An Oracle White Paper
May 2011

The Oracle Optimizer
Explain the Explain Plan

ORACLE

Oracle Optimizer: Explain the Explain Plan

INErOAUCTION .. e 1
The EXeCUtion Planoooiiiiiiiiici e 2
Displaying the Execution plan............ccccooeiiiiiiieiie e, 3
What is COSt.....ooiiiiiiie e, 8
Understanding the execution plancccccceiiiiiiiiiiiiiiiiiie 8
Cardinalitycooee e e 9
ACCESS MEthOUeiiiiiiiee e 12
JOIN MEthOd.. ..o e 15
JOIN OFAEI. .. e 18
Partitioningoooiiiie 20
Parallel EXeCUtion...........coovviiiiiiiiics e 22

CONCIUSION . 27

Oracle Optimizer: Explain the Explain Plan

Introduction

The purpose of the Oracle Optimizer is to determine the most efficient
execution plan for your queries. It makes these decisions based on the
statistical information it has about your data and by leveraging Oracle
database features such as hash joins, parallel query, partitioning, etc. Still it is
expected that the optimizer will generate sub-optimal plans for some SQL
statements now and then. In cases where there is an alternative plan that
performed better than the plan generated by the optimizer, the first step in
diagnosing why the Optimizer picked the sub-optimal plan is to visually inspect
both of the execution plans.

Examining the different aspects of an execution plan, from selectivity to parallel
execution and understanding what information you should be gleaming from
the plan can be overwhelming even for the most experienced DBA. This paper
offers a detailed explanation about each aspect of the execution plan and an
insight into what caused the CBO to make the decision it did.

Oracle Optimizer: Explain the Explain Plan

The Execution Plan

An execution plan shows the detailed steps necessary to execute a SQL statement. These steps are
expressed as a set of database operators that consume and produce rows. The order of the operators
and their implementations is decided by the query optimizer using a combination of query
transformations and physical optimization techniques. While the display is commonly shown in a
tabular format, the plan is in fact tree-shaped. For example, consider the following query based on the
SH schema (Sales History):

SELECT prod category, AVG(amount sold)
FROM sales s, products p
WHERE p.prod id = s.prod id

GROUP BY prod category;

The tabular representation of this quety's plan is:

Id	Operation	Mame	Rows	Bytes	Cost (ECPUMI Time	Pstart	Pstop
0	SELECT STATEMENT I			1140 (100			
11 HASH CROUP BY		41 801 1140 (45)1 00:00:14					
[* 21 HASH JOIN		489K 9BBEK	792 (L)1 00:00:10				
31 THBLE ACCESS FULL	PRODUCTS	767	8437	10 (0)1 0000501			
41 PARTITION RAMGE ALLI	485K1 4300k 741 (17)1 00:00:09	11 16					
& TABLE ACCESS FULL	SALES	489k	4300K1 741 (17} 00:00:09	11 16			

Figure 1: Tabular shaped execution plan

While the tree-shaped representation of the plan is:

. GROUP BY

Figure 2: Tree shaped execution plan

The tabular representation is a top-down, left-to-right traversal of the execution tree. When you read a
plan tree you should start from the bottom left and work across and then up. In the above example,
begin by looking at the leaves of the tree. In this case the leaves of the tree are implemented using a full
table scans of the PRODUCTS and the SALES tables. The rows produced by these table scans will be
consumed by the join operator. Here the join operator is a hash-join (other alternatives include nested-

Oracle Optimizer: Explain the Explain Plan

loop ot sort-merge join). Finally the group-by operator implemented here using hash (alternative would

be sort) consumes rows produced by the join-operator, and return the final result set to the end uset.
Displaying the Execution plan

The two most common methods used to display the execution plan of a SQL statement are:

EXPLAIN PLAN command - This displays an execution plan for a SQL statement without actually

executing the statement.

V$SQL_PLAN - A dynamic performance view introduced in Oracle 9i that shows the execution plan
for a SQL statement that has been compiled into a cursor and stored in the cursor cache.
Under certain conditions the plan shown when using EXPLAIN PLAN can be different from the plan
shown using V§SQIL_PLAN. For example, when the SQL statement contains bind variables the plan
shown from using EXPLAIN PLAN ignores the bind variable values while the plan shown in
V$SQL_PLAN takes the bind variable values into account in the plan generation process.

Displaying an execution plan has been made easier since the introduction of the DBMS_XPLAN
package in Oracle 9i and by the enhancements made to it in subsequent releases. This package provides
several PL/SQL interfaces to display the plan from different sources:

e EXPLAIN PLAN command

e V$SQL_PLAN

e Automatic Workload Repository (AWR)
e SQL Tuning Set (STS)

e SQL Plan Baseline (SPM)

Using the EXPLAIN PLAN command and the DBMS_XPLAN.DISPLAY function

The following examples illustrate how to generate and display an execution plan for our original SQL
statement using the different functions provided in the DBMS_XPLAN package.

Oracle Optimizer: Explain the Explain Plan

SOL» EXPLAIN PLAN FOR
2 Salect prod_cstegory. avglavount_soldl
3 From sales 5. products p
d Wheres poprod id = 5 prod_id
5 Group by prod_category:

Esplairmsd,

SOL>
S0L> Select plan_table_output

? From tableldbes_cplan,displayl “plan_table' oull. ‘basic®)]s

PLAN_TABLE_QLTFUT

Plan hask walues: BI4IETH96

| Id 1| Operaticn | Hame |
| @ | SELECT STRTEMEHT I |
|11 HASH GROUF BY I 1
| 2 1 HASH JOIR I |
| 31 WIEM | VB CBC G |
| 41 HASH GROUP BY I |
I &1 FARTITION RAMGE ALL I |
I &1 TRELE BLTESS STORRGE FULLID SBLES 1
| | TRELE RCCESS STOIRACE FLLL | PROSUCTS |

e ————
Figure 3: EXPLAIN PLAN output using the BASIC output

The arguments for DBMS_XPLAN.DISPLAY are:
e plan table name (default PLAN_TABLE")

e statement_id (default null means the last statement inserted into the plan table)

e format, controls the amount of information displayed (default is "TYPICAL')

To leverage the explain plan functionality you need the appropriate privileges to run the actual

statement you are trying to explain. A default PLAN_TABLE exists for every user without the need to

create it beforehand.

Using the DBMS_XPLAN.DISPLAY_CURSOR function

Alternatively the execution plan for an executed SQL statement can be generated and displayed by
using the DBMS_XPLAN.DISPLAY_CURSOR function. The following example shows the plan for

the previously executed SQL statement in the session.

Oracle Optimizer: Explain the Explain Plan

SOL> Select prod_category, avg(amount_sold)
2 From sales s, products p
3 UWhere p.prod_id = s.prod_id
4 Group by prod_category:

PROD_CATEGORY AVG(AMOUNT _SOLD)
Sof tware/Other 34,1313997
Harduare 1344 50776
Electronics 125551667
Photo 188.064642
Peripherals and Accessories 108,624588
SoL>

SOL> Select plan_table_output

2 From table{dbms_xplan,display_cursor(NULL,NULL, 'basic')3

FLAN_TABLE_DUTPUT

EXPLAINED SOL STATEMENT:

Select prod_category. awglamount_sold) From

p.prod_id = s.prod_id Group by prod_category

Plan hash value: 504757596

sales s, products p Uhere

| Id | Operation | Name

|
| 0 | SELECT STRTEMENT | |
|11 HASH GROUP BY | |
I 21 HASH JOIN | I
I 31 WIEW | VW_GBCS |
I 41 HASH GROUP BY | |
I 51 PARTITION RANGE ALL | |
[TABLE ACCESS STORAGE FULL| SALES |
EE TAELE ACCESS STORAGE FULL | PRODUCTS |

Figure 4: Execution plan accessing the SQL cursor cache, using the basic format

The arguments accepted by DBMS_XPLAN.DISPLAY_CURSOR are:

e SQL ID (default null, means the last SQL statement executed in this session),

e child number (default 0),

e format, controls the amount of information displayed (default "TYPICAL')

Besides the privileges to actually run the SQL statement, the executing user needs SELECT privilege
on V$SQL_PLAN, V§SQL_PLAN_DETAIL and SELECT_CATALOG_ROLE.

Formatting the execution plan

The format parameter for the functions in the DBMS_XPLAN package is highly customizable and can

display as little (high-level) or as much (low-level) details as requited or desited in the plan output.

There are three pre-defined formats available:

e BASIC The plan includes only the ID, operation, and the object name columns.

e TYPICAL Includes the information shown in BASIC plus additional optimizer-related

internal information such as cost, cardinality estimates, etc. This information is shown for

every operation in the plan and represents what the optimizer thinks is the operation cost, the

number of rows produced, etc. It also shows the predicates evaluated by each operation.

There are two types of predicates: ACCESS and FILTER. The ACCESS predicates for an

Oracle Optimizer: Explain the Explain Plan

index are used to fetch the relevant blocks by applying seatch criteria to the appropriate
columns. The FILTER predicates are evaluated after the blocks have been fetched.

e All Includes the information shown in TYPICAL plus the lists of expressions (columns)
produced by every operation, the hint alias and query block names where the operation
belongs (the outline information). The last two pieces of information can be used as
arguments to add hints to the statement.

The low-level options allow the inclusion or exclusion of fine details, such as predicates and cost. The
example in Figure 5 displays the basic execution plan and includes information on any predicates as
well as the Optimizer Cost column.

SELECT plan_ table output
FROM TABLE (DBMS XPLAN.DISPLAY ('plan table',null, 'basic +predicate
+cost'));

| Id | Operation | Mame | Cost (ZCPUI|
| | SELECT STATEMEMT | | 1101 (4431
| 1 | HASH GEOUP BY | | 1101 (4431
% 21 HASH JOIM | | 1100 (433
| & THELE BCCESS FULL | PRODUCTS | 1o (o)
I 4| YIEW | MU_GEC_S | 1089 (44|
I &1 HASH GROUP BY | | 1089 (d44)|
I & | PARTITION RANGE ALLI | 741 (17}
T TRELE ACCESS FULL | SALES I 741 (1711

Predicate Information (identified by operation id):

2 - access("P"."PROD_ID"="ITEM_1"}

Figure 5: Customized BASIC plan output with selected options PREDICATE and COST

It is also possible to use the low level arguments to exclude information from the plan. Figure 6 shows
a sample plan where the Optimizer Cost and the Bytes columns are excluded.

SELECT plan_ table output

FROM TABLE (DBMS XPLAN.DISPLAY ('plan table',null, 'typical -cost -
bytes'));

Oracle Optimizer: Explain the Explain Plan

Id	Operation	MHame	Bows	Time	Pstart	Pstop
0	SELECT STATEHENT		4 1 00:00rld			
1	HASH GEOUP BY		4 1 00r00rld			
HASH JOINW		FEE	00x00zld			
E TABLE ACCESS FLLL	PRODUCTS	FEZ	o0xoozol			
4 1 WIEW I MW_GBC_S	JEE	0D0:00:ld				
a1 HASH GREOUFP BY		FEE	D0:00:ld			
B 1 PARTITION RAMGE ALLI	439K Q00009	11 16 1				
7ol TABLE ACCESS FULL	SALES	439K Q00003	11 16			

Predicate Information [identified

by operation id):

2 - access("P","PROD_ID"="ITEM_1")

Figure 6: Customized TYPICAL plan with suppressed options COST and BYTES

The Note Section

In addition to the plan and the predicate information, the DBMS_XPLAN package displays additional

information in the NOTE section, such as when dynamic sampling was used during query

optimization or that star transformation was applied to the query. In the example below the table

SALES does not have statistics, so the optimizer has used dynamic sampling during the query

optimization, which is displayed in the plan using the +note' in the query:

SELECT plan_ table output
FROM TABLE (DBMS XPLAN.DISPLAY ('plan table',null, 'basic +note'));

A

I Id |

Operation | Mame

Ly RN S B e)

SELECT STATEMEMT |
HASH GROUF BY |
HASH JOIM |
TRELE ACCESS FULL | PRODUCTS
FARTITION RANGE ALLI
TRELE ACCESS FILL | SALES

- dynamic zampling used for this statement (lewel=2)

Figure 7: Basic plan output showing dynamic sampling was used for this statement

The note section is automatically displayed when the format option is set to either TYPICAL or ALL.
Mote information on the DBMS_XPLAN package can be found in the Otacle® Database PL/SQL
Packages and Types Reference guide.

Oracle Optimizer: Explain the Explain Plan

What is Cost

The Oracle Optimizer is a cost-based optimizer. The execution plan selected for a SQL statement is
just one of the many alternative execution plans considered by the Optimizer. The Optimizer selects
the execution plan with the lowest cost, where cost represents the estimated resource usage for that
plan. The lower the cost the more efficient the plan is expected to be. The optimizer’s cost model
accounts for the IO, CPU, and network resources that will be used by the query.

| Id | Operation | Mame | Rows | Buytes N Cost (ZCPUDIY Time | Pstart! Pstop ||
SELECT STATEMENT

[[[[1140 (100} [

| HASH GROUP BY [[d 1 B0 | 1140 (45} 00:00:14 |
* 2| HASH JOIN [| 489KI 985SKN 792 (21)1fo0:00:10 |
| TAELE ACCESS FULL | PRODUCTS | 767 | 8437 10 (o) ifoosoosol |
[| |
[[[

FRRTITION RAMGE ALLI 489k 1 4300k 741 (A7) I 00300509

|
I
I
I
I
THELE ACCESS FULL | SALES 453K 4300K 741 (1710000509 |

LR S d N

1 16
1 16

Figure 8: Cost is found in the fifth column of the execution plan

The cost of the entire plan (indicated on line 0) and each individual operation is displayed in the
execution plan. However, it is not something that can be tuned or changed. The cost is an internal unit

and is only displayed to allow for plan compatisons.

Understanding the execution plan

In order to determine if you are looking at a good execution plan or not, you need to understand how
the Optimizer determined the plan in the first place. You should also be able to look at the execution
plan and assess if the Optimizer has made any mistake in its estimations or calculations, leading to a
suboptimal plan. The components to assess ate:

e Cardinality— Estimate of the number of rows coming out of each of the operations.

e Access method — The way in which the data is being accessed, via either a table scan or index

access.
¢ Join method — The method (e.g., hash, sort-merge, etc.) used to join tables with each other.
e Join type — The type of join (e.g., outer, anti, semi, etc.).

e Join order — The order in which the tables are joined to each other.

e Partition pruning — Are only the necessary partitions being accessed to answer the query?

e Parallel Execution — In case of parallel execution, is each operation in the plan being
conducted in parallel? Is the right data redistribution method being used?

Below is a detailed discussion on each of these components in the execution plan.

Oracle Optimizer: Explain the Explain Plan

Cardinality

The cardinality is the estimated number of rows that will be returned by each operation. The Optimizer
determines the cardinality for each operation based on a complex set of formulas that use both table
and column level statistics as input (or the statistics detived by dynamic sampling). One of the simplest
formulas is used when there is a single equality predicate in a single table query (with no histogram). In
this case the Optimizer assumes a uniform distribution and calculates the cardinality for the query by
dividing the total number of rows in the table by the number of distinct values in the column used in
the where clause predicate.

Figure 9 shows a query running against the employees table in the HR schema, which has 107 rows:

SQL> SELECT employee id, last name, job id

2 FROM hr.employees
3 WHERE job id = ‘AD VP’;

SQL> Select plan table output

2 From table (dbms xplan.display cursor (null,null, 'TYPICAL’);
L I

Id	Operation	Hame	Rows	Bytes	Cost (ECPUDI Time
0	SELECT STATEMENT		I	2 (100}	
11 TABLE ACCESS BY INDEX ROWIDI EMPLOYEES	61 126	2 (0} 00:00301			
I* 2 1 INDEX RANGE SCAN | EHP_JOB_IX | | | 1 (0} 000001 |

Predicate Information (identified by operation id):

2 - accezs("JOB_1D"="HD_VP')

Figure 9: The CARDINALITY estimate is found in the Rows column of the execution plan

The job_id column has 19 distinct values so the optimizer predicted the cardinality for this statement
to be 107/19 ot 5.6 rows, which gets rounded up by DBMS_XPLAN to 6 rows.

It is import for the cardinality estimates to be as accurate as possible as they influence all aspects of the
execution plan from the access method, to the join order. However, several factors can lead to
incorrect cardinality estimates even when the basic table and column statistics are up to date. Some of

these factors include:

e Data skew

o Multiple single column predicates on a single table

« Function wrapped columns in the WHERE clause predicates

o Complex expressions

Oracle Optimizer: Explain the Explain Plan

In the previous example there is a data skew in the EMPLOYEES table. There is not an even number
of employees with each job_id. The actual number of rows in the employees table with a job_id of
‘AD_VP’ is only 2, which is 3 times less than the Optimizer originally estimated. In order to accurately
reflect that data skew, a histogram is required on the JOB_ID column. The presence of a histogram
changes the formula used by the Optimizer to determine the cardinality estimate.

By default Oracle automatically determines the columns that need histograms based on the column
usage statistics and the presence of a data skew. If you need (or want) to create a histogram manually

you can use the following command.
SQL > Exec DBMS_STATS.GATHER_TABLE_STATS(‘HR’JEMPLOYEES’,
method_opt=>"FOR COLUMNS SIZE 254 JOB_ID’);

With a histogram on JOB_ID in place the optimizer estimates the correct number of rows will be
returned from the sales table as seen in Figure 10.

| Id | Operation | Mame | Rows | Bytes | Cost (ECPUNI Time I
| 0 | SELECT STATEMEMT I I I I 2 {10y I
| 1| TRBLE ACCESS BY IWDEX ROWIDI EMPLOYEES | 21| 42 1 2 (03 ooooenl |
[* 2 1 INDEX RAMGE SCAM | EMP_JOB_IX | I 1 (03 ool |

Predicate Information {identified by operation id}:

2 - access("JOB_ID"="AD_YP'}

Figure 10: Correct cardinality estimate with histogram present

Although having a more accurate cardinality estimate did not change the execution plan in this case it

definitely can.

Determine the correct cardinality

To manually determine if the Optimizer has estimated the correct cardinality (or is in close proximity)
you can use a simple SELECT COUNT(*) query for each tables used in the query and applying any
WHERE clause predicates belonging to that table in the query. For the simple example used before

SQL> SELECT COUNT (*)

2 FROM hr.employees
3 WHERE job id="AD VP’;
COUNT (*)
2

Alternatively you can use the GATHER_PLAN_STATISTICS hint in the SQL statement to

automatically collect more comprehensive runtime statistics. This hint records the actual cardinality

Oracle Optimizer: Explain the Explain Plan

(the number of rows returned) for each operation as the statement executes. This execution time (or
run time) cardinality can then be displayed in the execution plan, using
DBMS_XPLAN.DISPLAY_CURSOR, with the format parameter set to 'ALLSTATS LAST'. An
additional column called A-Rows, which stands for actual rows returned, will appear in the plan.

SQL> SELECT /*+ GATHER PLAN STATISTICS */ employee id, last name,
job_id

2 FROM employees

3 WHERE job id='AD VP';
SQL> SELECT plan table output

2 FROM table (DBMS XPLAN.DISPLAY CURSOR (FORMAT=>'ALLSTATS LAST'));

Id	Operation	Name	Startz	E-Rows II A-Fows	A-Time	Buffers
&	SELECT STATEMEMT	I 1	2 100:00500,01	4		
1	TRELE ACCESS BY IWDEX ROWIDI EMPLOYEES	1 211 2 100:00500,01	4			
[* 2 | IMDEYX RANGE SCAM | EMP_JOB_I¥ | 1 211 2 l00:0000,01 | 21

Predicate Information (identified by operation id): Compare actual rows returned by each

operation (A-Rows) with the Optimizer
2 - access("JOB_ID"="AD_VWF') estimate (E-Rows)

Figure 11: Runtime cardinality statistics are displayed in the A-Rows column

Note that using the GATHER_PLAN_STATISTICS hint has an impact on the execution time of a
SQL statement, so you should wuse this only for analysis purposes. The
GATHER_PLAN_STATISTICS hint, is not needed to display the A-Rows column when the init.ora
parameter STATISTICS_LEVEL is set to ALL. The SQL*Monitoring functionality — either within
Oracle Enterprise Manager or using the PL/SQL intetface - will always display the A-Rows column
information without any ovethead for the SQL statement, as shown in Figure 12. Note that

Oracle Optimizer: Explain the Explain Plan

SQL*Monitoring is part of the

Bt 1
Baaksd

Exmosen Wierbed
iaml Babwi b Tone
Evsnaticn 10

tipar

Farch Calln

Irbzoieed n 1B

-

Fri dul 230 2000 2rLLAT PN
Fei Jud 33, 30 31 0vin P
L& TTIE]

o

:-

‘Tuning and Diagnostics Pack and requires additional licensing.

T & Wit Slatistas M REsfsbrs

Coatens N, <11
putasman T [<-4+

PUESL B demn Ddp

wa anviny » [50

st ot (R i+

10 Pequartr [l T001

B i .ﬂ MR

LI

|01 Pt s | e |) Pl | |, matveay |[7] sheirs |

Pam Hpak Vikas B3Ra3aie] B 3, ki rmmarm plais ror e B gy, ol Vi g b [T Bapneiin. i 57 B phom
Iperame L thl‘-h Powk Temae, Buomne, |t Borws Bus.. Tarme, B0 o TE Wl Sy o
B ARECT ETaTimiaT | — L 11 [B
B BE O N IssT A e B 71 T

I Ereess goimescod) Tounam 1 fr2en 1 1 L]
ﬁ B wdbelled G0 By EER ERC] 1] 72 |aEl
[} B % WECETNE 71 |Lze0 | 1 bl

1] B #3 RPRE s PE=FL -1 i1 f1am | i 1
= [T EATIY 71 41200 3 74
[ii I FaEH 501 ¥ITE |1y — 1 14TIR E: Em
1. B B BLSCE .. L ES ¥ ! i %
= TAELE &5, @RDUCTE 73 2! 3 3 S
i [METER DT — 1 ramie [andes T, B0 . T
fis] B b BTl B . nna S— 1 70508

. 5 o AEND L (TG FLOK |1 2na — 1 7, 09LE B

- B FaaRTi... wpEn 1,70 S—] AT

TSl BALEED L 1. 00—] 1ETIK 4T

Figure 12: Sample execution plan as shown with SQL*Monitoring

Access Method

The access method - or access path - shows how the data will be accessed from each table (or index).
The access method is shown in the operation field of the explain plan.

I 1d | Dperation | Mana | Rows | Bytes | Cost (ZCPUYI Tims | Pstart] Pstop |
i 1140 {10071 I [I
I 1140 (d5)| 0000214 | | I
I* a2 (210 Q000220 | | I
I 10 {01 00x00:0L | [I
1 Tl (170 00:00z0E | i i |
1 L (ATH O0s00s0d | 11 b1 |

Figure 13: The access methods ate shown in the Operations column of the plan
Oracle supports nine common access methods:

Full table scan - Reads all rows from a table and filters out those that do not meet the where clause
predicates. A full table scan will use multi block 1O (typically 1IMB 1Os). A full table scan is selected if a

Oracle Optimizer: Explain the Explain Plan

large portion of the rows in the table must be accessed, no indexes exist or the ones present can’t be

used or if the cost is the lowest. The decision to use a full table scan is also influenced by the following:
e Init.ora parameter db_multi_block_read_count
e DParallel degree
e Hints
e Lack of useable indexes
e Using an index costs more

Table access by ROWID — The rowid of a row specifies the data file, the data block within that file,
and the location of the row within that block. Oracle first obtains the rowids either from a WHERE
clause predicate or through an index scan of one or more of the table's indexes. Oracle then locates

each selected row in the table based on its rowid and does a row-by-row access.

Index unique scan — Only one row will be returned from the scan of a unique index. It will be used
when there is an equality predicate on a unique (B-tree) index or an index created as a result of a
primary key constraint.

| Id | Operation | Hame | Rows | Bytes | Cost (ECPUYI Time |
[© | SELECT STATEMENT I I I | 1 (100} |
| 1| TABLE ACCESS BY INDEX ROWIDI PROMOTIONS | il 40 | 1 (0} 000001 |
%2 | PROHO_PK | E:l I 0 (0} |

“redicate Information (identified by operation id): | Equality predicate on
— primary key index

2 - access({"PROMD_ID"=9333)

Figure 14: Plan using INDEX UNIQUE SCAN

Index range scan — Oracle accesses adjacent index entries and then uses the ROWID values in the
index to retrieve the corresponding rows from the table. An index range scan can be bounded or
unbounded. It will be used when a statement has an equality predicate on a non-unique index key, or a
non-equality or range predicate on a unique index key. (=, <, >,LIKE if not on leading edge). Data is
returned in the ascending order of index columns.

Oracle Optimizer: Explain the Explain Plan

| Id | Operation | Mame | Rows | Bytes | Cost (ECPUII Time I
| 0 | SELECT STATEMEMT I | | | 2 {100 |
I 11 H ROWIDI PROMOTIOMS | 11 40 1 2 (0 o000l |
[* 21 JINDEX RAMGE SCAM | PROMO_PK | 11 | 1 (03 o000l |

Non equality predicate
onunigue index

Predicate Information {identified by operation id):

2 - access("PROMO_ID">3938 LN

Figure 15: Plan using INDEX RANGE SCAN

Index range scan descending — Conceptually the same access as an index range scan, but it is used
when an ORDER BY .. DESCENDING clause can be satisfied by an index.

Index skip scan - Normally, in order for an index to be used, the prefix of the index key (leading edge
of the index) would be referenced in the query. However, if all the other columns in the index are
referenced in the statement except the first column, Oracle can do an index skip scan, to skip the first
column of the index and use the rest of it. This can be advantageous if there are few distinct values in
the leading column of a concatenated index and many distinct values in the non-leading key of the

index.

Full Index scan - A full index scan does not read evety block in the index structure, contrary to what
its name suggests. An index full scan processes all of the leaf blocks of an index, but only enough of
the branch blocks to find the first leaf block. It is used when all of the columns necessary to satisfy the
statement are in the index and it is cheaper than scanning the table. It uses single block 10s. It may be

used in any of the following situations:

e An ORDER BY clause has all of the index columns in it and the order is the same as in the

index (can also contain a subset of the columns in the index).

e The query requites a sort merge join and all of the columns referenced in the query ate in the

index.
e Otder of the columns referenced in the query matches the order of the leading index columns.

e A GROUP BY clause is present in the query, and the columns in the GROUP BY clause are

present in the index.

Oracle Optimizer: Explain the Explain Plan

Full index scan booking for values preater than or equad to King
Ondy the Indew blocks outlined in red will be read |:|

< KING EING

KNG <BLEKE
MILLES = BLaKE
z I&MES

JAAES BLAKE DA
jones T e T aue
RORD

Figure 16: Processing of an INDEX FULL SCAN

Fast full index scan - This is an alternative to a full table scan when the index contains all the
columns that are needed for the query, and at least one column in the index key has the NOT NULL
constraint. It cannot be used to eliminate a sort operation, because the data access does not follow the
index key. It will also read all of the blocks in the index using multiblock reads, unlike a full index scan.

Index join — This is a join of several indexes on the same table that collectively contain all of the
columns that are referenced in the query from that table. If an index join is used, then no table access is
needed, because all the relevant column values can be retrieved from the joined indexes. An index join

cannot be used to eliminate a sort operation.

Bitmap Index — A bitmap index uses a set of bits for each key values and a mapping function that
converts each bit position to a rowid. Oracle can efficiently merge bitmap indexes that correspond to
several predicates in a WHERE clause, using Boolean operations to resolve AND and OR conditions.

If the access method you see in an execution plan is not what you expect, check the cardinality

estimates for that object are correct and the join order allows the access method you desire.

Join method

The join method describes how data from two data producing operators will be joined together. You
can identify the join methods used in a SQL statement by looking in the operations column in the
explain plan.

Oracle Optimizer: Explain the Explain Plan

I 1d | Operation I Mame | Rows | Bytas 1 Cost (ACPUMNI Time | Pstarel Pstop |

0 | SELECT STRTEHENT I I I 431 (1001
11 HASH GROUP By I I 70 ZM8 0 431 (11)) o0:0h
21 | | 918Kl 34l 33 (4 00300
31 FILL | PRODUCTS | i Bl | (000 ODz00:
4| | 00100
51 I O)

FARTITION RANGE ALLI 18K1 BOPEK]

I

|

1

1

3z 1

TRBLE ACCESS FILL | SALES 918K1 ao7Eel 332 (31 1

1 28
1 28

Figure 17: Join Method is shown in the Operations column

Oracles offers several join methods and join types.

Join Methods

Hash Joins - Hash joins are used for joining large data sets. The optimizer uses the smaller of the two
tables or data sources to build a hash table, based on the join key, in memory. It then scans the larger
table, and performs the same hashing algorithm on the join column(s). It then probes the previously
built hash table for each value and if they match, it returns a row.

Nested Loops joins - Nested loops joins are useful when small subsets of data are being joined and if
there is an efficient way of accessing the second table (for example an index look up). For every row in
the first table (the outer table), Oracle accesses all the rows in the second table (the inner table).
Consider it like two embedded FOR loops. In Oracle Database 11g the internal implementation for
nested loop joins changed to reduce overall latency for physical I/O so it is possible you will see two
NESTED LOOPS joins in the operations column of the plan, where you previously only saw one on

earlier versions of Oracle.

1B 1 Dperatjon | Hawui | Fows | Butes | Cost CECPUDL Ties | Petart] Pitop |
1 @ 1 SELECT ‘STATEHENT | | I | 16EZS {104 | 1 |
I 11 HasH GROP BY | | L1 2% | ABEXS (1) o0zodnol | 1 |
1 &1 | | I | | | 1 |
1 3l | | HEl a1 16593 (1)) OD:edd | | |
1 4l T FLL | PROBUCTS | P B 17 | 3 g0} 00z | | |
1 &1 FRRTITION RahiE AL | | [1 | | 11 #i
| 61 Bl THeF OOWVERSION O ROMTTS | | | | | | | |
®= 71 BITHGF INBEX S[HELE VLLE | SALES _FROB_EBIX | | | | | 1y &
I B TABLE ACCESS BY LOCAL [HDEX RMIDI SALES | 12362 | 212K] 16583 (1)1 ©Dz003(d | 11 11

Figure 18: Example plan output using NESTED LOOP

Sort Merge joins — Sort merge joins are useful when the join condition between two tables is an in-
equality condition such as, <, <=, >, or >=. Sort merge joins can perform better than nested loop

joins for large data sets. The join consists of two steps:
Sort join operation: Both the inputs are sorted on the join key.
Merge join operation: The sorted lists are merged together.

A sort merge join is more likely to be chosen if there is an index on one of the tables that will eliminate
one of the sorts. In this example only the rows from the sales tables need to be sorted (ID 5), the rows
from the products table are already sorted on the join column coming from the primary key index
access (ID 4).

Oracle Optimizer: Explain the Explain Plan

| 1d | Dp=ration | Hews | Pows | Bytes |TempSpcl Cost CXCPUN] Tiee | Petart| Petop |
I 0| SELECT STRTEMENT I | | | | 2628 (100)1 | | |
I 1| HASH CROUF BY | | T IS | | 2628 {30 oQso0zal | | |
I 21 I | SiEkl 34HI | 295 {2} ohpodzof | I i
1 31 B INIEX BRI PROIUCTS | TZ 1 e | | 2 (0) ooendaed | | |
1 41 SRR | PRODICTS_FE | T2 I | 1 {0} cdcod:dd | | |
i* 8| i [1 N L M8 (20 odeidrcd | | |
[FARTITION BARGE ALL I | EEBK| SGTEKI 1382 {30 oowo0od | i1 20 1
[| THELE WOCESS FULL | GALES I =ik SATERd I 342 {3} Gacigod | i i

Figure 19: Example plan output using SORT MERGE JOIN

Cartesian join - The optimizer joins every row from one data source with every row from the other
data source, creating a Cartesian product of the two sets. Typically this is only chosen if the tables
involved are small or if one or more of the tables does not have a join conditions to any other table in
the statement. Cartesian joins are not common, so it can be a sign of problem with the cardinality
estimates, if it is selected for any other reason. Strictly speaking, a Cartesian product is not a join.

I 1d | Dperation | Hame | Rowes | Butes | Cost (BCRU) Time | Pstart] Pstop |
| 0 | SELECT STATEHENT I I I | 32030 (100) I I i
[4 i | 711 2004 | 30030 (12| Odeo0:0l | I i
| &) I | BEMI 195M1 28109 {3} Odzo0s0l | I I
| 31 TABLE ACCESS FULL ! PRODCTS 1 721 1872 | 3 (0} Oded0z0l | I I
| 41 BIFFER SORT i | S1BKI 44BEK0 31027 (12)1 Oded0:0l | | i
| 51 PRETITION FANGE ALLI | 9isKl 44EEKl 330 (3)) 0000l | 11 281
| &I TRELE ACCESS FILL | SALES 1 SiBMl 4488K1 330 (3} odg0:ol | 11 21

Figure 20: Example plan output using CARTESIAN JOIN

Join Types

Oracle offers several join types: inner join, (left) outer join, full outerjoin, anti join, semi join, grouped
outer join, etc. Note that inner join is the most common type of join; hence the execution plan does
not specify the key word “INNER’.

Outer Join - An outer join returns all rows that satisfy the join condition and also all of the rows from
the table without the (+) for which no rows from the other table satisfy the join condition. For
example, T1.x = T2.x (+), here T1 is the left table whose non-joining rows will be retained. In the
ANSI outer join syntax, it is the leading table whose non-join rows will be retained. The same example
can be written in ANSI SQL as T1 LEFT OUTER JOIN T2 ON (T1.x = T2.x);

Oracle Optimizer: Explain the Explain Plan

19) Oeerstion | Name | Rous | Bytes | Cost (SCPU)I Time | Pstartl Petop |

0 | SELECT STRTEMEMT I I | 431 (100} I I
LGk LR L | Ee3 | 43 (L1} o0x00sol |

I |

11 HeSHGROVEJ I I I I

* 21 |HASH FOIN QUTER I | 818Kl 34HI 393 (4)1 Ofsofiol | I I
i FIICE WCT] L | PROBUCTS | 721 Hed | 3 (0} Doz00zol | | |
41 FARTITION RANGE ALLI | 318kl 8ovsKl 332 (3} 003000l | L 28 |
51 RELE ACCESS FULL | SALES | S18Kl 807Kl 382 (3} o000l | i e 8

Figure 21: Example plan output using OUTER JOIN. Note a join type is always matched with one
of the join methods; in this case a hash join

Join Order

The join order is the order in which the tables are joined together in a multi-table SQL statement. To
determine the join order in an execution plan look at the indentation of the tables in the operation
column. In Figure 22 below the SALES and PRODUCTS table are equally indented and both of them
are more indented than the CUSTOMERS table. Therefore the SALES and PRODUCTS table will be
joined first using a hash join and the result of that join will then be joined to the CUSTOMERS table.

| Id | Oparation | Mawe | Rows | Bytes | Cost (MCPU)I Time I Pstartl Patop |
| ':'Il SELECT STRTEMEMT | | | I 713 (10011 1 I |
I 11 HASH GROUPF BY | I 293 1 w1 713 (8)1 0000201 | | |
I* 21 H&SH JOIN | I 91EKI 431 681 (3)] 00:00:01 | I |
| 31 3 TABLE ACCESS FILL | CUSTOMERS | 56500 | 8131 278 (1)1 00:00:01 | | |
I* 41 HAH JOIN | I Sl 30H1 339 (4)] 000004 1 I |
I 51 ITHBLE ACCESS FULL | FRODUCTS | T 15z i 3 (0) 0oz00z0d 1 | |
I B PERTITION RAMGE ALLI I 91El 131 332 (3)1 00:00:0d 1 i1 e |
[2 TRELE WCCESS FULL | SALES I 918K] 13 382 (301 00:00:01 1 11 P |

Figure 20: Example plan output highlighting the JOIN ORDER

In a more complex SQL statement it may not be so easy to determine the join order by looking at the
indentations of the tables in the operations column. In these cases it might be easier to use the
FORMAT parameter in the DBMS_XPLAN procedures to display the outline information for the
plan, which will contain the join order. For example, to generate the outline information for the plan
shown in Figure 22 the following format option of the DBMS_XPLAN can be used;

DBMS XPLAN.DISPLAY CURSOR (FORMAT=>’'Typical + outline’));

Oracle Optimizer: Explain the Explain Plan

Outline Data

s

BEGIN_OUTLIMNE_DATA

IGNORE_OPTIM_EMBEDDED_HINTS

OPTIMIZER_FEATURES_EMABLE('11.2.0.2')

DB_VERSION('11,2,0,2")

ALL_ROWS

OUTLIME_LEAF(R"SEL$1")

FULL{@"SEL$1" "P"R"SEL$1")

FULL{@"SEL$1" ”S“@"SEL$1“§
11} [1] (1] 1] (1] 1!—!

LEADING(R"SEL$1" "P"@"SEL$1" "S"B"SEL$1" "C"@"SEL$1"

SWAP_JOIN_INPUTS(@"SEL$1" "C"@"SEL$1")
USE_HASH_AGGREGATION(@"SEL$1")
END_OUTLINE_DATA

Figure 23: Outline for execution plan

In the outline information, look for the line that begins with the word LEADING. This line shows the
join order for this query. In this example you see “P”, then “S”, then “C” referenced on this line; these
three letters were the aliases used for the three involved tables in the query. The P (PRODUCTS) table
joins to the S (SALES) table and then to the C (CUSTOMERS) table.

The join order is determined based on cost, which is strongly influenced by the cardinality estimates

and the access paths available. The Optimizer will also always adhere to some basic rules:

Joins that result in at most one row always go first. The Optimizer can determine this based
on UNIQUE and PRIMARY KEY constraints on the tables.

When outer joins are used the row preserving table (table without the outer join operator)
must come after the other table in the predicate (table with the outer join operator) to ensure
all of the additional rows that don’t satisfy the join condition can be added to the result set
correctly.

When a subquery has been converted into an antijoin or semijoin, the tables from the
subquery must come after those tables in the outer query block to which they were connected
or correlated. However, hash antijoins and semijoins are able to override this ordering

condition under certain circumstances.

If view merging is not possible all tables in the view will be joined before joining to the tables
outside the view.

Oracle Optimizer: Explain the Explain Plan

If the join order is not what you expect check the cardinality estimates for each of the objects and the

access methods are correct.

Partitioning

Partitioning allows a table, index or index-organized table to be subdivided into smaller pieces. Each
piece of the database object is called a Partition. Partition pruning or Partition elimination is the
simplest means to improve performance using Partitioning. For example, if an application has an
ORDERS table that contains a record of all orders for the last 2 years, and this table has been
partitioned by day, a query requesting orders for a single week would only access seven partitions of
the ORDERS table instead of 730 partitions (the entire table).

Partition pruning is visible in an execution plan in the PSTART and PSTOP columns. The PSTART
column contains the number of the first partition that will be accessed and PSTOP column contains
the number of the last partition that will be accessed'. In Figure 24 four partitions from SALES are
accessed, namely partitions 9,10,11, and 12.

| Id | Operation | Name | Rows | Bytes | Cost (XCPU)| Time | Pstart| Pstop |

0 | SELECT STATEMENT I | 11 121 62 (20)1 00:00301 | I |
SORT AGCGREGATE I | sl 12 1 | | |

| |

11 |

|

11

| 21 PX COORDINATOR | | | |
I 31 P SEND OC (RANDOM) | :T0O10000 |
I 41
I 51
I

|
| |
12 1 | | |
SORT AGGREGATE | | i il 12 | | | T
Px BLOCK ITERATOR | | 138K1 1626KI 62 (20)1 00300301 | 9| 12
-5 | TABLE ACCESS FULL! SALES | 138K1 1B626KI 62 (20)1 00:00;01 | 9 | 12

Figure 24: Example plan output highlighting Partition pruning for a single-level partitioned table

A simple select statement that was run against a table that is partitioned by day and sub-partitioned by
hash on the CUST_ID column is shown in Figure 21. In this case a lot more numbers appear in the
PSTART, PSTOP columns. What do these additional numbers mean?

! Note that not necessarily all partitions between PSTART and PSTOP have to be accessed. More details
about Partitioning and Partition pruning can be found on OTN on the Partitioning page

20

Oracle Optimizer: Explain the Explain Plan

Id	Dperation	Name	Raws	Bytes	Cost (ZCPU)I Time	Pstart	Pstop
@	SELECT STATEMENT				5 (100)] I		
11 SORT AGGREGATE		11 13 1					
I 21 PARTITION RANGE SINGLEI | 11 131 5 (0)1 003005011 51 5 1
1 31 PARTITION HASH SINGLE| | 11 13 1 5 (0)1 00:00:01] 21 21
I* 41 TABLE ACCESS FULL | RHP_TAB | 11 13 1 5 (0} 00:00:01]I 10 | 101

’redicate Information (identified by operation id):

4 = filter(("CUST_ID"=9255 AND "TIME_ID"=TO_DATE(' 2008-01-01 00:00:00', 'syyyy-mm-dd
hh24:mizss')))

Figure 21: Example plan output highlighting Partition pruning for a composite partitioned table

When using composite partitioning, Oracle numbers each of the partitions from 1 to n (absolute
partition numbers). For a table that is partitioned on just one level, these absolute numbers represent
the actual physical segments on disk of the single-level partitioned table.

In the case of a composite partitioned table, however, a partition is a logical entity and not represented
on disk. Each pattition is subdivided into so-called sub-pattitions. Each sub-partition within a partition
is numbered from 1 to m (relative sub-partition number within a single partition). Finally all of the sub-
partitions in a composite-partitioned table are given a global number 1 to (n X m) (absolute sub-
partition numbers); these absolute numbers represent the actual physical segments on disk of the
composite partitioned table.

Partition 1
1

2 Range

partition #

Owverall
panition #

Partition 10

Sub-pan 1

Figure 22: Numbering scheme for a partitioned table

So in the previous plan in Figure 21 the number 10 in PSTART and PSTOP column, on line 4 of the
plan represents the global partitioning number representing the physical segments on disk. The
number 5 in PSTART and PSTOP column, on line 2 of the plan represents the partition number; the
number 2 in PSTART and PSTOP column, on line 3 of the plan, represents the relative sub-partition

number within a partition.

21

Oracle Optimizer: Explain the Explain Plan

There ate cases when a word or letters appeat in the PSTART and PSTOP columns instead of a
number. For example you may see the word KEY appears in these columns. This indicates that it was
not possible at parse time to identify, which partitions would be accessed by the query but the
Optimizer believes that partition pruning will occur at execution time (dynamic pruning). This happens
when there is an equality predicate on the partitioning key column that contains a function. For
example TIME_ID = SYSDATE. Another situation where dynamic pruning can occur is when there is
a join condition on the partitioning key column in the query and the table that is joined with the
partitioned table is expected not to join with all partitions, for example because of a FILTER predicate.
Partition pruning will occur at execution time. In the example in Figure27 below the where clause
predicate is on the TIME table, which joins to the SALES table on the pattition key time_id. Partition
pruning will happen at execution time after the WHERE clause predicate has been applied to the
TIME table and the appropriate TIME_IDs have been select.

I 1d | Dperation | Wawex | Fowe | Bytes | Cost (ECPUDD Tome | Pstart| Pstoo |

I 0| SELECT STATEMENT | | | I 41 (10011 | | 15
I 11 SORT AEERELRTE | | 11 at | | | |
I 21 HESTED LOOFS | | 944 | 27576 | d1 L3)1 o0z00i0d | | |
® 1 TRELE RCCESS STORACE FULL | TIHES | 3 | iz | 13 (0] e0z00:0d | |
I 4l PRETITION RAMGE [TERATOR | | B2 | 7 14 c0)] o000l 1 | KEY | EEY|I
* &I TRELE ACCESS STORAGE FILLI| SALES | B23 | 8177 | 14 (0] 0Os00:0L | | KEY | KEY)I

= e

Figure27: Example plan output highlighting dynamic Partition pruning

If partition pruning does not occur as expected, check the predicates on the partition key column.
Ensure that the predicates are using the same datatype as the partition key column. You can check this
in the predicate information section under the plan. If the table is hash partitioned, partition pruning
will only occur if the predicate on the partition key column is an equality or an in-list predicate. Also if
the table has multi-column hash partitioning then partition pruning will only occur if there is a
predicate on all columns used in the hash partitioning.

Parallel Execution

Parallel execution in the Oracle Database is based on the principles of a coordinator (often called the
Query Coordinator or QC for short) and parallel server processes. The QC is the session that initiates
the parallel SQL statement and the parallel server processes are the individual sessions that perform
work in parallel. The QC distributes the work to the parallel server processes and may have to perform
a minimal, mostly logistical, portion of the work that cannot be executed in parallel. For example a
parallel query with a SUM() operation requires adding the individual sub-totals calculated by each
parallel setver processes.

22

Oracle Optimizer: Explain the Explain Plan

Background process is When userissues 8 parallel
spawned SOL statemeantthe

l Userconnests tathe
/ background process
@ becomes the Query

database

Ceardinatar

: QC gets paraliel
5 5] servers from global

Farallelservars pooland distributes

communlcate ameng

themsehes & the QC using the work to them
messages that are passed
viamemory buffers in either e o
the larger pacor the shared | =5
pool depending on how Farallsl server
memaory has bean processes - individual

sassions that parform
configured work in parallel
S Allzcated from a pocl of
<—|__J s giobally avaiable
parallelserver

processes & assigned
o a given opsraticn

Figure 28: Concept of parallel execution in the Oracle database

The QC is easily identified in the parallel execution plan as it writes its name in the plan. You can see
this on the line with ID#1 of the plan shown in Figure where you see the operation 'PX
COORDINATOR'. All of the operations that appear above this line in the execution plan are done
by the QC. Since this is a single process all of these operations are done serially. Typically you
want to minimize the number of operations done by the QC. All of the operations done under the
line PX COORDINATOR’ are typically done by the parallel server processes.?

Query Coordinator
| Id | Dperation I Hams tes | Cost (ZCPUY| Time
| 0 | SELECT STATEMENT | I | 311 (10031
I 11 PX CODRDING I I | I I
A 5 T 1 SIODOOZ | 10d9RT SIAT 511 T2d0 OocmEnd |
salliE: 4 HSH JOIN BUFFERED 1 I 10daKl Ml 311 (2} 0004
4 | F¥ RECEIVE I | 556500 | o4l 112 (0} O0:00:02
5 | Fi SEND HASH | «TOLOOO0 | S5500 | TOdK| 112 (OX Q00002
B | F¥ BLOCK ITERATOR | | BE5G0 1 PO4K1 112 (0} O0fo0-02
ey A TABLE ACCESS FULL| CUSTOMERS | 59500 | FO4K1 112 (0} 00002
B | F¥ RECEIVE I | 1045k 181 196 (2} 00:00:03
3 | Fi SEND HASH | sToloool | 1049K0 1841 196 (2)] 00:00:03
10| Pe BLOCK 1TERATOR 104911 196 (23] O
=41 | TABLE ACCESS FULL| SALES 0
i Parallel Servers ——————

I do majority of the work

Figure 29: Example plan output highlighting the concepts of parallel execution

2 Mote details about Parallel Execution in Oracle can be found on OTN on the parallelism and scalability
page

23

Oracle Optimizer: Explain the Explain Plan

Granules

A granule is the smallest unit of work a parallel server processes can be given. The number of granules
is normally much higher than the requested DOP in order to get an even distribution of work among
parallel server processes. Each parallel server process will work exclusively on its own granule and
when it finishes it will be given another granule to work on until all of the granules have been
processed. The basic mechanism the Oracle Database uses to distribute work for parallel execution is
block ranges on disk or block-based granules. In the execution plan you can see how the granules
were distributed to the parallel server processes in the operations column on the line above the data
access. The operation "PX BLOCK ITERATOR ' shown on line 7 in the plan in Figure means the

parallel server processes will iterate over the generated block range granules to complete the table scan.

L R S R R R R R R D S A R S S R R B L L L A R L R R L A

| 1d | Dparation | Hame | Bowsz | Begmz | Dozt (EORUDI Tim= | Pstart| Potop | 7O [IW=D0T] PO Distrsb B
| & | SELECT STATEHENT | | 71 158 | 565 (L0000 O0i00:07 | | 1 | |
I 11 FECORDINETOR | | | | | | | | | |
| 21 F¥ SEND OC (ROHDDH) 0 sTQdesdd | 47 0 1851 565 (L0000 odindiiT | | I Wl 1 F=3% | G (R
| 31 HEH GRRF B | | 470 1531 . SE3 clo)l Od0gqaT | | I WAl 1 PP |
1 41 Fi PELEIVE | I 470 153 . SES L0l GH000T | | I WAl 1 P |
1 51 Fil SENT HaEH | aTQaned | 37 0 193 | . SRS (L0000 GO0 | | I 00 1 =27 | W
|l Bl I 470 153 | SES 1000 GDi00H0T | | I W00 1 P |
I 71 [N |1 LY = | A I - e e i 11 361 W00 1 PN |
1™ & THELE ALCESS FILL) SALES | I0MD @SHI B0 (5000 oouidiod | 11 3161 M. | FWF |
TR

Figure 30: Example plan output highlighting block granule processing

Although block-based granules are the most common approach, there are some operations that can
benefit from leveraging the underlying data structure of a partitioned table. In these cases a partition
becomes a granule of work. With partition-based granules one parallel server processes will perform
the work for all of the data in a single partition. The Oracle Optimizer considers partition-based
granules if the number of (sub)partitions accessed in the operation is at least equal to the DOP (and
ideally much higher in case there is a skew in the sizes of the individual (sub)partitions). An example of
partition-based granules can be seen in Figure31 line 6: ‘PX PARTITION RANGE ALL’ means that
each parallel server process will work exclusively on one of the range partitions in the table.

| Eous | Byims | Comi (EFUF T | Patart| Patop | Td | [s-01 PR

I I 7 I 3 IS0k opaosap | | | | |

I i I i I | | | | |
| | Lro15i 3 50k oopeoap | | | .08 | =g) g
I 3 | i1k 2 S0} ooial | | | .o | e

[W | i . T i ok oopededf | | | f,on | PR |

| :B [S - I | § Ok fopsiqon | | |00 | P
[i | | | i LDk oopdiof | L 16 | 1,00 | MU |
[HEE RESS B DEX BRI BALES [A - | I Okl CopdoHdp | k| 16 | o,00 | M|

™ " IRDEN BRHGE SR | SALES_DUST | %1 I -] | | 16 | 0,00 | P |

(o oo aE

Figure31: Example plan output highlighting partition-based granules

Based on the SQL statement and the degree of parallelism, the Oracle Database decides whether
block-based or partition-based granules lead to a more optimal execution; you cannot influence this
behavior.

24

Oracle Optimizer: Explain the Explain Plan

Producers and Consumers

In order to execute a statement in parallel efficiently parallel server processes actually work together in
sets: one set is producing rows (producer) and one set is consuming the rows (consumer). For example
in the plan in Figure32, the parallel join between the SALES and CUSTOMERS uses two sets of
parallel server processes. The producers scan the two tables, applying any where clause predicates and
send the resulting rows to the consumers (lines 9-11 and lines 5-7). You can identify the producers
because they do the operations below any PX SEND operation (line 9 & 5). The consumers complete
the actual hash join and send the results to the QC (line 8 and lines 2-4). The consumers can be
identified because they must do a PX RECEIVE before they can begin working (line 8 & 4) and they
always finish by doing a PX SEND QC (line 2), which indicates they send the results to the QC.

| Consumers l Query Coordinator I

I I l]ﬁf-!-lln:- vl | ol ATCFURD Thes | Patart] Pakop | M JH-0UTI PO Dk ik |I
i '_I,"I' 'Tﬁlﬂl_'lll_ & TITEiFT T T T T i
il —— ol | | T T
il 2 | T | 'g|u:| "|;.||| B Aoyl oopoogal | 1 | OLEE | P3G | L CRrdl]
;"! Hil'HiIIIHII-TFFE i E IZIIIIIIIIIIII i |02 | FEME 1 =
i i | | 1 |
'r-'—"ﬁﬂﬂ%u H—Wﬁ r—@ﬁ T TR T
i Pl | TERATOl | SRS | 1Kl T qObl (AT | i I | PR
7 ruum:l:ﬁmm.um-:rm&lml 1oame] E k] rimiid | i M, | FIWR |
T, T T HIET TR E (0T T 1 T UL T PO |
=T e T=TTaaE=—T L =T LB e -
il i P B | TERTiE 1 [T T 10 W Do) PR
{8 5 § FOLESS ATIFRE FLL] SALES | Al =K ¥ Aokl g | 11 2B obLol | e

Figure32: Example plan output highlighting parallel producers and consumers

Similar information is shown in the TQ column. It shows which set of parallel server processes
executed, which set of steps in the execution plan. In the plan above the Q1,00 set of parallel server
processes (producers) scanned the CUSTOMERS table first. They then sent the resulting rows to the
consumers (line 5) Q1,02. The Q1,00 set of parallel server processes then became the Q1,01 set of
parallel server processes (which again are producers). The Q1,01 set scanned the SALES table and sent
the resulting rows to the consumers(line9). The Q1,02 set of parallel server process (the consumers)
accepted rows from the producers (line 8 & 4), completed the join (line 3) and sent the results to the
query coordinator (2).

25

Oracle Optimizer: Explain the Explain Plan

11d | Dparetion | Hara | Foax | Bukmx | Coat (2TRUNI Ties | Patartl Patop | 0 i18-DUTI FO Dixkrib |
I 0| SELELT STATEHEWT I I I I E (1000 I I I I I I
1 11 P CDORDIHATIR 1 1 1 1 1 1 1 1 | 1 I
I 21 P SEMD OC {Fe0H] | THGGGE | SEKI ZEMI E (o0l oosttsid | I 1| .08, P55 | OC (Rl |
1* 1 HAGH ITIM FFFEFED 1 | EHEEl TEHI F Dl DDy | 1 1| m.aog 1 I
[Fil FELEILE I | BEEMG | 10B3K| i I [I I
1 B F¥ GEMD HAGH | ITHMD | DD | 10ETE) bl DDy | 1 1 UL 1 I
I B F¥. BLOCY, 1TERHTOR: I | BEEGG | 10E3E| FR T I [I I
* Tl THELE ALTEES GTORREE FILLI CUSTOHERS | BOGEN) | 2 bl Dogidgd | | i | I
I B F¥. FECEIVE I | B L (o0l osptsid | [6 I
1 8l F¥ GEMD HAGH | ITHMGL | BRI T oD i Dok [T I
I 10 F¥. BLOCY, 1TERHTOR: I [T 3 " . I
111 THELE ALTEES GTORREE FILLI ERLER | HEX) [[rifL] I

Producers

Figure 33 Example plan output highlighting the T'Q (table queue) column for producers and
consumers

Data redistribution

In the example above two large tables CUSTOMERS and SALES are involved in the join. In order to
process this join in parallel, a redistribution of rows becomes necessary between the producers and
the consumers. The producers scan the tables based on block ranges and apply any where clause
predicates and then send the resulting rows to the consumers, who will complete the join. The last
two columns in the execution plan, IN-OUT, and PQ Distrib hold information about how the
data is redistributed between the producers and consumers. The PQ Distrib column is the most
useful column and has somewhat replaced the In-OUT column.

The following five redistribution methods are the most common and you will see these names
appearing in the PQ Distrib column of the execution plan.

HASH: Hash redistribution is very common in parallel execution in order to achieve an equal
distribution among the parallel server processes. A hash function is applied to the join column and
the result dictates which consumer parallel server process should receive the row.

BROADCAST: Broadcast redistribution happens when one of the two result sets in a join
operation is much smaller than the other result set. Instead of redistributing rows from both result
sets the database sends the smaller result set to all of the consumer parallel server processes in
order to guarantee the individual servers are able to complete their join operation.

RANGE: Range redistribution is generally used for parallel sort operations. Individual parallel
server processes work on data ranges so that the QC does not have to do any additional sorting
but only present the individual parallel server processes results in the correct order.

KEY: Key redistribution ensures result sets for individual key values are clumped together. This is
an optimization that is primarily used for partial partition-wise joins to ensure only one side in the
join has to be redistributed.

ROUND ROBIN: Round-robin data redistribution can be the final redistribution operation
before sending data to the requesting process. It can also be used in an early stage of a query when
no redistribution constraints are required.

26

Oracle Optimizer: Explain the Explain Plan

You may see a LOCAL suffix on the redistribution methods in a Real Application Clusters (RAC)
database. LOCAL redistribution is an optimization in RAC to minimize interconnect traffic for

inter-node parallel queries. In this case, the rows are distributed to only the consumers on the
same RAC node.

In the plan in Figure 34 the producers send data to the consumers using a HASH redistribution

method.

Id	Operation	Hame	Rows	Bytes	Cost (ZCPU}I Time	Petart	Pstop	TO [IM-0UTI PO Distrib	
0	SELECT STATEMENT I		I 6 {100}1						
11 P¥ COORDINATOR I									
21 P SEND OC (RANDOM) I :TQ10002 1 S18KI 26HI 6 (0)1		@102 [[P->5]1 OC (RaND)							
(a8	HASH JOIN BUFFERED I	S18KI 2641 6 (0}			Q1,02	FOOF			
I 4 F¥ RECEIVE		55500	1083KI 2 (0}l			01,02			
I &1 P¥ SEND HASH	+TQ10000	56500	1083KI 2 (0}		0,00	1] HASH			
B F¥ BLOCK ITERATOR		55500	1083KI 2		[
I* 71 TABLE ACCESS STORAGE FULLI CUSTOMERS	58500	1083K	2			0,00	PCUP		
booed F¥ RECEIVE 1 I 918Kl 8973KI 3 I	I 1,02								
-5	P SEND HASH	sTO10001	91BKI 8973KI 3			0,01 I&I HASH			
101 P¥ BLOCK ITERATOR I	918Kl 8973 3	il 28	01,01	PCWC					
I* 11 1 TABLE ACCESS STORAGE FULLI SALES | 918Kl 8973 3 | 11 28 | 01,01 | PCWP | |

Figure 34 Example plan output highlighting the row redistribution of parallel processing

You should also notice that on the lines in the plan where data redistribution takes place the value in
the IN-OUT column is either P->P (lines 5 & 9) or P->S (line 2). P->P means that data is being sent
from one parallel operation to another. P->S means that data is being sent from a parallel operation to
serial operation. On line 2 the data is being sent to the QC, which is a single process, hence the P->S.
However, if you see a P->S operation happening somewhete lower in the execution it may indicate you
have a serialization point in the plan, which should be investigated. This could be caused by not having

a parallel degree set on one or more of the objects accessed in the query.
Conclusion

The purpose of the Oracle Optimizer is to determine the most efficient execution plan for your
queries. It makes these decisions based on the statistical information it has about your data and by
leveraging Oracle database features such as hash joins, patallel query, and partitioning.

The explain plan is by far the most useful tool at our disposal when it comes to investigating why the
Optimizer makes the decisions it makes. By breaking down the explain plan and reviewing the four key
elements of: cardinality estimations, access methods, join methods, and join orders; you can determine
if the execution plan is the best available plan.

27

ORACLE

White Paper Oracle Optimizer Explain the
Explain Plan

May 2011

Author: Maria Colgan

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

¥

\

Copyright © 2010, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel
and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd. 0410

SOFTWARE. HARDWARE. COMPLETE

