

An Oracle White Paper

May 2011

The Oracle Optimizer
Explain the Explain Plan

Oracle Optimizer: Explain the Explain Plan

Introduction ... 1

The Execution Plan ... 2

Displaying the Execution plan .. 3

What is Cost .. 8

Understanding the execution plan ... 8

Cardinality ... 9

Access Method .. 12

Join method ... 15

Join Order.. 18

Partitioning .. 20

Parallel Execution .. 22

Conclusion .. 27

Oracle Optimizer: Explain the Explain Plan

 1

 Introduction

The purpose of the Oracle Optimizer is to determine the most efficient

execution plan for your queries. It makes these decisions based on the

statistical information it has about your data and by leveraging Oracle

database features such as hash joins, parallel query, partitioning, etc. Still it is

expected that the optimizer will generate sub-optimal plans for some SQL

statements now and then. In cases where there is an alternative plan that

performed better than the plan generated by the optimizer, the first step in

diagnosing why the Optimizer picked the sub-optimal plan is to visually inspect

both of the execution plans.

Examining the different aspects of an execution plan, from selectivity to parallel

execution and understanding what information you should be gleaming from

the plan can be overwhelming even for the most experienced DBA. This paper

offers a detailed explanation about each aspect of the execution plan and an

insight into what caused the CBO to make the decision it did.

Oracle Optimizer: Explain the Explain Plan

2

The Execution Plan

An execution plan shows the detailed steps necessary to execute a SQL statement. These steps are

expressed as a set of database operators that consume and produce rows. The order of the operators

and their implementations is decided by the query optimizer using a combination of query

transformations and physical optimization techniques. While the display is commonly shown in a

tabular format, the plan is in fact tree-shaped. For example, consider the following query based on the

SH schema (Sales History):

SELECT prod_category, AVG(amount_sold)

FROM sales s, products p

WHERE p.prod_id = s.prod_id

GROUP BY prod_category;

The tabular representation of this query's plan is:

Figure 1: Tabular shaped execution plan

While the tree-shaped representation of the plan is:

Figure 2: Tree shaped execution plan

The tabular representation is a top-down, left-to-right traversal of the execution tree. When you read a

plan tree you should start from the bottom left and work across and then up. In the above example,

begin by looking at the leaves of the tree. In this case the leaves of the tree are implemented using a full

table scans of the PRODUCTS and the SALES tables. The rows produced by these table scans will be

consumed by the join operator. Here the join operator is a hash-join (other alternatives include nested-

Oracle Optimizer: Explain the Explain Plan

3

loop or sort-merge join). Finally the group-by operator implemented here using hash (alternative would

be sort) consumes rows produced by the join-operator, and return the final result set to the end user.

 Displaying the Execution plan

The two most common methods used to display the execution plan of a SQL statement are:

EXPLAIN PLAN command - This displays an execution plan for a SQL statement without actually

executing the statement.

V$SQL_PLAN - A dynamic performance view introduced in Oracle 9i that shows the execution plan

for a SQL statement that has been compiled into a cursor and stored in the cursor cache.

Under certain conditions the plan shown when using EXPLAIN PLAN can be different from the plan

shown using V$SQL_PLAN. For example, when the SQL statement contains bind variables the plan

shown from using EXPLAIN PLAN ignores the bind variable values while the plan shown in

V$SQL_PLAN takes the bind variable values into account in the plan generation process.

Displaying an execution plan has been made easier since the introduction of the DBMS_XPLAN

package in Oracle 9i and by the enhancements made to it in subsequent releases. This package provides

several PL/SQL interfaces to display the plan from different sources:

• EXPLAIN PLAN command

• V$SQL_PLAN

• Automatic Workload Repository (AWR)

• SQL Tuning Set (STS)

• SQL Plan Baseline (SPM)

Using the EXPLAIN PLAN command and the DBMS_XPLAN.DISPLAY function

 The following examples illustrate how to generate and display an execution plan for our original SQL

statement using the different functions provided in the DBMS_XPLAN package.

Oracle Optimizer: Explain the Explain Plan

4

Figure 3: EXPLAIN PLAN output using the BASIC output

The arguments for DBMS_XPLAN.DISPLAY are:

• plan table name (default 'PLAN_TABLE')

• statement_id (default null means the last statement inserted into the plan table)

• format, controls the amount of information displayed (default is 'TYPICAL')

To leverage the explain plan functionality you need the appropriate privileges to run the actual

statement you are trying to explain. A default PLAN_TABLE exists for every user without the need to

create it beforehand.

Using the DBMS_XPLAN.DISPLAY_CURSOR function

Alternatively the execution plan for an executed SQL statement can be generated and displayed by

using the DBMS_XPLAN.DISPLAY_CURSOR function. The following example shows the plan for

the previously executed SQL statement in the session.

Oracle Optimizer: Explain the Explain Plan

5

Figure 4: Execution plan accessing the SQL cursor cache, using the basic format

The arguments accepted by DBMS_XPLAN.DISPLAY_CURSOR are:

• SQL ID (default null, means the last SQL statement executed in this session),

• child number (default 0),

• format, controls the amount of information displayed (default 'TYPICAL')

Besides the privileges to actually run the SQL statement, the executing user needs SELECT privilege

on VSQL_PLAN, VSQL_PLAN_DETAIL and SELECT_CATALOG_ROLE.

Formatting the execution plan

The format parameter for the functions in the DBMS_XPLAN package is highly customizable and can

display as little (high-level) or as much (low-level) details as required or desired in the plan output.

There are three pre-defined formats available:

• BASIC The plan includes only the ID, operation, and the object name columns.

• TYPICAL Includes the information shown in BASIC plus additional optimizer-related

internal information such as cost, cardinality estimates, etc. This information is shown for

every operation in the plan and represents what the optimizer thinks is the operation cost, the

number of rows produced, etc. It also shows the predicates evaluated by each operation.

There are two types of predicates: ACCESS and FILTER. The ACCESS predicates for an

Oracle Optimizer: Explain the Explain Plan

6

index are used to fetch the relevant blocks by applying search criteria to the appropriate

columns. The FILTER predicates are evaluated after the blocks have been fetched.

• All Includes the information shown in TYPICAL plus the lists of expressions (columns)

produced by every operation, the hint alias and query block names where the operation

belongs (the outline information). The last two pieces of information can be used as

arguments to add hints to the statement.

The low-level options allow the inclusion or exclusion of fine details, such as predicates and cost. The

example in Figure 5 displays the basic execution plan and includes information on any predicates as

well as the Optimizer Cost column.

SELECT plan_table_output

FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table',null,'basic +predicate

+cost'));

Figure 5: Customized BASIC plan output with selected options PREDICATE and COST

It is also possible to use the low level arguments to exclude information from the plan. Figure 6 shows

a sample plan where the Optimizer Cost and the Bytes columns are excluded.

SELECT plan_table_output

FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table',null,'typical -cost -

bytes'));

Oracle Optimizer: Explain the Explain Plan

7

Figure 6: Customized TYPICAL plan with suppressed options COST and BYTES

The Note Section

In addition to the plan and the predicate information, the DBMS_XPLAN package displays additional

information in the NOTE section, such as when dynamic sampling was used during query

optimization or that star transformation was applied to the query. In the example below the table

SALES does not have statistics, so the optimizer has used dynamic sampling during the query

optimization, which is displayed in the plan using the +note' in the query:

SELECT plan_table_output

FROM TABLE(DBMS_XPLAN.DISPLAY('plan_table',null,'basic +note'));

Figure 7: Basic plan output showing dynamic sampling was used for this statement

The note section is automatically displayed when the format option is set to either TYPICAL or ALL.

More information on the DBMS_XPLAN package can be found in the Oracle® Database PL/SQL

Packages and Types Reference guide.

Oracle Optimizer: Explain the Explain Plan

8

What is Cost

The Oracle Optimizer is a cost-based optimizer. The execution plan selected for a SQL statement is

just one of the many alternative execution plans considered by the Optimizer. The Optimizer selects

the execution plan with the lowest cost, where cost represents the estimated resource usage for that

plan. The lower the cost the more efficient the plan is expected to be. The optimizer’s cost model

accounts for the IO, CPU, and network resources that will be used by the query.

Figure 8: Cost is found in the fifth column of the execution plan

The cost of the entire plan (indicated on line 0) and each individual operation is displayed in the

execution plan. However, it is not something that can be tuned or changed. The cost is an internal unit

and is only displayed to allow for plan comparisons.

Understanding the execution plan

In order to determine if you are looking at a good execution plan or not, you need to understand how

the Optimizer determined the plan in the first place. You should also be able to look at the execution

plan and assess if the Optimizer has made any mistake in its estimations or calculations, leading to a

suboptimal plan. The components to assess are:

• Cardinality– Estimate of the number of rows coming out of each of the operations.

• Access method – The way in which the data is being accessed, via either a table scan or index

access.

• Join method – The method (e.g., hash, sort-merge, etc.) used to join tables with each other.

• Join type – The type of join (e.g., outer, anti, semi, etc.).

• Join order – The order in which the tables are joined to each other.

• Partition pruning – Are only the necessary partitions being accessed to answer the query?

• Parallel Execution – In case of parallel execution, is each operation in the plan being

conducted in parallel? Is the right data redistribution method being used?

Below is a detailed discussion on each of these components in the execution plan.

Oracle Optimizer: Explain the Explain Plan

9

Cardinality

The cardinality is the estimated number of rows that will be returned by each operation. The Optimizer

determines the cardinality for each operation based on a complex set of formulas that use both table

and column level statistics as input (or the statistics derived by dynamic sampling). One of the simplest

formulas is used when there is a single equality predicate in a single table query (with no histogram). In

this case the Optimizer assumes a uniform distribution and calculates the cardinality for the query by

dividing the total number of rows in the table by the number of distinct values in the column used in

the where clause predicate.

Figure 9 shows a query running against the employees table in the HR schema, which has 107 rows:

SQL> SELECT employee_id, last_name, job_id

 2 FROM hr.employees

 3 WHERE job_id = ‘AD_VP’;

SQL> Select plan_table_output

 2 From table(dbms_xplan.display_cursor(null,null,'TYPICAL’);

Figure 9: The CARDINALITY estimate is found in the Rows column of the execution plan

The job_id column has 19 distinct values so the optimizer predicted the cardinality for this statement

to be 107/19 or 5.6 rows, which gets rounded up by DBMS_XPLAN to 6 rows.

It is import for the cardinality estimates to be as accurate as possible as they influence all aspects of the

execution plan from the access method, to the join order. However, several factors can lead to

incorrect cardinality estimates even when the basic table and column statistics are up to date. Some of

these factors include:

• Data skew

• Multiple single column predicates on a single table

• Function wrapped columns in the WHERE clause predicates

• Complex expressions

Oracle Optimizer: Explain the Explain Plan

10

In the previous example there is a data skew in the EMPLOYEES table. There is not an even number

of employees with each job_id. The actual number of rows in the employees table with a job_id of

‘AD_VP’ is only 2, which is 3 times less than the Optimizer originally estimated. In order to accurately

reflect that data skew, a histogram is required on the JOB_ID column. The presence of a histogram

changes the formula used by the Optimizer to determine the cardinality estimate.

By default Oracle automatically determines the columns that need histograms based on the column

usage statistics and the presence of a data skew. If you need (or want) to create a histogram manually

you can use the following command.

SQL > Exec DBMS_STATS.GATHER_TABLE_STATS(‘HR’,’EMPLOYEES’,

method_opt=>'FOR COLUMNS SIZE 254 JOB_ID’);

With a histogram on JOB_ID in place the optimizer estimates the correct number of rows will be

returned from the sales table as seen in Figure 10.

Figure 10: Correct cardinality estimate with histogram present

Although having a more accurate cardinality estimate did not change the execution plan in this case it

definitely can.

Determine the correct cardinality

To manually determine if the Optimizer has estimated the correct cardinality (or is in close proximity)

you can use a simple SELECT COUNT(*) query for each tables used in the query and applying any

WHERE clause predicates belonging to that table in the query. For the simple example used before

SQL> SELECT COUNT(*)

2 FROM hr.employees

3 WHERE job_id=’AD_VP’;

 COUNT(*)

 2

Alternatively you can use the GATHER_PLAN_STATISTICS hint in the SQL statement to

automatically collect more comprehensive runtime statistics. This hint records the actual cardinality

Oracle Optimizer: Explain the Explain Plan

11

(the number of rows returned) for each operation as the statement executes. This execution time (or

run time) cardinality can then be displayed in the execution plan, using

DBMS_XPLAN.DISPLAY_CURSOR, with the format parameter set to 'ALLSTATS LAST'. An

additional column called A-Rows, which stands for actual rows returned, will appear in the plan.

SQL> SELECT /*+ GATHER_PLAN_STATISTICS */ employee_id, last_name,

job_id

 2 FROM employees

 3 WHERE job_id='AD_VP';

SQL> SELECT plan_table_output

 2 FROM table(DBMS_XPLAN.DISPLAY_CURSOR (FORMAT=>'ALLSTATS LAST'));

Figure 11: Runtime cardinality statistics are displayed in the A-Rows column

Note that using the GATHER_PLAN_STATISTICS hint has an impact on the execution time of a

SQL statement, so you should use this only for analysis purposes. The

GATHER_PLAN_STATISTICS hint, is not needed to display the A-Rows column when the init.ora

parameter STATISTICS_LEVEL is set to ALL. The SQL*Monitoring functionality – either within

Oracle Enterprise Manager or using the PL/SQL interface - will always display the A-Rows column

information without any overhead for the SQL statement, as shown in Figure 12. Note that

Oracle Optimizer: Explain the Explain Plan

12

SQL*Monitoring is part of the ‘Tuning and Diagnostics Pack and requires additional licensing.

Figure 12: Sample execution plan as shown with SQL*Monitoring

Access Method

The access method - or access path - shows how the data will be accessed from each table (or index).

The access method is shown in the operation field of the explain plan.

Figure 13: The access methods are shown in the Operations column of the plan

 Oracle supports nine common access methods:

Full table scan - Reads all rows from a table and filters out those that do not meet the where clause

predicates. A full table scan will use multi block IO (typically 1MB IOs). A full table scan is selected if a

Oracle Optimizer: Explain the Explain Plan

13

large portion of the rows in the table must be accessed, no indexes exist or the ones present can’t be

used or if the cost is the lowest. The decision to use a full table scan is also influenced by the following:

• Init.ora parameter db_multi_block_read_count

• Parallel degree

• Hints

• Lack of useable indexes

• Using an index costs more

Table access by ROWID – The rowid of a row specifies the data file, the data block within that file,

and the location of the row within that block. Oracle first obtains the rowids either from a WHERE

clause predicate or through an index scan of one or more of the table's indexes. Oracle then locates

each selected row in the table based on its rowid and does a row-by-row access.

Index unique scan – Only one row will be returned from the scan of a unique index. It will be used

when there is an equality predicate on a unique (B-tree) index or an index created as a result of a

primary key constraint.

Figure 14: Plan using INDEX UNIQUE SCAN

Index range scan – Oracle accesses adjacent index entries and then uses the ROWID values in the

index to retrieve the corresponding rows from the table. An index range scan can be bounded or

unbounded. It will be used when a statement has an equality predicate on a non-unique index key, or a

non-equality or range predicate on a unique index key. (=, <, >,LIKE if not on leading edge). Data is

returned in the ascending order of index columns.

Oracle Optimizer: Explain the Explain Plan

14

Figure 15: Plan using INDEX RANGE SCAN

Index range scan descending – Conceptually the same access as an index range scan, but it is used

when an ORDER BY .. DESCENDING clause can be satisfied by an index.

Index skip scan - Normally, in order for an index to be used, the prefix of the index key (leading edge

of the index) would be referenced in the query. However, if all the other columns in the index are

referenced in the statement except the first column, Oracle can do an index skip scan, to skip the first

column of the index and use the rest of it. This can be advantageous if there are few distinct values in

the leading column of a concatenated index and many distinct values in the non-leading key of the

index.

Full Index scan - A full index scan does not read every block in the index structure, contrary to what

its name suggests. An index full scan processes all of the leaf blocks of an index, but only enough of

the branch blocks to find the first leaf block. It is used when all of the columns necessary to satisfy the

statement are in the index and it is cheaper than scanning the table. It uses single block IOs. It may be

used in any of the following situations:

• An ORDER BY clause has all of the index columns in it and the order is the same as in the

index (can also contain a subset of the columns in the index).

• The query requires a sort merge join and all of the columns referenced in the query are in the

index.

• Order of the columns referenced in the query matches the order of the leading index columns.

• A GROUP BY clause is present in the query, and the columns in the GROUP BY clause are

present in the index.

Oracle Optimizer: Explain the Explain Plan

15

Figure 16: Processing of an INDEX FULL SCAN

Fast full index scan - This is an alternative to a full table scan when the index contains all the

columns that are needed for the query, and at least one column in the index key has the NOT NULL

constraint. It cannot be used to eliminate a sort operation, because the data access does not follow the

index key. It will also read all of the blocks in the index using multiblock reads, unlike a full index scan.

Index join – This is a join of several indexes on the same table that collectively contain all of the

columns that are referenced in the query from that table. If an index join is used, then no table access is

needed, because all the relevant column values can be retrieved from the joined indexes. An index join

cannot be used to eliminate a sort operation.

Bitmap Index – A bitmap index uses a set of bits for each key values and a mapping function that

converts each bit position to a rowid. Oracle can efficiently merge bitmap indexes that correspond to

several predicates in a WHERE clause, using Boolean operations to resolve AND and OR conditions.

If the access method you see in an execution plan is not what you expect, check the cardinality

estimates for that object are correct and the join order allows the access method you desire.

Join method

The join method describes how data from two data producing operators will be joined together. You

can identify the join methods used in a SQL statement by looking in the operations column in the

explain plan.

Oracle Optimizer: Explain the Explain Plan

16

Figure 17: Join Method is shown in the Operations column

Oracles offers several join methods and join types.

Join Methods

Hash Joins - Hash joins are used for joining large data sets. The optimizer uses the smaller of the two

tables or data sources to build a hash table, based on the join key, in memory. It then scans the larger

table, and performs the same hashing algorithm on the join column(s). It then probes the previously

built hash table for each value and if they match, it returns a row.

Nested Loops joins - Nested loops joins are useful when small subsets of data are being joined and if

there is an efficient way of accessing the second table (for example an index look up). For every row in

the first table (the outer table), Oracle accesses all the rows in the second table (the inner table).

Consider it like two embedded FOR loops. In Oracle Database 11g the internal implementation for

nested loop joins changed to reduce overall latency for physical I/O so it is possible you will see two

NESTED LOOPS joins in the operations column of the plan, where you previously only saw one on

earlier versions of Oracle.

Figure 18: Example plan output using NESTED LOOP

Sort Merge joins – Sort merge joins are useful when the join condition between two tables is an in-

equality condition such as, <, <=, >, or >=. Sort merge joins can perform better than nested loop

joins for large data sets. The join consists of two steps:

Sort join operation: Both the inputs are sorted on the join key.

Merge join operation: The sorted lists are merged together.

A sort merge join is more likely to be chosen if there is an index on one of the tables that will eliminate

one of the sorts. In this example only the rows from the sales tables need to be sorted (ID 5), the rows

from the products table are already sorted on the join column coming from the primary key index

access (ID 4).

Oracle Optimizer: Explain the Explain Plan

17

Figure 19: Example plan output using SORT MERGE JOIN

Cartesian join - The optimizer joins every row from one data source with every row from the other

data source, creating a Cartesian product of the two sets. Typically this is only chosen if the tables

involved are small or if one or more of the tables does not have a join conditions to any other table in

the statement. Cartesian joins are not common, so it can be a sign of problem with the cardinality

estimates, if it is selected for any other reason. Strictly speaking, a Cartesian product is not a join.

Figure 20: Example plan output using CARTESIAN JOIN

Join Types

Oracle offers several join types: inner join, (left) outer join, full outerjoin, anti join, semi join, grouped

outer join, etc. Note that inner join is the most common type of join; hence the execution plan does

not specify the key word “INNER’.

Outer Join - An outer join returns all rows that satisfy the join condition and also all of the rows from

the table without the (+) for which no rows from the other table satisfy the join condition. For

example, T1.x = T2.x (+), here T1 is the left table whose non-joining rows will be retained. In the

ANSI outer join syntax, it is the leading table whose non-join rows will be retained. The same example

can be written in ANSI SQL as T1 LEFT OUTER JOIN T2 ON (T1.x = T2.x);

Oracle Optimizer: Explain the Explain Plan

18

Figure 21: Example plan output using OUTER JOIN. Note a join type is always matched with one
of the join methods; in this case a hash join

Join Order

The join order is the order in which the tables are joined together in a multi-table SQL statement. To

determine the join order in an execution plan look at the indentation of the tables in the operation

column. In Figure 22 below the SALES and PRODUCTS table are equally indented and both of them

are more indented than the CUSTOMERS table. Therefore the SALES and PRODUCTS table will be

joined first using a hash join and the result of that join will then be joined to the CUSTOMERS table.

Figure 20: Example plan output highlighting the JOIN ORDER

In a more complex SQL statement it may not be so easy to determine the join order by looking at the

indentations of the tables in the operations column. In these cases it might be easier to use the

FORMAT parameter in the DBMS_XPLAN procedures to display the outline information for the

plan, which will contain the join order. For example, to generate the outline information for the plan

shown in Figure 22 the following format option of the DBMS_XPLAN can be used;

DBMS_XPLAN.DISPLAY_CURSOR(FORMAT=>’Typical + outline’));

Oracle Optimizer: Explain the Explain Plan

19

Figure 23: Outline for execution plan

In the outline information, look for the line that begins with the word LEADING. This line shows the

join order for this query. In this example you see “P”, then “S”, then “C” referenced on this line; these

three letters were the aliases used for the three involved tables in the query. The P (PRODUCTS) table

joins to the S (SALES) table and then to the C (CUSTOMERS) table.

The join order is determined based on cost, which is strongly influenced by the cardinality estimates

and the access paths available. The Optimizer will also always adhere to some basic rules:

• Joins that result in at most one row always go first. The Optimizer can determine this based

on UNIQUE and PRIMARY KEY constraints on the tables.

• When outer joins are used the row preserving table (table without the outer join operator)

must come after the other table in the predicate (table with the outer join operator) to ensure

all of the additional rows that don’t satisfy the join condition can be added to the result set

correctly.

• When a subquery has been converted into an antijoin or semijoin, the tables from the

subquery must come after those tables in the outer query block to which they were connected

or correlated. However, hash antijoins and semijoins are able to override this ordering

condition under certain circumstances.

• If view merging is not possible all tables in the view will be joined before joining to the tables

outside the view.

Oracle Optimizer: Explain the Explain Plan

20

If the join order is not what you expect check the cardinality estimates for each of the objects and the

access methods are correct.

Partitioning

Partitioning allows a table, index or index-organized table to be subdivided into smaller pieces. Each

piece of the database object is called a Partition. Partition pruning or Partition elimination is the

simplest means to improve performance using Partitioning. For example, if an application has an

ORDERS table that contains a record of all orders for the last 2 years, and this table has been

partitioned by day, a query requesting orders for a single week would only access seven partitions of

the ORDERS table instead of 730 partitions (the entire table).

Partition pruning is visible in an execution plan in the PSTART and PSTOP columns. The PSTART

column contains the number of the first partition that will be accessed and PSTOP column contains

the number of the last partition that will be accessed1. In Figure 24 four partitions from SALES are

accessed, namely partitions 9,10,11, and 12.

Figure 24: Example plan output highlighting Partition pruning for a single-level partitioned table

A simple select statement that was run against a table that is partitioned by day and sub-partitioned by

hash on the CUST_ID column is shown in Figure 21. In this case a lot more numbers appear in the

PSTART, PSTOP columns. What do these additional numbers mean?

1 Note that not necessarily all partitions between PSTART and PSTOP have to be accessed. More details
about Partitioning and Partition pruning can be found on OTN on the Partitioning page

Oracle Optimizer: Explain the Explain Plan

21

Figure 21: Example plan output highlighting Partition pruning for a composite partitioned table

When using composite partitioning, Oracle numbers each of the partitions from 1 to n (absolute

partition numbers). For a table that is partitioned on just one level, these absolute numbers represent

the actual physical segments on disk of the single-level partitioned table.

In the case of a composite partitioned table, however, a partition is a logical entity and not represented

on disk. Each partition is subdivided into so-called sub-partitions. Each sub-partition within a partition

is numbered from 1 to m (relative sub-partition number within a single partition). Finally all of the sub-

partitions in a composite-partitioned table are given a global number 1 to (n X m) (absolute sub-

partition numbers); these absolute numbers represent the actual physical segments on disk of the

composite partitioned table.

Figure 22: Numbering scheme for a partitioned table

So in the previous plan in Figure 21 the number 10 in PSTART and PSTOP column, on line 4 of the

plan represents the global partitioning number representing the physical segments on disk. The

number 5 in PSTART and PSTOP column, on line 2 of the plan represents the partition number; the

number 2 in PSTART and PSTOP column, on line 3 of the plan, represents the relative sub-partition

number within a partition.

Oracle Optimizer: Explain the Explain Plan

22

There are cases when a word or letters appear in the PSTART and PSTOP columns instead of a

number. For example you may see the word KEY appears in these columns. This indicates that it was

not possible at parse time to identify, which partitions would be accessed by the query but the

Optimizer believes that partition pruning will occur at execution time (dynamic pruning). This happens

when there is an equality predicate on the partitioning key column that contains a function. For

example TIME_ID = SYSDATE. Another situation where dynamic pruning can occur is when there is

a join condition on the partitioning key column in the query and the table that is joined with the

partitioned table is expected not to join with all partitions, for example because of a FILTER predicate.

Partition pruning will occur at execution time. In the example in Figure27 below the where clause

predicate is on the TIME table, which joins to the SALES table on the partition key time_id. Partition

pruning will happen at execution time after the WHERE clause predicate has been applied to the

TIME table and the appropriate TIME_IDs have been select.

Figure27: Example plan output highlighting dynamic Partition pruning

If partition pruning does not occur as expected, check the predicates on the partition key column.

Ensure that the predicates are using the same datatype as the partition key column. You can check this

in the predicate information section under the plan. If the table is hash partitioned, partition pruning

will only occur if the predicate on the partition key column is an equality or an in-list predicate. Also if

the table has multi-column hash partitioning then partition pruning will only occur if there is a

predicate on all columns used in the hash partitioning.

Parallel Execution

Parallel execution in the Oracle Database is based on the principles of a coordinator (often called the

Query Coordinator or QC for short) and parallel server processes. The QC is the session that initiates

the parallel SQL statement and the parallel server processes are the individual sessions that perform

work in parallel. The QC distributes the work to the parallel server processes and may have to perform

a minimal, mostly logistical, portion of the work that cannot be executed in parallel. For example a

parallel query with a SUM() operation requires adding the individual sub-totals calculated by each

parallel server processes.

Oracle Optimizer: Explain the Explain Plan

23

Figure 28: Concept of parallel execution in the Oracle database

The QC is easily identified in the parallel execution plan as it writes its name in the plan. You can see

this on the line with ID#1 of the plan shown in Figure where you see the operation 'PX

COORDINATOR'. All of the operations that appear above this line in the execution plan are done

by the QC. Since this is a single process all of these operations are done serially. Typically you

want to minimize the number of operations done by the QC. All of the operations done under the

line ‘PX COORDINATOR’ are typically done by the parallel server processes.2

Figure 29: Example plan output highlighting the concepts of parallel execution

2 More details about Parallel Execution in Oracle can be found on OTN on the parallelism and scalability
page

Oracle Optimizer: Explain the Explain Plan

24

Granules

A granule is the smallest unit of work a parallel server processes can be given. The number of granules

is normally much higher than the requested DOP in order to get an even distribution of work among

parallel server processes. Each parallel server process will work exclusively on its own granule and

when it finishes it will be given another granule to work on until all of the granules have been

processed. The basic mechanism the Oracle Database uses to distribute work for parallel execution is

block ranges on disk or block-based granules. In the execution plan you can see how the granules

were distributed to the parallel server processes in the operations column on the line above the data

access. The operation 'PX BLOCK ITERATOR ' shown on line 7 in the plan in Figure means the

parallel server processes will iterate over the generated block range granules to complete the table scan.

Figure 30: Example plan output highlighting block granule processing

Although block-based granules are the most common approach, there are some operations that can

benefit from leveraging the underlying data structure of a partitioned table. In these cases a partition

becomes a granule of work. With partition-based granules one parallel server processes will perform

the work for all of the data in a single partition. The Oracle Optimizer considers partition-based

granules if the number of (sub)partitions accessed in the operation is at least equal to the DOP (and

ideally much higher in case there is a skew in the sizes of the individual (sub)partitions). An example of

partition-based granules can be seen in Figure31 line 6: ‘PX PARTITION RANGE ALL’ means that

each parallel server process will work exclusively on one of the range partitions in the table.

Figure31: Example plan output highlighting partition-based granules

Based on the SQL statement and the degree of parallelism, the Oracle Database decides whether

block-based or partition-based granules lead to a more optimal execution; you cannot influence this

behavior.

Oracle Optimizer: Explain the Explain Plan

25

Producers and Consumers

In order to execute a statement in parallel efficiently parallel server processes actually work together in

sets: one set is producing rows (producer) and one set is consuming the rows (consumer). For example

in the plan in Figure32, the parallel join between the SALES and CUSTOMERS uses two sets of

parallel server processes. The producers scan the two tables, applying any where clause predicates and

send the resulting rows to the consumers (lines 9-11 and lines 5-7). You can identify the producers

because they do the operations below any PX SEND operation (line 9 & 5). The consumers complete

the actual hash join and send the results to the QC (line 8 and lines 2-4). The consumers can be

identified because they must do a PX RECEIVE before they can begin working (line 8 & 4) and they

always finish by doing a PX SEND QC (line 2), which indicates they send the results to the QC.

Figure32: Example plan output highlighting parallel producers and consumers

Similar information is shown in the TQ column. It shows which set of parallel server processes

executed, which set of steps in the execution plan. In the plan above the Q1,00 set of parallel server

processes (producers) scanned the CUSTOMERS table first. They then sent the resulting rows to the

consumers (line 5) Q1,02. The Q1,00 set of parallel server processes then became the Q1,01 set of

parallel server processes (which again are producers). The Q1,01 set scanned the SALES table and sent

the resulting rows to the consumers(line9). The Q1,02 set of parallel server process (the consumers)

accepted rows from the producers (line 8 & 4), completed the join (line 3) and sent the results to the

query coordinator (2).

Oracle Optimizer: Explain the Explain Plan

26

Figure 33 Example plan output highlighting the TQ (table queue) column for producers and
consumers

Data redistribution

In the example above two large tables CUSTOMERS and SALES are involved in the join. In order to

process this join in parallel, a redistribution of rows becomes necessary between the producers and

the consumers. The producers scan the tables based on block ranges and apply any where clause

predicates and then send the resulting rows to the consumers, who will complete the join. The last

two columns in the execution plan, IN-OUT, and PQ Distrib hold information about how the

data is redistributed between the producers and consumers. The PQ Distrib column is the most

useful column and has somewhat replaced the In-OUT column.

The following five redistribution methods are the most common and you will see these names

appearing in the PQ Distrib column of the execution plan.

HASH: Hash redistribution is very common in parallel execution in order to achieve an equal

distribution among the parallel server processes. A hash function is applied to the join column and

the result dictates which consumer parallel server process should receive the row.

BROADCAST: Broadcast redistribution happens when one of the two result sets in a join

operation is much smaller than the other result set. Instead of redistributing rows from both result

sets the database sends the smaller result set to all of the consumer parallel server processes in

order to guarantee the individual servers are able to complete their join operation.

RANGE: Range redistribution is generally used for parallel sort operations. Individual parallel

server processes work on data ranges so that the QC does not have to do any additional sorting

but only present the individual parallel server processes results in the correct order.

KEY: Key redistribution ensures result sets for individual key values are clumped together. This is

an optimization that is primarily used for partial partition-wise joins to ensure only one side in the

join has to be redistributed.

ROUND ROBIN: Round-robin data redistribution can be the final redistribution operation

before sending data to the requesting process. It can also be used in an early stage of a query when

no redistribution constraints are required.

Oracle Optimizer: Explain the Explain Plan

27

You may see a LOCAL suffix on the redistribution methods in a Real Application Clusters (RAC)

database. LOCAL redistribution is an optimization in RAC to minimize interconnect traffic for

inter-node parallel queries. In this case, the rows are distributed to only the consumers on the

same RAC node.

In the plan in Figure 34 the producers send data to the consumers using a HASH redistribution

method.

Figure 34 Example plan output highlighting the row redistribution of parallel processing

You should also notice that on the lines in the plan where data redistribution takes place the value in

the IN-OUT column is either P->P (lines 5 & 9) or P->S (line 2). P->P means that data is being sent

from one parallel operation to another. P->S means that data is being sent from a parallel operation to

serial operation. On line 2 the data is being sent to the QC, which is a single process, hence the P->S.

However, if you see a P->S operation happening somewhere lower in the execution it may indicate you

have a serialization point in the plan, which should be investigated. This could be caused by not having

a parallel degree set on one or more of the objects accessed in the query.

Conclusion

The purpose of the Oracle Optimizer is to determine the most efficient execution plan for your

queries. It makes these decisions based on the statistical information it has about your data and by

leveraging Oracle database features such as hash joins, parallel query, and partitioning.

The explain plan is by far the most useful tool at our disposal when it comes to investigating why the

Optimizer makes the decisions it makes. By breaking down the explain plan and reviewing the four key

elements of: cardinality estimations, access methods, join methods, and join orders; you can determine

if the execution plan is the best available plan.

\

White Paper Oracle Optimizer Explain the

Explain Plan

May 2011

Author: Maria Colgan

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2010, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective

owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel

and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open

Company, Ltd. 0410

