINs

The 1999 ANSI standard introduced complete JOIN syntax in the FROM clause.
The prior method was to list the tables needed in the query in the FROM clause
and then define the joins between these tables in the WHERE clause. However,
the conditions of the SQL statement are also listed in the WHERE clause. It was
decided to enhance this syntax because listing the joins and conditions in the
same WHERE clause can be confusing.

The 1999 ANSI join syntax includes cross joins, equijoins, full outer joins, and
natural joins.

CROSS JOINS

The CROSS JOIN syntax indicates that you are creating a Cartesian product from
two tables. The result set of a Cartesian product usually is meaningless, but it can
be used to generate a lot of rows if you need to do some testing. The advantage
of the new syntax is that it flags a Cartesian product by having the CROSS JOIN
in the FROM clause.

http://www.ansi.org

FOR EXAMPLE

Prior to Oracle 9i, you would create a Cartesian product with the following syntax:

SELECT *
FROM instructor, course

The new syntax is as follows:

SELECT *
FROM instructor CROSS JOIN

course

The result set from this is 300 rows. This is because the COURSE table has 30 rows and the
INSTRUCTOR table has 10 rows. The CROSS JOIN counts all possible combinations, resulting
in the 300 rows.

EQUI JOINS

The EQUI JOIN (also called an inner or regular join) syntax indicates the columns that comprise
the JOINS between two tables. Prior to Oracle 9i, you would indicate a join condition in the
WHERE clause by stating which values in a set of columns from one table are equal to the values
in a set of columns from another table.

FOR EXAMPLE

Prior to Oracle 9i, you would join the STUDENT table to the ZIPCODE table as follows:

SELECT s.first_name, s.last_name, z.zip, z.city, z.state
FROM student s, zipcode z
WHERE s.zip = z.zip

The new syntax is as follows:

SELECT s.first_name, s.last_name, zip, z.city, z.state
FROM student s JOIN

zipcode z USING (zip)

The reason for this syntax is that the join condition between the two tables is immediately
obvious when you look at the tables listed in the FROM clause. This example is very short, but
generally your SQL statements are very long, and it can be time-consuming to find the join
conditions in the WHERE clause.

Notice that the ZIP column in the SELECT clause does not have an alias. In the new JOIN
syntax, the column that is referenced in the USING clause does not have a qualifier. In the old
syntax, if you did not use an alias for column ZIP, as in this version of the SELECT:

SELECT s.first_name, s.last_name, zip, z.city, z.state
FROM student s, zipcode z
WHERE s.zip = z.zip

APPENDIX C: ANSI SQL Standards608

Oracle would generate the following error:

ORA-00918: column ambiguously defined

In the new JOIN syntax, if you use a qualifier, as in this example:

SELECT s.first_name, s.last_name, z.zip, z.city, z.state
FROM student s JOIN

zipcode z USING (zip)

Oracle generates the following error:

ORA-25154: column part of USING clause cannot have qualifier

The new JOIN syntax also allows you to define the join condition using both sides of the join.
This is done with the ON syntax. When using the ON syntax for a JOIN, you must use the qual-
ifier. This is also useful when the two sides of the join do not have the same name.

The ON syntax can also be used for three-way joins (or more).

FOR EXAMPLE

SELECT s.section_no, c.course_no, c.description,
i.first_name, i.last_name

FROM course c
JOIN section s
ON (s.course_no = c.course_no)

JOIN instructor i
ON (i.instructor_id = s.instructor_id)

The syntax for a multiple-table join becomes more complex. Notice that one table is mentioned
at a time. The first JOIN lists columns from the first two tables in the ON section. As soon as
the third table has been indicated, the second JOIN lists columns from the second and third
tables in the ON clause.

NATURAL JOINS

The NATURAL JOIN is another part of the ANSI 1999 syntax that you can use when joining two
tables based on columns that have the same name and datatype. The NATURAL JOIN can be
used only when all the columns that have the same name in both tables comprise the join condi-
tion between these tables. You cannot use this syntax when the two columns have the same
name but a different datatype. Another benefit of this join is that if you use the SELECT *
syntax, the columns that appear in both tables appear only once in the result set.

FOR EXAMPLE

SELECT *
FROM instructor NATURAL JOIN zipcode

APPENDIX C: ANSI SQL Standards 609

The join used here is not only on the ZIP column of both tables, but also on the CREATE_BY,
CREATED_DATE, MODIFIED_BY, and MODIFIED_DATE columns.

The student schema does not support the NATURAL JOIN condition, because we have created
audit columns that have the same name in each table but are not used in the foreign key
constraints among the tables.

OUTER JOINS

INNER JOIN or EQUI JOIN is the result of joining two tables that contain rows where a match
occurred on the join condition. It is possible to lose information through an INNER JOIN,
because only those rows that match on the join condition appear in the final result set.

The result set of an OUTER JOIN contains the same rows as the INNER JOIN plus rows corre-
sponding to the rows from the source tables where there was no match. The OUTER JOIN has
been supported by a number of versions of the Oracle SQL language. It was not a part of the
ANSI standard until the 1999 version.

Oracle’s OUTER JOIN syntax has consisted of placing a plus sign (+) next to the columns of a
table where you expect to find values that do not exist in the other table.

FOR EXAMPLE

SELECT i.first_name, i.last_name, z.state
FROM instructor i, zipcode z
WHERE i.zip (+) = z.zip
GROUP BY i.first_name, i.last_name, z.state

In this example, the result set includes all states that are in the ZIPCODE table. If there is no
instructor for a state that exists in the ZIPCODE table, the values of FIRST_NAME and
LAST_NAME are blank on output (NULL). This syntax gets more confusing, because it must be
maintained if there are more conditions in a WHERE clause. This method can be used on only
one side of the outer join at a time.

The new method of OUTER JOINs adopted in Oracle 9i allows the case of an OUTER JOIN on
either side or both sides at the same time. (An example would be if some instructors had zip
codes that were not in the ZIPCODE table, and you wanted to see all the instructors and all the
states in both of these tables.) This task can be accomplished by using the new OUTER JOIN
syntax only. This requires the aforementioned JOIN syntax with the addition of new outer join
attributes as well. The choice is LEFT/RIGHT/FULL OUTER JOIN. The same OUTER JOIN can
now be modified as follows:

SELECT i.first_name, z.state
FROM instructor i RIGHT OUTER JOIN

zipcode z
ON i.zip = z.zip

GROUP BY i.first_name, z.state

APPENDIX C: ANSI SQL Standards610

The RIGHT indicates that the values on the right side of the JOIN may not exist in the table on
the LEFT side of the join. This can be replaced by the word FULL if some instructors have zip
codes that are not in the ZIPCODE table.

Scalar Subquery

A scalar row subquery is a single-row subquery. In other words, it returns a single row. If the
scalar subquery returns more than one row, it generates an error.

FOR EXAMPLE

SELECT city, state,
(SELECT count(*)

FROM student s
WHERE s.zip = z.zip) as student_count

FROM zipcode z
WHERE state = 'CT'

APPENDIX C: ANSI SQL Standards 611

This page intentionally left blank

A P P E N D I X D

Answers to the Try It
Yourself Sections

Chapter 1,“PL/SQL Concepts”

1) To calculate the area of a circle, you must square the circle’s radius and then
multiply it by π. Write a program that calculates the area of a circle. The value for
the radius should be provided with the help of a substitution variable. Use 3.14
for the value of π. After the area of the circle is calculated, display it on the screen.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

v_radius NUMBER := &sv_radius;
v_area NUMBER;

BEGIN
v_area := POWER(v_radius, 2) * 3.14;
DBMS_OUTPUT.PUT_LINE

('The area of the circle is: '||v_area);
END;

In this exercise, you declare two variables,v_radius and v_area, to store the
values for the radius of the circle and its area, respectively. Next, you compute the
value for the variable v_area with the help of the built-in function POWER and
the value of the v_radius. Finally, you display the value of v_area on the
screen.

Assume that the number 5 has been entered for the value of the variable
v_radius. The script produces the following output:

Enter value for sv_radius: 5
old 2: v_radius NUMBER := &sv_radius;
new 2: v_radius NUMBER := 5;
The area of the circle is: 78.5

PLSQL procedure successfully completed.

2) Rewrite the script ch01_2b.sql, version 2.0. In the output produced by the script,
extra spaces appear after the day of the week. The new script should remove
these extra spaces.

Here’s the current output:

Today is Sunday , 20:39

The new output should have this format:

Today is Sunday, 20:39

ANSWER: The new version of the script should look similar to the following. Changes are shown
in bold.

SET SERVEROUTPUT ON
DECLARE

v_day VARCHAR2(20);
BEGIN

v_day := TO_CHAR(SYSDATE, 'fmDay, HH24:MI');
DBMS_OUTPUT.PUT_LINE ('Today is '|| v_day);

END;

In this script, you modify the format in which you would like to display the date. Notice that the
word Day is now prefixed by the letters fm. These letters guarantee that extra spaces will be
removed from the name of the day. When run, this exercise produces the following output:

Today is Tuesday, 18:54

PLSQL procedure successfully completed.

Chapter 2,“General Programming Language Fundamentals”

1) Write a PL/SQL block

A) That includes declarations for the following variables:

I) A VARCHAR2 datatype that can contain the string ‘Introduction to Oracle PL/SQL’

II) A NUMBER that can be assigned 987654.55, but not 987654.567 or 9876543.55

III) A CONSTANT (you choose the correct datatype) that is autoinitialized to the value
‘603D’

IV) A BOOLEAN

V) A DATE datatype autoinitialized to one week from today

B) In the body of the PL/SQL block, put a DBMS_OUTPUT.PUT_LINE message for each of the
variables that received an auto initialization value.

C) In a comment at the bottom of the PL/SQL block, state the value of your number datatype.

ANSWER: The answer should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

-- A VARCHAR2 datatype that can contain the string
-- 'Introduction to Oracle PL/SQL'
v_descript VARCHAR2(35);

- A NUMBER that allows for the conditions: can be
- assigned 987654.55 but not 987654.567 or 9876543.55

v_number_test NUMBER(8,2);

-- [a variable] autoinitialized to the value '603D'
v_location CONSTANT VARCHAR2(4) := '603D';

APPENDIX D: Answers to the Try it Yourself Sections614

-- A BOOLEAN
v_boolean_test BOOLEAN;

-- A DATE datatype auto initialized to one week from today

v_start_date DATE := TRUNC(SYSDATE) + 7;

BEGIN
DBMS_OUTPUT.PUT_LINE

('The location is: '||v_location||'.');
DBMS_OUTPUT.PUT_LINE

('The starting date is: '||v_start_date||'.');
END;

2) Alter the PL/SQL block you just created to conform to the following specifications.

A) Remove the DBMS_OUTPUT.PUT_LINE messages.

B) In the body of the PL/SQL block, write a selection test (IF) that does the following (use a
nested if statement where appropriate):

I) Checks whether the VARCHAR2 you created contains the course named “Introduction
to Underwater Basketweaving.”

II) If it does, put a DBMS_OUTPUT.PUT_LINE message on the screen that says so.

III) If it does not, test to see if the CONSTANT you created contains the room number 603D.

IV) If it does, put a DBMS_OUTPUT.PUT_LINE message on the screen that states the course
name and the room number that you’ve reached in this logic.

V) If it does not, put a DBMS_OUTPUT.PUT_LINE message on the screen that states that
the course and location could not be determined.

C) Add a WHEN OTHERS EXCEPTION that puts a DBMS_OUTPUT.PUT_LINE message on the
screen that says that an error occurred.

ANSWER: The answer should look similar to the following:

SET SERVEROUT ON
DECLARE

-- A VARCHAR2 datatype that can contain the string
-- 'Introduction to Oracle PL/SQL'
v_descript VARCHAR2(35);

-- A NUMBER that allows for the conditions: can be
- assigned 987654.55 but not 987654.567 or 9876543.55

v_number_test NUMBER(8,2);

-- [a variable] auto initialized to the value '603D'
v_location CONSTANT VARCHAR2(4) := '603D';

-- A BOOLEAN
v_boolean_test BOOLEAN;

-- A DATE datatype autoinitialized to one week from today
v_start_date DATE := TRUNC(SYSDATE) + 7;

APPENDIX D: Answers to the Try it Yourself Sections 615

BEGIN
IF v_descript = 'Introduction to Underwater Basketweaving'
THEN

DBMS_OUTPUT.PUT_LINE ('This course is '||v_descript||'.');

ELSIF v_location = '603D' THEN

-- No value has been assigned to v_descript
IF v_descript IS NOT NULL THEN

DBMS_OUTPUT.PUT_LINE ('The course is '||v_descript
||'.'||' The location is '||v_location||'.');

ELSE
DBMS_OUTPUT.PUT_LINE ('The course is unknown.'||

' The location is '||v_location||'.');
END IF;

ELSE
DBMS_OUTPUT.PUT_LINE ('The course and location '||

'could not be determined.');
END IF;

EXCEPTION
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE ('An error occurred.');
END;

Chapter 3,“SQL in PL/SQL”

1) Create a table called CHAP4 with two columns; one is ID (a number) and the other is NAME, which
is a VARCHAR2(20).

ANSWER: The answer should look similar to the following:

PROMPT Creating Table 'CHAP4'
CREATE TABLE chap4

(id NUMBER,
name VARCHAR2(20));

2) Create a sequence called CHAP4_SEQ that increments by units of 5.

ANSWER: The answer should look similar to the following:

PROMPT Creating Sequence 'CHAP4_SEQ'
CREATE SEQUENCE chap4_seq

NOMAXVALUE
NOMINVALUE
NOCYCLE
NOCACHE;

3) Write a PL/SQL block that does the following, in this order:

A) Declares two variables: one for the v_name and one for v_id. The v_name variable can
be used throughout the block to hold the name that will be inserted. Realize that the value
will change in the course of the block.

B) The block inserts into the table the name of the student who is enrolled in the most classes
and uses a sequence for the ID. Afterward there is SAVEPOINT A.

APPENDIX D: Answers to the Try it Yourself Sections616

C) The student with the fewest classes is inserted. Afterward there is SAVEPOINT B.

D) The instructor who is teaching the most courses is inserted in the same way. Afterward
there is SAVEPOINT C.

E) Using a SELECT INTO statement, hold the value of the instructor in the variable v_id.

F) Undo the instructor insertion by using rollback.

G) Insert the instructor teaching the fewest courses, but do not use the sequence to generate
the ID. Instead, use the value from the first instructor, whom you have since undone.

H) Insert the instructor teaching the most courses, and use the sequence to populate his or
her ID.

Add DBMS_OUTPUT throughout the block to display the values of the variables as they change.
(This is a good practice for debugging.)

ANSWER: The script should look similar to the following:

DECLARE
v_name student.last_name%TYPE;
v_id student.student_id%TYPE;

BEGIN
BEGIN

-- A second block is used to capture the possibility of
-- multiple students meeting this requirement.
-- The exception section handles this situation.
SELECT s.last_name
INTO v_name
FROM student s, enrollment e
WHERE s.student_id = e.student_id
HAVING COUNT(*) = (SELECT MAX(COUNT(*))

FROM student s, enrollment e
WHERE s.student_id = e.student_id
GROUP BY s.student_id)

GROUP BY s.last_name;
EXCEPTION

WHEN TOO_MANY_ROWS THEN
v_name := 'Multiple Names';

END;

INSERT INTO CHAP4
VALUES (CHAP4_SEQ.NEXTVAL, v_name);
SAVEPOINT A;

BEGIN
SELECT s.last_name
INTO v_name
FROM student s, enrollment e
WHERE s.student_id = e.student_id
HAVING COUNT(*) = (SELECT MIN(COUNT(*))

FROM student s, enrollment e
WHERE s.student_id = e.student_id
GROUP BY s.student_id)

GROUP BY s.last_name;

APPENDIX D: Answers to the Try it Yourself Sections 617

EXCEPTION
WHEN TOO_MANY_ROWS THEN

v_name := 'Multiple Names';
END;

INSERT INTO CHAP4
VALUES (CHAP4_SEQ.NEXTVAL, v_name);
SAVEPOINT B;

BEGIN
SELECT i.last_name
INTO v_name
FROM instructor i, section s
WHERE s.instructor_id = i.instructor_id
HAVING COUNT(*) = (SELECT MAX(COUNT(*))

FROM instructor i, section s
WHERE s.instructor_id = i.instructor_id
GROUP BY i.instructor_id)

GROUP BY i.last_name;
EXCEPTION

WHEN TOO_MANY_ROWS THEN
v_name := 'Multiple Names';

END;

SAVEPOINT C;

BEGIN
SELECT instructor_id
INTO v_id
FROM instructor
WHERE last_name = v_name;

EXCEPTION
WHEN NO_DATA_FOUND THEN

v_id := 999;
END;

INSERT INTO CHAP4
VALUES (v_id, v_name);
ROLLBACK TO SAVEPOINT B;

BEGIN
SELECT i.last_name
INTO v_name
FROM instructor i, section s
WHERE s.instructor_id = i.instructor_id
HAVING COUNT(*) = (SELECT MIN(COUNT(*))

FROM instructor i, section s
WHERE s.instructor_id = i.instructor_id
GROUP BY i.instructor_id)

GROUP BY i.last_name;

APPENDIX D: Answers to the Try it Yourself Sections618

EXCEPTION
WHEN TOO_MANY_ROWS THEN

v_name := 'Multiple Names';
END;

INSERT INTO CHAP4
VALUES (v_id, v_name);

BEGIN
SELECT i.last_name
INTO v_name
FROM instructor i, section s
WHERE s.instructor_id = i.instructor_id
HAVING COUNT(*) = (SELECT MAX(COUNT(*))

FROM instructor i, section s
WHERE s.instructor_id = i.instructor_id
GROUP BY i.instructor_id)

GROUP BY i.last_name;
EXCEPTION

WHEN TOO_MANY_ROWS THEN
v_name := 'Multiple Names';

END;

INSERT INTO CHAP4
VALUES (CHAP4_SEQ.NEXTVAL, v_name);

END;

Chapter 4,“Conditional Control: IF Statements”

1) Rewrite ch04_1a.sql. Instead of getting information from the user for the variable v_date, define
its value with the help of the function SYSDATE. After it has been determined that a certain day
falls on the weekend, check to see if the time is before or after noon. Display the time of day
together with the day.

ANSWER: The script should look similar to the following. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

v_day VARCHAR2(15);
v_time VARCHAR(8);

BEGIN
v_day := TO_CHAR(SYSDATE, 'fmDAY');
v_time := TO_CHAR(SYSDATE, 'HH24:MI');

IF v_day IN ('SATURDAY', 'SUNDAY') THEN
DBMS_OUTPUT.PUT_LINE (v_day||', '||v_time);
IF v_time BETWEEN '12:01' AND '24:00' THEN

DBMS_OUTPUT.PUT_LINE ('It''s afternoon');
ELSE

DBMS_OUTPUT.PUT_LINE ('It''s morning');
END IF;

APPENDIX D: Answers to the Try it Yourself Sections 619

END IF;

-- control resumes here
DBMS_OUTPUT.PUT_LINE('Done...');

END;

In this exercise, you remove the variable v_date that was used to store the date provided by the
user. You add the variable v_time to store the time of the day. You also modify the statement

v_day := TO_CHAR(SYSDATE, 'fmDAY');

so that DAY is prefixed by the letters fm. This guarantees that extra spaces will be removed from
the name of the day. Then you add another statement that determines the current time of day
and stores it in the variable v_time. Finally, you add an IF-THEN-ELSE statement that checks the
time of day and displays the appropriate message.

Notice that two consecutive single quotes are used in the second and third
DBMS_OUTPUT.PUT_LINE statements. This allows you to use an apostrophe in your message.

When run, this exercise produces the following output:

SUNDAY, 16:19
It's afternoon
Done...

PLSQL procedure successfully completed.

2) Create a new script. For a given instructor, determine how many sections he or she is teaching. If
the number is greater than or equal to 3, display a message saying that the instructor needs a
vacation. Otherwise, display a message saying how many sections this instructor is teaching.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

v_instructor_id NUMBER := &sv_instructor_id;
v_total NUMBER;

BEGIN
SELECT COUNT(*)
INTO v_total
FROM section
WHERE instructor_id = v_instructor_id;

-- check if instructor teaches 3 or more sections
IF v_total >= 3 THEN

DBMS_OUTPUT.PUT_LINE ('This instructor needs '||
'a vacation');

ELSE
DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||

v_total||' sections');
END IF;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

This script accepts a value for the instructor’s ID from a user. Next, it checks the number of
sections taught by the given instructor. This is accomplished with the help of the SELECT INTO

APPENDIX D: Answers to the Try it Yourself Sections620

statement. Next, it determines what message should be displayed on the screen with the help of
the IF-THEN-ELSE statement. If a particular instructor teaches three or more sections, the condition
of the IF-THEN-ELSE statement evaluates to TRUE, and the message This instructor
needs a vacation is displayed to the user. In the opposite case, the message stating how
many sections an instructor is teaching is displayed. Assume that value 101 was provided at
runtime. Then the script produces the following output:

Enter value for sv_instructor_id: 101
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 101;
This instructor needs a vacation

PLSQL procedure successfully completed.

3) Execute the following two PL/SQL blocks, and explain why they produce different output for the
same value of the variable v_num. Remember to issue the SET SERVEROUTPUT ON command
before running this script.

-- Block 1
DECLARE

v_num NUMBER := NULL;
BEGIN

IF v_num > 0 THEN
DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

ELSE
DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');

END IF;
END;

-- Block 2
DECLARE

v_num NUMBER := NULL;
BEGIN

IF v_num > 0 THEN
DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

END IF;
IF NOT (v_num > 0) THEN

DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');
END IF;

END;

ANSWER: Consider the output produced by the preceding scripts:

-- Block1
v_num is not greater than 0

PLSQL procedure successfully completed.

-- Block 2
PLSQL procedure successfully completed.

The output produced by Block 1 and Block 2 is different, even though in both examples variable
v_num is defined as NULL.

APPENDIX D: Answers to the Try it Yourself Sections 621

First, take a closer look at the IF-THEN-ELSE statement used in Block 1:

IF v_num > 0 THEN
DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

ELSE
DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');

END IF;

The condition v_num > 0 evaluates to FALSE because NULL has been assigned to the variable
v_num. As a result, control is transferred to the ELSE part of the IF-THEN-ELSE statement. So the
message v_num is not greater than 0 is displayed on the screen.

Second, take a closer look at the IF-THEN statements used in Block 2:

IF v_num > 0 THEN
DBMS_OUTPUT.PUT_LINE ('v_num is greater than 0');

END IF;
IF NOT (v_num > 0) THEN

DBMS_OUTPUT.PUT_LINE ('v_num is not greater than 0');
END IF;

The conditions of both IF-THEN statements evaluate to FALSE. As a result, neither message is
displayed on the screen.

Chapter 5,“Conditional Control: CASE Statements”

1) Create the following script. Modify the script you created in Chapter 4, project 1 of the “Try It
Yourself” section. You can use either the CASE statement or the searched CASE statement. The
output should look similar to the output produced by the example you created in Chapter 4.

ANSWER: Consider the script you created in Chapter 4:

SET SERVEROUTPUT ON
DECLARE

v_day VARCHAR2(15);
v_time VARCHAR(8);

BEGIN
v_day := TO_CHAR(SYSDATE, 'fmDAY');
v_time := TO_CHAR(SYSDATE, 'HH24:MI');

IF v_day IN ('SATURDAY', 'SUNDAY') THEN
DBMS_OUTPUT.PUT_LINE (v_day||', '||v_time);

IF v_time BETWEEN '12:01' AND '24:00' THEN
DBMS_OUTPUT.PUT_LINE ('It''s afternoon');

ELSE
DBMS_OUTPUT.PUT_LINE ('It''s morning');

END IF;

END IF;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

APPENDIX D: Answers to the Try it Yourself Sections622

Next, consider the modified version of the script with nested CASE statements. For illustrative
purposes, this script uses both CASE and searched CASE statements. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

v_day VARCHAR2(15);
v_time VARCHAR(8);

BEGIN
v_day := TO_CHAR(SYSDATE, 'fmDay');
v_time := TO_CHAR(SYSDATE, 'HH24:MI');

-- CASE statement
CASE SUBSTR(v_day, 1, 1)

WHEN 'S' THEN
DBMS_OUTPUT.PUT_LINE (v_day||', '||v_time);

-- searched CASE statement
CASE

WHEN v_time BETWEEN '12:01' AND '24:00' THEN
DBMS_OUTPUT.PUT_LINE ('It''s afternoon');

ELSE
DBMS_OUTPUT.PUT_LINE ('It''s morning');

END CASE;
END CASE;

-- control resumes here
DBMS_OUTPUT.PUT_LINE('Done...');

END;

In this exercise, you substitute nested CASE statements for nested IF statements. Consider the
outer CASE statement. It uses a selector expression

SUBSTR(v_day, 1, 1)

to check if a current day falls on the weekend. Notice that it derives only the first letter of the day.
This is a good solution when using a CASE statement, because only Saturday and Sunday start
with S. Furthermore, without using the SUBSTR function, you would need to use a searched CASE
statement. Recall that the value of the WHEN expression is compared to the value of the selector.
As a result, the WHEN expression must return a similar datatype. In this example, the selector
expression returns a string datatype, so the WHEN expression must also return a string datatype.

Next, you use a searched CASE to validate the time of day. Recall that, similar to the IF statement,
the WHEN conditions of the searched CASE statement yield Boolean values.

When run, this exercise produces the following output:

Saturday, 19:49
It's afternoon
Done...

PLSQL procedure successfully completed.

2) Create the following script: Modify the script you created in Chapter 4, project 2 of the “Try It
Yourself” section. You can use either the CASE statement or the searched CASE statement. The
output should look similar to the output produced by the example you created in Chapter 4.

APPENDIX D: Answers to the Try it Yourself Sections 623

ANSWER: Consider the script you created in Chapter 4:

SET SERVEROUTPUT ON
DECLARE

v_instructor_id NUMBER := &sv_instructor_id;
v_total NUMBER;

BEGIN
SELECT COUNT(*)
INTO v_total
FROM section
WHERE instructor_id = v_instructor_id;

-- check if instructor teaches 3 or more sections
IF v_total >= 3 THEN

DBMS_OUTPUT.PUT_LINE ('This instructor needs '||
'a vacation');

ELSE
DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||

v_total||' sections');
END IF;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

Next, consider a modified version of the script, with the searched CASE statement instead of the
IF-THEN-ELSE statement. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

v_instructor_id NUMBER := &sv_instructor_id;
v_total NUMBER;

BEGIN
SELECT COUNT(*)
INTO v_total
FROM section
WHERE instructor_id = v_instructor_id;

-- check if instructor teaches 3 or more sections
CASE

WHEN v_total >= 3 THEN
DBMS_OUTPUT.PUT_LINE ('This instructor needs '||

'a vacation');
ELSE

DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||
v_total||' sections');

END CASE;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

APPENDIX D: Answers to the Try it Yourself Sections624

Assume that value 109 was provided at runtime. Then the script produces the following output:

Enter value for sv_instructor_id: 109
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 109;
This instructor teaches 1 sections
Done...

PLSQL procedure successfully completed.

To use the CASE statement, the searched CASE statement could be modified as follows:

CASE SIGN(v_total - 3)
WHEN -1 THEN

DBMS_OUTPUT.PUT_LINE ('This instructor teaches '||
v_total||' sections');

ELSE
DBMS_OUTPUT.PUT_LINE ('This instructor needs '||

'a vacation');
END CASE;

Notice that the SIGN function is used to determine if an instructor teaches three or more sections.
Recall that the SIGN function returns –1 if v_total is less than 3, 0 if v_total equals 3, and 1
if v_total is greater than 3. In this case, as long as the SIGN function returns –1, the message
This instructor teaches ... is displayed on the screen. In all other cases, the message
This instructor needs a vacation is displayed on the screen.

3) Execute the following two SELECT statements, and explain why they produce different output:

SELECT e.student_id, e.section_id, e.final_grade, g.numeric_grade,
COALESCE(g.numeric_grade, e.final_grade) grade

FROM enrollment e, grade g
WHERE e.student_id = g.student_id
AND e.section_id = g.section_id
AND e.student_id = 102
AND g.grade_type_code = 'FI';

SELECT e.student_id, e.section_id, e.final_grade, g.numeric_grade,
NULLIF(g.numeric_grade, e.final_grade) grade

FROM enrollment e, grade g
WHERE e.student_id = g.student_id
AND e.section_id = g.section_id
AND e.student_id = 102
AND g.grade_type_code = 'FI';

ANSWER: Consider the output produced by the following SELECT statements:

STUDENT_ID SECTION_ID FINAL_GRADE NUMERIC_GRADE GRADE
---------- ---------- ----------- ------------- ----------

102 86 85 85
102 89 92 92 92

APPENDIX D: Answers to the Try it Yourself Sections 625

STUDENT_ID SECTION_ID FINAL_GRADE NUMERIC_GRADE GRADE
---------- ---------- ----------- ------------- ----------

102 86 85 85
102 89 92 92

Consider the output returned by the first SELECT statement. This statement uses the COALESCE
function to derive the value of GRADE. It equals the value of NUMERIC_GRADE in the first row and
the value of FINAL_GRADE in the second row.

The COALESCE function compares the value of FINAL_GRADE to NULL. If it is NULL, the value of
NUMERIC_GRADE is compared to NULL. Because the value of NUMERIC_GRADE is not NULL, the
COALESCE function returns the value of NUMERIC_GRADE in the first row. In the second row, the
COALESCE function returns the value of FINAL_GRADE because it is not NULL.

Next, consider the output returned by the second SELECT statement. This statement uses the
NULLIF function to derive the value of GRADE. It equals the value of NUMERIC_GRADE in the first
row, and it is NULL in the second row.

The NULLIF function compares the NUMERIC_GRADE value to the FINAL_GRADE value. If these
values are equal, the NULLIF function returns NULL. In the opposite case, it returns the value of
NUMERIC_GRADE.

Chapter 6,“Iterative Control: Part I”

1) Rewrite script ch06_1a.sql using a WHILE loop instead of a simple loop. Make sure that the output
produced by this script does not differ from the output produced by the script ch06_1a.sql.

ANSWER: Consider script ch06_1a.sql:

SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 0;
BEGIN

LOOP
-- increment loop counter by one
v_counter := v_counter + 1;
DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

-- if EXIT condition yields TRUE exit the loop
IF v_counter = 5 THEN

EXIT;
END IF;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Done...');

END;

Next, consider a new version of the script that uses a WHILE loop. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 0;
BEGIN

WHILE v_counter < 5 LOOP

APPENDIX D: Answers to the Try it Yourself Sections626

-- increment loop counter by one
v_counter := v_counter + 1;
DBMS_OUTPUT.PUT_LINE ('v_counter = '||v_counter);

END LOOP;

-- control resumes here
DBMS_OUTPUT.PUT_LINE('Done...');

END;

In this version of the script, you replace a simple loop with a WHILE loop. It is important to remem-
ber that a simple loop executes at least once because the EXIT condition is placed in the body of
the loop. On the other hand, a WHILE loop may not execute at all, because a condition is tested
outside the body of the loop. So, to achieve the same results using the WHILE loop, the EXIT
condition

v_counter = 5

used in the original version is replaced by the test condition

v_counter < 5

When run, this example produces the following output:

v_counter = 1
v_counter = 2
v_counter = 3
v_counter = 4
v_counter = 5
Done...

PL/SQL procedure successfully completed.

2) Rewrite script ch06_3a.sql using a numeric FOR loop instead of a WHILE loop. Make sure that
the output produced by this script does not differ from the output produced by the script
ch06_3a.sql.

ANSWER: Consider script ch06_3a.sql:

SET SERVEROUTPUT ON
DECLARE

v_counter BINARY_INTEGER := 1;
v_sum NUMBER := 0;

BEGIN
WHILE v_counter <= 10 LOOP

v_sum := v_sum + v_counter;
DBMS_OUTPUT.PUT_LINE ('Current sum is: '||v_sum);

-- increment loop counter by one
v_counter := v_counter + 1;

END LOOP;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('The sum of integers between 1 '||

'and 10 is: '||v_sum);
END;

APPENDIX D: Answers to the Try it Yourself Sections 627

Next, consider a new version of the script that uses a WHILE loop. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

v_sum NUMBER := 0;
BEGIN

FOR v_counter IN 1..10 LOOP
v_sum := v_sum + v_counter;
DBMS_OUTPUT.PUT_LINE ('Current sum is: '||v_sum);

END LOOP;

-- control resumes here
DBMS_OUTPUT.PUT_LINE ('The sum of integers between 1 '||

'and 10 is: '||v_sum);
END;

In this version of the script, you replace a WHILE loop with a numeric FOR loop. As a result, there is
no need to declare the variable v_counter and increment it by 1, because the loop itself
handles these steps implicitly.

When run, this version of the script produces output identical to the output produced by the
original version:

Current sum is: 1
Current sum is: 3
Current sum is: 6
Current sum is: 10
Current sum is: 15
Current sum is: 21
Current sum is: 28
Current sum is: 36
Current sum is: 45
Current sum is: 55
The sum of integers between 1 and 10 is: 55

PL/SQL procedure successfully completed.

3) Rewrite script ch06_4a.sql using a simple loop instead of a numeric FOR loop. Make sure that the
output produced by this script does not differ from the output produced by the script
ch06_4a.sql.

ANSWER: Recall script ch06_4a.sql:

SET SERVEROUTPUT ON
DECLARE

v_factorial NUMBER := 1;
BEGIN

FOR v_counter IN 1..10 LOOP
v_factorial := v_factorial * v_counter;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Factorial of ten is: '||v_factorial);

END;

APPENDIX D: Answers to the Try it Yourself Sections628

Next, consider a new version of the script that uses a simple loop. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

v_counter NUMBER := 1;
v_factorial NUMBER := 1;

BEGIN
LOOP
v_factorial := v_factorial * v_counter;

v_counter := v_counter + 1;
EXIT WHEN v_counter = 10;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Factorial of ten is: '||v_factorial);

END;

In this version of the script, you replace a numeric FOR loop with a simple loop. As a result, you
should make three important changes. First, you need to declare and initialize the loop counter,
v_counter. This counter is implicitly defined and initialized by the FOR loop. Second, you need
to increment the value of the loop counter. This is very important, because if you forget to include
the statement

v_counter := v_counter + 1;

in the body of the simple loop, you end up with an infinite loop. This step is not necessary when
you use a numeric FOR loop, because it is done by the loop itself.

Third, you need to specify the EXIT condition for the simple loop. Because you are computing a
factorial of 10, the following EXIT condition is specified:

EXIT WHEN v_counter = 10;

You could specify this EXIT condition using an IF-THEN statement as well:

IF v_counter = 10 THEN
EXIT;

END IF;

When run, this example shows the following output:

Factorial of ten is: 362880

PL/SQL procedure successfully completed.

Chapter 7,“Iterative Control: Part II”

1) Rewrite script ch06_4a.sql to calculate the factorial of even integers only between 1 and 10. The
script should use a CONTINUE or CONTINUE WHEN statement.

ANSWER: Recall script ch06_4a.sql:

SET SERVEROUTPUT ON
DECLARE

v_factorial NUMBER := 1;
BEGIN

FOR v_counter IN 1..10 LOOP

APPENDIX D: Answers to the Try it Yourself Sections 629

v_factorial := v_factorial * v_counter;
END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE ('Factorial of ten is: '||v_factorial);

END;

Next, consider a new version of the script that uses a CONTINUE WHEN statement. Changes are
shown in bold.

SET SERVEROUTPUT ON
DECLARE

v_factorial NUMBER := 1;
BEGIN

FOR v_counter IN 1..10 LOOP
CONTINUE WHEN MOD(v_counter, 2) != 0;
v_factorial := v_factorial * v_counter;

END LOOP;
-- control resumes here
DBMS_OUTPUT.PUT_LINE

('Factorial of even numbers between 1 and 10 is: '||
v_factorial);

END;

In this version of the script, you add a CONTINUE WHEN statement that passes control to the top
of the loop if the current value of v_counter is not an even number. The rest of the script
remains unchanged. Note that you could specify the CONTINUE condition using an IF-THEN state-
ment as well:

IF MOD(v_counter, 2) != 0 THEN
CONTINUE;

END IF;

When run, this example shows the following output:

Factorial of even numbers between 1 and 10 is: 3840

PL/SQL procedure successfully completed.

2) Rewrite script ch07_3a.sql using a simple loop instead of the outer FOR loop, and a WHILE loop for
the inner FOR loop. Make sure that the output produced by this script does not differ from the
output produced by the original script.

ANSWER: Consider the original version of the script:

SET SERVEROUTPUT ON
DECLARE

v_test NUMBER := 0;
BEGIN

<<outer_loop>>
FOR i IN 1..3 LOOP

DBMS_OUTPUT.PUT_LINE('Outer Loop');
DBMS_OUTPUT.PUT_LINE('i = '||i);
DBMS_OUTPUT.PUT_LINE('v_test = '||v_test);
v_test := v_test + 1;

APPENDIX D: Answers to the Try it Yourself Sections630

<<inner_loop>>
FOR j IN 1..2 LOOP

DBMS_OUTPUT.PUT_LINE('Inner Loop');
DBMS_OUTPUT.PUT_LINE('j = '||j);
DBMS_OUTPUT.PUT_LINE('i = '||i);
DBMS_OUTPUT.PUT_LINE('v_test = '||v_test);

END LOOP inner_loop;
END LOOP outer_loop;

END;

Next, consider a modified version of the script that uses simple and WHILE loops. Changes are
shown in bold.

SET SERVEROUTPUT ON
DECLARE

i INTEGER := 1;
j INTEGER := 1;
v_test NUMBER := 0;

BEGIN
<<outer_loop>>
LOOP
DBMS_OUTPUT.PUT_LINE ('Outer Loop');
DBMS_OUTPUT.PUT_LINE ('i = '||i);
DBMS_OUTPUT.PUT_LINE ('v_test = '||v_test);
v_test := v_test + 1;

-- reset inner loop counter
j := 1;

<<inner_loop>>
WHILE j <= 2 LOOP

DBMS_OUTPUT.PUT_LINE ('Inner Loop');
DBMS_OUTPUT.PUT_LINE ('j = '||j);
DBMS_OUTPUT.PUT_LINE ('i = '||i);
DBMS_OUTPUT.PUT_LINE ('v_test = '||v_test);
j := j + 1;

END LOOP inner_loop;

i := i + 1;
-- EXIT condition of the outer loop
EXIT WHEN i > 3;

END LOOP outer_loop;
END;

Note that this version of the script contains changes that are important due to the nature of the
loops that are used.

First, both counters, for outer and inner loops, must be declared and initialized. Moreover, the
counter for the inner loop must be initialized to 1 before the inner loop is executed, not in the
declaration section of this script. In other words, the inner loop executes three times. It is impor-
tant not to confuse the phrase execution of the loop with the term iteration. Each execution of the

APPENDIX D: Answers to the Try it Yourself Sections 631

WHILE loop causes the statements inside this loop to iterate twice. Before each execution, the loop
counter j must be reset to 1 again. This step is necessary because the WHILE loop does not initial-
ize its counter implicitly like a numeric FOR loop. As a result, after the first execution of the WHILE
loop is complete, the value of counter j is equal to 3. If this value is not reset to 1 again, the loop
does not execute a second time.

Second, both loop counters must be incremented. Third, the EXIT condition must be specified for
the outer loop, and the test condition must be specified for the inner loop.

When run, the exercise produces the following output:

Outer Loop
i = 1
v_test = 0
Inner Loop
j = 1
i = 1
v_test = 1
Inner Loop
j = 2
i = 1
v_test = 1
Outer Loop
i = 2
v_test = 1
Inner Loop
j = 1
i = 2
v_test = 2
Inner Loop
j = 2
i = 2
v_test = 2
Outer Loop
i = 3
v_test = 2
Inner Loop
j = 1
i = 3
v_test = 3
Inner Loop
j = 2
i = 3
v_test = 3

PL/SQL procedure successfully completed.

Chapter 8,“Error Handling and Built-In Exceptions”

1) Create the following script: Check to see whether there is a record in the STUDENT table for a
given student ID. If there is not, insert a record into the STUDENT table for the given student ID.

APPENDIX D: Answers to the Try it Yourself Sections632

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

v_student_id NUMBER := &sv_student_id;
v_first_name VARCHAR2(30) := '&sv_first_name';
v_last_name VARCHAR2(30) := '&sv_last_name';
v_zip CHAR(5) := '&sv_zip';
v_name VARCHAR2(50);

BEGIN
SELECT first_name||' '||last_name
INTO v_name
FROM student
WHERE student_id = v_student_id;

DBMS_OUTPUT.PUT_LINE ('Student '||v_name||' is a valid student');
EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE

('This student does not exist, and will be '||
'added to the STUDENT table');

INSERT INTO student
(student_id, first_name, last_name, zip, registration_date,
created_by, created_date, modified_by, modified_date)

VALUES
(v_student_id, v_first_name, v_last_name, v_zip, SYSDATE,
USER, SYSDATE, USER, SYSDATE);

COMMIT;
END;

This script accepts a value for student’s ID from a user. For a given student ID, it determines the
student’s name using the SELECT INTO statement and displays it on the screen. If the value
provided by the user is not a valid student ID, control of execution is passed to the exception-
handling section of the block, where the NO_DATA_FOUND exception is raised. As a result, the
message This student does not exist ... is displayed on the screen, and a new record is
inserted into the STUDENT table.

To test this script fully, consider running it for two values of student ID. Only one value should
correspond to an existing student ID. It is important to note that a valid zip code must be
provided for both runs. Why do you think this is necessary?

When 319 is provided for the student ID (it is a valid student ID), this exercise produces the follow-
ing output:

Enter value for sv_student_id: 319
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 319;
Enter value for sv_first_name: John
old 3: v_first_name VARCHAR2(30) := '&sv_first_name';
new 3: v_first_name VARCHAR2(30) := 'John';
Enter value for sv_last_name: Smith
old 4: v_last_name VARCHAR2(30) := '&sv_last_name';
new 4: v_last_name VARCHAR2(30) := 'Smith';

APPENDIX D: Answers to the Try it Yourself Sections 633

Enter value for sv_zip: 07421
old 5: v_zip CHAR(5) := '&sv_zip';
new 5: v_zip CHAR(5) := '07421';
Student George Eakheit is a valid student

PLSQL procedure successfully completed.

Notice that the name displayed by the script does not correspond to the name entered at
runtime. Why do you think this is?

When 555 is provided for the student ID (it is not a valid student ID), this exercise produces the
following output:

Enter value for sv_student_id: 555
old 2: v_student_id NUMBER := &sv_student_id;
new 2: v_student_id NUMBER := 555;
Enter value for sv_first_name: John
old 3: v_first_name VARCHAR2(30) := '&sv_first_name';
new 3: v_first_name VARCHAR2(30) := 'John';
Enter value for sv_last_name: Smith
old 4: v_last_name VARCHAR2(30) := '&sv_last_name';
new 4: v_last_name VARCHAR2(30) := 'Smith';
Enter value for sv_zip: 07421
old 5: v_zip CHAR(5) := '&sv_zip';
new 5: v_zip CHAR(5) := '07421';
This student does not exist, and will be added to the STUDENT table

PLSQL procedure successfully completed.

Next, you can select this new record from the STUDENT table as follows:

SELECT student_id, first_name, last_name
FROM student
WHERE student_id = 555;

STUDENT_ID FIRST_NAME LAST_NAME
---------- ------------------------- ----------------

555 John Smith

2) Create the following script: For a given instructor ID, check to see whether it is assigned to a valid
instructor. Then check to see how many sections this instructor teaches, and display this informa-
tion on the screen.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

v_instructor_id NUMBER := &sv_instructor_id;
v_name VARCHAR2(50);
v_total NUMBER;

BEGIN
SELECT first_name||' '||last_name
INTO v_name
FROM instructor
WHERE instructor_id = v_instructor_id;

APPENDIX D: Answers to the Try it Yourself Sections634

-- check how many sections are taught by this instructor
SELECT COUNT(*)
INTO v_total
FROM section
WHERE instructor_id = v_instructor_id;

DBMS_OUTPUT.PUT_LINE ('Instructor, '||v_name||
', teaches '||v_total||' section(s)');

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('This is not a valid instructor');
END;

This script accepts a value for the instructor’s ID from a user. For a given instructor ID, it deter-
mines the instructor’s name using the SELECT INTO statement. This SELECT INTO statement checks
to see if the ID provided by the user is a valid instructor ID. If this value is not valid, control of
execution is passed to the exception-handling section of the block, where the NO_DATA_FOUND
exception is raised. As a result, the message This is not a valid instructor is displayed
on the screen. On the other hand, if the value provided by the user is a valid instructor ID, the
second SELECT INTO statement calculates how many sections are taught by this instructor.

To test this script fully, consider running it for two values of instructor ID. When 105 is provided for
the instructor ID (it is a valid instructor ID), this exercise produces the following output:

Enter value for sv_instructor_id: 105
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 105;
Instructor, Anita Morris, teaches 10 section(s)

PLSQL procedure successfully completed.

When 123 is provided for the instructor ID (it is not a valid student ID), this exercise produces the
following output:

Enter value for sv_instructor_id: 123
old 2: v_instructor_id NUMBER := &sv_instructor_id;
new 2: v_instructor_id NUMBER := 123;
This is not a valid instructor

PLSQL procedure successfully completed.

Chapter 9,“Exceptions”

1) Create the following script: For a course section provided at runtime, determine the number of
students registered. If this number is equal to or greater than 10, raise the user-defined exception
e_too_many_students and display an error message. Otherwise, display how many
students are in a section.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

v_section_id NUMBER := &sv_section_id;
v_total_students NUMBER;
e_too_many_students EXCEPTION;

APPENDIX D: Answers to the Try it Yourself Sections 635

BEGIN
-- Calculate number of students enrolled
SELECT COUNT(*)
INTO v_total_students
FROM enrollment
WHERE section_id = v_section_id;

IF v_total_students >= 10 THEN
RAISE e_too_many_students;

ELSE
DBMS_OUTPUT.PUT_LINE ('There are '||v_total_students||

' students for section ID: '||v_section_id);
END IF;

EXCEPTION
WHEN e_too_many_students THEN

DBMS_OUTPUT.PUT_LINE ('There are too many '||
'students for section '||v_section_id);

END;

In this script, you declare two variables,v_section_id and v_total_students, to store
the section ID provided by the user and the total number of students in that section ID, respec-
tively. You also declare a user-defined exception e_too_many_students. You raise this
exception using the IF-THEN statement if the value returned by the COUNT function exceeds 10.
Otherwise, you display the message specifying how many students are enrolled in a given section.

To test this script fully, consider running it for two values of section ID. When 101 is provided for
the section ID (this section has more than ten students), this script produces the following output:

Enter value for sv_section_id: 101
old 2: v_section_id NUMBER := &sv_section_id;
new 2: v_section_id NUMBER := 101;
There are too many students for section 101

PL/SQL procedure successfully completed.

When 116 is provided for the section ID (this section has fewer than ten students), this script
produces different output:

Enter value for sv_section_id: 116
old 2: v_section_id NUMBER := &sv_section_id;
new 2: v_section_id NUMBER := 116;
There are 8 students for section ID: 116

PL/SQL procedure successfully completed.

Next, consider running this script for a nonexistent section ID:

Enter value for sv_section_id: 999
old 2: v_section_id NUMBER := &sv_section_id;
new 2: v_section_id NUMBER := 999;
There are 0 students for section ID: 999

PL/SQL procedure successfully completed.

APPENDIX D: Answers to the Try it Yourself Sections636

Note that the script does not produce any errors. Instead, it states that section 999 has 0 students.
How would you modify this script to ensure that when there is no corresponding section ID in the
ENROLLMENT table, the message This section does not exist is displayed on the
screen?

2) Modify the script you just created. After the exception e_too_many_students has been
raised in the inner block, reraise it in the outer block.

ANSWER: The new version of the script should look similar to the following. Changes are shown
in bold.

SET SERVEROUTPUT ON
DECLARE

v_section_id NUMBER := &sv_section_id;
v_total_students NUMBER;
e_too_many_students EXCEPTION;

BEGIN
-- Add inner block
BEGIN

-- Calculate number of students enrolled
SELECT COUNT(*)
INTO v_total_students
FROM enrollment
WHERE section_id = v_section_id;

IF v_total_students >= 10 THEN
RAISE e_too_many_students;

ELSE
DBMS_OUTPUT.PUT_LINE ('There are '||v_total_students||

' students for section ID: '||v_section_id);
END IF;

-- Re-raise exception
EXCEPTION

WHEN e_too_many_students THEN
RAISE;

END;
EXCEPTION

WHEN e_too_many_students THEN
DBMS_OUTPUT.PUT_LINE ('There are too many '||

'students for section '||v_section_id);
END;

In this version of the script, you introduce an inner block where the e_too_many_students
exception is raised first and then propagated to the outer block. This version of the script
produces output identical to the original script.

Next, consider a different version in which the original PL/SQL block (the PL/SQL block from the
original script) has been enclosed in another block:

SET SERVEROUTPUT ON
-- Outer PL/SQL block
BEGIN

-- This block became inner PL/SQL block

APPENDIX D: Answers to the Try it Yourself Sections 637

DECLARE
v_section_id NUMBER := &sv_section_id;
v_total_students NUMBER;
e_too_many_students EXCEPTION;

BEGIN
-- Calculate number of students enrolled
SELECT COUNT(*)
INTO v_total_students
FROM enrollment
WHERE section_id = v_section_id;

IF v_total_students >= 10 THEN
RAISE e_too_many_students;

ELSE
DBMS_OUTPUT.PUT_LINE ('There are '||v_total_students||

' students for section ID: '||v_section_id);
END IF;

EXCEPTION
WHEN e_too_many_students THEN

RAISE;
END;

EXCEPTION
WHEN e_too_many_students THEN

DBMS_OUTPUT.PUT_LINE ('There are too many '||
'students for section '||v_section_id);

END;

This version of the script causes the following error message:

Enter value for sv_section_id: 101
old 4: v_section_id NUMBER := &sv_section_id;
new 4: v_section_id NUMBER := 101;

WHEN e_too_many_students THEN
*

ERROR at line 26:
ORA-06550: line 26, column 9:
PLS-00201: identifier 'E_TOO_MANY_STUDENTS' must be declared
ORA-06550: line 0, column 0:
PL/SQL: Compilation unit analysis terminated

This occurs because the e_too_many_students exception is declared in the inner block
and, as a result, is not visible to the outer block. In addition, the v_section_id variable used
by the exception-handling section of the outer block is declared in the inner block as well, and, as
a result, is not accessible in the outer block.

To correct these errors, the previous version of the script can be modified as follows:

SET SERVEROUTPUT ON
-- Outer PL/SQL block
DECLARE

v_section_id NUMBER := &sv_section_id;
e_too_many_students EXCEPTION;

APPENDIX D: Answers to the Try it Yourself Sections638

BEGIN
-- This block became inner PL/SQL block
DECLARE

v_total_students NUMBER;
BEGIN

-- Calculate number of students enrolled
SELECT COUNT(*)
INTO v_total_students
FROM enrollment
WHERE section_id = v_section_id;

IF v_total_students >= 10 THEN
RAISE e_too_many_students;

ELSE
DBMS_OUTPUT.PUT_LINE ('There are '||v_total_students||

' students for section ID: '||v_section_id);
END IF;

EXCEPTION
WHEN e_too_many_students THEN

RAISE;
END;

EXCEPTION
WHEN e_too_many_students THEN

DBMS_OUTPUT.PUT_LINE ('There are too many '||
'students for section '||v_section_id);

END;

Chapter 10,“Exceptions: Advanced Concepts”

1) Modify the script you created in project 1 of the “Try It Yourself” section in Chapter 9. Raise a user-
defined exception with the RAISE_APPLICATION_ERROR statement. Otherwise, display how many
students are in a section. Make sure your program can process all sections.

ANSWER: The script should look similar to the following. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

v_section_id NUMBER := &sv_section_id;
v_total_students NUMBER;

BEGIN
-- Calculate number of students enrolled
SELECT COUNT(*)
INTO v_total_students
FROM enrollment
WHERE section_id = v_section_id;

IF v_total_students >= 10 THEN
RAISE_APPLICATION_ERROR

(-20000, 'There are too many students for '||
'section '||v_section_id);

APPENDIX D: Answers to the Try it Yourself Sections 639

ELSE
DBMS_OUTPUT.PUT_LINE ('There are '||v_total_students||

' students for section ID: '||v_section_id);
END IF;

END;

In this version of the script, you use the RAISE_APPLICATION_ERROR statement to handle the
following error condition: If the number of students enrolled in a particular section is equal to or
greater than ten, an error is raised. It is important to remember that the RAISE_APPLICATION_
ERROR statement works with the unnamed user-defined exceptions. Therefore, notice that there is
no reference to the exception e_too_many_students anywhere in this script. On the other
hand, an error number has been associated with the error message.

When run, this exercise produces the following output (the same section IDs are used for this
script as well: 101, 116, and 999):

Enter value for sv_section_id: 101
old 2: v_section_id NUMBER := &sv_section_id;
new 2: v_section_id NUMBER := 101;
DECLARE
*
ERROR at line 1:
ORA-20000: There are too many students for section 101
ORA-06512: at line 12

Enter value for sv_section_id: 116
old 2: v_section_id NUMBER := &sv_section_id;
new 2: v_section_id NUMBER := 116;
There are 8 students for section ID: 116

PL/SQL procedure successfully completed.

Enter value for sv_section_id: 999
old 2: v_section_id NUMBER := &sv_section_id;
new 2: v_section_id NUMBER := 999;
There are 0 students for section ID: 999

PL/SQL procedure successfully completed.

2) Create the following script: Try to add a record to the INSTRUCTOR table without providing values
for the columns CREATED_BY, CREATED_DATE, MODIFIED_BY, and MODIFIED_DATE. Define an
exception and associate it with the Oracle error number so that the error generated by the INSERT
statement is handled.

ANSWER: Consider the following script. Notice that it has no exception handlers:

DECLARE
v_first_name instructor.first_name%type := '&sv_first_name';
v_last_name instructor.last_name%type := '&sv_last_name';

BEGIN
INSERT INTO instructor

(instructor_id, first_name, last_name)

APPENDIX D: Answers to the Try it Yourself Sections640

VALUES
(INSTRUCTOR_ID_SEQ.NEXTVAL, v_first_name, v_last_name);

COMMIT;
END;

In this version of the script, you are trying to add a new record to the INSTRUCTOR table. The
INSERT statement has only three columns: INSTRUCTOR_ID, FIRST_NAME, and LAST_NAME. The
value for the column INSTRUCTOR_ID is determined from the sequence INSTRUCTOR_ID_SEQ, and
the user provides the values for the columns FIRST_NAME and LAST_NAME.

When run, this script produces the following error message:

Enter value for sv_first_name: John
old 2: '&sv_first_name';
new 2: 'John';
Enter value for sv_last_name: Smith
old 3: '&sv_last_name';
new 3: 'Smith';
DECLARE
*
ERROR at line 1:
ORA-01400: cannot insert NULL into
("STUDENT"."INSTRUCTOR"."CREATED_BY")

ORA-06512: at line 5

This error message states that a NULL value cannot be inserted into the column CREATED_BY of
the INSTRUCTOR table. Therefore, you need to add an exception handler to the script, as follows.
Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

v_first_name instructor.first_name%type := '&sv_first_name';
v_last_name instructor.last_name%type := '&sv_last_name';

e_non_null_value EXCEPTION;
PRAGMA EXCEPTION_INIT(e_non_null_value, -1400);

BEGIN
INSERT INTO INSTRUCTOR

(instructor_id, first_name, last_name)
VALUES

(INSTRUCTOR_ID_SEQ.NEXTVAL, v_first_name, v_last_name);
COMMIT;

EXCEPTION
WHEN e_non_null_value THEN

DBMS_OUTPUT.PUT_LINE ('A NULL value cannot be '||
'inserted. Check constraints on the INSTRUCTOR table.');

END;

In this version of the script, you declare a new exception called e_non_null_value. Next,
you associate an Oracle error number with this exception. As a result, you can add an exception-
handling section to trap the error generated by Oracle.

APPENDIX D: Answers to the Try it Yourself Sections 641

When run, the new version produces the following output:

Enter value for sv_first_name: John
old 2: '&sv_first_name';
new 2: 'John';
Enter value for sv_last_name: Smith
old 3: '&sv_last_name';
new 3: 'Smith';
A NULL value cannot be inserted. Check constraints on the
INSTRUCTOR table.

PL/SQL procedure successfully completed.

3) Modify the script you just created. Instead of declaring a user-defined exception, add the OTHERS
exception handler to the exception-handling section of the block. Then display the error number
and the error message on the screen.

ANSWER: The script should look similar to the following. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

v_first_name instructor.first_name%type := '&sv_first_name';
v_last_name instructor.last_name%type := '&sv_last_name';

BEGIN
INSERT INTO INSTRUCTOR

(instructor_id, first_name, last_name)
VALUES

(INSTRUCTOR_ID_SEQ.NEXTVAL, v_first_name, v_last_name);
COMMIT;

EXCEPTION
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE ('Error code: '||SQLCODE);
DBMS_OUTPUT.PUT_LINE ('Error message: '||

SUBSTR(SQLERRM, 1, 200));
END;

Notice that as long as the OTHERS exception handler is used, there is no need to associate an
Oracle error number with a user-defined exception. When run, this exercise produces the follow-
ing output:

Enter value for sv_first_name: John
old 2: '&sv_first_name';
new 2: 'John';
Enter value for sv_last_name: Smith
old 3: '&sv_last_name';
new 3: 'Smith';
Error code: -1400
Error message: ORA-01400: cannot insert NULL into
("STUDENT"."INSTRUCTOR"."CREATED_BY")

PL/SQL procedure successfully completed.

APPENDIX D: Answers to the Try it Yourself Sections642

Chapter 11,“Introduction to Cursors”

1) Write a nested cursor in which the parent cursor SELECTs information about each section of a
course. The child cursor counts the enrollment. The only output is one line for each course, with
the course name, section number, and total enrollment.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

CURSOR c_course IS
SELECT course_no, description
FROM course
WHERE course_no < 120;

CURSOR c_enrollment(p_course_no IN course.course_no%TYPE)
IS

SELECT s.section_no section_no, count(*) count
FROM section s, enrollment e
WHERE s.course_no = p_course_no
AND s.section_id = e.section_id

GROUP BY s.section_no;
BEGIN

FOR r_course IN c_course LOOP
DBMS_OUTPUT.PUT_LINE

(r_course.course_no||' '|| r_course.description);

FOR r_enroll IN c_enrollment(r_course.course_no) LOOP
DBMS_OUTPUT.PUT_LINE
(Chr(9)||'Section: '||r_enroll.section_no||
' has an enrollment of: '||r_enroll.count);

END LOOP;

END LOOP;
END;

2) Write an anonymous PL/SQL block that finds all the courses that have at least one section that is
at its maximum enrollment. If no courses meet that criterion, pick two courses and create that
situation for each.

A) For each of those courses, add another section. The instructor for the new section should
be taken from the existing records in the instructor table. Use the instructor who is signed
up to teach the fewest courses. Handle the fact that, during the execution of your program,
the instructor teaching the most courses may change.

B) Use any exception-handling techniques you think are useful to capture error conditions.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

v_instid_min instructor.instructor_id%TYPE;
v_section_id_new section.section_id%TYPE;
v_snumber_recent section.section_no%TYPE := 0;

APPENDIX D: Answers to the Try it Yourself Sections 643

-- This cursor determines the courses that have at least
-- one section filled to capacity.
CURSOR c_filled IS

SELECT DISTINCT s.course_no
FROM section s
WHERE s.capacity = (SELECT COUNT(section_id)

FROM enrollment e
WHERE e.section_id = s.section_id);

BEGIN
FOR r_filled IN c_filled LOOP

-- For each course in this list, add another section.
-- First, determine the instructor who is teaching
-- the fewest courses. If more than one instructor
-- is teaching the same number of minimum courses
-- (e.g. if there are three instructors teaching one
-- course) use any of those instructors.
SELECT instructor_id
INTO v_instid_min
FROM instructor
WHERE EXISTS (SELECT NULL

FROM section
WHERE section.instructor_id =

instructor.instructor_id
GROUP BY instructor_id
HAVING COUNT(*) =
(SELECT MIN(COUNT(*))

FROM section
WHERE instructor_id IS NOT NULL
GROUP BY instructor_id)

)
AND ROWNUM = 1;

-- Determine the section_id for the new section.
-- Note that this method would not work in a multiuser
-- environment. A sequence should be used instead.
SELECT MAX(section_id) + 1
INTO v_section_id_new
FROM section;

-- Determine the section number for the new section.
-- This only needs to be done in the real world if
-- the system specification calls for a sequence in
-- a parent. The sequence in parent here refers to
-- the section_no incrementing within the course_no,
-- and not the section_no incrementing within the
-- section_id.
DECLARE

CURSOR c_snumber_in_parent IS
SELECT section_no
FROM section

APPENDIX D: Answers to the Try it Yourself Sections644

WHERE course_no = r_filled.course_no
ORDER BY section_no;

BEGIN
-- Go from the lowest to the highest section_no
-- and find any gaps. If there are no gaps make
-- the new section_no equal to the highest
-- current section_no + 1.

FOR r_snumber_in_parent IN c_snumber_in_parent LOOP
EXIT WHEN

r_snumber_in_parent.section_no > v_snumber_recent
+ 1;

v_snumber_recent := r_snumber_in_parent.section_no
+ 1;

END LOOP;

-- At this point, v_snumber_recent will be equal
-- either to the value preceeding the gap or to
-- the highest section_no for that course.

END;
-- Do the insert.
INSERT INTO section
(section_id, course_no, section_no, instructor_id)

VALUES
(v_section_id_new, r_filled.course_no, v_snumber_recent,
v_instid_min);

COMMIT;
END LOOP;

EXCEPTION
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE ('An error has occurred');
END;

Chapter 12,“Advanced Cursors”

This chapter has no “Try It Yourself” section.

Chapter 13,“Triggers”

1) Create or modify a trigger on the ENROLLMENT table that fires before an INSERT statement. Make
sure that all columns that have NOT NULL and foreign key constraints defined on them are popu-
lated with their proper values.

ANSWER: The trigger should look similar to the following:

CREATE OR REPLACE TRIGGER enrollment_bi
BEFORE INSERT ON ENROLLMENT
FOR EACH ROW
DECLARE

v_valid NUMBER := 0;

APPENDIX D: Answers to the Try it Yourself Sections 645

BEGIN
SELECT COUNT(*)
INTO v_valid
FROM student
WHERE student_id = :NEW.STUDENT_ID;

IF v_valid = 0 THEN
RAISE_APPLICATION_ERROR (-20000,

'This is not a valid student');
END IF;

SELECT COUNT(*)
INTO v_valid
FROM section
WHERE section_id = :NEW.SECTION_ID;

IF v_valid = 0 THEN
RAISE_APPLICATION_ERROR (-20001,

'This is not a valid section');
END IF;

:NEW.ENROLL_DATE := SYSDATE;
:NEW.CREATED_BY := USER;
:NEW.CREATED_DATE := SYSDATE;
:NEW.MODIFIED_BY := USER;
:NEW.MODIFIED_DATE := SYSDATE;

END;

Consider this trigger. It fires before the INSERT statement on the ENROLLMENT table. First, you vali-
date new values for student ID and section ID. If one of the IDs is invalid, the exception is raised,
and the trigger is terminated. As a result, the INSERT statement causes an error. If both student
and section IDs are found in the STUDENT and SECTION tables, respectively, ENROLL_DATE,
CREATED_DATE, and MODIFIED_DATE are populated with the current date, and the columns
CREATED_BY and MODIFIED_BY are populated with the current user name.

Consider the following INSERT statement:

INSERT INTO enrollment (student_id, section_id)
VALUES (777, 123);

The value 777 in this INSERT statement does not exist in the STUDENT table and therefore is
invalid. As a result, this INSERT statement causes the following error:

INSERT INTO enrollment (student_id, section_id)
*
ERROR at line 1:
ORA-20000: This is not a valid student
ORA-06512: at "STUDENT.ENROLLMENT_BI", line 10
ORA-04088: error during execution of trigger 'STUDENT.ENROLLMENT_BI'

APPENDIX D: Answers to the Try it Yourself Sections646

2) Create or modify a trigger on the SECTION table that fires before an UPDATE statement. Make sure
that the trigger validates incoming values so that there are no constraint violation errors.

ANSWER: The trigger should look similar to the following:

CREATE OR REPLACE TRIGGER section_bu
BEFORE UPDATE ON SECTION
FOR EACH ROW
DECLARE

v_valid NUMBER := 0;
BEGIN

IF :NEW.INSTRUCTOR_ID IS NOT NULL THEN
SELECT COUNT(*)
INTO v_valid
FROM instructor
WHERE instructor_id = :NEW.instructor_ID;

IF v_valid = 0 THEN
RAISE_APPLICATION_ERROR (-20000,

'This is not a valid instructor');
END IF;

END IF;

:NEW.MODIFIED_BY := USER;
:NEW.MODIFIED_DATE := SYSDATE;

END;

This trigger fires before the UPDATE statement on the SECTION table. First, you check to see if
there is a new value for an instructor ID with the help of an IF-THEN statement. If the IF-THEN
statement evaluates to TRUE, the instructor’s ID is checked against the INSTRUCTOR table. If a new
instructor ID does not exist in the INSTRUCTOR table, the exception is raised, and the trigger is
terminated. Otherwise, all columns with NOT NULL constraints are populated with their respective
values.

Note that this trigger does not populate the CREATED_BY and CREATED_DATE columns with the
new values. This is because when the record is updated, the values for these columns do not
change, because they reflect when this record was added to the SECTION table.

Consider the following UPDATE statement:

UPDATE section
SET instructor_id = 220

WHERE section_id = 79;

The value 220 in this UPDATE statement does not exist in the INSTRUCTOR table and therefore is
invalid. As a result, this UPDATE statement when run causes an error:

UPDATE section
*
ERROR at line 1:
ORA-20000: This is not a valid instructor
ORA-06512: at "STUDENT.SECTION_BU", line 11
ORA-04088: error during execution of trigger 'STUDENT.SECTION_BU'

APPENDIX D: Answers to the Try it Yourself Sections 647

Next, consider an UPDATE statement that does not cause any errors:

UPDATE section
SET instructor_id = 105

WHERE section_id = 79;

1 row updated.

rollback;

Rollback complete.

Chapter 14,“Compound Triggers”

1) Create a compound trigger on the INSTRUCTOR table that fires on the INSERT and UPDATE state-
ments. The trigger should not allow an insert or update on the INSTRUCTOR table during off
hours. Off hours are weekends and times of day outside the 9 a.m. to 5 p.m. window. The trigger
should also populate the INSTRUCTOR_ID, CREATED_BY, CREATED_DATE, MODIFIED_BY, and
MODIFIED_DATE columns with their default values.

ANSWER: The trigger should look similar to the following:

CREATE OR REPLACE TRIGGER instructor_compound
FOR INSERT OR UPDATE ON instructor
COMPOUND TRIGGER

v_date DATE;
v_user VARCHAR2(30);

BEFORE STATEMENT IS
BEGIN

IF RTRIM(TO_CHAR(SYSDATE, 'DAY')) NOT LIKE 'S%' AND
RTRIM(TO_CHAR(SYSDATE, 'HH24:MI')) BETWEEN '09:00' AND '17:00'

THEN
v_date := SYSDATE;
v_user := USER;

ELSE
RAISE_APPLICATION_ERROR

(-20000, 'A table cannot be modified during off hours');
END IF;

END BEFORE STATEMENT;

BEFORE EACH ROW IS
BEGIN

IF INSERTING THEN
:NEW.instructor_id := INSTRUCTOR_ID_SEQ.NEXTVAL;
:NEW.created_by := v_user;
:NEW.created_date := v_date;

ELSIF UPDATING THEN
:NEW.created_by := :OLD.created_by;

APPENDIX D: Answers to the Try it Yourself Sections648

:NEW.created_date := :OLD.created_date;
END IF;

:NEW.modified_by := v_user;
:NEW.modified_date := v_date;

END BEFORE EACH ROW;

END instructor_compound;

This compound trigger has two executable sections, BEFORE STATEMENT and BEFORE EACH ROW.
The BEFORE STATEMENT portion prevents any updates to the INSTRUCTOR table during off hours.
In addition, it populates the v_date and v_user variables that are used to populate the
CREATED_BY, CREATED_DATE, MODIFIED_BY, and MODIFIED_DATE columns. The BEFORE EACH
ROW section populates these columns. In addition, it assigns a value to the INSTRUCTOR_ID
column from INSTRUCTOR_ID_SEQ.

Note the use of the INSERTING and UPDATING functions in the BEFORE EACH ROW section. The
INSERTING function is used because the INSTRUCTOR_ID, CREATED_BY, and CREATED_DATE
columns are populated with new values only if a record is being inserted in the INSTRUCTOR
table. This is not so when a record is being updated. In this case, the CREATED_BY and
CREATED_DATE columns are populated with the values copied from the OLD pseudorecord.
However, the MODIFIED_BY and MODIFIED_DATE columns need to be populated with the new
values regardless of the INSERT or UPDATE operation.

The newly created trigger may be tested as follows:

SET SERVEROUTPUT ON
DECLARE

v_date VARCHAR2(20);
BEGIN

v_date := TO_CHAR(SYSDATE, 'DD/MM/YYYY HH24:MI');
DBMS_OUTPUT.PUT_LINE ('Date: '||v_date);

INSERT INTO instructor
(salutation, first_name, last_name, street_address, zip, phone)

VALUES
('Mr.', 'Test', 'Instructor', '123 Main Street', '07112',
'2125555555');

ROLLBACK;
END;
/

The output is as follows:

Date: 25/04/2008 15:47

PL/SQL procedure successfully completed.

Here’s the second test:

SET SERVEROUTPUT ON
DECLARE

v_date VARCHAR2(20);

APPENDIX D: Answers to the Try it Yourself Sections 649

BEGIN
v_date := TO_CHAR(SYSDATE, 'DD/MM/YYYY HH24:MI');
DBMS_OUTPUT.PUT_LINE ('Date: '||v_date);

UPDATE instructor
SET phone = '2125555555'

WHERE instructor_id = 101;

ROLLBACK;
END;
/

The output is as follows:

Date: 26/04/2008 19:50
DECLARE
*
ERROR at line 1:
ORA-20000: A table cannot be modified during off hours
ORA-06512: at "STUDENT.INSTRUCTOR_COMPOUND", line 15
ORA-04088: error during execution of trigger 'STUDENT.INSTRUCTOR_COM-
POUND'
ORA-06512: at line 7

2) Create a compound trigger on the ZIPCODE table that fires on the INSERT and UPDATE state-
ments. The trigger should populate the CREATED_BY, CREATED_DATE, MODIFIED_BY, and
MODIFIED_DATE columns with their default values. In addition, it should record in the STATISTICS
table the type of the transaction, the name of the user who issued the transaction, and the date
of the transaction. Assume that the STATISTICS table has the following structure:

Name Null? Type
------------------------------- -------- ----
TABLE_NAME VARCHAR2(30)
TRANSACTION_NAME VARCHAR2(10)
TRANSACTION_USER VARCHAR2(30)
TRANSACTION_DATE DATE

ANSWER: The trigger should look similar to the following:

CREATE OR REPLACE TRIGGER zipcode_compound
FOR INSERT OR UPDATE ON zipcode
COMPOUND TRIGGER

v_date DATE;
v_user VARCHAR2(30);
v_type VARCHAR2(10);

BEFORE STATEMENT IS
BEGIN

v_date := SYSDATE;
v_user := USER;

END BEFORE STATEMENT;

APPENDIX D: Answers to the Try it Yourself Sections650

BEFORE EACH ROW IS
BEGIN

IF INSERTING THEN
:NEW.created_by := v_user;
:NEW.created_date := v_date;

ELSIF UPDATING THEN
:NEW.created_by := :OLD.created_by;
:NEW.created_date := :OLD.created_date;

END IF;

:NEW.modified_by := v_user;
:NEW.modified_date := v_date;

END BEFORE EACH ROW;

AFTER STATEMENT IS
BEGIN

IF INSERTING THEN
v_type := 'INSERT';

ELSIF UPDATING THEN
v_type := 'UPDATE';

END IF;

INSERT INTO statistics
(table_name, transaction_name, transaction_user,
transaction_date)

VALUES ('ZIPCODE', v_type, v_user, v_date);

END AFTER STATEMENT;

END zipcode_compound;

UPDATE zipcode
SET city = 'Test City'

WHERE zip = '01247';

1 row updated.

SELECT *
FROM statistics
WHERE transaction_date >= TRUNC(sysdate);

TABLE_NAME TRANSACTION_NAME TRANSACTION_USER TRANSACTION_DATE
---------- ---------------- ---------------- ----------------
ZIPCODE UPDATE STUDENT 24-APR-08

ROLLBACK;

Rollback complete.

APPENDIX D: Answers to the Try it Yourself Sections 651

Chapter 15,“Collections”

1) Create the following script: Create an associative array (index-by table), and populate it with the
instructor’s full name. In other words, each row of the associative array should contain the first
name, middle initial, and last name. Display this information on the screen.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

CURSOR name_cur IS
SELECT first_name||' '||last_name name
FROM instructor;

TYPE name_type IS TABLE OF VARCHAR2(50)
INDEX BY BINARY_INTEGER;

name_tab name_type;

v_counter INTEGER := 0;
BEGIN

FOR name_rec IN name_cur LOOP
v_counter := v_counter + 1;
name_tab(v_counter) := name_rec.name;

DBMS_OUTPUT.PUT_LINE ('name('||v_counter||'): '||
name_tab(v_counter));

END LOOP;
END;

In the preceding example, the associative array name_tab is populated with instructors’ full
names. Notice that the variable v_counter is used as a subscript to reference individual array
elements. This example produces the following output:

name(1): Fernand Hanks
name(2): Tom Wojick
name(3): Nina Schorin
name(4): Gary Pertez
name(5): Anita Morris
name(6): Todd Smythe
name(7): Marilyn Frantzen
name(8): Charles Lowry
name(9): Rick Chow

PL/SQL procedure successfully completed.

2) Modify the script you just created. Instead of using an associative array, use a varray.

ANSWER: The script should look similar to the following. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

CURSOR name_cur IS
SELECT first_name||' '||last_name name
FROM instructor;

APPENDIX D: Answers to the Try it Yourself Sections652

TYPE name_type IS VARRAY(15) OF VARCHAR2(50);
name_varray name_type := name_type();

v_counter INTEGER := 0;
BEGIN

FOR name_rec IN name_cur LOOP
v_counter := v_counter + 1;
name_varray.EXTEND;
name_varray(v_counter) := name_rec.name;

DBMS_OUTPUT.PUT_LINE ('name('||v_counter||'): '||
name_varray(v_counter));

END LOOP;
END;

In this version of the script, you define a varray of 15 elements. It is important to remember to
initialize the array before referencing its individual elements. In addition, the array must be
extended before new elements are added to it.

3) Modify the script you just created. Create an additional varray, and populate it with unique course
numbers for the courses that each instructor teaches. Display the instructor’s name and the list of
courses he or she teaches.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

CURSOR instructor_cur IS
SELECT instructor_id, first_name||' '||last_name name
FROM instructor;

CURSOR course_cur (p_instructor_id NUMBER) IS
SELECT unique course_no course
FROM section
WHERE instructor_id = p_instructor_id;

TYPE name_type IS VARRAY(15) OF VARCHAR2(50);
name_varray name_type := name_type();

TYPE course_type IS VARRAY(10) OF NUMBER;
course_varray course_type;

v_counter1 INTEGER := 0;
v_counter2 INTEGER;

BEGIN
FOR instructor_rec IN instructor_cur LOOP

v_counter1 := v_counter1 + 1;
name_varray.EXTEND;
name_varray(v_counter1) := instructor_rec.name;

DBMS_OUTPUT.PUT_LINE ('name('||v_counter1||'): '||
name_varray(v_counter1));

APPENDIX D: Answers to the Try it Yourself Sections 653

-- Initialize and populate course_varray
v_counter2 := 0;
course_varray := course_type();
FOR course_rec in course_cur (instructor_rec.instructor_id)
LOOP

v_counter2 := v_counter2 + 1;
course_varray.EXTEND;
course_varray(v_counter2) := course_rec.course;

DBMS_OUTPUT.PUT_LINE ('course('||v_counter2||'): '||
course_varray(v_counter2));

END LOOP;
DBMS_OUTPUT.PUT_LINE ('===========================');

END LOOP;
END;

Consider the script you just created. First, you declare two cursors, INSTRUCTOR_CUR and
COURSE_CUR. COURSE_CUR accepts a parameter because it returns a list of courses taught by a
particular instructor. Notice that the SELECT statement uses the function UNIQUE to retrieve
distinct course numbers. Second, you declare two varray types and variables,name_varray
and course_varray. Notice that you do not initialize the second varray at the time of declara-
tion. Next, you declare two counters and initialize the first counter only.

In the body of the block, you open INSTRUCTOR_CUR and populate name_varray with its first
element. Next, you initialize the second counter and course_varray. This step is necessary
because you need to repopulate course_varray for the next instructor. Next, you open
COURSE_CUR to retrieve corresponding courses and display them on the screen.

When run, the script produces the following output:

name(1): Fernand Hanks
course(1): 25
course(2): 120
course(3): 122
course(4): 125
course(5): 134
course(6): 140
course(7): 146
course(8): 240
course(9): 450
===========================
name(2): Tom Wojick
course(1): 10
course(2): 25
course(3): 100
course(4): 120
course(5): 124
course(6): 125
course(7): 134
course(8): 140
course(9): 146
course(10): 240
===========================

APPENDIX D: Answers to the Try it Yourself Sections654

name(3): Nina Schorin
course(1): 20
course(2): 25
course(3): 100
course(4): 120
course(5): 124
course(6): 130
course(7): 134
course(8): 142
course(9): 147
course(10): 310
===========================
name(4): Gary Pertez
course(1): 20
course(2): 25
course(3): 100
course(4): 120
course(5): 124
course(6): 130
course(7): 135
course(8): 142
course(9): 204
course(10): 330
===========================
name(5): Anita Morris
course(1): 20
course(2): 25
course(3): 100
course(4): 122
course(5): 124
course(6): 130
course(7): 135
course(8): 142
course(9): 210
course(10): 350
===========================
name(6): Todd Smythe
course(1): 20
course(2): 25
course(3): 100
course(4): 122
course(5): 125
course(6): 130
course(7): 135
course(8): 144
course(9): 220
course(10): 350
===========================

APPENDIX D: Answers to the Try it Yourself Sections 655

name(7): Marilyn Frantzen
course(1): 25
course(2): 120
course(3): 122
course(4): 125
course(5): 132
course(6): 135
course(7): 145
course(8): 230
course(9): 350
===========================
name(8): Charles Lowry
course(1): 25
course(2): 120
course(3): 122
course(4): 125
course(5): 132
course(6): 140
course(7): 145
course(8): 230
course(9): 420
===========================
name(9): Rick Chow
===========================
name(10): Irene Willig
===========================

PL/SQL procedure successfully completed.

As mentioned, it is important to reinitialize the variable v_counter2 that is used to reference
individual elements of course_varray. When this step is omitted and the variable is initial-
ized only once, at the time of declaration, the script generates the following runtime error:

name(1): Fernand Hanks
course(1): 25
course(2): 120
course(3): 122
course(4): 125
course(5): 134
course(6): 140
course(7): 146
course(8): 240
course(9): 450
name(2): Tom Wojick
DECLARE
*
ERROR at line 1:
ORA-06533: Subscript beyond count
ORA-06512: at line 33

Why do you think this error occurs?

APPENDIX D: Answers to the Try it Yourself Sections656

4) Find and explain the errors in the following script:

DECLARE
TYPE varray_type1 IS VARRAY(7) OF INTEGER;
TYPE table_type2 IS TABLE OF varray_type1 INDEX BY

BINARY_INTEGER;

varray1 varray_type1 := varray_type1(1, 2, 3);
table2 table_type2 := table_type2(varray1,

varray_type1(8, 9, 0));

BEGIN
DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

FOR i IN 1..10 LOOP
varray1.EXTEND;
varray1(i) := i;
DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||varray1(i));

END LOOP;
END;

ANSWER: This script generates the following errors:

table2 table_type2 := table_type2(varray1, varray_type1(8, 9, 0));
*

ERROR at line 6:
ORA-06550: line 6, column 26:
PLS-00222: no function with name 'TABLE_TYPE2' exists in this scope
ORA-06550: line 6, column 11:
PL/SQL: Item ignored
ORA-06550: line 9, column 44:
PLS-00320: the declaration of the type of this expression is
incomplete or malformed
ORA-06550: line 9, column 4:
PL/SQL: Statement ignored

Notice that this error refers to the initialization of table2, which has been declared as an asso-
ciative array of varrays. Recall that associative arrays are not initialized prior to their use. As a
result, the declaration of table2 must be modified. Furthermore, an additional assignment
statement must be added to the executable portion of the block:

DECLARE
TYPE varray_type1 IS VARRAY(7) OF INTEGER;
TYPE table_type2 IS TABLE OF varray_type1 INDEX BY
BINARY_INTEGER;

varray1 varray_type1 := varray_type1(1, 2, 3);
table2 table_type2;

BEGIN
-- These statements populate associative array
table2(1) := varray1;
table2(2) := varray_type1(8, 9, 0);

APPENDIX D: Answers to the Try it Yourself Sections 657

DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

FOR i IN 1..10 LOOP
varray1.EXTEND;
varray1(i) := i;
DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||varray1(i));

END LOOP;
END;

When run, this version produces a different error:

table2(1)(2): 2
varray1(1): 1
varray1(2): 2
varray1(3): 3
varray1(4): 4
DECLARE
*
ERROR at line 1:
ORA-06532: Subscript outside of limit
ORA-06512: at line 15

Notice that this is a runtime error that refers to varray1. This error occurs because you are
trying to extend the varray beyond its limit.varray1 can contain up to seven integers. After
initialization, it contains three integers. As a result, it can be populated with no more than four
additional integers. So the fifth iteration of the loop tries to extend the varray to eight elements,
which in turn causes a Subscript outside of limit error.

It is important to note that there is no correlation between the loop counter and the EXTEND
method. Every time the EXTEND method is called, it increases the size of the varray by one
element. Because the varray has been initialized to three elements, the EXTEND method adds a
fourth element to the array for the first iteration of the loop. At the same time, the first element of
the varray is assigned a value of 1 through the loop counter. For the second iteration of the loop,
the EXTEND method adds a fifth element to the varray while the second element is assigned a
value of 2, and so forth.

Finally, consider the error-free version of the script:

DECLARE
TYPE varray_type1 IS VARRAY(7) OF INTEGER;
TYPE table_type2 IS TABLE OF varray_type1 INDEX BY
BINARY_INTEGER;

varray1 varray_type1 := varray_type1(1, 2, 3);
table2 table_type2;

BEGIN
-- These statements populate associative array
table2(1) := varray1;
table2(2) := varray_type1(8, 9, 0);

DBMS_OUTPUT.PUT_LINE ('table2(1)(2): '||table2(1)(2));

APPENDIX D: Answers to the Try it Yourself Sections658

FOR i IN 4..7 LOOP
varray1.EXTEND;
varray1(i) := i;

END LOOP;

-- Display elements of the varray
FOR i IN 1..7 LOOP

DBMS_OUTPUT.PUT_LINE ('varray1('||i||'): '||varray1(i));
END LOOP;

END;

The output is as follows:

table2(1)(2): 2
varray1(1): 1
varray1(2): 2
varray1(3): 3
varray1(4): 4
varray1(5): 5
varray1(6): 6
varray1(7): 7

PL/SQL procedure successfully completed.

Chapter 16,“Records”

1) Create an associative array with the element type of a user-defined record. This record should
contain the first name, last name, and total number of courses that a particular instructor teaches.
Display the records of the associative array on the screen.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

CURSOR instructor_cur IS
SELECT first_name, last_name,

COUNT(UNIQUE s.course_no) courses
FROM instructor i
LEFT OUTER JOIN section s
ON (s.instructor_id = i.instructor_id)

GROUP BY first_name, last_name;

TYPE rec_type IS RECORD
(first_name instructor.first_name%type,
last_name instructor.last_name%type,
courses_taught NUMBER);

TYPE instructor_type IS TABLE OF REC_TYPE
INDEX BY BINARY_INTEGER;

APPENDIX D: Answers to the Try it Yourself Sections 659

instructor_tab instructor_type;

v_counter INTEGER := 0;
BEGIN

FOR instructor_rec IN instructor_cur LOOP
v_counter := v_counter + 1;

-- Populate associative array of records
instructor_tab(v_counter).first_name :=

instructor_rec.first_name;
instructor_tab(v_counter).last_name :=

instructor_rec.last_name;
instructor_tab(v_counter).courses_taught :=

instructor_rec.courses;

DBMS_OUTPUT.PUT_LINE ('Instructor, '||
instructor_tab(v_counter).first_name||' '||
instructor_tab(v_counter).last_name||', teaches '||
instructor_tab(v_counter).courses_taught||' courses.');

END LOOP;
END;

Consider the SELECT statement used in this script. It returns the instructor’s name and the total
number of courses he or she teaches. The statement uses an outer join so that if a particular
instructor is not teaching any courses, he or she will be included in the results of the SELECT state-
ment. Note that the SELECT statement uses the ANSI 1999 SQL standard.

BY THE WAY

You will find detailed explanations and examples of the statements using the new ANSI 1999 SQL
standard in Appendix C and in the Oracle help. Throughout this book we have tried to provide
examples illustrating both standards; however, our main focus is on PL/SQL features rather than SQL.

In this script, you define a cursor against the INSTRUCTOR and SECTION tables that is used to
populate the associative array of records,instructor_tab. Each row of this table is a user-
defined record of three elements. You populate the associative array using the cursor FOR loop.
Consider the notation used to reference each record element of the associative array:

instructor_tab(v_counter).first_name
instructor_tab(v_counter).last_name
instructor_tab(v_counter).courses_taught

To reference each row of the associative array, you use the counter variable. However, because
each row of this table is a record, you must also reference individual fields of the underlying
record. When run, this script produces the following output:

Instructor, Anita Morris, teaches 10 courses.
Instructor, Charles Lowry, teaches 9 courses.
Instructor, Fernand Hanks, teaches 9 courses.
Instructor, Gary Pertez, teaches 10 courses.
Instructor, Marilyn Frantzen, teaches 9 courses.
Instructor, Nina Schorin, teaches 10 courses.
Instructor, Rick Chow, teaches 1 courses.

APPENDIX D: Answers to the Try it Yourself Sections660

Instructor, Todd Smythe, teaches 10 courses.
Instructor, Tom Wojick, teaches 9 courses.

PL/SQL procedure successfully completed.

2) Modify the script you just created. Instead of using an associative array, use a nested table.

ANSWER: The script should look similar to the following. Changes are shown in bold.

SET SERVEROUTPUT ON
DECLARE

CURSOR instructor_cur IS
SELECT first_name, last_name,

COUNT(UNIQUE s.course_no) courses
FROM instructor i
LEFT OUTER JOIN section s
ON (s.instructor_id = i.instructor_id)

GROUP BY first_name, last_name;

TYPE rec_type IS RECORD
(first_name instructor.first_name%type,
last_name instructor.last_name%type,
courses_taught NUMBER);

TYPE instructor_type IS TABLE OF REC_TYPE;
instructor_tab instructor_type := instructor_type();

v_counter INTEGER := 0;
BEGIN

FOR instructor_rec IN instructor_cur LOOP
v_counter := v_counter + 1;
instructor_tab.EXTEND;

-- Populate associative array of records
instructor_tab(v_counter).first_name :=

instructor_rec.first_name;
instructor_tab(v_counter).last_name :=

instructor_rec.last_name;
instructor_tab(v_counter).courses_taught :=

instructor_rec.courses;

DBMS_OUTPUT.PUT_LINE ('Instructor, '||
instructor_tab(v_counter).first_name||' '||
instructor_tab(v_counter).last_name||', teaches '||
instructor_tab(v_counter).courses_taught||' courses.');

END LOOP;
END;

Notice that the instructor_tab must be initialized and extended before its individual
elements can be referenced.

APPENDIX D: Answers to the Try it Yourself Sections 661

3) Modify the script you just created. Instead of using a nested table, use a varray.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

CURSOR instructor_cur IS
SELECT first_name, last_name,

COUNT(UNIQUE s.course_no) courses
FROM instructor i
LEFT OUTER JOIN section s
ON (s.instructor_id = i.instructor_id)

GROUP BY first_name, last_name;

TYPE rec_type IS RECORD
(first_name instructor.first_name%type,
last_name instructor.last_name%type,
courses_taught NUMBER);

TYPE instructor_type IS VARRAY(10) OF REC_TYPE;
instructor_tab instructor_type := instructor_type();

v_counter INTEGER := 0;
BEGIN

FOR instructor_rec IN instructor_cur LOOP
v_counter := v_counter + 1;
instructor_tab.EXTEND;

-- Populate associative array of records
instructor_tab(v_counter).first_name :=

instructor_rec.first_name;
instructor_tab(v_counter).last_name :=

instructor_rec.last_name;
instructor_tab(v_counter).courses_taught :=

instructor_rec.courses;

DBMS_OUTPUT.PUT_LINE ('Instructor, '||
instructor_tab(v_counter).first_name||' '||
instructor_tab(v_counter).last_name||', teaches '||
instructor_tab(v_counter).courses_taught||' courses.');

END LOOP;
END;

This version of the script is almost identical to the previous version. Instead of using a nested
table, you are using a varray of 15 elements.

4) Create a user-defined record with four fields:course_no,description,cost, and
prerequisite_rec. The last field,prerequisite_rec, should be a user-defined record
with three fields:prereq_no,prereq_desc, and prereq_cost. For any ten courses that
have a prerequisite course, populate the user-defined record with all the corresponding data, and
display its information on the screen.

APPENDIX D: Answers to the Try it Yourself Sections662

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

CURSOR c_cur IS
SELECT course_no, description, cost, prerequisite
FROM course
WHERE prerequisite IS NOT NULL
AND rownum <= 10;

TYPE prerequisite_type IS RECORD
(prereq_no NUMBER,
prereq_desc VARCHAR(50),
prereq_cost NUMBER);

TYPE course_type IS RECORD
(course_no NUMBER,
description VARCHAR2(50),
cost NUMBER,
prerequisite_rec PREREQUISITE_TYPE);

course_rec COURSE_TYPE;
BEGIN

FOR c_rec in c_cur LOOP
course_rec.course_no := c_rec.course_no;
course_rec.description := c_rec.description;
course_rec.cost := c_rec.cost;

SELECT course_no, description, cost
INTO course_rec.prerequisite_rec.prereq_no,

course_rec.prerequisite_rec.prereq_desc,
course_rec.prerequisite_rec.prereq_cost

FROM course
WHERE course_no = c_rec.prerequisite;

DBMS_OUTPUT.PUT_LINE ('Course: '||
course_rec.course_no||' - '||
course_rec.description);

DBMS_OUTPUT.PUT_LINE ('Cost: '|| course_rec.cost);
DBMS_OUTPUT.PUT_LINE ('Prerequisite: '||

course_rec.prerequisite_rec. prereq_no||' - '||
course_rec.prerequisite_rec.prereq_desc);

DBMS_OUTPUT.PUT_LINE ('Prerequisite Cost: '||
course_rec.prerequisite_rec.prereq_cost);

DBMS_OUTPUT.PUT_LINE
('==');

END LOOP;
END;

APPENDIX D: Answers to the Try it Yourself Sections 663

In the declaration portion of the script, you define a cursor against the COURSE table; two user-
defined record types,prerequisite_type and course_type; and user-defined record,
course_rec. It is important to note the order in which the record types are declared. The
prerequsite_type must be declared first because one of the course_type elements is
of the prerequisite_type.

In the executable portion of the script, you populate course_rec using the cursor FOR loop.
First, you assign values to course_rec.course_no,course_rec.description, and
course_rec.cost. Next, you populate the nested record,prerequsite_rec, using the
SELECT INTO statement against the COURSE table. Consider the notation used to reference indi-
vidual elements of the nested record:

course_rec.prerequisite_rec.prereq_no,
course_rec.prerequisite_rec.prereq_desc,
course_rec.prerequisite_rec.prereq_cost

You specify the name of the outer record followed by the name of the inner (nested) record,
followed by the name of the element. Finally, you display record information on the screen.

Note that this script does not contain a NO_DATA_FOUND exception handler even though there
is a SELECT INTO statement. Why do you think this is the case?

When run, the script produces the following output:

Course: 230 - Intro to the Internet
Cost: 1095
Prerequisite: 10 - Technology Concepts
Prerequisite Cost: 1195
==
Course: 100 - Hands-On Windows
Cost: 1195
Prerequisite: 20 - Intro to Information Systems
Prerequisite Cost: 1195
==
Course: 140 - Systems Analysis
Cost: 1195
Prerequisite: 20 - Intro to Information Systems
Prerequisite Cost: 1195
==
Course: 142 - Project Management
Cost: 1195
Prerequisite: 20 - Intro to Information Systems
Prerequisite Cost: 1195
==
Course: 147 - GUI Design Lab
Cost: 1195
Prerequisite: 20 - Intro to Information Systems
Prerequisite Cost: 1195
==
Course: 204 - Intro to SQL
Cost: 1195
Prerequisite: 20 - Intro to Information Systems
Prerequisite Cost: 1195
==

APPENDIX D: Answers to the Try it Yourself Sections664

Course: 240 - Intro to the BASIC Language
Cost: 1095
Prerequisite: 25 - Intro to Programming
Prerequisite Cost: 1195
==
Course: 420 - Database System Principles
Cost: 1195
Prerequisite: 25 - Intro to Programming
Prerequisite Cost: 1195
==
Course: 120 - Intro to Java Programming
Cost: 1195
Prerequisite: 80 - Programming Techniques
Prerequisite Cost: 1595
==
Course: 220 - PL/SQL Programming
Cost: 1195
Prerequisite: 80 - Programming Techniques
Prerequisite Cost: 1595
==

PL/SQL procedure successfully completed.

Chapter 17,“Native Dynamic SQL”

This chapter has no “Try It Yourself” section.

Chapter 18,“Bulk SQL”

Before beginning these exercises, create the MY_SECTION table based on the SECTION table. This table
should be created empty.

The MY_SECTION table can be created as follows:

CREATE TABLE my_section AS
SELECT *
FROM section
WHERE 1 = 2;

Table created.

Specifying this criterion guarantees the creation of an empty table.

1) Create the following script: Populate the MY_SECTION table using the FORALL statement with the
SAVE EXCEPTIONS clause. After MY_SECTION is populated, display how many records were
inserted.

ANSWER: The script should look similar to the following:

SET SERVEROUTPUT ON
DECLARE

-- Declare collection types

APPENDIX D: Answers to the Try it Yourself Sections 665

TYPE number_type IS TABLE of NUMBER INDEX BY PLS_INTEGER;
TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;
TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

-- Declare collection variables to be used by the FORALL statement
section_id_tab number_type;
course_no_tab number_type;
section_no_tab number_type;
start_date_time_tab date_type;
location_tab string_type;
instructor_id_tab number_type;
capacity_tab number_type;
cr_by_tab string_type;
cr_date_tab date_type;
mod_by_tab string_type;
mod_date_tab date_type;

v_counter PLS_INTEGER := 0;
v_total INTEGER := 0;

-- Define user-defined exception and associated Oracle
-- error number with it
errors EXCEPTION;
PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN
-- Populate individual collections
FOR rec IN (SELECT *

FROM section)
LOOP

v_counter := v_counter + 1;
section_id_tab(v_counter) := rec.section_id;
course_no_tab(v_counter) := rec.course_no;
section_no_tab(v_counter) := rec.section_no;
start_date_time_tab(v_counter) := rec.start_date_time;
location_tab(v_counter) := rec.location;
instructor_id_tab(v_counter) := rec.instructor_id;
capacity_tab(v_counter) := rec.capacity;
cr_by_tab(v_counter) := rec.created_by;
cr_date_tab(v_counter) := rec.created_date;
mod_by_tab(v_counter) := rec.modified_by;
mod_date_tab(v_counter) := rec.modified_date;

END LOOP;

-- Populate MY_SECTION table
FORALL i in 1..section_id_tab.COUNT SAVE EXCEPTIONS

INSERT INTO my_section
(section_id, course_no, section_no, start_date_time,
location, instructor_id, capacity, created_by,
created_date, modified_by, modified_date)

APPENDIX D: Answers to the Try it Yourself Sections666

VALUES
(section_id_tab(i), course_no_tab(i), section_no_tab(i),
start_date_time_tab(i), location_tab(i),
instructor_id_tab(i), capacity_tab(i), cr_by_tab(i),
cr_date_tab(i), mod_by_tab(i), mod_date_tab(i));

COMMIT;

-- Check how many records were added to MY_SECTION table
SELECT COUNT(*)
INTO v_total
FROM my_section;

DBMS_OUTPUT.PUT_LINE
(v_total||' records were added to MY_SECTION table');

EXCEPTION
WHEN errors THEN

-- Display total number of exceptions encountered
DBMS_OUTPUT.PUT_LINE

('There were '||SQL%BULK_EXCEPTIONS.COUNT||' exceptions');

-- Display detailed exception information
FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT LOOP

DBMS_OUTPUT.PUT_LINE ('Record '||
SQL%BULK_EXCEPTIONS(i).error_index||' caused error '||i||
': '||SQL%BULK_EXCEPTIONS(i).ERROR_CODE||' '||
SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));

END LOOP;

-- Commit records if any that were inserted successfully
COMMIT;

END;

This script populates the MY_SECTION table with records selected from the SECTION table. To
enable use of the FORALL statement, it employs 11 collections. Note that only three collection
types are associated with these collections. This is because the individual collections store only
three datatypes—NUMBER, VARCHAR2, and DATE.

The script uses a cursor FOR loop to populate the individual collections and then uses them with
the FORALL statement with the SAVE EXCEPTIONS option to populate the MY_SECTION table. To
enable the SAVE EXCEPTIONS options, this script declares a user-defined exception and associates
an Oracle error number with it. This script also contains an exception-handling section where a
user-defined exception is processed. This section displays how many exceptions were encoun-
tered in the FORALL statement as well as detailed exception information. Note the COMMIT state-
ment in the exception-handling section. This statement is added so that records that are inserted
successfully by the FORALL statement are committed when control of the execution is passed to
the exception-handling section of the block.

When run, this script produces the following output:

78 records were added to MY_SECTION table

PL/SQL procedure successfully completed.

APPENDIX D: Answers to the Try it Yourself Sections 667

2) Modify the script you just created. In addition to displaying the total number of records inserted
in the MY_SECTION table, display how many records were inserted for each course. Use the BULK
COLLECT statement to accomplish this step. Note that you should delete all the rows from the
MY_SECTION table before executing this version of the script.

ANSWER: The new version of the script should look similar to the following. Changes are shown
in bold.

SET SERVEROUTPUT ON
DECLARE

-- Declare collection types
TYPE number_type IS TABLE of NUMBER INDEX BY PLS_INTEGER;
TYPE string_type IS TABLE OF VARCHAR2(100) INDEX BY PLS_INTEGER;
TYPE date_type IS TABLE OF DATE INDEX BY PLS_INTEGER;

-- Declare collection variables to be used by the FORALL statement
section_id_tab number_type;
course_no_tab number_type;
section_no_tab number_type;
start_date_time_tab date_type;
location_tab string_type;
instructor_id_tab number_type;
capacity_tab number_type;
cr_by_tab string_type;
cr_date_tab date_type;
mod_by_tab string_type;
mod_date_tab date_type;
total_recs_tab number_type;

v_counter PLS_INTEGER := 0;
v_total INTEGER := 0;

-- Define user-defined exception and associated Oracle
-- error number with it
errors EXCEPTION;
PRAGMA EXCEPTION_INIT(errors, -24381);

BEGIN
-- Populate individual collections
FOR rec IN (SELECT *

FROM section)
LOOP

v_counter := v_counter + 1;
section_id_tab(v_counter) := rec.section_id;
course_no_tab(v_counter) := rec.course_no;
section_no_tab(v_counter) := rec.section_no;
start_date_time_tab(v_counter) := rec.start_date_time;
location_tab(v_counter) := rec.location;
instructor_id_tab(v_counter) := rec.instructor_id;
capacity_tab(v_counter) := rec.capacity;
cr_by_tab(v_counter) := rec.created_by;
cr_date_tab(v_counter) := rec.created_date;

APPENDIX D: Answers to the Try it Yourself Sections668

mod_by_tab(v_counter) := rec.modified_by;
mod_date_tab(v_counter) := rec.modified_date;

END LOOP;

-- Populate MY_SECTION table
FORALL i in 1..section_id_tab.COUNT SAVE EXCEPTIONS

INSERT INTO my_section
(section_id, course_no, section_no, start_date_time,
location, instructor_id, capacity, created_by,
created_date, modified_by, modified_date)

VALUES
(section_id_tab(i), course_no_tab(i), section_no_tab(i),
start_date_time_tab(i), location_tab(i),
instructor_id_tab(i), capacity_tab(i), cr_by_tab(i),
cr_date_tab(i), mod_by_tab(i), mod_date_tab(i));

COMMIT;

-- Check how many records were added to MY_SECTION table
SELECT COUNT(*)
INTO v_total
FROM my_section;

DBMS_OUTPUT.PUT_LINE
(v_total||' records were added to MY_SECTION table');

-- Check how many records were inserted for each course
-- and display this information
-- Fetch data from MY_SECTION table via BULK COLLECT clause
SELECT course_no, COUNT(*)
BULK COLLECT INTO course_no_tab, total_recs_tab
FROM my_section

GROUP BY course_no;

IF course_no_tab.COUNT > 0 THEN
FOR i IN course_no_tab.FIRST..course_no_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE
('course_no: '||course_no_tab(i)||
', total sections: '||total_recs_tab(i));

END LOOP;
END IF;

EXCEPTION
WHEN errors THEN

-- Display total number of exceptions encountered
DBMS_OUTPUT.PUT_LINE

('There were '||SQL%BULK_EXCEPTIONS.COUNT||' exceptions');

-- Display detailed exception information
FOR i in 1.. SQL%BULK_EXCEPTIONS.COUNT LOOP

APPENDIX D: Answers to the Try it Yourself Sections 669

DBMS_OUTPUT.PUT_LINE ('Record '||
SQL%BULK_EXCEPTIONS(i).error_index||' caused error '||i||
': '||SQL%BULK_EXCEPTIONS(i).ERROR_CODE||' '||
SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));

END LOOP;

-- Commit records if any that were inserted successfully
COMMIT;

END;

In this version of the script, you define one more collection,total_recs_tab, in the declara-
tion portion of the PL/SQL block. This collection is used to store the total number of sections for
each course. In the executable portion of the PL/SQL block, you add a SELECT statement with a
BULK COLLECT clause that repopulates course_no_tab and initializes total_recs_tab.
Next, if the course_no_tab collection contains data, you display course numbers and the
total number of sections for each course on the screen.

When run, this version of the script produces the following output:

78 records were added to MY_SECTION table
course_no: 10, total sections: 1
course_no: 20, total sections: 4
course_no: 25, total sections: 9
course_no: 100, total sections: 5
course_no: 120, total sections: 6
course_no: 122, total sections: 5
course_no: 124, total sections: 4
course_no: 125, total sections: 5
course_no: 130, total sections: 4
course_no: 132, total sections: 2
course_no: 134, total sections: 3
course_no: 135, total sections: 4
course_no: 140, total sections: 3
course_no: 142, total sections: 3
course_no: 144, total sections: 1
course_no: 145, total sections: 2
course_no: 146, total sections: 2
course_no: 147, total sections: 1
course_no: 204, total sections: 1
course_no: 210, total sections: 1
course_no: 220, total sections: 1
course_no: 230, total sections: 2
course_no: 240, total sections: 2
course_no: 310, total sections: 1
course_no: 330, total sections: 1
course_no: 350, total sections: 3
course_no: 420, total sections: 1
course_no: 450, total sections: 1

PL/SQL procedure successfully completed.

APPENDIX D: Answers to the Try it Yourself Sections670

3) Create the following script: Delete all the records from the MY_SECTION table, and display how
many records were deleted for each course as well as individual section IDs deleted for each
course. Use BULK COLLECT with the RETURNING option.

ANSWER: This script should look similar to the following:

SET SERVEROUTPUT ON;
DECLARE

-- Define collection types and variables to be used by the
-- BULK COLLECT clause
TYPE section_id_type IS TABLE OF my_section.section_id%TYPE;

section_id_tab section_id_type;

BEGIN
FOR rec IN (SELECT UNIQUE course_no

FROM my_section)
LOOP

DELETE FROM MY_SECTION
WHERE course_no = rec.course_no
RETURNING section_id
BULK COLLECT INTO section_id_tab;

DBMS_OUTPUT.PUT_LINE ('Deleted '||SQL%ROWCOUNT||
' rows for course '||rec.course_no);

IF section_id_tab.COUNT > 0 THEN
FOR i IN section_id_tab.FIRST..section_id_tab.LAST
LOOP

DBMS_OUTPUT.PUT_LINE
('section_id: '||section_id_tab(i));

END LOOP;
DBMS_OUTPUT.PUT_LINE ('===============================');

END IF;
COMMIT;

END LOOP;
END;

In this script you declare a single collection,section_id_tab. Note that there is no need to
declare a collection to store course numbers. This is because the records from the MY_SECTION
table are deleted for each course number instead of all at once. To accomplish this, you introduce
a cursor FOR loop that selects unique course numbers from the MY_SECTION table. Next, for each
course number, you DELETE records from the MY_SECTION table, returning the corresponding
section IDs and collecting them in section_id_tab. Next, you display how many records
were deleted for a given course number, along with individual section IDs for this course.

Note that even though the collection section_id_tab is repopulated for each iteration of
the cursor loop, there is no need to reinitialize it (in other words, empty it). This is because the
DELETE statement does this implicitly.

APPENDIX D: Answers to the Try it Yourself Sections 671

Consider the partial output produced by this script:

Deleted 1 rows for course 10
section_id: 80
===============================
Deleted 4 rows for course 20
section_id: 81
section_id: 82
section_id: 83
section_id: 84
===============================
Deleted 9 rows for course 25
section_id: 85
section_id: 86
section_id: 87
section_id: 88
section_id: 89
section_id: 90
section_id: 91
section_id: 92
section_id: 93
===============================
Deleted 5 rows for course 100
section_id: 141
section_id: 142
section_id: 143
section_id: 144
section_id: 145
===============================
Deleted 6 rows for course 120
section_id: 146
section_id: 147
section_id: 148
section_id: 149
section_id: 150
section_id: 151
===============================
Deleted 5 rows for course 122
section_id: 152
section_id: 153
section_id: 154
section_id: 155
section_id: 156
===============================
...

PL/SQL procedure successfully completed.

APPENDIX D: Answers to the Try it Yourself Sections672

Chapter 19,“Procedures”

PART 1
1) Write a procedure with no parameters. The procedure should say whether the current day is a

weekend or weekday. Additionally, it should tell you the user’s name and the current time. It also
should specify how many valid and invalid procedures are in the database.

ANSWER: The procedure should look similar to the following:

CREATE OR REPLACE PROCEDURE current_status
AS

v_day_type CHAR(1);
v_user VARCHAR2(30);
v_valid NUMBER;
v_invalid NUMBER;

BEGIN
SELECT SUBSTR(TO_CHAR(sysdate, 'DAY'), 0, 1)
INTO v_day_type
FROM dual;

IF v_day_type = 'S' THEN
DBMS_OUTPUT.PUT_LINE ('Today is a weekend.');

ELSE
DBMS_OUTPUT.PUT_LINE ('Today is a weekday.');

END IF;
--
DBMS_OUTPUT.PUT_LINE('The time is: '||

TO_CHAR(sysdate, 'HH:MI AM'));
--
SELECT user
INTO v_user
FROM dual;

DBMS_OUTPUT.PUT_LINE ('The current user is '||v_user);
--
SELECT NVL(COUNT(*), 0)
INTO v_valid
FROM user_objects
WHERE status = 'VALID'
AND object_type = 'PROCEDURE';

DBMS_OUTPUT.PUT_LINE
('There are '||v_valid||' valid procedures.');

--
SELECT NVL(COUNT(*), 0)
INTO v_invalid
FROM user_objects
WHERE status = 'INVALID'
AND object_type = 'PROCEDURE';

APPENDIX D: Answers to the Try it Yourself Sections 673

DBMS_OUTPUT.PUT_LINE
('There are '||v_invalid||' invalid procedures.');

END;

SET SERVEROUTPUT ON
EXEC current_status;

2) Write a procedure that takes in a zip code, city, and state and inserts the values into the zip code
table. It should check to see if the zip code is already in the database. If it is, an exception should
be raised, and an error message should be displayed. Write an anonymous block that uses the
procedure and inserts your zip code.

ANSWER: The script should look similar to the following:

CREATE OR REPLACE PROCEDURE insert_zip
(I_ZIPCODE IN zipcode.zip%TYPE,
I_CITY IN zipcode.city%TYPE,
I_STATE IN zipcode.state%TYPE)

AS
v_zipcode zipcode.zip%TYPE;
v_city zipcode.city%TYPE;
v_state zipcode.state%TYPE;
v_dummy zipcode.zip%TYPE;

BEGIN
v_zipcode := i_zipcode;
v_city := i_city;
v_state := i_state;

--
SELECT zip
INTO v_dummy
FROM zipcode
WHERE zip = v_zipcode;

--
DBMS_OUTPUT.PUT_LINE('The zipcode '||v_zipcode||

' is already in the database and cannot be'||
' reinserted.');

--
EXCEPTION

WHEN NO_DATA_FOUND THEN
INSERT INTO ZIPCODE
VALUES (v_zipcode, v_city, v_state, user, sysdate,

user, sysdate);
WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE ('There was an unknown error '||
'in insert_zip.');

END;

SET SERVEROUTPUT ON
BEGIN
insert_zip (10035, 'No Where', 'ZZ');

END;

APPENDIX D: Answers to the Try it Yourself Sections674

BEGIN
insert_zip (99999, 'No Where', 'ZZ');

END;

ROLLBACK;

PART 2
1) Create a stored procedure based on the script ch17_1c.sql, version 3.0, created in Lab 17.1 of

Chapter 17. The procedure should accept two parameters to hold a table name and an ID and
should return six parameters with first name, last name, street, city, state, and zip code information.

ANSWER: The procedure should look similar to the following. Changes are shown in bold.

CREATE OR REPLACE PROCEDURE get_name_address
(table_name_in IN VARCHAR2
,id_in IN NUMBER
,first_name_out OUT VARCHAR2
,last_name_out OUT VARCHAR2
,street_out OUT VARCHAR2
,city_out OUT VARCHAR2
,state_out OUT VARCHAR2
,zip_out OUT VARCHAR2)

AS
sql_stmt VARCHAR2(200);

BEGIN
sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||

' ,b.city, b.state, b.zip' ||
' FROM '||table_name_in||' a, zipcode b' ||
' WHERE a.zip = b.zip' ||
' AND '||table_name_in||'_id = :1';

EXECUTE IMMEDIATE sql_stmt
INTO first_name_out, last_name_out, street_out, city_out,

state_out, zip_out
USING id_in;

END get_name_address;

This procedure contains two IN parameters whose values are used by the dynamic SQL statement
and six OUT parameters that hold data returned by the SELECT statement. After it is created, this
procedure can be tested with the following PL/SQL block:

SET SERVEROUTPUT ON
DECLARE

v_table_name VARCHAR2(20) := '&sv_table_name';
v_id NUMBER := &sv_id;
v_first_name VARCHAR2(25);
v_last_name VARCHAR2(25);
v_street VARCHAR2(50);
v_city VARCHAR2(25);
v_state VARCHAR2(2);
v_zip VARCHAR2(5);

APPENDIX D: Answers to the Try it Yourself Sections 675

BEGIN
get_name_address (v_table_name, v_id, v_first_name, v_last_name,

v_street, v_city, v_state, v_zip);

DBMS_OUTPUT.PUT_LINE ('First Name: '||v_first_name);
DBMS_OUTPUT.PUT_LINE ('Last Name: '||v_last_name);
DBMS_OUTPUT.PUT_LINE ('Street: '||v_street);
DBMS_OUTPUT.PUT_LINE ('City: '||v_city);
DBMS_OUTPUT.PUT_LINE ('State: '||v_state);
DBMS_OUTPUT.PUT_LINE ('Zip Code: '||v_zip);

END;

When run, this script produces the following output. The first run is against the STUDENT table,
and the second run is against the INSTRUCTOR table.

Enter value for sv_table_name: student
old 2: v_table_name VARCHAR2(20) := '&sv_table_name';
new 2: v_table_name VARCHAR2(20) := 'student';
Enter value for sv_id: 105
old 3: v_id NUMBER := &sv_id;
new 3: v_id NUMBER := 105;
First Name: Angel
Last Name: Moskowitz
Street: 320 John St.
City: Ft. Lee
State: NJ
Zip Code: 07024

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor
old 2: v_table_name VARCHAR2(20) := '&sv_table_name';
new 2: v_table_name VARCHAR2(20) := 'instructor';
Enter value for sv_id: 105
old 3: v_id NUMBER := &sv_id;
new 3: v_id NUMBER := 105;
First Name: Anita
Last Name: Morris
Street: 34 Maiden Lane
City: New York
State: NY
Zip Code: 10015

PL/SQL procedure successfully completed.

2) Modify the procedure you just created. Instead of using six parameters to hold name and address
information, the procedure should return a user-defined record that contains six fields that hold
name and address information. Note: You may want to create a package in which you define a
record type. This record may be used later, such as when the procedure is invoked in a PL/SQL
block.

APPENDIX D: Answers to the Try it Yourself Sections676

ANSWER: The package should look similar to the following. Changes are shown in bold.

CREATE OR REPLACE PACKAGE dynamic_sql_pkg
AS

-- Create user-defined record type
TYPE name_addr_rec_type IS RECORD

(first_name VARCHAR2(25),
last_name VARCHAR2(25),
street VARCHAR2(50),
city VARCHAR2(25),
state VARCHAR2(2),
zip VARCHAR2(5));

PROCEDURE get_name_address (table_name_in IN VARCHAR2
,id_in IN NUMBER
,name_addr_rec OUT name_addr_rec_type);

END dynamic_sql_pkg;
/

CREATE OR REPLACE PACKAGE BODY dynamic_sql_pkg AS

PROCEDURE get_name_address (table_name_in IN VARCHAR2
,id_in IN NUMBER
,name_addr_rec OUT name_addr_rec_type)

IS
sql_stmt VARCHAR2(200);

BEGIN
sql_stmt := 'SELECT a.first_name, a.last_name, a.street_address'||

' ,b.city, b.state, b.zip' ||
' FROM '||table_name_in||' a, zipcode b' ||
' WHERE a.zip = b.zip' ||
' AND '||table_name_in||'_id = :1';

EXECUTE IMMEDIATE sql_stmt
INTO name_addr_rec
USING id_in;

END get_name_address;

END dynamic_sql_pkg;
/

In this package specification, you declare a user-defined record type. The procedure uses this
record type for its OUT parameter,name_addr_rec. After the package is created, its procedure
can be tested with the following PL/SQL block (changes are shown in bold):

SET SERVEROUTPUT ON
DECLARE

v_table_name VARCHAR2(20) := '&sv_table_name';
v_id NUMBER := &sv_id;
name_addr_rec DYNAMIC_SQL_PKG.NAME_ADDR_REC_TYPE;

APPENDIX D: Answers to the Try it Yourself Sections 677

BEGIN
dynamic_sql_pkg.get_name_address (v_table_name, v_id,

name_addr_rec);

DBMS_OUTPUT.PUT_LINE ('First Name: '||name_addr_rec.first_name);
DBMS_OUTPUT.PUT_LINE ('Last Name: '||name_addr_rec.last_name);
DBMS_OUTPUT.PUT_LINE ('Street: '||name_addr_rec.street);
DBMS_OUTPUT.PUT_LINE ('City: '||name_addr_rec.city);
DBMS_OUTPUT.PUT_LINE ('State: '||name_addr_rec.state);
DBMS_OUTPUT.PUT_LINE ('Zip Code: '||name_addr_rec.zip);

END;

Notice that instead of declaring six variables, you declare one variable of the user-defined record
type,name_addr_rec_type. Because this record type is defined in the package
DYNAMIC_SQL_PKG, the name of the record type is prefixed with the name of the package.
Similarly, the name of the package is added to the procedure call statement.

When run, this script produces the following output. The first output is against the STUDENT table,
and the second output is against the INSTRUCTOR table.

Enter value for sv_table_name: student
old 2: v_table_name VARCHAR2(20) := '&sv_table_name';
new 2: v_table_name VARCHAR2(20) := 'student';
Enter value for sv_id: 105
old 3: v_id NUMBER := &sv_id;
new 3: v_id NUMBER := 105;
First Name: Angel
Last Name: Moskowitz
Street: 320 John St.
City: Ft. Lee
State: NJ
Zip Code: 07024

PL/SQL procedure successfully completed.

Enter value for sv_table_name: instructor
old 2: v_table_name VARCHAR2(20) := '&sv_table_name';
new 2: v_table_name VARCHAR2(20) := 'instructor';
Enter value for sv_id: 105
old 3: v_id NUMBER := &sv_id;
new 3: v_id NUMBER := 105;
First Name: Anita
Last Name: Morris
Street: 34 Maiden Lane
City: New York
State: NY
Zip Code: 10015

PL/SQL procedure successfully completed.

APPENDIX D: Answers to the Try it Yourself Sections678

Chapter 20,“Functions”

1) Write a stored function called new_student_id that takes in no parameters and returns a
student.student_id%TYPE. The value returned will be used when inserting a new
student into the CTA application. It will be derived by using the formula student_id_seq.
NEXTVAL.

ANSWER: The function should look similar to the following:

CREATE OR REPLACE FUNCTION new_student_id
RETURN student.student_id%TYPE
AS

v_student_id student.student_id%TYPE;
BEGIN

SELECT student_id_seq.NEXTVAL
INTO v_student_id
FROM dual;

RETURN(v_student_id);
END;

2) Write a stored function called zip_does_not_exist that takes in a zipcode.
zip%TYPE and returns a Boolean. The function will return TRUE if the zip code passed into it
does not exist. It will return a FALSE if the zip code does exist. Hint: Here’s an example of how this
might be used:

DECLARE
cons_zip CONSTANT zipcode.zip%TYPE := '&sv_zipcode';
e_zipcode_is_not_valid EXCEPTION;

BEGIN
IF zipcode_does_not_exist(cons_zip)
THEN

RAISE e_zipcode_is_not_valid;
ELSE

-- An insert of an instructor's record which
-- makes use of the checked zipcode might go here.
NULL;

END IF;
EXCEPTION

WHEN e_zipcode_is_not_valid THEN
RAISE_APPLICATION_ERROR

(-20003, 'Could not find zipcode '||cons_zip||'.');
END;

ANSWER: The function should look similar to the following:

CREATE OR REPLACE FUNCTION zipcode_does_not_exist
(i_zipcode IN zipcode.zip%TYPE)

RETURN BOOLEAN
AS

v_dummy char(1);
BEGIN

SELECT NULL
INTO v_dummy

APPENDIX D: Answers to the Try it Yourself Sections 679

FROM zipcode
WHERE zip = i_zipcode;

-- Meaning the zipcode does exit
RETURN FALSE;

EXCEPTION
WHEN OTHERS THEN

-- The select statement above will cause an exception
-- to be raised if the zipcode is not in the database.
RETURN TRUE;

END zipcode_does_not_exist;

3) Create a new function. For a given instructor, determine how many sections he or she is teaching.
If the number is greater than or equal to 3, return a message saying that the instructor needs a
vacation. Otherwise, return a message saying how many sections this instructor is teaching.

ANSWER: The function should look similar to the following:

CREATE OR REPLACE FUNCTION instructor_status
(i_first_name IN instructor.first_name%TYPE,
i_last_name IN instructor.last_name%TYPE)

RETURN VARCHAR2
AS

v_instructor_id instructor.instructor_id%TYPE;
v_section_count NUMBER;
v_status VARCHAR2(100);

BEGIN
SELECT instructor_id
INTO v_instructor_id
FROM instructor
WHERE first_name = i_first_name
AND last_name = i_last_name;

SELECT COUNT(*)
INTO v_section_count
FROM section
WHERE instructor_id = v_instructor_id;

IF v_section_count >= 3 THEN
v_status :=

'The instructor '||i_first_name||' '||
i_last_name||' is teaching '||v_section_count||
' and needs a vaction.';

ELSE
v_status :=

'The instructor '||i_first_name||' '||
i_last_name||' is teaching '||v_section_count||
' courses.';

END IF;
RETURN v_status;

EXCEPTION
WHEN NO_DATA_FOUND THEN

APPENDIX D: Answers to the Try it Yourself Sections680

-- Note that either of the SELECT statements can raise
-- this exception
v_status :=

'The instructor '||i_first_name||' '||
i_last_name||' is not shown to be teaching'||
' any courses.';

RETURN v_status;
WHEN OTHERS THEN

v_status :=
'There has been in an error in the function.';

RETURN v_status;
END;

Test the function as follows:

SELECT instructor_status(first_name, last_name)
FROM instructor;

/

Chapter 21,“Packages”

1) Add a procedure to the student_api package called remove_student. This procedure
accepts a student_id and returns nothing. Based on the student ID passed in, it removes the
student from the database. If the student does not exist or if a problem occurs while removing the
student (such as a foreign key constraint violation), let the calling program handle it.

ANSWER: The package should be similar to the following:

CREATE OR REPLACE PACKAGE student_api AS
v_current_date DATE;

PROCEDURE discount;

FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE;

FUNCTION total_cost_for_student
(p_student_id IN student.student_id%TYPE)

RETURN course.cost%TYPE;
PRAGMA RESTRICT_REFERENCES

(total_cost_for_student, WNDS, WNPS, RNPS);

PROCEDURE get_student_info
(p_student_id IN student.student_id%TYPE,
p_last_name OUT student.last_name%TYPE,
p_first_name OUT student.first_name%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER);

PROCEDURE get_student_info
(p_last_name IN student.last_name%TYPE,
p_first_name IN student.first_name%TYPE,

APPENDIX D: Answers to the Try it Yourself Sections 681

p_student_id OUT student.student_id%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER);

PROCEDURE remove_student
(p_studid IN student.student_id%TYPE);

END student_api;
/
CREATE OR REPLACE PACKAGE BODY student_api AS

PROCEDURE discount
IS

CURSOR c_group_discount IS
SELECT distinct s.course_no, c.description
FROM section s, enrollment e, course c
WHERE s.section_id = e.section_id
GROUP BY s.course_no, c.description,

e.section_id, s.section_id
HAVING COUNT(*) >=8;

BEGIN
FOR r_group_discount IN c_group_discount LOOP

UPDATE course
SET cost = cost * .95

WHERE course_no = r_group_discount.course_no;

DBMS_OUTPUT.PUT_LINE
('A 5% discount has been given to'||
r_group_discount.course_no||' '||
r_group_discount.description);

END LOOP;
END discount;

FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE
IS

v_new_instid instructor.instructor_id%TYPE;
BEGIN

SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
INTO v_new_instid
FROM dual;

RETURN v_new_instid;
EXCEPTION

WHEN OTHERS THEN
DECLARE

v_sqlerrm VARCHAR2(250) := SUBSTR(SQLERRM,1,250);
BEGIN

RAISE_APPLICATION_ERROR
(-20003, 'Error in instructor_id: '||v_sqlerrm);

END;
END new_instructor_id;

APPENDIX D: Answers to the Try it Yourself Sections682

FUNCTION get_course_descript_private
(p_course_no course.course_no%TYPE)

RETURN course.description%TYPE
IS

v_course_descript course.description%TYPE;
BEGIN

SELECT description
INTO v_course_descript
FROM course
WHERE course_no = p_course_no;
RETURN v_course_descript;

EXCEPTION
WHEN OTHERS THEN

RETURN NULL;
END get_course_descript_private;

FUNCTION total_cost_for_student
(p_student_id IN student.student_id%TYPE)

RETURN course.cost%TYPE
IS

v_cost course.cost%TYPE;
BEGIN

SELECT sum(cost)
INTO v_cost
FROM course c, section s, enrollment e
WHERE c.course_no = c.course_no
AND e.section_id = s.section_id
AND e.student_id = p_student_id;

RETURN v_cost;
EXCEPTION

WHEN OTHERS THEN
RETURN NULL;

END total_cost_for_student;

PROCEDURE get_student_info
(p_student_id IN student.student_id%TYPE,
p_last_name OUT student.last_name%TYPE,
p_first_name OUT student.first_name%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER)

IS
BEGIN

SELECT last_name, first_name, zip
INTO p_last_name, p_first_name, p_zip
FROM student
WHERE student.student_id = p_student_id;
p_return_code := 0;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('Student ID is not valid.');

APPENDIX D: Answers to the Try it Yourself Sections 683

p_return_code := -100;
p_last_name := NULL;
p_first_name := NULL;
p_zip := NULL;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE

('Error in procedure get_student_info');
END get_student_info;

PROCEDURE get_student_info
(p_last_name IN student.last_name%TYPE,
p_first_name IN student.first_name%TYPE,
p_student_id OUT student.student_id%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER)

IS
BEGIN

SELECT student_id, zip
INTO p_student_id, p_zip
FROM student
WHERE UPPER(last_name) = UPPER(p_last_name)
AND UPPER(first_name) = UPPER(p_first_name);

p_return_code := 0;
EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE ('Student name is not valid.');
p_return_code := -100;
p_student_id := NULL;
p_zip := NULL;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE
('Error in procedure get_student_info');

END get_student_info;

PROCEDURE remove_student
(p_studid IN student.student_id%TYPE)

IS
BEGIN

DELETE
FROM STUDENT
WHERE student_id = p_studid;

END;

BEGIN
SELECT trunc(sysdate, 'DD')
INTO v_current_date
FROM dual;

END student_api;
/

APPENDIX D: Answers to the Try it Yourself Sections684

2) Alter remove_student in the student_api package body to accept an additional param-
eter. This new parameter should be a VARCHAR2 and called p_ri. Make p_ri default to R. The
new parameter may contain a value of R or C. If R is received, it represents DELETE RESTRICT,
and the procedure acts as it does now. If there are enrollments for the student, the delete is
disallowed. If a C is received, it represents DELETE CASCADE. This functionally means that the
remove_student procedure locates all records for the student in all the tables. It removes
them from the database before attempting to remove the student from the student table. Decide
how to handle the situation when the user passes in a code other than C or R.

ANSWER: The package should look similar to the following:

CREATE OR REPLACE PACKAGE student_api AS
v_current_date DATE;

PROCEDURE discount;

FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE;

FUNCTION total_cost_for_student
(p_student_id IN student.student_id%TYPE)

RETURN course.cost%TYPE;
PRAGMA RESTRICT_REFERENCES

(total_cost_for_student, WNDS, WNPS, RNPS);

PROCEDURE get_student_info
(p_student_id IN student.student_id%TYPE,
p_last_name OUT student.last_name%TYPE,
p_first_name OUT student.first_name%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER);

PROCEDURE get_student_info
(p_last_name IN student.last_name%TYPE,
p_first_name IN student.first_name%TYPE,
p_student_id OUT student.student_id%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER);

PROCEDURE remove_student
(p_studid IN student.student_id%TYPE,
p_ri IN VARCHAR2 DEFAULT 'R');

END student_api;
/

CREATE OR REPLACE PACKAGE BODY student_api AS

PROCEDURE discount
IS

CURSOR c_group_discount IS
SELECT distinct s.course_no, c.description
FROM section s, enrollment e, course c

APPENDIX D: Answers to the Try it Yourself Sections 685

WHERE s.section_id = e.section_id
GROUP BY s.course_no, c.description,

e.section_id, s.section_id
HAVING COUNT(*) >=8;

BEGIN
FOR r_group_discount IN c_group_discount LOOP

UPDATE course
SET cost = cost * .95

WHERE course_no = r_group_discount.course_no;

DBMS_OUTPUT.PUT_LINE
('A 5% discount has been given to'||
r_group_discount.course_no||' '||
r_group_discount.description);

END LOOP;
END discount;

FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE
IS

v_new_instid instructor.instructor_id%TYPE;
BEGIN

SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
INTO v_new_instid
FROM dual;

RETURN v_new_instid;
EXCEPTION

WHEN OTHERS THEN
DECLARE

v_sqlerrm VARCHAR2(250) := SUBSTR(SQLERRM,1,250);
BEGIN

RAISE_APPLICATION_ERROR
(-20003, 'Error in instructor_id: '||v_sqlerrm);

END;
END new_instructor_id;

FUNCTION get_course_descript_private
(p_course_no course.course_no%TYPE)

RETURN course.description%TYPE
IS

v_course_descript course.description%TYPE;
BEGIN

SELECT description
INTO v_course_descript
FROM course
WHERE course_no = p_course_no;
RETURN v_course_descript;

EXCEPTION
WHEN OTHERS THEN

RETURN NULL;

APPENDIX D: Answers to the Try it Yourself Sections686

END get_course_descript_private;

FUNCTION total_cost_for_student
(p_student_id IN student.student_id%TYPE)

RETURN course.cost%TYPE
IS

v_cost course.cost%TYPE;
BEGIN

SELECT sum(cost)
INTO v_cost
FROM course c, section s, enrollment e
WHERE c.course_no = c.course_no
AND e.section_id = s.section_id
AND e.student_id = p_student_id;

RETURN v_cost;
EXCEPTION

WHEN OTHERS THEN
RETURN NULL;

END total_cost_for_student;

PROCEDURE get_student_info
(p_student_id IN student.student_id%TYPE,
p_last_name OUT student.last_name%TYPE,
p_first_name OUT student.first_name%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER)

IS
BEGIN

SELECT last_name, first_name, zip
INTO p_last_name, p_first_name, p_zip
FROM student
WHERE student.student_id = p_student_id;
p_return_code := 0;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('Student ID is not valid.');
p_return_code := -100;
p_last_name := NULL;
p_first_name := NULL;
p_zip := NULL;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE

('Error in procedure get_student_info');
END get_student_info;

PROCEDURE get_student_info
(p_last_name IN student.last_name%TYPE,
p_first_name IN student.first_name%TYPE,
p_student_id OUT student.student_id%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER)

APPENDIX D: Answers to the Try it Yourself Sections 687

IS
BEGIN

SELECT student_id, zip
INTO p_student_id, p_zip
FROM student
WHERE UPPER(last_name) = UPPER(p_last_name)
AND UPPER(first_name) = UPPER(p_first_name);

p_return_code := 0;
EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE

('Student name is not valid.');
p_return_code := -100;
p_student_id := NULL;
p_zip := NULL;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE

('Error in procedure get_student_info');
END get_student_info;

PROCEDURE remove_student
-- The parameters student_id and p_ri give the user an
-- option of cascade delete or restrict delete for
-- the given student's records
(p_studid IN student.student_id%TYPE,
p_ri IN VARCHAR2 DEFAULT 'R')

IS
-- Declare exceptions for use in procedure
enrollment_present EXCEPTION;
bad_pri EXCEPTION;

BEGIN
-- R value is for restrict delete option
IF p_ri = 'R' THEN

DECLARE
-- A variable is needed to test if the student
-- is in the enrollment table
v_dummy CHAR(1);

BEGIN
-- This is a standard existence check.
-- If v_dummy is assigned a value via the
-- SELECT INTO, the exception
-- enrollment_present will be raised.
-- If the v_dummy is not assigned a value, the
-- exception no_data_found will be raised.
SELECT NULL
INTO v_dummy
FROM enrollment e
WHERE e.student_id = p_studid
AND ROWNUM = 1;

APPENDIX D: Answers to the Try it Yourself Sections688

-- The rownum set to 1 prevents the SELECT
-- INTO statement raise to_many_rows
-- exception.
-- If there is at least one row in the enrollment
-- table with a corresponding student_id, the
-- restrict delete parameter will disallow the
-- deletion of the student by raising
-- the enrollment_present exception.
RAISE enrollment_present;

EXCEPTION
WHEN NO_DATA_FOUND THEN

-- The no_data_found exception is raised
-- when there are no students found in the
-- enrollment table. Since the p_ri indicates
-- a restrict delete user choice the delete
-- operation is permitted.
DELETE FROM student
WHERE student_id = p_studid;

END;
-- When the user enters "C" for the p_ri
-- he/she indicates a cascade delete choice
ELSIF p_ri = 'C' THEN

-- Delete the student from the enrollment and
-- grade tables
DELETE FROM enrollment
WHERE student_id = p_studid;

DELETE FROM grade
WHERE student_id = p_studid;

-- Delete from student table only after corresponding
-- records have been removed from the other tables
-- because the student table is the parent table
DELETE FROM student
WHERE student_id = p_studid;

ELSE
RAISE bad_pri;

END IF;
EXCEPTION

WHEN bad_pri THEN
RAISE_APPLICATION_ERROR

(-20231, 'An incorrect p_ri value was '||
'entered. The remove_student procedure can '||
'only accept a C or R for the p_ri parameter.');

WHEN enrollment_present THEN
RAISE_APPLICATION_ERROR

(-20239, 'The student with ID'||p_studid||
' exists in the enrollment table thus records'||
' will not be removed.');

APPENDIX D: Answers to the Try it Yourself Sections 689

END remove_student;

BEGIN
SELECT trunc(sysdate, 'DD')
INTO v_current_date
FROM dual;

END student_api;

Chapter 22,“Stored Code”

1) Add a function to the student_api package specification called get_course_
descript. The caller takes a course.cnumber%TYPE parameter, and it returns a
course.description%TYPE.

ANSWER: The package should look similar to the following:

CREATE OR REPLACE PACKAGE student_api AS
v_current_date DATE;

PROCEDURE discount;

FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE;

FUNCTION total_cost_for_student
(p_student_id IN student.student_id%TYPE)

RETURN course.cost%TYPE;
PRAGMA RESTRICT_REFERENCES

(total_cost_for_student, WNDS, WNPS, RNPS);

PROCEDURE get_student_info
(p_student_id IN student.student_id%TYPE,
p_last_name OUT student.last_name%TYPE,
p_first_name OUT student.first_name%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER);

PROCEDURE get_student_info
(p_last_name IN student.last_name%TYPE,
p_first_name IN student.first_name%TYPE,
p_student_id OUT student.student_id%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER);

PROCEDURE remove_student
(p_studid IN student.student_id%TYPE,
p_ri IN VARCHAR2 DEFAULT 'R');

FUNCTION get_course_descript
(p_cnumber course.course_no%TYPE)

RETURN course.description%TYPE;
END student_api;

APPENDIX D: Answers to the Try it Yourself Sections690

2) Create a function in the student_api package body called get_course_description.
A caller passes in a course number, and it returns the course description. Instead of searching for
the description itself, it makes a call to get_course_descript_private. It passes its
course number to get_course_descript_private. It passes back to the caller the
description it gets back from get_course_descript_private.

ANSWER: The package body should look similar to the following:

CREATE OR REPLACE PACKAGE BODY student_api AS

PROCEDURE discount
IS

CURSOR c_group_discount IS
SELECT distinct s.course_no, c.description
FROM section s, enrollment e, course c
WHERE s.section_id = e.section_id
GROUP BY s.course_no, c.description,

e.section_id, s.section_id
HAVING COUNT(*) >=8;

BEGIN
FOR r_group_discount IN c_group_discount LOOP

UPDATE course
SET cost = cost * .95

WHERE course_no = r_group_discount.course_no;

DBMS_OUTPUT.PUT_LINE
('A 5% discount has been given to'||
r_group_discount.course_no||' '||
r_group_discount.description);

END LOOP;
END discount;

FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE
IS

v_new_instid instructor.instructor_id%TYPE;
BEGIN

SELECT INSTRUCTOR_ID_SEQ.NEXTVAL
INTO v_new_instid
FROM dual;

RETURN v_new_instid;
EXCEPTION

WHEN OTHERS THEN
DECLARE

v_sqlerrm VARCHAR2(250) := SUBSTR(SQLERRM,1,250);
BEGIN

RAISE_APPLICATION_ERROR
(-20003, 'Error in instructor_id: '||v_sqlerrm);

END;
END new_instructor_id;

APPENDIX D: Answers to the Try it Yourself Sections 691

FUNCTION get_course_descript_private
(p_course_no course.course_no%TYPE)

RETURN course.description%TYPE
IS

v_course_descript course.description%TYPE;
BEGIN

SELECT description
INTO v_course_descript
FROM course
WHERE course_no = p_course_no;
RETURN v_course_descript;

EXCEPTION
WHEN OTHERS THEN

RETURN NULL;
END get_course_descript_private;

FUNCTION total_cost_for_student
(p_student_id IN student.student_id%TYPE)

RETURN course.cost%TYPE
IS

v_cost course.cost%TYPE;
BEGIN

SELECT sum(cost)
INTO v_cost
FROM course c, section s, enrollment e
WHERE c.course_no = c.course_no
AND e.section_id = s.section_id
AND e.student_id = p_student_id;

RETURN v_cost;
EXCEPTION

WHEN OTHERS THEN
RETURN NULL;

END total_cost_for_student;

PROCEDURE get_student_info
(p_student_id IN student.student_id%TYPE,
p_last_name OUT student.last_name%TYPE,
p_first_name OUT student.first_name%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER)

IS
BEGIN

SELECT last_name, first_name, zip
INTO p_last_name, p_first_name, p_zip
FROM student
WHERE student.student_id = p_student_id;
p_return_code := 0;

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('Student ID is not valid.');

APPENDIX D: Answers to the Try it Yourself Sections692

p_return_code := -100;
p_last_name := NULL;
p_first_name := NULL;
p_zip := NULL;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE

('Error in procedure get_student_info');
END get_student_info;

PROCEDURE get_student_info
(p_last_name IN student.last_name%TYPE,
p_first_name IN student.first_name%TYPE,
p_student_id OUT student.student_id%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER)

IS
BEGIN

SELECT student_id, zip
INTO p_student_id, p_zip
FROM student
WHERE UPPER(last_name) = UPPER(p_last_name)
AND UPPER(first_name) = UPPER(p_first_name);

p_return_code := 0;
EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE ('Student name is not valid.');
p_return_code := -100;
p_student_id := NULL;
p_zip := NULL;

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE

('Error in procedure get_student_info');
END get_student_info;

PROCEDURE remove_student
-- The parameters student_id and p_ri give the user an
-- option of cascade delete or restrict delete for
-- the given student's records
(p_studid IN student.student_id%TYPE,
p_ri IN VARCHAR2 DEFAULT 'R')

IS
-- Declare exceptions for use in procedure
enrollment_present EXCEPTION;
bad_pri EXCEPTION;

BEGIN
-- The R value is for restrict delete option
IF p_ri = 'R' THEN

DECLARE

APPENDIX D: Answers to the Try it Yourself Sections 693

-- A variable is needed to test if the student
-- is in the enrollment table
v_dummy CHAR(1);

BEGIN
-- This is a standard existence check.
-- If v_dummy is assigned a value via the
-- SELECT INTO, the exception
-- enrollment_present will be raised.
-- If the v_dummy is not assigned a value, the
-- exception no_data_found will be raised.
SELECT NULL
INTO v_dummy
FROM enrollment e
WHERE e.student_id = p_studid
AND ROWNUM = 1;

-- The rownum set to 1 prevents the SELECT
-- INTO statement raise to_many_rows exception.
-- If there is at least one row in the enrollment
-- table with a corresponding student_id, the
-- restrict delete parameter will disallow
-- the deletion of the student by raising
-- the enrollment_present exception.
RAISE enrollment_present;

EXCEPTION
WHEN NO_DATA_FOUND THEN

-- The no_data_found exception is raised
-- when no students are found in the
-- enrollment table.
-- Since the p_ri indicates a restrict
-- delete user choice, the delete operation
-- is permitted.
DELETE FROM student
WHERE student_id = p_studid;

END;
-- When the user enters "C" for the p_ri
-- he/she indicates a cascade delete choice
ELSIF p_ri = 'C' THEN

-- Delete the student from the enrollment and
-- grade tables
DELETE FROM enrollment
WHERE student_id = p_studid;

DELETE FROM grade
WHERE student_id = p_studid;

-- Delete from student table only after
-- corresponding records have been removed from
-- the other tables because the student table is
-- the parent table

APPENDIX D: Answers to the Try it Yourself Sections694

DELETE
FROM student
WHERE student_id = p_studid;

ELSE
RAISE bad_pri;

END IF;
EXCEPTION

WHEN bad_pri THEN
RAISE_APPLICATION_ERROR

(-20231, 'An incorrect p_ri value was '||
'entered. The remove_student procedure can '||
'only accept a C or R for the p_ri parameter.');

WHEN enrollment_present THEN
RAISE_APPLICATION_ERROR

(-20239, 'The student with ID'||p_studid||
' exists in the enrollment table thus records'||
' will not be removed.');

END remove_student;

FUNCTION get_course_descript
(p_cnumber course.course_no%TYPE)

RETURN course.description%TYPE
IS
BEGIN

RETURN get_course_descript_private(p_cnumber);
END get_course_descript;

BEGIN
SELECT trunc(sysdate, 'DD')
INTO v_current_date
FROM dual;

END student_api;

3) Add a PRAGMA RESTRICT_REFERENCES to student_api for get_course_description
specifying the following: It writes no database state, it writes no package state, and it reads no
package state.

ANSWER: The package should look similar to the following:

CREATE OR REPLACE PACKAGE student_api AS
v_current_date DATE;

PROCEDURE discount;

FUNCTION new_instructor_id
RETURN instructor.instructor_id%TYPE;

FUNCTION total_cost_for_student
(p_student_id IN student.student_id%TYPE)
RETURN course.cost%TYPE;

APPENDIX D: Answers to the Try it Yourself Sections 695

PRAGMA RESTRICT_REFERENCES
(total_cost_for_student, WNDS, WNPS, RNPS);

PROCEDURE get_student_info
(p_student_id IN student.student_id%TYPE,
p_last_name OUT student.last_name%TYPE,
p_first_name OUT student.first_name%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER);

PROCEDURE get_student_info
(p_last_name IN student.last_name%TYPE,
p_first_name IN student.first_name%TYPE,
p_student_id OUT student.student_id%TYPE,
p_zip OUT student.zip%TYPE,
p_return_code OUT NUMBER);

PROCEDURE remove_student
(p_studid IN student.student_id%TYPE,
p_ri IN VARCHAR2 DEFAULT 'R');

FUNCTION get_course_descript
(p_cnumber course.course_no%TYPE)

RETURN course.description%TYPE;
PRAGMA RESTRICT_REFERENCES

(get_course_descript,WNDS, WNPS, RNPS);
END student_api;
/

Chapter 23,“Object Types in Oracle”

1) Create the object type student_obj_type with attributes derived from the STUDENT table.

ANSWER: The object type should look similar to the following:

CREATE OR REPLACE TYPE student_obj_type AS OBJECT
(student_id NUMBER(8),
salutation VARCHAR2(5),
first_name VARCHAR2(25),
last_name VARCHAR2(25),
street_address VARCHAR2(50),
zip VARCHAR2(5),
phone VARCHAR2(15),
employer VARCHAR2(50),
registration_date DATE,
created_by VARCHAR2(30),
created_date DATE,
modified_by VARCHAR2(30),
modified_date DATE);

/

APPENDIX D: Answers to the Try it Yourself Sections696

After this object type is created, it can be used as follows:

SET SERVEROUTPUT ON
DECLARE

v_student_obj student_obj_type;
BEGIN

-- Use default contructor method to initialize student object
SELECT student_obj_type(student_id, salutation, first_name,

last_name, street_address, zip, phone, employer,
registration_date, null, null, null, null)

INTO v_student_obj
FROM student
WHERE student_id = 103;

DBMS_OUTPUT.PUT_LINE ('Student ID: '||v_student_obj.student_id);
DBMS_OUTPUT.PUT_LINE ('Salutation: '||v_student_obj.salutation);
DBMS_OUTPUT.PUT_LINE ('First Name: '||v_student_obj.first_name);
DBMS_OUTPUT.PUT_LINE ('Last Name: ' ||v_student_obj.last_name);
DBMS_OUTPUT.PUT_LINE

('Street Address: '||v_student_obj.street_address);
DBMS_OUTPUT.PUT_LINE ('Zip: ' ||v_student_obj. zip);
DBMS_OUTPUT.PUT_LINE ('Phone: ' ||v_student_obj.phone);
DBMS_OUTPUT.PUT_LINE ('Employer: '||v_student_obj.employer);
DBMS_OUTPUT.PUT_LINE

('Registration Date: '||v_student_obj.registration_date);
END;
/

The output is as follows:

Student ID: 103
Salutation: Ms.
First Name: J.
Last Name: Landry
Street Address: 7435 Boulevard East #45
Zip: 07047
Phone: 201-555-5555
Employer: Albert Hildegard Co.
Registration Date: 22-JAN-03

PL/SQL procedure successfully completed.

2) Add user-defined constructor function, member procedure, static procedure, and order function
methods. You should determine on your own how these methods should be structured.

ANSWER: The newly modified student object should be similar to the following:

CREATE OR REPLACE TYPE student_obj_type AS OBJECT
(student_id NUMBER(8),
salutation VARCHAR2(5),
first_name VARCHAR2(25),
last_name VARCHAR2(25),
street_address VARCHAR2(50),
zip VARCHAR2(5),

APPENDIX D: Answers to the Try it Yourself Sections 697

phone VARCHAR2(15),
employer VARCHAR2(50),
registration_date DATE,
created_by VARCHAR2(30),
created_date DATE,
modified_by VARCHAR2(30),
modified_date DATE,

CONSTRUCTOR FUNCTION student_obj_type
(SELF IN OUT NOCOPY STUDENT_OBJ_TYPE,
in_student_id IN NUMBER, in_salutation IN VARCHAR2,
in_first_name IN VARCHAR2, in_last_name IN VARCHAR2,
in_street_addr IN VARCHAR2, in_zip IN VARCHAR2,
in_phone IN VARCHAR2, in_employer IN VARCHAR2,
in_reg_date IN DATE, in_cr_by IN VARCHAR2,
in_cr_date IN DATE, in_mod_by IN VARCHAR2,
in_mod_date IN DATE)

RETURN SELF AS RESULT,

CONSTRUCTOR FUNCTION student_obj_type
(SELF IN OUT NOCOPY STUDENT_OBJ_TYPE,
in_student_id IN NUMBER)

RETURN SELF AS RESULT,

MEMBER PROCEDURE get_student_info
(student_id OUT NUMBER, salutation OUT VARCHAR2,
first_name OUT VARCHAR2, last_name OUT VARCHAR2,
street_addr OUT VARCHAR2, zip OUT VARCHAR2,
phone OUT VARCHAR2, employer OUT VARCHAR2,
reg_date OUT DATE, cr_by OUT VARCHAR2,
cr_date OUT DATE, mod_by OUT VARCHAR2,
mod_date OUT DATE),

STATIC PROCEDURE display_student_info
(student_obj IN STUDENT_OBJ_TYPE),

ORDER MEMBER FUNCTION student
(student_obj STUDENT_OBJ_TYPE)

RETURN INTEGER);
/

CREATE OR REPLACE TYPE BODY student_obj_type AS

CONSTRUCTOR FUNCTION student_obj_type
(SELF IN OUT NOCOPY STUDENT_OBJ_TYPE,
in_student_id IN NUMBER, in_salutation IN VARCHAR2,
in_first_name IN VARCHAR2, in_last_name IN VARCHAR2,
in_street_addr IN VARCHAR2, in_zip IN VARCHAR2,
in_phone IN VARCHAR2, in_employer IN VARCHAR2,
in_reg_date IN DATE, in_cr_by IN VARCHAR2,

APPENDIX D: Answers to the Try it Yourself Sections698

in_cr_date IN DATE, in_mod_by IN VARCHAR2,
in_mod_date IN DATE)

RETURN SELF AS RESULT
IS
BEGIN

-- Validate incoming value of zip
SELECT zip
INTO SELF.zip
FROM zipcode
WHERE zip = in_zip;

-- Check incoming value of student ID
-- If it is not populated, get it from the sequence
IF in_student_id IS NULL THEN

student_id := STUDENT_ID_SEQ. NEXTVAL;
ELSE

student_id := in_student_id;
END IF;

salutation := in_salutation;
first_name := in_first_name;
last_name := in_last_name;
street_address := in_street_addr;
phone := in_phone;
employer := in_employer;
registration_date := in_reg_date;

IF in_cr_by IS NULL THEN created_by := USER;
ELSE created_by := in_cr_by;
END IF;

IF in_cr_date IS NULL THEN created_date := SYSDATE;
ELSE created_date := in_cr_date;
END IF;

IF in_mod_by IS NULL THEN modified_by := USER;
ELSE modified_by := in_mod_by;
END IF;

IF in_mod_date IS NULL THEN modified_date := SYSDATE;
ELSE modified_date := in_mod_date;
END IF;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;

APPENDIX D: Answers to the Try it Yourself Sections 699

CONSTRUCTOR FUNCTION student_obj_type
(SELF IN OUT NOCOPY STUDENT_OBJ_TYPE,
in_student_id IN NUMBER)

RETURN SELF AS RESULT
IS
BEGIN

SELECT student_id, salutation, first_name, last_name,
street_address, zip, phone, employer,
registration_date, created_by, created_date,
modified_by, modified_date

INTO SELF.student_id, SELF.salutation, SELF.first_name,
SELF.last_name, SELF.street_address, SELF.zip,
SELF.phone, SELF.employer, SELF.registration_date,
SELF.created_by, SELF.created_date,
SELF.modified_by, SELF.modified_date

FROM student
WHERE student_id = in_student_id;

RETURN;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN;

END;

MEMBER PROCEDURE get_student_info
(student_id OUT NUMBER, salutation OUT VARCHAR2,
first_name OUT VARCHAR2, last_name OUT VARCHAR2,
street_addr OUT VARCHAR2, zip OUT VARCHAR2,
phone OUT VARCHAR2, employer OUT VARCHAR2,
reg_date OUT DATE, cr_by OUT VARCHAR2,
cr_date OUT DATE, mod_by OUT VARCHAR2,
mod_date OUT DATE)IS

BEGIN
student_id := SELF.student_id;
salutation := SELF.salutation;
first_name := SELF.first_name;
last_name := SELF.last_name;
street_addr := SELF.street_address;
zip := SELF.zip;
phone := SELF.phone;
employer := SELF.employer;
reg_date := SELF.registration_date;
cr_by := SELF.created_by;
cr_date := SELF.created_date;
mod_by := SELF.modified_by;
mod_date := SELF.modified_date;

END;

APPENDIX D: Answers to the Try it Yourself Sections700

STATIC PROCEDURE display_student_info
(student_obj IN STUDENT_OBJ_TYPE)

IS
BEGIN

DBMS_OUTPUT.PUT_LINE ('Student ID: '||student_obj.student_id);
DBMS_OUTPUT.PUT_LINE ('Salutation: '||student_obj.salutation);
DBMS_OUTPUT.PUT_LINE ('First Name: '||student_obj.first_name);
DBMS_OUTPUT.PUT_LINE ('Last Name: ' ||student_obj.last_name);
DBMS_OUTPUT.PUT_LINE

('Street Address: '||student_obj.street_address);
DBMS_OUTPUT.PUT_LINE ('Zip: ' ||student_obj.zip);
DBMS_OUTPUT.PUT_LINE ('Phone: ' ||student_obj.phone);
DBMS_OUTPUT.PUT_LINE ('Employer: '||student_obj.employer);
DBMS_OUTPUT.PUT_LINE

('Registration Date: '||student_obj.registration_date);
END;

ORDER MEMBER FUNCTION student (student_obj STUDENT_OBJ_TYPE)
RETURN INTEGER
IS
BEGIN

IF student_id < student_obj.student_id THEN RETURN -1;
ELSIF student_id = student_obj.student_id THEN RETURN 0;
ELSIF student_id > student_obj.student_id THEN RETURN 1;
END IF;

END;

END;
/

This student object type has two overloaded constructor functions, member procedure, static
procedure, and order function methods.

Both constructor functions have the same name as the object type. The first constructor function
evaluates incoming values of student ID, zip code, created and modified users, and dates.
Specifically, it checks to see if the incoming student ID is null and then populates it from
STUDENT_ID_SEQ. Take a closer look at the statement that assigns a sequence value to the
STUDENT_ID attribute. The ability to access a sequence via a PL/SQL expression is a new feature in
Oracle 11g. Previously, sequences could be accessed only by queries. It also validates that the
incoming value of zip exists in the ZIPCODE table. Finally, it checks to see if incoming values of the
created and modified user and date are null. If any of these incoming values are null, the construc-
tor function populates the corresponding attributes with the default values based on the system
functions USER and SYSDATE. The second constructor function initializes the object instance
based on the incoming value of student ID using the SELECT INTO statement.

The member procedure GET_STUDENT_INFO populates out parameters with corresponding
values of object attributes. The static procedure DISPLAY_STUDENT_INFO displays values of the
incoming student object on the screen. Recall that static methods do not have access to the data
associated with a particular object type instance. As a result, they may not reference the default
parameter SELF. The order member function compares two instances of the student object type
based on values of the student_id attribute.

APPENDIX D: Answers to the Try it Yourself Sections 701

The newly created object type may be tested as follows:

DECLARE
v_student_obj1 student_obj_type;
v_student_obj2 student_obj_type;

v_result INTEGER;
BEGIN

-- Populate student objects via user-defined constructor method
v_student_obj1 :=

student_obj_type (in_student_id => NULL,
in_salutation => 'Mr.',
in_first_name => 'John',
in_last_name => 'Smith',
in_street_addr => '123 Main Street',
in_zip => '00914',
in_phone => '555-555-5555',
in_employer => 'ABC Company',
in_reg_date => TRUNC(sysdate),
in_cr_by => NULL,
in_cr_date => NULL,
in_mod_by => NULL,
in_mod_date => NULL);

v_student_obj2 := student_obj_type(103);

-- Display student information for both objects
student_obj_type.display_student_info (v_student_obj1);
DBMS_OUTPUT.PUT_LINE ('================================');
student_obj_type.display_student_info (v_student_obj2);
DBMS_OUTPUT.PUT_LINE ('================================');

-- Compare student objects
v_result := v_student_obj1.student(v_student_obj2);
DBMS_OUTPUT.PUT_LINE ('The result of comparison is '||v_result);

IF v_result = 1 THEN
DBMS_OUTPUT.PUT_LINE

('v_student_obj1 is greater than v_student_obj2');

ELSIF v_result = 0 THEN
DBMS_OUTPUT.PUT_LINE

('v_student_obj1 is equal to v_student_obj2');

ELSIF v_result = -1 THEN
DBMS_OUTPUT.PUT_LINE

('v_student_obj1 is less than v_student_obj2');
END IF;

END;
/

APPENDIX D: Answers to the Try it Yourself Sections702

The output is as follows:

Student ID: 403
Salutation: Mr.
First Name: John
Last Name: Smith
Street Address: 123 Main Street
Zip: 00914
Phone: 555-555-5555
Employer: ABC Company
Registration Date: 24-APR-08
================================
Student ID: 103
Salutation: Ms.
First Name: J.
Last Name: Landry
Street Address: 7435 Boulevard East #45
Zip: 07047
Phone: 201-555-5555
Employer: Albert Hildegard Co.
Registration Date: 22-JAN-03
================================
The result of comparison is 1
v_student_obj1 is greater than v_student_obj2

PL/SQL procedure successfully completed.

Chapter 24,“Oracle Supplied Packages”

This chapter has no “Try It Yourself” section.

APPENDIX D: Answers to the Try it Yourself Sections 703

This page intentionally left blank

Application Server 10g. See

Oracle Application Server 10g

application server tier (Oracle
Application Server 10g), 580

architecture, client/server

anonymous blocks,
4, 8-10

declaration section
(blocks), 5

exception-handling
section (blocks), 6-7

executable section
(blocks), 5-6

executing blocks,
7, 10-11

named blocks, 4

overview, 2-4

area of circle, calculating,
19, 613

arrays

associative arrays

declaring, 317

examples, 317-319

name_tab, 652

sample script, 326-330

varrays

city_varray, 338-341

collection methods,
336-338

course_varray,
653-657

creating, 334-335

Symbols

& (ampersand), 13-15, 25

+ (plus sign), 24

A

accessing sequences, 43

actual parameters
(procedures), 444-445

AFTER triggers, 269-270,
274-276

aliases for columns, 245

ALTER SYSTEM command, 564

ALTER TRIGGER statement,
265-266

American National
Standards Institute. See

ANSI SQL standards

ampersand (&), 13-15, 25

anchored datatypes, 28-29

anonymous blocks, 4, 8-10, 440

ANSI SQL standards

joins

CROSS JOIN syntax,
607-608

EQUI JOIN syntax,
608-609

NATURAL JOIN
syntax, 609-610

OUTER JOIN syntax,
610-611

overview, 607

scalar subqueries, 611

INDEX

definition, 334

name_varray, 652-653

NULL varrays,
335-336

runtime errors,
656-659

sample script, 338-341

assignment operator, 31

associative arrays

declaring, 317

examples, 317-319

name_tab, 652

sample script, 326-330

attributes, cursor, 240-242

automatic subprogram
inlining, xxv-xxvi

AUTONOMOUS_TRANSACTION
pragma, 270-272

autonomous transactions,
270-272

B

BEFORE triggers, 267-269,
274-276

BEGIN keyword, 6

binary files, reading, 559

BINARY_INTEGER datatype, 30

bind arguments, 380

blocks

anonymous blocks, 4,
8-10, 440

block structure, 440

declaration section, 5

DML in, 42-43

exception-handling
section, 6-7

executable section, 5-6

executing, 7, 10-11

labels, 35-36

multiple transactions
in, 50

named blocks, 4

nested blocks, 35-36

overview, 4

sequences in, 44

try-it-yourself projects,
37, 614-616

writing, 37, 614-616

body of packages

creating, 462-464

rules for, 460

syntax, 459-460

BOOLEAN datatype, 30

Boolean expressions,
terminating loops with, 126

BROKEN procedure, 564

built-in exceptions.
See exceptions

BULK COLLECT statement

fetching data into
collections, 425-426

fetching records with,
422-423

with FORALL statement,
427-428

LIMIT option, 423-425

RETURNING option,
426-427

sample scripts, 428-436

structure, 422

bulk SQL

BULK COLLECT
statement

fetching data into
collections, 425-426

fetching records with,
422-423

with FORALL
statement, 427-428

LIMIT option,
423-425

RETURNING option,
426-427

sample scripts,
428-436

structure, 422

FORALL statement

BULK COLLECT
clause, 427-428

INDICES OF
option, 410

sample script, 413-421

SAVE EXCEPTIONS
option, 408-409

simple examples,
405-408

structure, 404-405

VALUES OF option,
411-412

overview, 403

try-it-yourself projects,
437, 665-672

C

c_course cursor, 257

c_grade cursor, 257

c_grades cursor, 481

c_grade_type cursor, 480

c_student cursor, 257

c_zip cursor, 254

calculating

area of circle, 19, 613

factorial of 10, 137-138

sum of integers between
1 and 10, 128-131

arrays706

calling stored packages,
464-465

CAPACITY column (SECTION
table), 602

case, formatting, 597

CASE expressions

differences between CASE
statement and CASE
expression, 97-99

displaying letter grades
for students, 100-102

example, 96-97

overview, 96

CASE statement

displaying name of
day, 89-91

examples, 83-84

overview, 82

searched CASE statements

differences between
CASE and searched
CASE, 86-89

differences between
CASE statement
and CASE
expression, 97-99

displaying letter grade
for student, 91-95

example, 86

syntax, 84-85

syntax, 82

try-it-yourself projects,
112, 622-626

Celsius/Farenheit conversion
script, 76-79

CHANGE procedure, 564

CHAP4 table, creating, 616

CHAP4_SEQ sequence,
creating, 616

CHAR datatype, 29

character types, 22-23

circles, calculating area
of, 19, 613-614

CITY column (ZIPCODE
table), 603

city_varray, 338-341

clauses. See statements

client-side HTML image
maps, 592-593

client/server architecture,
PL/SQL in

blocks

anonymous blocks,
4, 8-10

declaration section, 5

exception-handling
section, 6-7

executable section, 5-6

executing, 7, 10-11

named blocks, 4

overview, 4

overview, 2-4

try-it-yourself projects,
19, 613-614

client tier (Oracle Application
Server 10g), 580

CLOSE statement

sample script, 395-400

syntax, 394-395

closing cursors, 237-240,
394-395

COALESCE function,
26, 105-106, 626

evaluting list of numbers,
109-111

example, 106-107

syntax, 105

collection methods

applying to PL/SQL
tables, 322-325

applying to
varrays, 336-338

COUNT, 322

DELETE, 323, 337

EXISTS, 322

EXTEND, 323

FIRST, 323

LAST, 323

NEXT, 323

PRIOR, 323

TRIM, 323

collections

collection methods,
322-325

COUNT, 322

DELETE, 323, 337

example, 323-325

EXISTS, 322

EXTEND, 323

FIRST, 323

LAST, 323

NEXT, 323

PRIOR, 323

TRIM, 323

definition, 315

empty collections, 322

fetching data into,
425-426

multilevel collections,
342-347

NULL collections, 322

of object types, 520-522,
526-530

collections 707

PL/SQL tables

associative arrays,
317-319, 326-330

definition, 316-317

nested tables,
319-321, 330-333

of records, 373-377

try-it-yourself
projects, 348, 652-659

varrays

city_varray, 338-341

collection methods,
336-338

creating, 334-335

definition, 334

NULL varrays,
335-336

sample script, 338-341

columns

aliases, 245

COURSE table
columns, 601

ENROLLMENT table
columns, 602

GRADE table
columns, 605

GRADE_CONVERSION
table columns, 605

GRADE_TYPE table
columns, 604

GRADE_TYPE_WEIGHT
table columns, 604

INSTRUCTOR table
columns, 603

SECTION table
columns, 601-602

STUDENT table
columns, 602

ZIPCODE table
columns, 603

commands. See statements

comments

definition, 23

formatting guidelines,
598-599

COMMENTS column (GRADE
table), 605

COMMIT statement, 46-47

committing transactions, 46-47

comparing

expressions with NULLIF
function, 103-104,
107-109

objects

map methods,
538-541

order methods,
541-544

compatibility of records,
355-357

compiler, xxvii

complex functions, 454

compound triggers, xxiv

capabilities, 300

examples, 302-306

modifying, 306-312

restrictions, 301

structure, 300-301

try-it-yourself projects,
313, 648-651

conditional control

CASE expressions

differences between
CASE statement
and CASE expres-
sion, 97-99

displaying letter grades
for students, 100-102

example, 96-97

overview, 96

CASE statement

differences between
CASE statement and
CASE expression,
97-99

displaying name of
day, 89-91

examples, 83-84

overview, 82

searched CASE
statements, 84-95

syntax, 82

try-it-yourself projects,
112, 622-626

COALESCE function,
105-106

evaluating list of
numbers, 109-111

example, 106-107

syntax, 105

ELSEIF statement

conditions, 67

displaying letter grade
for student, 69-73

example, 66

examples, 65-68

syntax, 65

collections708

IF statements

IF-THEN, 54-61

IF-THEN-ELSE, 54-64

nested IF statements,
74-79

try-it-yourself projects,
80, 619-622

NULLIF function,
104-105

displaying letter grades
for students, 107-109

example, 103

restrictions, 104

syntax, 103

overview, 53

CONSTANT keyword, 5

constraints (datatype), passing
with parameter values, 445

constructor methods, 531-534

CONTINUE statement, xx

compared to EXIT
statement, 148

overview, 144-145

sample script, 146-151

CONTINUE WHEN statement

overview, 145

sample script, 152-153

try-it-yourself
projects, 629-630

converting Celsius/
Farenheit, 76-79

COST column (COURSE
table), 601

COUNT() function, 183, 322

COURSE table, 601

courses, checking number of
students enrolled in, 62-64

COURSE_NO column

COURSE table, 601

SECTION table, 601

course_rec record, 350

course_varray varray, 653-657

CREATE FUNCTION
statement, 450-451

CREATE OR REPLACE TRIGGER
clause, xxiv

CREATE OR REPLACE TYPE
clause, 514

CREATE TRIGGER
statement, 265

CREATED_BY column

COURSE table, 601

ENROLLMENT
table, 603

GRADE table, 605

GRADE_CONVERSION
table, 605

GRADE_TYPE table, 604

INSTRUCTOR table, 603

SECTION table, 602

STUDENT table, 602

ZIPCODE table, 603

CREATED_DATE column

COURSE table, 601

ENROLLMENT
table, 603

GRADE table, 605

GRADE_CONVERSION
table, 605

GRADE_TYPE table, 604

INSTRUCTOR table, 603

SECTION table, 602

STUDENT table, 602

ZIPCODE table, 603

creating

cursor variables, 472

explain plans, 570-577

object types, 514-516

package bodies, 462-464

package variables,
469-470

private objects, 465-469

procedures, 441-442

triggers, 264-265,
272-273, 645-648

CROSS JOINs, 607-608

cross-section function result
cache, xxiii-xxiv

current_status procedure,
673-674

cursor variables

capabilities, 471-472

compared to cursors, 472

creating, 472

handling, 473

rules for use, 479

sample cursor variable in
package, 473-475

sample script, 475-479

strong cursor
variables, 472

weak cursor
variables, 472

cursor-based records, 233-235

student_rec example,
350-353

zip_rec example, 358-362

cursors

c_course cursor, 257

c_grade cursor, 257

cursors 709

c_grades, 481

c_grade_type, 480

c_student cursor, 257

c_zip cursor, 254

closing, 394-395

column aliases, 245

compared to cursor
variables, 472

creating, 469-470

cursor-based records

student_rec example,
350-353

zip_rec example,
358-362

declaring, 232-233

definition, 229-230

explicit cursors

attributes, 240-242

closing, 237-240

declaring, 232

definition, 230

example, 242-245

fetching rows
in, 236-237

opening, 236

fetching, 393-394

FOR loops, 246-247

FOR UPDATE clause,
258-260

implicit cursors

capabilities, 231

definition, 230

example, 231-232

nested cursors, 247-251,
255-257

opening, 392-393

parameters, 254-255

record types

cursor-based records,
233-235

table-based records,
233-234

scope, 245

SELECT list, 245

try-it-yourself projects,
252, 643-645

WHERE CURRENT
clause, 261

zip_cur, 371

D

Data Definition Language
(DDL), 41

data dictionary, 443

data directory, querying
for stored code information,
496-500

Database Resident Connection
Pool (DRCP), xxv

database tier (Oracle
Application Server 10g), 580

databases

records. See records

student database. See
student database

triggers

AFTER triggers,
269-270, 274-276

autonomous
transactions, 270-272

BEFORE triggers,
267-269, 274-276

creating, 264-265,
272-273

definition, 264

disabling, 265-266

INSTEAD OF triggers,
278-289

mutating table issues,
292-299

restrictions, 266-267

row triggers, 277,
283-285

statement triggers,
277-278, 283-285

triggering events, 264

try-it-yourself projects,
290, 645-648

datatypes

anchored datatypes,
28-29

BINARY_INTEGER, 30

BOOLEAN, 30

CHAR, 29

DATE, 30

FILE_TYPE, 560

LOB (large object), 31

LONG, 31

LONG RAW, 31

NUMBER, 29

ROWID, 31

SIMPLE_DOUBLE,
xviii-xx

SIMPLE_FLOAT, xviii-xx

SIMPLE_INTEGER,
xviii-xx

TIMESTAMP, 30

VARCHAR2, 29

DATE datatype, 30

dates

DATE datatype, 30

displaying name of
day, 89-91

cursors710

testing whether date falls
on weekend, 58-61

DBMS_HPROF package,
556-559

DBMS_JOB package, 563-567

DBMS_LOB package, 559

DBMS_OUTPUT.PUT_LINE
statement, 16-18

DBMS_PROFILER package, 556

DBMS_XPLAN package,
568-570

generating explain
plans, 570-577

PLAN_TABLE, 568-569

DDL (Data Definition
Language), 41

declaration section (blocks), 5

DECLARE keyword, 5

declaring

associative arrays, 317

cursors, 232-233

user-defined
exceptions, 188

variables, 31-34

DELETE collection method,
323, 337

delimiters, 23-24

DEPTREE utility, 500

DESCRIPTION column (COURSE
table), 601

DISABLE option (CREATE
OR REPLACE TRIGGER
clause), xxiv

disabling triggers, 265-266

display_student_count
procedure, 466

DML

Oracle sequences

accessing, 43

definition, 43

drawing numbers
from, 43-44

in PL/SQL blocks, 44

incrementing
values, 43

in PL/SQL blocks, 42-43

variable initialization with
SELECT INTO, 40-42

double ampersand (&&), 13-15

DRCP (Database Resident
Connection Pool), xxv

DROP_LOWEST column
(GRADE_TYPE table), 604

drop_lowest flag, 483

DUP_VALUE_ON_INDEX
exception, 171

dynamic SQL. See native
dynamic SQL

dynamic_sql_pkg, 677

E

e_exception1 exception, 201

e_exception2 exception, 201

e_invalid_id exception,
188-191

e_my_exception
exception, 192

e_non_null_value
exception, 641-642

e_no_sections exception,
206-208

e_Show_Exception_Scope
variable, 36

e_too_many_sections
exception, 193-196

e_too_many_students
exception, 635-639

editing compound
triggers, 306-312

elements of packages,
referencing, 460

ELSEIF statement

conditions, 67

displaying letter grade for
student, 69-73

example, 66

examples, 65-68

syntax, 65

EMPLOYER column (STUDENT
table), 602

empty collections, 322

ENABLE option (CREATE
OR REPLACE TRIGGER

clause), xxiv

END IF statement, 6, 54

END LOOP statement, 114

enforcing stored code
purity level with
RESTRICT_REFERENCES
pragma, 500-506

ENROLLMENT table, 602

ENROLLMENT_OBJ_TYPE, 522

ENROLL_DATE column
(ENROLLMENT table), 602

EQUI JOINs, 608-609

error handling. See

also exceptions

error messages,
creating, 212-216

mutating table errors,
292-299

error handling 711

overview, 163

RAISE_APPLICATION_
ERROR statement,
639-640

runtime errors,
11, 164-167

syntax errors, 11

try-it-yourself projects,
178, 632-635

e_non_null_value
exception, 641-642

e_too_many_students
exception, 635-639

invalid instructor IDs,
handling, 634-635

invalid student IDs,
handling, 632-634

evaluating expressions
with COALESCE function,
105-106, 109-111

events, triggering, 264

EXCEPTION keyword, 6, 188

exception-handling section
(blocks), 6-7

exceptions

DUP_VALUE_ON_
INDEX, 171

error messages

creating, 212-216

returning with
SQLERRM function,
222-226

error number, returning
with SQLCODE
function, 222-226

example, 169-170

EXCEPTION_INIT
pragma, 217-221

handling multiple
exceptions, 171-173

INTERNAL_ERROR, 561

INVALID_
FILEHANDLE, 561

INVALID_MODE, 561

INVALID_NUMBER, 185

INVALID_
OPERATION, 561

INVALID_PATH, 561

LOGIN_DENIED, 171

NO_DATA_FOUND,
170, 180-182

OTHERS exception
handler, 173-174

overview, 163

PROGRAM_ERROR, 171

propagating, 197-206

RAISE_APPLICATION_
ERROR, 212-216

READ_ERROR, 561

reraising, 201-202,
206-208

sample exception-
handling script,
174-177

scope

examples, 180-183

sample script, 183-187

TOO_MANY_ROWS,
170, 189

try-it-yourself projects,
178, 209, 227, 632-642

e_non_null_value
exception, 641-642

e_too_many_students
exception, 635-639

invalid instructor IDs,
handling, 634-635

invalid student IDs,
handling, 632-634

RAISE_
APPLICATION_
ERROR statemen,
639-640

user-defined exceptions

declaring, 188

e_exception1, 201

e_exception2, 201

e_invalid_id, 188-191

e_my_exception, 192

e_no_sections,
206-208

e_non_null_value,
641-642

e_too_many_sections,
193-196

e_too_many_students,
635-639

raising, 189-191

sample script, 193-196

scope, 191-192

VALUE_ERROR,
167-168, 171, 185

WRITE_ERROR, 561

ZERO_DIVIDE, 170

EXCEPTION_INIT pragma,
217-221

executable section (blocks), 5-6

EXECUTE
IMMEDIATE statement

common errors, 383-386

overview, 380

passing NULL values,
386-387

sample script, 387-391

structure, 381-382

executing PL/SQL blocks,
7, 10-11

error handling712

EXISTS collection method, 322

EXIT statement

compared to CONTINUE
statement, 148

sample script, 118-120

syntax, 114-115

EXIT WHEN statement

sample script, 120-123

syntax, 116-117

explain plans

generating, 570-577

PLAN_TABLE, 568-569

explicit cursors

attributes, 240-242

closing, 237-240

column aliases, 245

declaring, 232

definition, 230

example, 242-245

fetching rows in, 236-237

opening, 236

scope, 245

SELECT list, 245

expressions

CASE

differences between
CASE statement and
CASE expression,
97-99

displaying letter grades
for students, 100-102

example, 96-97

overview, 96

comparing with
NULLIF function,
103-104, 107-109

evaluating with
COALESCE function,
105-106, 109-111

REGEXP_COUNT
function, xvii-xviii

REGEXP_INSTR
function, xviii

REGEXP_SUBSTR
function, xviii

sequences in, xx-xxi

EXTEND collection
method, 323

extending packages, 480-492

F

factorial of 10, calculating,
137-138

Farenheit/Celsius conversion
script, 76-79

FCLOSE procedure, 560

FCLOSE_ALL procedure, 560

FETCH statement

sample script, 395-400

syntax, 393-394

fetching

cursors, 393-394

rows in cursors, 236-237

FFLUSH procedure, 561

files

binary files, reading, 559

operating system files,
reading from/writing to,
559-562

FILE_TYPE datatype, 560

FINAL_GRADE column
(ENROLLMENT table), 603

final_grade procedure,
481, 484-487

find_sname procedure,
446, 461

FIRST collection method, 323

FIRST_NAME column

INSTRUCTOR table, 603

STUDENT table, 602

FOLLOWS option (CREATE
OR REPLACE TRIGGER
clause), xxiv

FOPEN function, 560

FOR loops

calculating factorial of
10, 137-138

cursor FOR loops,
246-247

example, 133-135

flow of logic, 133

IN option, 132, 137-138

premature termination
of, 136-137

REVERSE option,
135-136, 139-141

syntax, 132

try-it-yourself projects,
627-628

FOR UPDATE clause (cursors),
258-260

FORALL statement

BULK COLLECT
clause, 427-428

INDICES OF option, 410

sample script, 413-421

SAVE EXCEPTIONS
option, 408-409

simple examples,
405-408

structure, 404-405

VALUES OF option,
411-412

FORALL statement 713

form procedures, 587-588

formal parameters
(procedures), 444-445

formatting guidelines

case, 597

comments, 598-599

example, 599-600

naming conventions, 598

white space, 597

forms, 588-589

%FOUND attribute
(cursors), 240

FRAMESET procedures, 587

functions. See also methods

COALESCE, 26,
105-106, 626

evaluting list of
numbers, 109-111

example, 106-107

syntax, 105

complex functions,
writing, 454

COUNT(), 183, 322

creating, 450-451

cross-section function
result cache, xxiii-xxiv

definition, 450

FOPEN, 560

get_course_descript,
512, 690

get_course_description,
512, 691-696

get_course_descript_
private, 467

get_student_info, 509

HTF functions, 586

id_is_good, 452-453, 461

INSERTING, 649

instructor_status,
680-681

invoking in SQL
statements, 453-454

IS_OPEN, 560

new_instructor_id,
454, 461

new_student_id,
455, 679

NULLIF, 104-105

displaying letter grades
for students, 107-109

example, 103

restrictions, 104

syntax, 103

REGEXP_COUNT,
xvii-xviii

REGEXP_INSTR, xviii

REGEXP_SUBSTR, xviii

RTRIM, 60

scode_at_line, 497

show_description,
451-453

SQLCODE, 222-226

SQLERRM, 222-226

stored functions

creating, 451-452

enforcing purity
level with
RESTRICT_
REFERENCES
pragma, 500-506

overloaded modules,
506-511

overview, 495

projects, 512, 690-696

querying data
directory about,
496-500

running, 452-453

stored function
requirements in
SQL, 503

student_count_priv, 466

syntax, 450-451

SYSDATE, 619-620

TO_CHAR, 60

try-it-yourself projects,
455, 679-681

instructor_status
function, 680-681

new_student_id
function, 679

zip_does_not_exist
function, 679-680

USER, 121

zip_does_not_exist,
455, 679-680

G

get_course_descript
function, 512, 690

get_course_description
function, 512, 691-696

get_course_descript_private
function, 467

GET_LINE procedure, 561

get_name_address
procedure, 675-676

get_student_info function,
477, 509

GRADE table, 605

grades. See letter grades

form procedures714

GRADE_CODE_OCCURRENCE
column (GRADE table), 605

GRADE_CONVERSION
table, 605

GRADE_POINT column
(GRADE_CONVERSION
table), 605

GRADE_TYPE table, 604

GRADE_TYPE_CODE column

GRADE table, 605

GRADE_TYPE table, 604

GRADE_TYPE_WEIGHT
table, 604

H

handling

cursor variables, 473

errors. See error handling

hierarchical profiler, xxvii,
557-559

HTF functions, 586

HTML forms, 588-589

HTP procedures, 581-582, 586

I

identifiers (variables), 31. See

also specific variables

anchored datatypes,
28-29

cursor variables

capabilities, 471-472

compared to
cursors, 472

creating, 472

handling, 473

rules for use, 479

sample cursor variable
in package, 473-475

sample script, 475-479

strong cursor
variables, 472

weak cursor
variables, 472

declaring and
initializing, 31-34

definition, 23-24

examples, 27-28

illegal identifiers, 24-26

initializing with SELECT
INTO, 40-42

naming conventions, 24

package variables,
469-470

scope, 34

substitution variables,
13-17

syntax, 24

id_is_good function, 461

IF statements

IF-THEN

example, 54-56

overview, 54

syntax, 54

testing whether
date falls on
weekend, 58-61

IF-THEN-ELSE

checking number of
students enrolled in
course, 62-64

NULL condition, 58

overview, 54

syntax, 56

when to use, 56

nested IF statements

Celsius/Farenheit
conversion script,
76-79

example, 74-75

logical operators,
75-76

try-it-yourself projects,
80, 619-622

IF-THEN statement

example, 54-56

overview, 54

syntax, 54

testing whether date falls
on weekend, 58-61

IF-THEN-ELSE statement

checking number of
students enrolled in
course, 62-64

NULL condition, 58

overview, 54

syntax, 56

when to use, 56

illegal identifiers, 24-26

image maps

client-side HTML image
maps, 592-593

creating, 592-593

in PL/SQL, 593

server-side HTML image
maps, 589-592

image procedures, 589

implicit cursors

capabilities, 231

definition, 230

example, 231-232

IN option (FOR loops),
132, 137-138

IN option (FOR loops) 715

IN OUT parameters
(procedures), 445

IN parameters (procedures),
445-446

incrementing sequence
values, 43

index-by tables. See

associative arrays

INDICES OF option (FORALL
statement), 410

initializing variables,
31-34, 40-42

inner joins, 608-609

INSERTING function, 649

insert_zip procedure, 674-675

INSTEAD OF triggers, 278-289

INSTRUCTOR table, 603

instructors, determining
number of sections taught
by, 620-621

INSTRUCTOR_ID column

INSTRUCTOR table, 603

SECTION table, 601

instructor_status
function, 680-681

INTERNAL_ERROR
exception, 561

INTERVAL procedure, 564

INVALID_FILEHANDLE
exception, 561

invalid instructor IDs,
handling, 634-635

INVALID_MODE exception, 561

INVALID_NUMBER
exception, 185

INVALID_OPERATION
exception, 561

INVALID_PATH exception, 561

invalid student IDs,
handling, 632-634

invoking functions

in SQL statements,
453-454

stored functions, 452-453

IS_OPEN function, 560

%ISOPEN attribute
(cursors), 240

iterative control

CONTINUE statement

compared to EXIT
statement, 148

overview, 144-145

sample script, 146-151

CONTINUE WHEN
statement

overview, 145

sample script, 152-153

EXIT statement, 148

nested loops

example, 154-155

loop labels, 155-157

sample exercise,
157-160

numeric FOR loops,
627-628

calculating factorial
of 10, 137-138

example, 133-135

flow of logic, 133

IN option, 132,
137-138

premature termination
of, 136-137

REVERSE option,
135-136, 139-141

syntax, 132

simple loops, 628-629

EXIT condition,
114-115, 118-120

EXIT WHEN
condition, 116-117,
120-123

structure, 114

WHILE loops, 626-627

calculating sum of
integers between 1
and 10, 128-131

example, 124-125

flow of logic, 124-125

infinite WHILE loops,
125-126

premature termination
of, 126-128

syntax, 124

J-K

jobs, scheduling, 563-567

joins, 607

CROSS JOINs, 607-608

EQUI JOINs, 608-609

NATURAL JOINs,
609-610

OUTER JOINs, 610-611

keywords. See reserved words

L

labels

adding to blocks, 35-36

loop labels, 155-157

LAST collection method, 323

LAST_NAME column

INSTRUCTOR table, 603

STUDENT table, 602

IN OUT parameters (procedures)716

letter grades, displaying for
students, 69-73, 91

CASE expression,
100-102

CASE statement, 91-95

NULLIF function,
107-109

LETTER_GRADE column
(GRADE_CONVERSION
table), 605

lexical units

comments, 23

delimiters, 23-24

identifiers

anchored datatypes,
28-29

declaring and
initializing, 31-34

definition, 23-24

examples, 27-28

illegal identifiers,
24-26

initializing with
SELECT INTO,
40-42

naming
conventions, 24

scope, 34

syntax, 24

literals, 23

reserved words,
23, 26-27

LIMIT option (BULK COLLECT
statement), 423, 425

literals, 23

LOB (large object) datatype, 31

LOCATION column (SECTION
table), 601

logical operators, 75-76

LOGIN_DENIED exception, 171

LONG datatype, 31

LONG RAW datatype, 31

LOOP keyword, 114

loops

CONTINUE condition

compared to EXIT
condition, 148

overview, 144-145

sample script, 146-151

CONTINUE WHEN
condition, 629-630

overview, 145

sample script, 152-153

EXIT statement, 148

FOR loops, 627-628

cursor FOR loops,
246-247

try-it-yourself projects,
627-628

nested loops

example, 154-155

loop labels, 155-157

sample exercise,
157-160

numeric FOR loops

calculating factorial of
10, 137-138

example, 133-135

flow of logic, 133

IN option, 132,
137-138

premature termination
of, 136-137

REVERSE option,
135-136, 139-141

syntax, 132

simple loops

EXIT condition,
114-115, 118-120

EXIT WHEN
condition, 116-117,
120-123

structure, 114

try-it-yourself projects,
628-629

terminating

with Boolean
expressions, 126

with EXIT condition,
114-115, 118-120

with EXIT WHEN
condition, 116-117,
120-123

premature termination,
126-128, 136-137

WHILE loops

calculating sum of
integers between 1
and 10, 128-131

example, 124-125

flow of logic, 124-125

infinite WHILE loops,
125-126

premature termination
of, 126-128

syntax, 124

try-it-yourself projects,
626-627

lowercase, 597

lowercase 717

M

manage_grades package,
480-492

manage_students package,
461, 465-469

map methods, 538-541

MAX_GRADE column
(GRADE_CONVERSION
table), 605

median_grade procedure,
487-488

member methods, 534-536

methods. See also functions

collection methods,
322-325

applying to varrays,
336-338

COUNT, 322

DELETE, 323, 337

example, 323-325

EXISTS, 322

EXTEND, 323

FIRST, 323

LAST, 323

NEXT, 323

PRIOR, 323

TRIM, 323

object type methods

constructor methods,
531-534

map methods,
538-541

member methods,
534-536

order methods,
541-544

overview, 531

sample object type
methods, 544-553

static methods,
536-538

MIN_GRADE column
(GRADE_CONVERSION
table), 605

mixed notation, xxii-xxiii

modes, parameter, 444

MODIFIED_BY column

COURSE table, 601

ENROLLMENT
table, 603

GRADE table, 605

GRADE_CONVERSION
table, 605

GRADE_TYPE table, 604

INSTRUCTOR table, 603

SECTION table, 602

STUDENT table, 602

ZIPCODE table, 603

MODIFIED_DATE column

COURSE table, 601

ENROLLMENT
table, 603

GRADE table, 605

GRADE_CONVERSION
table, 605

GRADE_TYPE table, 604

INSTRUCTOR table, 603

SECTION table, 602

STUDENT table, 602

ZIPCODE table, 603

modular code

anonymous blocks, 440

benefits of, 439

block structure, 440

modules, overloading, 506-511

multilevel collections, 342-347

multiline comments, 599

multiple exceptions,
handling, 171-173

multiple transactions in
blocks, 50

mutating tables, 292-299

MY_SECTION table, 665-672

N

name_rec record, 367

name_tab associative
array, 652

name_tab table, 375-377

name_varray varray, 652-653

named blocks, 4

named notation, xxii-xxiii

naming conventions, 24, 598

native compiler, xxvii

native dynamic SQL

CLOSE statement

sample script, 395-400

syntax, 394-395

dynamic SQL
enhancements, xxii

EXECUTE IMMEDIATE
statement

common errors,
383-386

overview, 380

passing NULL values,
386-387

sample script, 387-391

structure, 381-382

manage_grades package718

FETCH statement

sample script, 395-400

syntax, 393-394

OPEN-FOR statement

sample script, 395-400

syntax, 392-393

overview, 379

NATURAL JOINs, 609-610

nesting

blocks, 35-36

cursors, 247-251,
255-257

IF statements

Celsius/Farenheit
conversion script,
76-79

example, 74-75

logical operators,
75-76

loops

example, 154-155

loop labels, 155-157

sample exercise,
157-160

PL/SQL tables, 319-321,
330-333

records, 367-372

new features

automatic subprogram
inlining, xxv-xxvi

compound triggers, xxiv

CONTINUE
statement, xx

cross-section function
result cache, xxiii-xxiv

DRCP (Database Resident
Connection Pool), xxv

dynamic SQL
enhancements, xxii

hierarchical profiler, xxvii

named and mixed
notation, xxii-xxiii

overview, xvii

PL/Scope, xxvii

PL/SQL native
compiler, xxvii

REGEXP_COUNT
function, xvii-xviii

REGEXP_INSTR
function, xviii

REGEXP_SUBSTR
function, xviii

sequences in
expressions, xx-xxi

SIMPLE_DOUBLE
datatype, xviii-xx

SIMPLE_FLOAT
datatype, xviii-xx

SIMPLE_INTEGER
datatype, xviii-xx

trigger control, xxiv

new_instructor_id
function, 454, 461

NEW_LINE procedure, 561

new_student_id function,
455, 679

NEXT collection method, 323

NEXT_DATE procedure, 564

NO_DATA_FOUND
exception, 170, 180-182

NOT NULL constraint, 354-355

%NOTFOUND attribute
(cursors), 240

NULL values, 58

NULL collections, 322

NULL varrays, 335-336

passing, 386-387

NULLIF function, 104-105

displaying letter grades
for students, 107-109

example, 103

restrictions, 104

syntax, 103

NUMBER datatype, 29

numbers

drawing from
sequences, 43-44

error numbers, returning
with SQLCODE
function, 222-226

NUMBER_PER_ SECTION
column (GRADE_TYPE
table), 604

numeric FOR loops

calculating factorial of 10,
137-138

example, 133-135

flow of logic, 133

IN option, 132, 137-138

premature termination
of, 136-137

REVERSE option,
135-136, 139-141

syntax, 132

NUMERIC_GRADE column
(GRADE table), 605

NUMERIC_GRADE column (GRADE table) 719

O

OAS (Oracle Application
Server), 578

objects

comparing

map methods,
538-541

order methods,
541-544

object types

collections of,
520-522, 526-530

constructor methods,
531-534

creating, 514-516

map methods,
538-541

member methods,
534-536

object type
specifications, 516

order methods,
541-544

overview, 513-514

sample object type
methods, 544-553

sample script, 522-526

static methods,
536-538

student_obj_type,
696-703

try-it-yourself projects,
554, 696-703

type
specifications, 516

uninitialized objects,
517-518

zipcode_obj_type
example, 517

private objects, 465-469

uninitialized objects,
517-518

OPEN-FOR statement

sample script, 395-400

syntax, 392-393

opening cursors, 236, 392-393

operating system files, reading
from/writing to, 559-562

operators

assignment operator, 31

logical operators, 75-76

overview, 34

Oracle Application Server 10g

application server
tier, 580

client tier, 580

database tier, 580

Oracle HTTP server
modules, 580

overview, 578-579

Web Toolkit

client-side HTML
image maps, 592-593

form procedures,
587-588

FRAMESET
procedures, 587

generating Web pages,
582-586, 594-596

HTF functions, 586

HTML forms, 588-589

HTP procedures,
581-582

image procedures, 589

server-side HTML
image maps, 589-592

table of packages, 581

Oracle Application Server
11g, 578

Oracle HTTP server
modules, 580

Oracle sequences

accessing, 43

definition, 43

drawing numbers
from, 43-44

incrementing values, 43

in PL/SQL blocks, 44

student_id_seq, 44

Oracle SQL by Example, Third
Edition, 568

Oracle Web Application
Programming for PL/SQL
Developers, 580

Oracle Web Toolkit

client-side HTML image
maps, 592-593

form procedures,
587-588

FRAMESET procedures,
587

generating Web pages,
582-586, 594-596

HTF functions, 586

HTML forms, 588-589

HTP procedures, 581-582

image procedures, 589

server-side HTML image
maps, 589-592

table of packages, 581

order methods, 541-544

OTHERS exception
handler, 173-174

OAS (Oracle Application Server)720

OUT parameters (procedures),
445-446

OUTER JOINs, 610-611

overloading modules, 506-511

P

p-code, 10

packages

benefits of, 458-459

cursor variables

capabilities, 471-472

compared to cursors,
472

creating, 472

handling, 473

rules for use, 479

sample cursor variable
in package, 473-475

sample script, 475-479

strong cursor
variables, 472

weak cursor
variables, 472

cursors, 469-470

DBMS_HPROF, 556-559

DBMS_JOB, 563-567

DBMS_LOB, 559

DBMS_PROFILER, 556

DBMS_XPLAN

generating explain
plans, 570-577

PLAN_TABLE,
568-569

definition, 457

dynamic_sql_pkg, 677

elements,
referencing, 460

extending, 480-492

manage_grades, 480-492

manage_students,
461, 465-469

overview, 555

package body

creating, 462-464

rules for, 460

syntax, 459-460

package specifications,
459-461

private objects, 465-469

projects, 493, 681-690

school_api, 461-463, 467

stored packages, 464-465

student_api

get_course_descript
function, 690

get_course_description
function, 691-696

remove_student
procedure, 681-690

student_info_pkg, 477

try-it-yourself projects,
554, 696-703

UTL_FILE

example, 561-562

exceptions, 561

functions, procedures,
and datatypes,
560-561

overview, 559

sample script, 563

variables, 469-470

parameters

cursor parameters,
254-255

parameter modes, 444

procedure parameters

actual parameters,
444-445

datatype
constraints, 445

formal parameters,
444-445

IN parameters,
445-446

modes, 444

OUT parameters,
445-446

try-it-yourself projects,
447, 673-678

passing NULL values, 386-387

PERCENT_OF_FINAL_ GRADE
column (GRADE_TYPE
table), 604

person_rec record, 367-368

PHONE column

INSTRUCTOR table, 603

STUDENT table, 602

PL/Scope, xxvii

plans, explain plans

generating, 570-577

PLAN_TABLE, 568-569

PLAN_TABLE table, 568-569

plus sign (+), 24

pragmas

AUTONOMOUS_
TRANSACTION,
270-272

definition, 217-221

pragmas 721

EXCEPTION_INIT,
217-221

restrictions, 504

RESTRICT_
REFERENCES, 500-506

predefined exceptions.
See exceptions

premature termination

of FOR loops, 136-137

of WHILE loops, 126-128

PREREQUISITE column
(COURSE table), 601

PRIOR collection method, 323

private objects, 465-469

procedures. See also

functions; methods

anonymous blocks, 440

benefits of, 439

block structure, 440

BROKEN, 564

CHANGE, 564

creating, 441-442

current_status, 673-674

display_student_
count, 466

dynamic_sql_pkg, 677

FCLOSE, 560

FCLOSE_ALL, 560

FFLUSH, 561

final_grade, 481, 484-487

find_sname, 446, 461

form procedures,
587-588

FRAMESET
procedures, 587

GET_LINE, 561

get_name_address,
675-676

get_student_info, 477

HTP procedures,
581-582, 586

image procedures, 589

insert_zip, 674-675

INTERVAL, 564

median_grade, 487-488

NEW_LINE, 561

NEXT_DATE, 564

overview, 439

parameters

actual parameters,
444-445

datatype
constraints, 445

formal parameters,
444-445

IN parameters,
445-446

modes, 444

OUT parameters,
445-446

PUT, 561

PUTF, 561

PUT_LINE, 561

querying data dictionary
for information on, 443

REMOVE, 564

remove_student, 681-690

RUN, 564

SUBMIT, 564-565

profiling PL/SQL, 556-559

PROGRAM_ERROR
exception, 171

projects (try-it-yourself)

block projects,
37, 614-616

bulk SQL projects,
437, 665-672

CASE statement projects,
112, 622-626

collection projects,
348, 652-659

compound trigger
projects, 313, 648-651

cursor projects,
252, 643-645

error handling projects,
178, 632-635

e_non_null_value
exception, 641-642

e_too_many_students
exception, 635-639

invalid instructor IDs,
handling, 634-635

invalid student IDs,
handling, 632-634

exception projects, 209,
227, 635-642

function projects, 455,
679-681

instructor_status
function, 680-681

new_student_id
function, 679

zip_does_not_exist
function, 679-680

IF statement projects,
80, 619-622

iterative control projects,
142, 161, 627-632

CONTINUE WHEN
statement, 629-630

FOR loops, 627-628

simple loops, 628-629

WHILE loops,
626-627

object type projects, 554,
696-703

pragmas722

package projects,
493, 681-690

PL/SQL in client/
server architecture,
19, 613-614

PL/SQL in SQL*Plus,
19, 613-614

procedure projects,
447, 673-678

current_status
procedure, 673-674

dynamic_sql_pkg
procedure, 677

get_name_address
procedure, 675-676

insert_zip procedure,
674-675

record projects, 378,
659-665

stored code projects, 512

get_course_descript
function, 690

get_course_description
function, 691-696

transaction projects, 51

CHAP4 table,
creating, 616

CHAP4_SEQ
sequence,
creating, 616

PL/SQL block script,
617-619

trigger projects, 290

compound triggers,
648-651

creating triggers,
645-648

propagating exceptions,
197-206

PUT procedure, 561

PUTF procedure, 561

PUT_LINE procedure, 561

Q

QL*Plus, PL/SQL in

DBMS_OUTPUT.PUT_LI
NE statement, 16-18

overview, 12-13

substitution variables,
13-17

try-it-yourself projects,
19, 613-614

querying

data dictionary
for procedure
information, 443

data dictionary for
stored code information,
496-500

scalar subqueries, 611

R

RAISE_APPLICATION_ERROR
statement, 212-216, 639-640

RAISE statement, 191

raising user-defined
exceptions, 189-191

reading

binary files, 559

operating system files,
559-562

READ_ERROR exception, 561

records

collections of records,
373-377

compatibility, 355-357

cursor-based records,
233-235

student_rec example,
350-353

zip_rec example,
358-362

definition, 233, 349

fetching with BULK
COLLECT statement,
422-423

nesting, 367-372

%ROWTYPE
attribute, 350

table-based records,
233-234

course_rec example,
350-353

zip_rec example,
358-362

try-it-yourself projects,
378, 659-665

user-defined records

creating, 353, 659-665

NOT NULL constraint,
354-355

time_rec_type
example, 353-355

zip_info_rec example,
362-366

REF CURSOR keywords, 472

referencing package
elements, 460

REGEXP_COUNT function,
xvii-xviii

REGEXP_INSTR function, xviii

REGEXP_SUBSTR function, xviii

REGISTRATION_DATE column
(STUDENT table), 602

REGISTRATION_DATE column (STUDENT table) 723

regular expressions.
See expressions

regular joins, 608-609

REMOVE procedure, 564

remove_student procedure,
681-690

reraising exceptions, 201-202,
206-208

reserved words. See

also statements

BEGIN, 6

CONSTANT, 5

DECLARE, 5

definition, 23, 26

END, 6

EXCEPTION, 6, 188

IN, 132

invalid use of, 26-27

LOOP, 114

REF CURSOR, 472

REVERSE, 132, 135-136

RESTRICT_REFERENCES
pragma, 500-506

RETURN statement, 115, 450

RETURNING option (BULK
COLLECT statement), 426-427

REVERSE option (FOR loops),
135-136, 139-141

Rischert , Alice, 568

RNDS pragma restriction, 504

RNPS pragma restriction, 504

ROLLBACK statement, 47

rolling back transactions, 47-49

row triggers, 277, 283-285

%ROWCOUNT attribute
(cursors), 240

ROWID datatype, 31

rows, fetching in cursors,
236-237

%ROWTYPE attribute, 350

RTRIM function, 60

rules for package bodies, 460

RUN procedure, 564

runtime errors, 11, 164-167

S

SALUTATION column

INSTRUCTOR table, 603

STUDENT table, 602

SAVE EXCEPTIONS option
(FORALL statement), 408-409

SAVEPOINT statement, 47-49

scalar subqueries, 611

scheduling jobs, 563-567

school_api package,
461-463, 467

scode_at_line function, 497

scope

of cursors, 245

of exceptions

examples, 180-183

sample script, 183-187

PL/Scope, xxvii

of user-defined
exceptions, 191-192

of variables, 34

searched CASE statements

differences between CASE
and searched CASE,
86-89

displaying letter grade
for student, 91-95

example, 86

syntax, 84-85

SECTION table, 601-602

SECTION_ID column

ENROLLMENT
table, 602

GRADE table, 605

GRADE_TYPE table, 604

SECTION table, 601

SECTION_NO column (SECTION
table), 601

SELECT INTO statement, 40-42

SELECT list cursors, 245

sequences

accessing, 43

CHAP4_SEQ sequence,
creating, 616

definition, 43

drawing numbers
from, 43-44

in expressions, xx-xxi

in PL/SQL blocks, 44

incrementing values, 43

student_id_seq, 44

server-side HTML image
maps, 589-592

SET statement, 15

show error command, 443

show_description
function, 451-453

simple loops

EXIT condition

sample script, 118-120

syntax, 114-115

EXIT WHEN condition

sample script, 120-123

syntax, 116-117

structure, 114

try-it-yourself projects,
628-629

regular expressions724

SIMPLE_DOUBLE datatype,
xviii, xx

SIMPLE_FLOAT datatype,
xviii, xx

SIMPLE_INTEGER datatype,
xviii, xx

single-line comments, 599

specifications

object type
specifications, 516

package specifications,
459-461

SQL standards

joins

CROSS JOIN
syntax, 607-608

EQUI JOIN
syntax, 608-609

NATURAL JOIN
syntax, 609-610

OUTER JOIN syntax,
610-611

overview, 607

scalar subqueries, 611

SQL statements.
See statements

SQLCODE function, 222-226

SQLERRM function, 222-226

START_TIME_DATE column
(SECTION table), 601

STATE column (ZIPCODE
table), 603

statement triggers, 277-278,
283-285

statements

ALTER SYSTEM, 564

ALTER TRIGGER,
265-266

BULK COLLECT

fetching data into
collections, 425-426

fetching records
with, 422-423

with FORALL
statement, 427-428

LIMIT option,
423-425

RETURNING option,
426-427

sample scripts,
428-436

structure, 422

CASE

differences between
CASE statement
and CASE
expression, 97-99

displaying name of
day, 89-91

examples, 83-84

overview, 82

searched CASE
statements, 84-95

syntax, 82

try-it-yourself
projects, 112

CLOSE

sample script, 395-400

syntax, 394-395

COMMIT, 46-47

CONTINUE, xx

compared to EXIT
statement, 148

overview, 144-145

sample script, 146-151

CONTINUE WHEN

overview, 145

sample script, 152-153

try-it-yourself projects,
629-630

CREATE FUNCTION,
450-451

CREATE OR REPLACE
TRIGGER, xxiv

CREATE OR REPLACE
TYPE, 514

CREATE TRIGGER, 265

DBMS_OUTPUT.PUT_LI
NE, 16-18

ELSEIF

conditions, 67

displaying letter grade
for student, 69-73

example, 66

examples, 65-68

syntax, 65

END IF, 54

END LOOP, 114

EXECUTE IMMEDIATE

common errors,
383-386

overview, 380

passing NULL values,
386-387

sample script, 387-391

structure, 381-382

EXIT

compared to
CONTINUE
statement, 148

sample script, 118-120

syntax, 114-115

statements 725

EXIT WHEN

sample script, 120-123

syntax, 116-117

FETCH

sample script, 395-400

syntax, 393-394

FOR UPDATE, 258-260

FORALL

BULK COLLECT
clause, 427-428

INDICES OF
option, 410

sample script, 413-421

SAVE EXCEPTIONS
option, 408-409

simple examples,
405-408

structure, 404-405

VALUES OF option,
411-412

IF-THEN

example, 54-56

overview, 54

syntax, 54

testing whether
date falls on
weekend, 58-61

IF-THEN-ELSE

checking number of
students enrolled in
course, 62-64

NULL condition, 58

overview, 54

syntax, 56

when to use, 56

invoking functions
in, 453-454

nested IF statements

Celsius/Farenheit
conversion
script, 76-79

example, 74-75

logical operators,
75-76

OPEN-FOR

sample script, 395-400

syntax, 392-393

RAISE, 191

RAISE_APPLICATION_
ERROR, 639-640

RETURN, 115, 450

ROLLBACK, 47

SAVEPOINT, 47-49

SELECT INTO, 40-42

SET, 15

show error, 443

TYPE, 335

WHERE CURRENT, 261

static methods, 536-538

stored code

creating, 451-452

enforcing purity level
with RESTRICT_
REFERENCES pragma,
500-506

overloaded modules,
506-511

overview, 495

querying data directory
about, 496-500

running, 452-453

stored function
requirements in
SQL, 503

try-it-yourself
projects, 512

get_course_descript
function, 690

get_course_description
function, 691-696

stored packages,
calling, 464-465

STREET_ADDRESS column

INSTRUCTOR table, 603

STUDENT table, 602

strong cursor variables, 472

student database

COURSE table, 601

ENROLLMENT
table, 602

GRADE table, 605

GRADE_CONVERSION
table, 605

GRADE_TYPE table, 604

GRADE_TYPE_WEIGHT
table, 604

INSTRUCTOR table, 603

SECTION table, 601-602

STUDENT table, 602

ZIPCODE table, 603

student IDs

instructor student IDs,
handling, 634-635

invalid student IDs,
handling, 632-634

STUDENT table, 602

statements726

students

checking number of
students enrolled in
course, 62-64

displaying letter grades
for, 69-73

CASE expression,
100-102

CASE statement, 91-95

NULLIF function,
107-109

displaying number of
students for given zip
code, 183-187

student_api package

get_course_descript
function, 690

get_course_description
function, 691-696

remove_student
procedure, 681-690

student_count_priv
function, 466

STUDENT_ID column

ENROLLMENT
table, 602

GRADE table, 605

STUDENT table, 602

student_id_seq sequence, 44

student_info_pkg package, 477

student_obj_type, 696-703

student_rec record, 351

SUBEXPR parameter
(REGEXP_INSTR/REGEXP_
SUBSTR functions), xviii

SUBMIT procedure, 564-565

submitting jobs to queue,
564-567

substitution variables, 13-17

syntax errors, 10-11

SYSDATE function, 619-620

T

table-based records, 233-234

course_rec example,
350-353

zip_rec example, 358-362

tables

CHAP4 table,
creating, 616

COURSE, 601

ENROLLMENT, 602

GRADE, 605

GRADE_
CONVERSION, 605

GRADE_TYPE, 604

GRADE_TYPE_
WEIGHT, 604

INSTRUCTOR, 603

mutating tables, 292-299

MY_SECTION, 665-672

name_tab, 375-377

PL/SQL tables

associative arrays,
317-319, 326-330

definition, 316-317

nested tables, 319-
321, 330-333

PLAN_TABLE, 568-577

SECTION, 601-602

STUDENT, 602

table-based records

course_rec example,
350-353

zip_rec example,
358-362

ZIPCODE, 603

terminating loops

with Boolean
expressions, 126

with EXIT condition,
114-115, 118-120

with EXIT WHEN
condition, 116-117,
120-123

TIMESTAMP datatype, 30

premature termination,
126-128, 136-137

time_rec_type record, 353-355

TO_CHAR function, 60

TOO_MANY_ROWS
exception, 170, 189

transactions

autonomous transactions,
270-272

committing, 46-47

definition, 39

multiple transactions in
blocks, 50

overview, 45-46

rolling back, 47-49

try-it-yourself projects, 51

CHAP4 table,
creating, 616

transactions 727

CHAP4_SEQ
sequence,
creating, 616

PL/SQL block script,
617-619

triggering events, 264

triggers

AFTER triggers, 269-270,
274-276

autonomous transactions,
270-272

BEFORE triggers,
267-269, 274-276

compound triggers, xxiv

capabilities, 300

examples, 302-306

modifying, 306-312

restrictions, 301

structure, 300-301

try-it-yourself projects,
313, 648-651

controlling, xxiv

creating, 264-265,
272-273, 645-648

definition, 264

disabling, 265-266

INSTEAD OF triggers,
278-289

mutating table issues,
292-299

restrictions, 266-267

row triggers, 277,
283-285

statement triggers,
277-278, 283-285

triggering events, 264

try-it-yourself
projects, 290

compound triggers,
648-651

creating triggers,
645-648

TRIM collection method, 323

try-it-yourself projects

block projects, 37,
614-616

bulk SQL projects,
437, 665-672

CASE statement projects,
112, 622-626

collection projects,
348, 652-659

compound trigger
projects, 313, 648-651

cursor projects, 252,
643-645

error handling projects,
178, 632-635

e_non_null_value
exception, 641-642

e_too_many_students
exception, 635-639

invalid instructor IDs,
handling, 634-635

invalid student IDs,
handling, 632-634

exception projects, 209,
227, 635-642

function projects, 455,
679-681

instructor_status
function, 680-681

new_student_id
function, 679

zip_does_not_exist
function, 679-680

IF statement projects,
80, 619-622

iterative control projects,
142, 161, 627-632

CONTINUE WHEN
statement, 629-630

FOR loops, 627-628

simple loops, 628-629

WHILE loops,
626-627

object type projects,
554, 696-703

package projects,
493, 681-690

PL/SQL in client/server
architecture, 19,
613-614

PL/SQL in SQL*Plus, 19,
613-614

procedure projects, 447,
673-678

current_status
procedure, 673-674

dynamic_sql_pkg
procedure, 677

get_name_address
procedure, 675-676

insert_zip procedure,
674-675

record projects,
378, 659-665

stored code projects, 512

get_course_descript
function, 690

get_course_description
function, 691-696

transactions728

transaction projects, 51

CHAP4 table,
creating, 616

CHAP4_SEQ
sequence,
creating, 616

PL/SQL block script,
617-619

trigger projects, 290

compound triggers,
648-651

creating triggers,
645-648

TYPE statement, 335

types. See object types

U

uninitialized objects, 517-518

uppercase, 597

USER function, 121

user-defined exceptions

declaring, 188

e_exception1, 201

e_exception2, 201

e_invalid_id, 188-191

e_my_exception, 192

e_no_sections, 206-208

e_too_many_sections,
193-196

raising, 189-191

sample script, 193-196

scope, 191-192

user-defined records

creating, 353, 659-665

NOT NULL constraint,
354-355

time_rec_type
example, 353-355

zip_info_rec
example, 362-366

USER_DEPENDENCIES view,
499-500

USER_ERRORS view, 498

USER_OBJECTS view, 496

UTL_FILE package

example, 561-563

exceptions, 561

functions, procedures,
and datatypes, 560-561

overview, 559

V

v_area variable, 613

v_average_cost variable, 41

v_calories_per_cookie
variable, 32

v_cookies_amt variable, 32

v_counter variable, 33,
118-119, 129-130, 138-141,
147-149, 152-153

v_counter1 variable, 154

v_counter2 variable, 154

v_current_date variable, 469

v_date variable, 89, 619-620

v_day variable, 90-91

v_err_code variable, 224

v_err_msg variable, 224

v_exists variable, 175

v_factorial variable, 138

v_final_grade variable, 92

v_instructor_id variable,
294-295

v_instructor_name variable,
294-295

v_letter_grade variable, 100

v_lname variable, 33

v_new_cost variable, 33

v_num1 variable, 164

v_num2 variable, 164

v_num_flag variable, 86-88

v_pctincr variable, 33

v_radius variable, 613

v_regdate variable, 33

v_result variable, 164

v_student_id variable, 36

v_student_name variable, 177

v_sum variable, 130

v_zip variable, 175-176

VALUES OF option (FORALL
statement), 411-412

VALUE_ERROR exception,
167-168, 171, 185

VARCHAR2 datatype, 29

variable-size arrays. See varrays

variables, 31. See also specific
variables

anchored datatypes,
28-29

cursor variables

capabilities, 471-472

compared to
cursors, 472

creating, 472

handling, 473

rules for use, 479

sample cursor variable
in package, 473-475

variables 729

sample script, 475-479

strong cursor
variables, 472

weak cursor
variables, 472

declaring and initializing,
31-34

definition, 23-24

examples, 27-28

illegal identifiers, 24-26

initializing with SELECT
INTO, 40-42

naming conventions, 24

package variables,
469-470

scope, 34

substitution variables,
13-17

syntax, 24

varrays

city_varray, 338-341

collection methods,
336-338

course_varray, 653-657

creating, 334-335

definition, 334

name_varray, 652-653

NULL varrays, 335-336

runtime errors, 656-659

sample script, 338-341

views

USER_DEPENDENCIES,
499-500

USER_ERRORS, 498

USER_OBJECTS, 496

vr_student variable, 234

vr_zip variable, 234-235

W

weak cursor variables, 472

Web pages, generating with
Oracle Web Toolkit, 582-596

Web Toolkit

client-side HTML image
maps, 592-593

form procedures,
587-588

FRAMESET
procedures, 587

generating Web pages,
582-596

HTF functions, 586

HTML forms, 588-589

HTP procedures, 581-582

image procedures, 589

server-side HTML image
maps, 589-592

table of packages, 581

WHERE CURRENT clause, 261

WHILE loops

calculating sum of
integers between 1
and 10, 128-131

example, 124-125

flow of logic, 124-125

infinite WHILE loops,
125-126

premature termination
of, 126-128

syntax, 124

try-it-yourself
projects, 627

white space, formatting, 597

WNDS pragma restriction, 504

WNPS pragma restriction, 504

WRITE_ERROR exception, 561

writing

blocks, 37, 614-616

complex functions, 454

to operating system files,
559-562

X-Y-Z

ZERO_DIVIDE exception, 170

ZIP column

INSTRUCTOR table, 603

STUDENT table, 602

ZIPCODE table, 603

zip_cur cursor, 371

zip_does_not_exist function,
455, 679-680

zip_info_rec record, 362-366

zip_rec record, 358-362

zipcode_obj_type, 517

ZIPCODE table, 603

variables730

	Oracle PL/SQL by example
	Contents
	Acknowledgments
	About the Authors
	Introduction
	CHAPTER 1 PL/SQL Concepts
	LAB 1.1 PL/SQL in Client/Server Architecture
	1.1.1 Use PL/SQL Anonymous Blocks
	1.1.2 Understand How PL/SQL Gets Executed

	LAB 1.2 PL/SQL in SQL*Plus
	1.2.1 Use Substitution Variables
	1.2.2 Use the DBMS_OUTPUT.PUT_LINE Statement

	Chapter 1 Try It Yourself

	CHAPTER 2 General Programming Language Fundamentals
	LAB 2.1 PL/SQL Programming Fundamentals
	2.1.1 Make Use of PL/SQL Language Components
	2.1.2 Make Use of PL/SQL Variables
	2.1.3 Handle PL/SQL Reserved Words
	2.1.4 Make Use of Identifiers in PL/SQL
	2.1.5 Make Use of Anchored Datatypes
	2.1.6 Declare and Initialize Variables
	2.1.7 Understand the Scope of a Block, Nested Blocks, and Labels

	Chapter 2 Try It Yourself

	CHAPTER 3 SQL in PL/SQL
	LAB 3.1 Making Use of DML in PL/SQL
	3.1.1 Use the Select INTO Syntax for Variable Initialization
	3.1.2 Use DML in a PL/SQL Block
	3.1.3 Make Use of a Sequence in a PL/SQL Block

	LAB 3.2 Making Use of SAVEPOINT
	3.2.1 Make Use of COMMIT, ROLLBACK, and SAVEPOINT in a PL/SQL Block

	Chapter 3 Try It Yourself

	CHAPTER 4 Conditional Control: IF Statements
	LAB 4.1 IF Statements
	4.1.1 Use the IF-THEN Statement
	4.1.2 Use the IF-THEN-ELSE Statement

	LAB 4.2 ELSIF Statements
	4.2.1 Use the ELSIF Statement

	LAB 4.3 Nested IF Statements
	4.3.1 Use Nested IF Statements

	Chapter 4 Try It Yourself

	CHAPTER 5 Conditional Control: CASE Statements
	LAB 5.1 CASE Statements
	5.1.1 Use the CASE Statement
	5.1.2 Use the Searched CASE Statement

	LAB 5.2 CASE Expressions
	5.2.1 Use the CASE Expression

	LAB 5.3 NULLIF and COALESCE Functions
	5.3.1 The NULLIF Function
	5.3.2 Use the COALESCE Function

	Chapter 5 Try It Yourself

	CHAPTER 6 Iterative Control: Part I
	LAB 6.1 Simple Loops
	6.1.1 Use Simple Loops with EXIT Conditions
	6.1.2 Use Simple Loops with EXIT WHEN Conditions

	LAB 6.2 WHILE Loops
	6.2.1 Use WHILE Loops

	LAB 6.3 Numeric FOR Loops
	6.3.1 Use Numeric FOR Loops with the IN Option
	6.3.2 Use Numeric FOR Loops with the REVERSE Option

	Chapter 6 Try It Yourself

	CHAPTER 7 Iterative Control: Part II
	LAB 7.1 The CONTINUE Statement
	7.1.1 Use the CONTINUE Statement
	7.1.2 Use the CONTINUE WHEN Condition

	LAB 7.2 Nested Loops
	7.2.1 Use Nested Loops

	Chapter 7 Try It Yourself

	CHAPTER 8 Error Handling and Built-in Exceptions
	LAB 8.1 Handling Errors
	8.1.1 Understand the Importance of Error Handling

	LAB 8.2 Built-in Exceptions
	8.2.1 Use Built-in Exceptions

	Chapter 8 Try It Yourself

	CHAPTER 9 Exceptions
	LAB 9.1 Exception Scope
	9.1.1 Understand the Scope of an Exception

	LAB 9.2 User-Defined Exceptions
	9.2.1 Use User-Defined Exceptions

	LAB 9.3 Exception Propagation
	9.3.1 Understand How Exceptions Propagate
	9.3.2 Reraise Exceptions

	Chapter 9 Try It Yourself

	CHAPTER 10 Exceptions: Advanced Concepts
	LAB 10.1 RAISE_APPLICATION_ERROR
	10.1.1 Use RAISE_APPLICATION_ERROR

	LAB 10.2 EXCEPTION_INIT Pragma
	10.2.1 USE the EXCEPTION_INIT Pragma

	LAB 10.3 SQLCODE and SQLERRM
	10.3.1 Use SQLCODE and SQLERRM

	Chapter 10 Try It Yourself

	CHAPTER 11 Introduction to Cursors
	LAB 11.1 Cursor Manipulation
	11.1.1 Make Use of Record Types
	11.1.2 Process an Explicit Cursor
	11.1.3 Make Use of Cursor Attributes
	11.1.4 Put It All Together

	LAB 11.2 Using Cursor FOR Loops and Nested Cursors
	11.2.1 Use a Cursor FOR Loop
	11.2.2 Process Nested Cursors

	Chapter 11 Try It Yourself

	CHAPTER 12 Advanced Cursors
	LAB 12.1 Using Parameters with Cursors and Complex Nested Cursors
	12.1.1 Use Parameters in a Cursor
	12.1.2 Use Complex Nested Cursors

	LAB 12.2 FOR UPDATE and WHERE CURRENT Cursors
	12.2.1 For UPDATE and WHERE CURRENT Cursors

	CHAPTER 13 Triggers
	LAB 13.1 What Triggers Are
	13.1.1 Understand What a Trigger Is
	13.1.2 Use BEFORE and AFTER Triggers

	LAB 13.2 Types of Triggers
	13.2.1 Use Row and Statement Triggers
	13.2.2 Use INSTEAD OF Triggers

	Chaper 13 Try It Yourself

	CHAPTER 14 Compound Triggers
	LAB 14.1 Mutating Table Issues
	14.1.1 Understand Mutating Tables

	LAB 14.2 Compound Triggers
	14.2.1 Understand Compound Triggers

	Chapter 14 Try It Yourself

	CHAPTER 15 Collections
	LAB 15.1 PL/SQL Tables
	15.1.1 Use Associative Arrays
	15.1.2 Use Nested Tables

	LAB 15.2 Varrays
	15.2.1 Use Varrays

	LAB 15.3 Multilevel Collections
	15.3.1 Use Multilevel Collections

	Chapter 15 Try It Yourself

	CHAPTER 16 Records
	LAB 16.1 Record Types
	16.1.1 Use Table-Based and Cursor-Based Records
	16.1.2 Use User-Defined Records

	LAB 16.2 Nested Records
	16.2.1 Use Nested Records

	LAB 16.3 Collections of Records
	16.3.1 Use Collections of Records

	Chapter 16 Try It Yourself

	CHAPTER 17 Native Dynamic SQL
	LAB 17.1 EXECUTE IMMEDIATE Statements
	17.1.1 Use the EXECUTE IMMEDIATE Statement

	LAB 17.2 OPEN-FOR, FETCH, and CLOSE Statements
	17.2.1 Use OPEN-FOR, FETCH, and CLOSE Statements

	Chapter 17 Try It Yourself

	CHAPTER 18 Bulk SQL
	LAB 18.1 The FORALL Statement
	18.1.1 Use the FORALL Statement

	LAB 18.2 The BULK COLLECT Clause
	18.2.1 Use the BULK COLLECT Statement

	Chapter 18 Try It Yourself

	CHAPTER 19 Procedures
	LAB 19.1 Creating Procedures
	19.1.1 Create Procedures
	19.1.2 Query the Data Dictionary for Information on Procedures

	LAB 19.2 Passing Parameters into and out of Procedures
	19.2.1 Use IN and OUT Parameters with Procedures

	Chapter 19 Try It Yourself
	Part 1
	Part 2

	CHAPTER 20 Functions
	LAB 20.1 Creating and Using Functions
	20.1.1 Create Stored Functions
	20.1.2 Make Use of Functions
	20.1.3 Invoke Functions in SQL Statements
	20.1.4 Write Complex Functions

	Chapter 20 Try It Yourself

	CHAPTER 21 Packages
	LAB 21.1 The Benefits of Using Packages
	21.1.1 Create Package Specifications
	21.1.2 Create Package Bodies
	21.1.3 Call Stored Packages
	21.1.4 Create Private Objects
	21.1.5 Create Package Variables and Cursors

	LAB 21.2 Cursor Variables
	21.2.1 Make Use of Cursor Variables

	LAB 21.3 Extending the Package
	21.3.1 Extend the Package

	Chapter 21 Try It Yourself

	CHAPTER 22 Stored Code
	LAB 22.1 Gathering Information About Stored Code
	22.1.1 Get Stored Code Information from the Data Dictionary
	22.1.2 Enforce the Purity Level with the RESTRICT_REFERENCES Pragma
	22.1.3 Overload Modules

	Chapter 22 Try It Yourself

	CHAPTER 23 Object Types in Oracle
	LAB 23.1 Object Types
	23.1.1 Use Object Types
	23.1.2 Use Object Types with Collections

	LAB 23.2 Object Type Methods
	23.2.1 Use Object Type Methods

	Chapter 23 Try It Yourself

	CHAPTER 24 Oracle Supplied Packages
	LAB 24.1 Making Use of Oracle Supplied Packages to Profile PL/SQL, Access Files, and Schedule Jobs
	24.1.1 Access Files with UTL_FILE
	24.1.2 Schedule Jobs with DBMS_JOB
	24.1.3 Submit Jobs

	LAB 24.2 Making Use of Oracle-Supplied Packages to Generate an Explain Plan and Create HTML Pages
	24.2.1 Generate an Explain Plan with DBMS_XPLAN

	LAB 24.3 Creating Web Pages with the Oracle Web Toolkit
	24.3.1 Create an HTML Page with the Oracle Web Toolkit

	APPENDIX A: PL/SQL Formatting Guide
	APPENDIX B: Student Database Schema
	APPENDIX C: ANSI SQL Standards
	APPENDIX D: Answers to the Try It Yourself Sections
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

