
Lecture 13 Random Search Trees

In this lecture we will describe a very simple probabilistic data structure that
allows inserts, deletes, and membership tests (among other operations) in
expected logarithmic time.

These results were �rst obtained by Pugh in 1988 (see [88]), who called
his probabilistic data structure skip lists. We will follow the presentation of
Aragon and Seidel [7], whose data structure is somewhat di�erent and more
closely related to the self-adjusting trees presented in the last lecture, and
whose probabilistic analysis is particularly elegant.

13.1 Treaps

Consider a binary tree, not necessarily balanced, with nodes drawn from a
totally ordered set, ordered in inorder; that is, if i is in the left subtree of k
and j is in the right subtree of k, then i < k < j. Recall that the rotate

operation discussed in the previous lecture preserves this order.
Now suppose that each element k has a unique priority p(k) drawn from

some other totally ordered set, and that the elements are ordered in heap
order according to priority; that is, an element of maximum priority in any
subtree is found at the root of that subtree.

A tree in which the data values k are ordered in inorder and the priorities
p(k) are ordered in heap order is called a treap (for tree-heap, one supposes).

It may not be obvious at �rst that treaps always exist for every priority
assignment. They do! Moreover, if the priorities are distinct, then the treap

65



66 Lecture 13 Random Search Trees

is unique.

Lemma 13.1 Let X and Y be totally ordered sets, and let p be a function

assigning a distinct priority in Y to each element of X. Then there exists a

unique treap with nodes X and priorities p.

Proof. Let k be the unique element of X of maximum priority; this must
be the root. Partition the remaining elements into two sets

fi 2 X j i < kg; fi 2 X j i > kg :

Inductively build the unique treaps out of these two sets and make them the
left and right subtrees of k, respectively. 2

13.2 Random Treaps

A random treap is a treap in which the priorities have been assigned randomly.
This is best done in practice by calling a random number generator each time
a new element m is presented for insertion into the treap to assign a random
priority to m. Under some highly idealized but reasonable assumptions about
the random number generator3, two elements receive the same priority with
probability zero, and if all elements in the treap are sorted by priority, then
every permutation is equally likely.

When a new elementm is presented for insertion or to test membership, we
start at the root and work our way down some path in the treap, comparing
m to elements along the path to see which way to go to �nd m's appropriate
inorder position. If we see m on the path on the way down, we can answer
the membership query a�rmatively. If we make it all the way down without
seeing m, we can answer the membership query negatively.

If m is to be inserted, we attach m as a new leaf in its appropriate inorder
position. At that point we call the random number generator to assign a
random priority p(m), which by Lemma 13.1 speci�es a unique position in the
treap. We then rotate m upward as long as its priority is greater than that
of its parent, or until m becomes the root. At that point the tree is in heap
order with respect to the priorities and in inorder with respect to the data
values.

To delete m, we �rst �nd m by searching down from the root as described
above, then rotate m down until it is a leaf, taking care to choose the direction

3A call to the random number generator gives a uniformly distributed random real num-
ber in the interval [0; 1), and successive calls are statistically independent; i.e. if x1; : : : ; xn
are the results of n successive calls, then

Pr(
^

1�i�n

xi 2 Ai) =
Y

1�i�n

Pr(xi 2 Ai) :



Lecture 13 Random Search Trees 67

of rotation so as to maintain heap order. For example, if the children of m are
j and k and p(j) > p(k), then we rotate m down in the direction of j, since
the rotate operation will make j an ancestor of k. When m becomes a leaf,
we prune it o�.

The beauty of this approach is that the position of any element in the
treap is determined once and for all at the time it is inserted, and it stays put
at that level until it is deleted; there is not a lot of restructuring going on as
with splay trees. Moreover, as we will show below, the expected number of
rotations for an insertion or deletion is at most two.

13.3 Analysis

We now show that, averaged over all random priority assignments, the ex-
pected time for any insert, membership test, or delete is O(logn).

We will do the analysis for deletes only; it is not hard to see that the
time bound for membership tests and inserts is proportionally no worse than
for deletes. Suppose that at the moment, the treap contains n data items
(without loss of generality, say f1; 2; : : : ; ng), and we wish to delete m. The
priorities have been chosen randomly, so that if the set f1; 2; : : : ; ng is sorted in
decreasing order by priority to obtain a permutation � of f1; 2; : : : ; ng, every
� is equally likely.

In order to locate m in the treap, we follow the path from the root down
to m. The amount of time to do this is proportional to the length of the path.
Let us calculate the expected length of this path, averaged over all possible
random permutations �.

Let

m� = f1; 2; : : : ; mg

m� = fm;m + 1; : : : ; ng :

Let A be the set of ancestors of m, including m itself. The de�nitions of m�
and m� do not depend on �, but the de�nition of A does. Let X be the
random variable

X = length of the path from the root down to m

= jm� \ Aj+ jm� \ Aj � 2 :

The 2 is subtracted because m is counted in both m� and m�.
We are interested in EX, the expected value of X; by linearity of expec-

tation, we have

EX = Ejm� \ Aj+ Ejm� \ Aj � 2 :

By symmetry, it will su�ce to calculate Ejm� \ Aj.
Note that if the elements of m� are sorted in descending order by priority,

then



68 Lecture 13 Random Search Trees

� every permutation of m� is equally likely;

� an element of m� is in A if and only if it is larger than all previous
elements of m� in sorted order.

In other words, permute m� randomly, then scan the resulting list from left
to right, checking o� those elements k that are larger than anything to the
left of k; the quantity Ejm� \ Aj is the expected number of checks.

Example 13.2 Let n = 10 and m = 8. Suppose that when priorities are
assigned randomly to f1; 2; : : : ; 10g and these elements are sorted in decreasing
order by priority, we get the permutation

� = (4; 5; 9; 2; 1; 7; 3; 10; 8; 6) :

This results in the following treap:

s

s s

s s s

ss

ss

@
@R

�
�	
@
@R

�
�	

@
@R
@
@R

�
�	
@
@R

�
�	

4

2 5

1 3 9

107

86

Then m� = f1; 2; 3; 4; 5; 6; 7; 8g. If we restrict the random permutation � to
this set, we obtain the permutation (4; 5; 2; 1; 7; 3; 8; 6). Scanning from left to
right and checking only those elements k that are greater than all elements to
the left of k, we get the sequence (4; 5; 7; 8). This is exactly the sequence of
elements in m� appearing on the path from the root down to m in the treap.

A symmetric argument using m� gives the sequence (9; 8), which is the
sequence of elements in m� appearing on the path from the root down to m.
The length of the path is then the sum of the two lengths of these sequences
less 2. 2

We are thus left with the problem of determining the expected value of the
random variable Hm, the number of checks obtained when scanning a random
permutation of f1; 2; : : : ; mg from left to right and checking every element
that is greater than anything to its left.

We claim that this number is exactly

EHm =
mX
k=1

1

k
: (23)

We will obtain this by solving a simple recurrence, using the linearity of ex-
pectation.



Lecture 13 Random Search Trees 69

Suppose we permute f1; : : : ; mg randomly to get the random permutation
�. Deleting 1 from �, we get a random permutation �0 of f2; 3; : : : ; mg. Note
that an element other than 1 is checked when scanning � if and only if it is
checked when scanning �0; thus the presence or absence of 1 does not a�ect
whether 2 is checked (however, the presence or absence of 2 might very well
a�ect whether 1 is checked). Thus the expected number of checks on elements
other than 1 is the same in � as in �0, or EHm�1. The element 1 is checked if
and only if it occurs �rst in �, and this occurs with probability 1

m
. Thus the

expected number of checks on the element 1, averaged over all permutations,
is 1

m
. By linearity of expectation,

EHm = EHm�1 +
1

m
:

The unique solution to this recurrence with EH1 = 1 is (23).
The quantity (23) is O(logm). This can be veri�ed by approximating the

sum above and below with de�nite integrals involving the functions 1
x
and 1

x+1
,

and recalling from calculus that

Z
m

1

dx

x
= lnm = ln 2 � log2m :

13.4 Expected time for deletion

A similar analysis allows us to calculate the expected number of rotations
necessary to delete m from its position in the treap. The number of rotations
needed is the sum of the length of the rightmost path in the left subtree of m
and the length of the leftmost path in the right subtree of m. To see this, try
rotating m down; if you rotate to the left (right), the length of the rightmost
(leftmost) path in the left (right) subtree decreases by one and the length of
the leftmost (rightmost) path in the right (left) subtree stays the same.

Let us calculate the expected value of Gm, the length of the rightmost path
of the left subtree of m. By symmetry, the expected length of the leftmost
path of the right subtree of m is EGn�m+1, and by the linearity of expectation,
the expected number of rotations to remove m is EGm + EGn�m+1. We will
show below that this number is less than 2!

An analysis similar to the analysis for EHm above reveals that EGm is the
expected number of checks obtained when scanning a random permutation of
the set f1; 2; : : : ; mg from left to right, where we check an element k provided
that

� k occurs strictly to the right of m;

� k is greater than all elements of f1; 2; : : : ; m � 1g occurring to the left
of k and either to the left or to the right of m.



70 Lecture 13 Random Search Trees

This is the same as the expected number of checks obtained when scanning
a random permutation of the set f1; 2; : : : ; m � 1g from left to right, where
we check element k if it is greater than all elements to its left, then place m
randomly in the list and erase those checks occurring to the left of m.

Example 13.3 For m = 3, we have the following six situations, all occurring
with equal probability:

3

p

1

p

2 3

p

2 1

1 3

p

2 2 3 1

1 2 3 2 1 3

The expected number of checks is 1
6
� 2 + 1

3
� 1 = 2

3
. 2

It is easy to see that the expected value of Gm is at most that of Hm�1,
which we would get if the checks to the left of m were not erased; thus EGm �
EHm�1 = O(logm), and this su�ces for our complexity bound.

In fact, it turns out that EGm < 1. As above, the expected number
of checks on elements other than 1 is EGm�1, and the probability that 1 is
checked is 1

m(m�1) , since 1 is checked if and only if m occurs leftmost, followed
immediately by 1. Again, by linearity of expectation, EGm is the expected
number of checks on elements other than 1 plus the expected number of checks
on 1:

EGm = EGm�1 +
1

m(m� 1)

and EG1 = 0. The solution to this recurrence is

EGm =
m� 1

m
:


