User Manual

for the

Database Normalizer

application

Elmar Jirgens 2002 - 2004
juergens@in.tum.de

I ntroduction
Purpose of this document

Concepts

Explanation of the User Interface
Overview
All Relations Region
Create New Relation Region
Edit Current Relation Region
Menu entries
Samples

Conclusion

Possible future extensions

00 N W w NN DN

©

Introduction
About the DATABASE NORMALIZER "

The Database Normalizer (DN) is an application that works with functional dependencies to compute
normalization properties of relational database schemas.

It can determine the normal form a schemaisin and compute candidate keys and equivalent tuples.

In addition to these analysis features it implements a synthesis algorithm that can create relational schemas from
functional dependencies that are guaranteed to be in third normal form (3NF) and contain a minimal set of
relations.

It'sintended fields of use are twofold: In academic teaching, like in courses about database systems to support
students, and in practice to help database devel opers compare different solutions for database schemas with
respect to normalization.

Purpose of this document

Thisuser manual contains al the information necessary to exploit all the functionality of the application.

Since database normalization is arelatively old field in computer science, alot of material on it exists already
and is freely available on the web. Thus, rather than rehash normalization theory yet again, this document
expects the reader to have some basic understanding of it.

However, this application can well be (and really is meant to be) used to support the process of |earning about
database normalization.

Concepts and Terms

The data contained in Relational Database Management Systems (RDBMS) can be divided into two different
classes: Data contained in tables, and metadata describing the schema of these tables.

Database normalization, and with it the DN and this document, only deal with the schematic level: How to form
the schemas of the tables.

The mathematical model for atableisarelation. A relation is aset of attributes. Attributes have a name and are
ordered in the relation.

(In the database, arelation corresponds to atable, and an attribute to a column in the table.)

Furthermore, a relation contains functional dependencies (FDs) between its attributes. The attributes and
functional dependencies determine the normal form of the relation.

Explanation of the User Interface

Overview
The user interface consists of three different regions.

'""'* Mormalization GUI g@ﬁ
File Mormalize Help
FHelhons (e T
= P ompatieriaaiie]
i = M SimpleRelation 4.8} Marne |
i A
il Create new relation
R SimpleRelationz {C.0E}
- M SimpleRelation3 {F G} L
= T8 SimpleRelation {H,1} A Simple A3 Compastte | | Append Sinple Apperd Camposite
o
=
P EAITEUITER Felatan
lzIn2 NF ‘ | I 10:3. NF ‘ [Iz InBCMF
All Relations Marne: IComposilaHelatiun
Description:
Edit current
relation
Edit | Compressed | MinCaver | Closue | Expanded | Comgletel
&
B
C
D
E
F
G
Equivalence Classes:
\(_I | ‘ﬂ Candidate Keys: {4,8.C.0 E F.G}
T A e Bemove Ad Edi B
| Fiemowe Relation ‘ ‘ S ‘ ‘ et ‘ ‘ = | ‘ i ‘ | | | !

ALL RELATIONS Region

Thistree view shows all the relations that currently exist in the application. Two different kinds of relations are
supported:

Simple Relation:

The simplerelationis arelation as explained above: It contains attributes and relations between them. It cannot
contain other relations.

Since the attributes are unstructured (that is, cannot contain lists or relations), all Simple Relations are in first
normal form.

Composite Relation:

A Composite relation groups various relations (Simple Relations or Composite relations) into alogical unit.

It does not contain attributes or functional dependenciesitself. Rather, its attributes and functional dependencies
are the union of the attributes and functional dependencies of its contained relations.

Its normal form the lowest normal form a contained relation isin.

The composite relation is used to model a database schema. A schemais said to bein anormal form, if all of its
contained relations are in the normal form, just as holds for the composite relation.
So you can use composite relations to group relations into a schema.

Asyou would expect, clicking on arelation opens its properties in the “Edit Current Relation” region.

CREATE NEW RELATION Region

Thisregion is used to create a new simple or composite relation.
The append buttons are used to insert a new simple or composite relation into a composite relation. (And thus are
deactivated, if a Simple Relation is selected in the All Relations View, since relations cannot be appended to a

Simple Relation.)

Relations Create Mew Relation

MewComposite

Name: MewSimple

Add Simple Add Composite Append Simple | Append Composite

Befor e appending a Simple Relation to a Composite Relation

Relations Create New Relation

= MewCompasite
M HewSimple {} Marne: NewSimpls

Add Simple Add Composite | ‘ Append Simple: Append Composite

After appending a Simple Relation to a Composite Relation

EDIT CURRENT RELATION Region

Thisregion displays and edits the properties of the relation currently selected in the All Relations View:

—Edit current Relation

Properties

e _ _

Mams [Uriversty

Description;

Edit EumgressedIMmEuver Closure | Expanded | Complete

Country Towirer Cauntry
Town Universityt ame-> Cauntry
UniversityMame UniversityName-»Town

Attributes Functional Dependencies

Add ‘ ‘ Edit | | Remave ‘ | Add ‘ ‘ Edit | | Remave ‘

Properties Region
The coloured buttons display the normal form, the relation isin. Every time the relation changes, the buttons are
updated automatically.

In the text fields, name and description can be entered for documentation purposes.

Attributesregion
Add to, change or remove attributes from the relation.

Attention: Attribute names are application wide. Thus, if you want to use the same attribute in different relations,
(i.e. asaforeign key,) you simply give it the same name. (Names are not case sensitive.)

In some cases however, this may not be what you want. The attribute “Name” for example, might appear in
many different applications, and all names might be independent from each other.

So if you want different name scopes, a simple workaround isto add a prefix to the attributes name;

Instead of using the attribute “Name”, use “Person.Name” and “Univer sity.Name”.

Functional Dependencies Region

Create functional dependencies or change them.

(If you want to use attributes in afunctional dependency, you must create it first. So the standard work cycle will
be: Create relation, add all attributes and then add functional dependencies.)

A simple dialog is used to create or edit functional dependencies:

"F‘, Edit Functional Dependancy 'Qﬁ

~Furctional Dependancy

Determinart Dieterminated

Town Country

[Available Attributes

Country
Towin
UniversityN ame:

Ok I Cancel

Functional dependencies can be displayed in different forms:

Edit |EnmEressed| MinEu:werI Elnsurel E:-:Eandeu:ll Enmgletel

T o> County
Iniverzitet ame-» County
niverzitut ame-» T own

Edit: AsFDshave been entered

E dit Compressed | MinEDverI I:I::usurel E:-:Eanu:ledl Eumgletel

Town->Country
niversituM ame-> County, T o

FDswith same |eft side are compacted into one

E dit I Compressed MinCover I Elnsurel E:-:Ear'u:leu:ll EnmEIetel

T avr-= Calinkr
riversityM ame-> T own

Minimal cover of FDsthat hasstill the same closure

E dit I Compressed | MinCover Closure | E:-:Ear'u:ledl EnmEIetel

Tawn-» Country, Tawn
I niversiteM ame-> Country, T own, U niversityM ame

Transitive Closure of the FDswithour reflective parts.

(that is: attributesfrom the left side do not appear on theright side)

E dit I EDmEressedI MinCowver | Closure Expanded | EDmEIetEI

T o> Counkr
I nivversiteM ame-» Countiy
I riversitol ame-» T own

FDs contain only one attribute on theright side. (Opposite of Compr essed)

E dit I EDmEressedI MinEDverI Elnsurel E xpanded Complete

T o> Cauntry, Town
T v, U rieerzityM ame-» Country, T ovwn, U niversipM ame
nirvergitpr ame-» Country, T owven U niverzityh) arme

Complete trangitive closure of the set of FDs

Functional dependencies can only be edited on the “Edit” tab page. The buttons are disabled on al other tab

pages.

The available attributes list contains all attributes of the current relation. The two lists next to the arrow,
“Determinant” and “Determinated”, contain the attributes on the left and right side of the functional dependency.
Double clicking an attribute in the available Attributes list adds it to the functional dependency. (To the active

list that is printed in bold. In this example, that isthe left side).

Double clicking an attribute in one of the lists next to the arrow removes it from the dependency.

Clicking on alist next to the arrow makesit the active list.

Equivalence classes
Tuples are sets of attributes. Two tuples are said to be in the same equivalence class, when they have the same

trangitive closure, that is, if they transitively determine the same attributes. Example:

Attributes:
* ProfessorNumber
* TelephoneNumber
* RoomNumber
* SquareMeters
Functional Dependencies
» ProfessorNumber -> TelephoneNumber
* TelephoneNumber -> ProfessorNumber
* ProfessorNumber -> RoomNumber
e RoomNumber -> SquareMeters

ProfessorNumber TelephoneNumber

N

RoomNumber

¥
SquareMeters

Without transitive dependencies

ProfessorNumber TelephoneNumber

‘l \ T
| rd i

v ;
y | RoomNumber |
\ /
hS s

\\ ¥ »/

SquareMeters

With transitive dependencies as dashed arrows

In the graph that contains transitive dependenciesit is easy to see that both Professor and TelephoneNumber
have the same transitive closure. In this case, since both determine every attribute in the relation, both are

candidate keys.

Menu entries

File Menu

Create new, store or load afile.

All datais stored in xml files that could be used by other applications.

Apart from these explicit store and load functions, the application persistsits state on shutdown and loads it on
start up. (Using the file ApplicationState.xml in the application directory)

So if you forget to save your relations, they will still be there if you start the application the next time.

Normalize Menu
Offerstwo different synthesis normalization algorithms.

Smple Synthesisis a naive normalization algorithm that does not take equivalent classes of attribute tuples into
account.

Consistent Synthesisis an improved algorithm that lets you select the representers for classes of equivalent
tuples.

Example:
Attributes:
e Professor.Name
* TelephoneNumber
e Room
* ResearchGroup
Functional Dependencies:
* Professor.Name -> Room
* Room -> Professor.Name
e TelephoneNumber -> Room
e Room -> TelephoneNumber
e TelephoneNumber -> ResearchGroup

s A

Professor.Name TelephoneNumber Room
[-t—]

ResearchGroup

Possible minimal cover

Since in this exampl e the attributes Professor.Name, TelephoneNumber and Room are equivalent, there are
many different minimal covers possible: The equivalence can be represented by various combinations of
dependencies, and the ResearchGroup can depend on any attribute of the equivalence class without changing the
closure of the set of functional dependencies.

s A

Professor.Name TelephoneNumber Room
[-t—]

ResearchGroup

Same closure, yet different minimal cover

The result of the simple synthesis a gorithm depends on the minimal. Since the algorithm does not really care
which minimal cover it computes, the outcome is rather randomly.

The consistent synthesis algorithm however takes the equivalence classes into account and always generates the
same relational schema.

Help Menu
Displays a short about box.

Samples

In 2NF but nor in 3NF

Attributes:
e UniversityName
e Town
e Country

Functional Dependencies:
* UniversityName -> Country
* UniversityName -> Town
e Town-> Country

— -transitive— -
- -
- \‘

UniversityName Town = Country

In 3NF but not in BDNF

Attributes:
e BeerName
* Brewery

» FactoryUnit

Functional Dependencies:
* BeerName -> Brewery
* Brewery, FactoryUnit -> BeerName

FactoryUnit Brewery

N

BeerName

In BCNF
Attributes:
e StudentNumber
e Semester
e FirstName
e LastName

Functional Dependencies:
e StudentNumber -> Semester
e StudentNumber -> FirstName
e StudentNumber -> LastName

T T

StudenfNumber = Semester LastName FirstName

Conclusion
Possible future extensions

Implementation of the analysisalgorithm for nor malization:

The application does only implement a synthesis based algorithm for database normalization. It starts with
dependencies and creates relations. It reaches BCNF if that can be done without breaking up dependencies, if
not, it only reaches 3NF.

In database theory exists another normalization algorithm that starts with a single denormalized relation and
decomposesit reaching BCNF. (Breaking up dependenciesif need be.)

Graphical visualization of functional dependenciesusing graph layout toolslike dot

Functional dependencies can be displayed graphically using a graph like notation as used in the samples.
Arbitrary relations could be visualized relatively simply using atool like dot that takes care of the layout of the

graph.
Extraction of relational schemas and basic functional dependencies from existing databases
Relational databases keep metadata about their data tables. This metadata contains information about the

relations, attributes and keys. This schematic information could be read out of the database into the application to
facilitate the work with normalization rulesin real world applications.

Creation of alibrary of normalization samplesto support database lectures

A large number of samples eases the understanding of normalization theory.
Problems and solutions for them could be gathered in a central place to provide a starting point for students.

