63

Table 2.9. Execution times of sort programs with 2ements

Ordered Random Inverse
Straightinsertion 0.22 50.74 103.80
Binarylnsertion 1.16 37.66 76.06
StraightSelection 58.18 58.34 73.46
BubbleSort 80.18 128.84 178.66
ShakerSort 0.16 104.44 187.36
ShellSort 0.80 7.08 12.34
HeapSort 2.32 2.22 2.12
QuickSort 0.72 1.22 0.76
NonRecQuickSort 0.72 1.32 0.80
StraightMerge 1.98 2.06 1.98

Table 2.10. Execution times of sort programs widh& elements

24. Sorting Sequences

24.1. Straight Merging

Unfortunately, the sorting algorithms presentedhia preceding chapter are inapplicable, if the arhat

data to be sorted does not fit into a computeris stare, but if it is, for instance, representedagperipheral

and sequential storage device such as a tapeisk.drdthis case we describe the data as a (stgl)dile

whose characteristic is that at each moment oneoah/done component is directly accessible. Thia is

severe restriction compared to the possibilitiderefl by the array structure, and therefore diffesarting

techniques have to be used. The most importantsoserting by merging. Merging (or collating) means

combining two (or more) ordered sequences intmglesj ordered sequence by repeated selection atheng

currently accessible components. Merging is a naiotpler operation than sorting, and it is usedras a

auxiliary operation in the more complex processefuential sorting. One way of sorting on the basis

merging, calledstraight mergingis the following:

1. Split the sequence a into two halves, calleddbca

2.Merge b and ¢ by combining single items intoeoed pairs.

3.Call the merged sequence a, and repeat stepsl 2 ,athis time merging ordered pairs into ordered
quadruples.

4.Repeat the previous steps, merging quadrupie®atets, and continue doing this, each time doglithe
lengths of the merged subsequences, until theeesggiuence is ordered.

As an example, consider the sequence
44 55 12 42 94 18 06 67
In step 1, the split results in the sequences

44 55 12 42
94 18 06 67

The merging of single components (which are ordssggliences of length 1), into ordered pairs yields
44 94" 18 55" 06 12" 42 67

Splitting again in the middle and merging orderad9yields
06 12 44 94" 18 42 55 67

A third split and merge operation finally produdles desired result
06 12 18 42 44 55 67 94

Each operation that treats the entire set of date @s called phase and the smallest subprocess that by
repetition constitutes the sort process is callgzhss or a stage. In the above example the sdctthwee
passes, each pass consisting of a splitting pmaka eerging phase. In order to perform the dortettapes
are needed; the process is therefore called athapeemerge.

64

Actually, the splitting phases do not contributette sort since they do in no way permute the iteams
sense they are unproductive, although they cotwestitalf of all copying operations. They can be &lated
altogether by combining the split and the mergesphinstead of merging into a single sequenceguktgut

of the merge process is immediately redistributetb dawo tapes, which constitute the sources of the
subsequent pass. In contrast to the previous tasemerge sort, this method is callesingle-phase merge
or abalanced mergdt is evidently superior because only half as yneopying operations are necessary; the
price for this advantage is a fourth tape.

We shall develop a merge program in detail andaihjtlet the data be represented as an array which
however, is scanned in strictly sequential fashidater version of merge sort will then be basedtte
sequence structure, allowing a comparison of treegmgrams and demonstrating the strong dependdgnce
the form of a program on the underlying represémaif its data.

A single array may easily be used in place of tequences, if it is regarded as double-ended. lhstéa
merging from two source files, we may pick itemgtbe two ends of the array. Thus, the general fofm
the combined merge-split phase can be illustratezhawn in Fig. 2.12. The destination of the meri¢eds
is switched after each ordered pair in the firstispafter each ordered quadruple in the second gtassthus
evenly filling the two destination sequences, repntéed by the two ends of a single array. Aftehesass,
the two arrays interchange their roles, the sobem®mes the new destination, and vice versa.

source destination

distribute

Fig. 2.12. Straight merge sort with two arrays

A further simplification of the program can be awshgd by joining the two conceptually distinct agé@sto a
single array of doubled size. Thus, the data vélrépresented by

a: ARRAY 2*n OF item

and we let the indices i and j denote the two @mitems, whereas k and L designate the two déistirza
(see Fig. 2.12). The initial data are, of courke,ittms al ... an. Clearly, a Boolean variablésupeeded to
denote the direction of the data flow; up shall méaat in the current pass components..aa.; will be
moved up to the variableg a. a,1, whereas ~up will indicate that a. &,.1 will be transferred down into
& ... &1 The value of up strictly alternates between coumtsee passes. And, finally, a variable p is
introduced to denote the length of the subsequeiocke merged. Its value is initially 1, and itdeubled
before each successive pass. To simplify mattereadat, we shall assume that n is always a pow@r of
Thus, the first version of the straight merge pangassumes the following form:

PROCEDURE MergeSort;
VAR, j, k, L, p: INTEGER; up: BOOLEAN;
BEGIN up := TRUE; p := 1,
REPEAT initialize index variables;
IFup THEN i:=0;j:=n-1;k :=n; L :=2*h
ELSEk:=0;L:=n-1;i:=n;j:=2*n-1
END ;
merge p-tuples from i- and j-sources to ld brdestinations;
up :=~up; p = 2*p
UNTILp=n
END MergeSort

In the next development step we further refinedtaements expressed in italics. Evidently, thegmgrass
involving n items is itself a sequence of mergeseaxjuences, i.e. of p-tuples. Between every sudiapa

65

merge the destination is switched from the lowethtoupper end of the destination array, or viosaeto
guarantee equal distribution onto both destinatitfriee destination of the merged items is thedopend of
the destination array, then the destination inddg and k is incremented after each move of an.itethey
are to be moved to the upper end of the destinatiay, the destination index is L, and it is dewated
after each move. In order to simplify the actuatgeestatement, we choose the destination to bgrosed

by k at all times, switching the values of the &htés k and L after each p-tuple merge, and dethete
increment to be used at all times by h, where kitiser 1 or -1. These design discussions lead @o th
following refinement:

h:=1; m:=n; (*m=no. of items to be merged*)
REPEAT q :=p;r:=p; m:=m- 2*p;
merge q items from i-source with r items frosojirce.
destination index is k. increment k by h;
h := -h;exchange k and L
UNTILm=0

In the further refinement step the actual mergtestant is to be formulated. Here we have to keepiird
that the tail of the one subsequence which isnleft-empty after the merge has to be appended toutipeit
sequence by simple copying operations.

WHILE (q >0) & (r>0) DO
IF a[i] < a[j] THEN
move an item from i-source to k-destinatiatiyance i and k; q :=g-1
ELSE
move an item from j-source to k-destinatiadiyance jand k; r:=r-1
END
END ;
copy tail of i-sequence; copy tail of j-sequence

After this further refinement of the tail copyingerations, the program is laid out in complete ileBafore
writing it out in full, we wish to eliminate thestiction that n be a power of 2. Which parts & #igorithm
are affected by this relaxation of constraints?&égily convince ourselves that the best way to edgfhethe
more general situation is to adhere to the old otkts long as possible. In this example this mézatave
continue merging p-tuples until the remaindershefsource sequences are of length less than prihand
only part that is influenced are the statement$ dedermine the values of g and r, the lengthshef t
sequences to be merged. The following four statésmreplace the three statements

g:=p; r:=p;, m:=m-2*p

and, as the reader should convince himself, theyesent an effective implementation of the strategy
specified above; note that m denotes the total murobitems in the two source sequences that retodie
merged:

IFm>=pTHENQ :=p ELSEq:=mEND;

m = m-q;
IFm>=pTHENTr:=p ELSEr:=mEND;
m = m-r

In addition, in order to guarantee termination ltd program, the condition p=n, which controls tiigenp
repetition, must be changed tem. After these modifications, we may now proceedéscribe the entire
algorithm in terms of a procedure operating onglobal array a with 2n elements.

PROCEDURE StraightMerge;
VAR, |, k, L, t: INTEGER; (*index range @fis O .. 2*n-1 %)
h, m, p, g, r: INTEGER; up: BOOLEAN;
BEGIN up := TRUE; p := 1,
REPEAT h:=1; m:=n;
IFup THEN i:=0;j:=n-1;k :=n; L :=2*h
ELSEk:=0;L:=n-1;i:=n;j:=2*n-1
END ;

REPEAT (*merge a run from i- and j-sourceg&-estination*)
IFm>=pTHENq:=p ELSEq:=mEND ;

m = m-q;
IFm>=pTHEN T r:=p ELSEr:=mEND;
m = m-r;

WHILE (q > 0) & (r >0) DO
IF a[i] < a[j] THEN
alk] .= a[i]; k :=k+h;i:=i+1;, ¢ g-1
ELSE
alk] :=af; k :=k+h;j:=j1;=r-1
END
END ;
WHILE r >0 DO
alk] ;= afj]; k :=k+h;j:=j1;r+1
END ;
WHILE q > 0 DO
alk] ;= a[i]; k .= k+h;i:=i+1;q :g-1

END ;
h:=-h;t=k;k=L;L:=t
UNTIL m =0;
up :=~up; p ;= 2*p
UNTIL p >=n;
IF ~up THEN
FORi:=1 TO n DO a]i] := a[i+n] END
END

END StraightMerge

Analysis of MergesortSince each pass doubles p, and since the stetngnated as soon as p > n, it
involves ilog nj passes. Each pass, by definitioopies the entire set of n items exactly once. As a
consequence, the total number of moves is exactly

M = n x log(n)

The number C of key comparisons is even less thamb no comparisons are involved in the tail copy
operations. However, since the mergesort techniguasually applied in connection with the use of
peripheral storage devices, the computational tiffieolved in the move operations dominates therefff
comparisons often by several orders of magnitudke detailed analysis of the number of comparisens i
therefore of little practical interest.

The merge sort algorithm apparently compares withi even the advanced sorting techniques discussed
the previous chapter. However, the administrativerfoead for the manipulation of indices is reldivggh,
and the decisive disadvantage is the need forgaasé 2n items. This is the reason sorting by nmgrgs
rarely used on arrays, i.e., on data located imms#ire. Figures comparing the real time behavidhis
Mergesort algorithm appear in the last line of EaBl9. They compare favorably with Heapsort but
unfavorably with Quicksort.

2.4.2. Natural Merging

In straight merging no advantage is gained wherd#ta are initially already partially sorted. Teadth of

all merged subsequences in the k th pass is less ¢h equal to 2k, independent of whether longer
subsequences are already ordered and could abevefierged. In fact, any two ordered subsequences of
lengths m and n might be merged directly into glsisequence of m+n items. A mergesort that atiamgy
merges the two longest possible subsequencedas ealatural mergesort.

An ordered subsequence is often called a stringueder, since the word string is even more freqyeirged
to describe sequences of characters, we will fokowth in our terminology and use the wauch instead of
string when referring to ordered subsequences. V@& subsequence.a g such that

(3a1>a) & (AK:i<K<j:a<aw)&(@>g.)

66

67

a maximal runor, for short, a run. A natural merge sort, themef merges (maximal) runs instead of
sequences of fixed, predetermined length. Runs tmevproperty that if two sequences of n runs ageged,

a single sequence of exactly n runs emerges. Tdretghe total number of runs is halved in eacts pasd
the number of required moves of items is in thesivoase n*log(n), but in the average case it is deoss.
The expected number of comparisons, however, ishntarger because in addition to the comparisons
necessary for the selection of items, further campas are needed between consecutive items offdach
in order to determine the end of each run.

Our next programming exercise develops a naturajenalgorithm in the same stepwise fashion that was
used to explain the straight merging algorithmentploys the sequence structure (represented Isy fiee
Sect. 1.8) instead of the array, and it represemisnbalanced, two-phase, three-tape merge sorasgiene
that the file variablec represents the initial sequence of items. (Ndiyrah actual data processing
application, the initial data are first copied frahe original source to c for reasons of safey.andb are

two auxiliary file variables. Each pass consista dfstribution phase that distributes runs equetiym c to a
and b, and a merge phase that merges runs frogh la tanc. This process is illustrated in Fig. 2.13.

a a a
c c c c c
b b b

-
L merge phase
distribution phase
—
1% run 2" run n" run

Fig. 2.13. Sort phases and passes

17 31' 05 59' 13 41 43 67' 11 23 29 47' 03 07 7A'X® 57" 37 61
05 17 31 59' 11 13 23 29 41 43 47 67' 02 03 07 1® A' 37 61
05 11 13 17 23 29 31 41 43 47 59 67' 02 03 07 1953761 71
02 03 05 07 11 13 17 19 23 29 31 37 41 43 47 5763967 71

Table 2.11. Example of a Natural Mergesort.

As an example, Table 2.11 shows the file c in itgioal state (linel) and after each pass (line§ i a
natural merge sort involving 20 numbers. Note trdy three passes are needed. The sort termiratmoa

as the number of runs on c is 1. (We assume tlegie tbxists at least one non-empty run on the linitia
sequence). We therefore let a variable L be usedofanting the number of runs merged onto c. Byingak
use of the typ®Riderdefined in Sect. 1.8.1, the program can be fortadlas follows:

VAR L: INTEGER,;
ro, rl, r2: Files.Rider; (*see 1.8.1%)

REPEAT Files.Set(r0, a, 0); Files.Set(r1, b, OesBet(r2, c, 0);
distribute(r2, r0, rl); (*cto a and b*)
Files.Set(r0, a, 0); Files.Set(r1, b, 0); Fibet(r2, c, 0);
L :=0; merge(r0, r1, r2) (*a and b into c*)

UNTILL=1

The two phases clearly emerge as two distinctrattés. They are now to be refined, i.e., expressatbre
detail. The refined descriptions distribute(from rider r2 to riders rO and rl) anterge(from riders rO and
rl to rider r2) follow:

68

REPEAT copyrun(r2, r0);
IF ~r2.eof THEN copyrun(r2, r1) END
UNTIL r2.eof

REPEAT mergerun(r0, r1, r2); INC(L)
UNTIL rl.eof;
IF ~r0.eof THEN copyrun(rO, r2); INC(L) END

This method of distribution supposedly resultsither equal numbers of runs in both a and b, aeuence

a containing one run more than b. Since correspgnglairs of runs are merged, a leftover run malytsti
on file a, which simply has to be copied. The statiets merge and distribute are formulated in tesfres
refined statememhergerunand a subordinate procedwapyrunwith obvious tasks. When attempting to do
S0, one runs into a serious difficulty: In orderdigtermine the end of a run, two consecutive keystrbe
compared. However, files are such that only a sietgment is immediately accessible. We eviderathnot
avoid to look ahead, i.e to associate a buffer @ithry sequence. The buffer is to contain the dilmtnent of
the file still to be read and constitutes somettikeya window sliding over the file.

Instead of programming this mechanism explicithpiour program, we prefer to define yet anotheell®f
abstraction. It is represented by a new modRues It can be regarded as an extension of moHilés of
Sect. 1.8, introducing a new typader, which we may consider as an extension of types.Rider This
new type will not only accept all operations avaléaon Riders and indicate the end of a file, dab a
indicate the end of a run and the first elemerthefremaining part of the file. The new type aslhaslits
operators are presented by the following definition

DEFINITION Runs;
IMPORT Files, Texts;
TYPE Rider = RECORD (Files.Rider) first: INTEGEeor: BOOLEAN END ;

PROCEDURE OpenRandomsSeq(f: Files.File; length, sS&&EGER);
PROCEDURE Set (VAR r: Rider; VAR f: Files.File);
PROCEDURE copy(VAR source, destination: Rider);
PROCEDURE ListSeq(VAR W: Texts.Writer; f: Files &)

END Runs.

A few additional explanations for the choice of fhv@cedures are necessary. As we shall see, ttiegsor
algorithms discussed here and later are based pyingpelements from one file to another. A procedur
copytherefore takes the place of separate read ame opérations.

For convenience of testing the following examples,also introduce a proceduristSeq converting a file
of integers into a text. Also for convenience adithal procedure is include@penRandomsSeqitializes
a file with numbers in random order. These two pduces will serve to test the algorithms to beudised
below. The values of the fieldsof andeor are defined as results obpyin analogy toeof having been
defined as result of a read operation.

MODULE Runs;
IMPORT Files, Texts;
TYPERIider* = RECORD (Files.Riderjirst: INTEGER;eor: BOOLEAN END ;

PROCEDURBEOpenRandomSeq*(f: Files.File; length, seed: INTEGER);
VAR i: INTEGER; w: Files.Rider;
BEGIN Files.Set(w, f, 0);
FORi:=0 TO length-1 DO
Files.WriteInt(w, seed); seed := (31*seld@D 997 + 5
END ;
Close(f)
END OpenRandomSeq;

PROCEDURESet*(VAR r: Rider; f: Files.File);
BEGIN Files.Set(r, f, 0); Files.Read (r, r.firatleor := r.eof
END Set;

PROCEDUREcopy*(VAR src, dest: Rider);

BEGIN dest.first := src.first;
Files.Write(dest, dest.first); Files.Read(src.first);
src.eor := src.eof OR (src.first < dest.first

END copy;

PROCEDURH.istSeq*(VAR W: Texts; f: Files.File;);
VAR x, vy, k, n: INTEGER, r: Files.Rider;
BEGIN k := 0; n := 0; Files.Set(r, f, 0); Files.Ridat(r, X);
WHILE ~r.eof DO
Texts.Writelnt(W, X, 6); INC(k); Files.Ref@, y);
IF y <x THEN (*run ends*) Texts.Write(W’); INC(n) END ;
X:=y
END ;
Texts.Write(W, “$"); Texts.WriteIlnt(W, k, 5Texts.WriteInt(W, n, 5);
Texts.WriteLn(W)
END ListSeq;

END Runs.

We now return to the process of successive refinewfethe process of natural merging. Procedomyrun
and the statemennergeare now conveniently expressible as shown beloate Nhat we refer to the
sequences (files) indirectly via the riders attactoethem. In passing, we also note that the ridiéeld first
represents theextkey on a sequence being read, andabkikey of a sequence being written.

PROCEDURE copyrun(VAR x, y: Runs.Rider);
BEGIN (*copy from x to y*)

REPEAT Runs.copy(x, ¥) UNTIL x.eor
END copyrun

(*merge from r0 and rl to r2*)
REPEAT
IF r0.first < r1.first THEN
Runs.copy(r0, r2);
IF rO.eor THEN copyrun(rl, r2) END
ELSE Runs.copy(rl, r2);
IF rl.eor THEN copyrun(r0, r2) END
END
UNTIL rO.eor OR rl.eor

The comparison and selection process of keys igimg®@ run terminates as soon as one of the twe isun
exhausted. After this, the other run (which is exitausted yet) has to be transferred to the reguitin by
merely copying its tail. This is done by a calpobcedurecopyrun

This should supposedly terminate the developmerh®fatural merging sort procedure. Regrettably, t
program is incorrect, as the very careful readey heve noticed. The program is incorrect in theseethat
it does not sort properly in some cases. Consideexample, the following sequence of input data:

0302051107 131917 23 3129 37 43 41 47 581571 67
By distributing consecutive runs alternately tond &, we obtain

a=03'071319'293743'5761 71
b=020511"'172331"'414759'67

These sequences are readily merged into a singlewhereafter the sort terminates successfully. The
example, although it does not lead to an erroné@lmviour of the program, makes us aware that mere
distribution of runs to serveral files may resumlta number of output runs that is less than thebmurof
input runs. This is because the first item of thend run may be larger than the last item of tkie fiun,
thereby causing the two runs to merge automatiaatidya single run.

Although procedurdistribute supposedly outputs runs in equal numbers to tlee files, the important

consequence is that the actual number of resuitting ona andb may differ significantly. Our merge
procedure, however, only merges pairs of runs andibhates as soon bds read, thereby losing the tail of
one of the sequences. Consider the following irgata that are sorted (and truncated) in two sulesgqu
passes:

17 19 13 57 23 29 11 59 31 37 07 6148105 67 47 71 02 03
13 17 19 23 29 31 37 41 43 47 57 71591
11 13 17 19 23 29 31 37 41 43 47 57739

Table 2.12 Incorrect Result of Mergesort Program.

The example of this programming mistake is typiftal many programming situations. The mistake is
caused by an oversight of one of the possible cpesees of a presumably simple operation. It is als
typical in the sense that serval ways of corredfirggmistake are open and that one of them has thbsen.
Often there exist two possibilities that differarvery important, fundamental way:

1.We recognize that the operation of distributisnincorrectly programmed and does not satisfy the
requirement that the number of runs differ by astrio We stick to the original scheme of operatiad
correct the faulty procedure accordingly.

2.We recognize that the correction of the fauliyt pnvolves far-reaching modifications, and we ttyfind
ways in which other parts of the algorithm may banged to accommodate the currently incorrect part.

In general, the first path seems to be the salieaner one, the more honest way, providing a fegrele of
immunity from later consequences of overlookedidate side effects. It is, therefore, the way talva
solution that is generally recommended.

It is to be pointed out, however, that the secpassibility should sometimes not be entirely igeor is
for this reason that we further elaborate on thksngple and illustrate a fix by modification of theerge
procedure rather than the distribution procedutechvis primarily at fault.

This implies that we leave the distribution scham®uched and renounce the condition that rungibally
distributed. This may result in a less than optippatformance. However, the worst-case performance
remains unchanged, and moreover, the case of higidgual distribution is statistically very unlikel
Efficiency considerations are therefore no seranggsiment against this solution.

If the condition of equal distribution of runs ranber exists, then the merge procedure has todeyeld so
that, after reaching the end of one file, the enti#il of the remaining file is copied instead th@st one
run. This change is straightforward and is verypdarin comparison with any change in the distrituiti
scheme. (The reader is urged to convince himseHlefruth of this claim). The revised versiontwd terge
algorithm is shown below in the form of a functiprocedure:

PROCEDURE NaturalMerge(src: Files.File): Files.File
VAR L: INTEGER; (*no. of runs merged*)
fo, f1, f2: Files.File;
r0, r1, r2: Runs.Rider;

PROCEDURE copyrun(VAR x, y: Runs.Rider);
BEGIN (*from x to y*)

REPEAT Runs.copy(x, ¥) UNTIL x.eor
END copyrun;

BEGIN Runs.Set(r2, src);

REPEAT f0 := Files.New("test0"); Files.Set(r0, @);
fl := Files.New("test1"); Files.Set (r1, f1, 0);
(*distribute from r2 to rO and r1*)

REPEAT copyrun(r2, r0);
IF ~r2.eof THEN copyrun(r2, r1) END
UNTIL r2.eof;
Runs.Set(r0, f0); Runs.Set(r1, f1);
f2 := Files.New("); Files.Set(r2, f2,0); L :5 0

70

(*merge from r0 and rl to r2*)
REPEAT
REPEAT
IF r0.first < r1.first THEN
Runs.copy(r0, r2);
IF rO.eor THEN copyrun(rl, r2) END
ELSE Runs.copy(rl, r2);
IF rl.eor THEN copyrun(r0, r2) END
END
UNTIL rO.eor OR rl.eor;
INC(L)
UNTIL rO.eof OR rl.eof;
WHILE ~r0.eof DO copyrun(rO, r2); INC(L) END ;
WHILE ~rl.eof DO copyrun(rl, r2); INC(L) END ;
Runs.Set(r2, f2)
UNTILL =1,
RETURN f2
END NaturalMerge;

2.4.3. Balanced M ultiway M erging

The effort involved in a sequential sort is proporal to the number of required passes since, figitien,
every pass involves the copying of the entire §eflata. One way to reduce this number is to distebruns
onto more than two files. Mergimgruns that are equally distributed bifiles results in a sequence of r/N
runs. A second pass reduces their number t gihird pass to rfiland aftekk passes there are fKuns
left. The total number of passes required to satéms by N-way merging is therefore k =@g). Since
each pass requirescopy operations, the total number of copy openatis in the worst case M = nx|dg)

As the next programming exercise, we will develogog program based on multiway merging. In order t
further contrast the program from the previous ratiwo-phase merging procedure, we shall forneuliae
multiway merge as a single phase, balanced merg&dds implies that in each pass there are anlequa
number of input and output files onto which consigeuruns are alternately distributed. Using fles, the
algorithm will therefore be based on N-way mergiRgllowing the previously adopted strategy, we wot
bother to detect the automatic merging of two coutiee runs distributed onto the same file. Consedjy,

we are forced to design the merge program whitlsatiming strictly equal numbers of runs on thetinpu
files.

In this program we encounter for the first timesdunal application of a data structure consistihgroays of
files. As a matter of fact, it is surprising howostgly the following program differs from the preus one
because of the change from two-way to multiway tingrgThe change is primarily a result of the
circumstance that the merge process can no loniggrysbe terminated after one of the input runs is
exhausted. Instead, a list of inputs that are atiliive, i.e., not yet exhausted, must be kept.tiAero
complication stems from the need to switch the gsoaf input and output files after each pass. Hieee
indirection of access to files via riders comeshandy. In each pass, data may be copied from time sa
riders r to the same riders w. At the end of eaa$spve merely need to reset the input and outiest th
different riders.

Obviously, file numbers are used to index the aoffiles. Let us then assume that the initial fdethe
parametesrc, and that for the sorting proceds flles are available:

f, g: ARRAY N OF Files.File;
r, w: ARRAY N OF Runs.Rider

The algorithm can now be sketched as follows:

PROCEDURE BalancedMerge(src: Files.File): Fileg;Fil
VAR i, j: INTEGER;
L: INTEGER; (*no. of runs distributed*)

71

72

R: Runs.Rider;
BEGIN Runs.Set(R, src); (*distribute initial rufiem R to w[0] ... w[N-1]*)
j=0;L:=0;
position riders w on files g;
REPEAT
copy one run from R to w[j];
INC(j); INC(L);
IFj=NTHEN:=0END
UNTIL R.eof;

REPEAT (*merge from riders r to riders w*)
switch files g to riders;
L :=0;j:=0; (* =index of output file*)
REPEAT INC(L);
merge one run from inputs to w[j];
IFj<N THEN INC(j) ELSE j:= 0 END
UNTIL all inputs exhausted;
UNTILL=1
(*sorted file is with w[0]*)
END BalancedMerge.

Having associated a rid& with the source file, we now refine the statemfentthe initial distribution of
runs. Using the definition afopy we replaceopy one run from R to wlpy:

REPEAT Runs.copy(R, w[j]) UNTIL R.eor

Copying a run terminates when either the first itihthe next run is encountered or when the enthef
entire input file is reached.

In the actual sort algorithm, the following staterseremain to be specified in more detail:

1. Position riders w on files g

2. Merge one run from inputs tq w
3. Switch files g to riders r

4. All inputs exhausted

First, we must accurately identify the current inpequences. Notably, the numbeacfiveinputs may be
less than N. Obviously, there can be at most ag/maimrces as there are runs; the sort terminatescasas
there is one single sequence left. This leaves tpepossibility that at the initiation of the lasirt pass
there are fewer thaN runs. We therefore introduce a variable, kByto denote the actual number of inputs
used. We incorporate the initializationkdfin the statemergwitch filesas follows:

IFL<NTHENKL :=LELSEKL:=NEND;
FOR i:= 0 TO k1-1 DO Runs.Set(r[i], g[ij) END

Naturally, statement (2) is to decremkhtwhenever an input source ceases. Hence, predibateay easily

be expressed by the relation k1 = 0. Statementh@yever, is more difficult to refine; it consigi$ the
repeated selection of the least key among the ablail sources and its subsequent transport to the
destination, i.e., the current output sequence. piroeess is further complicated by the necessity of
determining the end of each run. The end of a rap bbe reached because (1) the subsequent key ith&es

the current key or (2) the end of the source iched. In the latter case the source is eliminated b
decrementinkl; in the former case the run is closed by excludivg sequence from further selection of
items, but only until the creation of the currentput run is completed. This makes it obvious thaecond
variable, sak?, is needed to denote the number of sources agtaadlilable for the selection of the next
item. This value is initially set equal kd and is decremented whenever a run teminates keodasndition

D).
Unfortunately, the introduction &R is not sufficient. We need to know not only thentner of files, but also

which files are still in actual use. An obviouswd@n is to use an array with Boolean componerd&ating
the availability of the files. We choose, howeedifferent method that leads to a more efficieiéaion

73

procedure which, after all, is the most frequendgeated part of the entire algorithm. Instead sifigi a
Boolean array, a file index map, sys introduced. This map is used so that i, ; are the indices of the
available sequences. Thus statement (2) can beifmied as follows:

k2 :=Kk1;
REPEATselect the minimal key, let tfim] be the sequeneelrar on which it occurs
Runs.copy(r[tim]], w(jl);
IF r[tfm]].eof THENeliminate sequence
ELSIF r[tfm]].eor THENCclose run
END
UNTILK2 =0

Since the number of sequences will be fairly srfa@llany practical purpose, the selection algoritienbe
specified in further detail in the next refinematép may as well be a straightforward linear seaftie
statementliminate sequendenplies a decrease of k1 as well as k2 and atsassignment of indices in the
map t. The statementlose runmerely decrements k2 and rearranges componertsaafordingly. The
details are shown in the following procedure, beimg last refinement. The statememtitch sequenceds
elaborated according to explanations given earlier.

PROCEDURE BalancedMerge(src: Files.File): Fileg;Fil
VAR |, j, m, tx: INTEGER,;
L, k1, k2: INTEGER;
min, X: INTEGER;
t: ARRAY N OF INTEGER; (*index map*)
R: Runs.Rider; (*source*)
f, g: ARRAY N OF Files.File;
r, w: ARRAY N OF Runs.Rider;

BEGIN Runs.Set(R, src);
FOR i:=0 TO N-1 DO ¢][i] := Files.New("); FileSet(w[i], g[i], 0) END ;
(*distribute initial runs from src to g[0] ... gHi]*)
j:=0;L:=0;
REPEAT
REPEAT Runs.copy(R, w[j]) UNTIL R.eor;
INC(L); INC(j);
IFj=NTHEN j:=0 END
UNTIL R.eof;

FORi:=0TO N-1 DO {[i]:=i END ;
REPEAT
IFL<NTHENK1:=LELSEKkl:=NEND;
FOR i:=0 TO k1-1 DO Runs.Set(r]i], g[i]) END(¥set input riders*)
FORi:=0 TO k1-1 DO (]i] := Files.New("); FgeSet(w[i], g[i], 0) END ; (*set output riders*)
(*merge from r[0] ... r[N-1] to w[O] ... W[N-1]*)
FORi:=0TO N-1 DO {[i] ;=i END ;

L:=0; (*nofruns merged*)

j=0;
REPEAT (*merge one run from inputs to w[j]*)
INC(L); k2 := K1;

REPEAT (*select the minimal key*)

m := 0; min ;= r[t[0]].first; i == 1;

WHILE i < k2 DO
X = r[t[i]].first;
IF x <min THEN min :=x; m :=i END ;
INC(i)

END ;

Runs.copy(r[t{m]], w(j]);

74

IF r[t[m]].eof THEN (*eliminate this sequence?*)
DEC(k1); DEC(k2); tim] := t[k2]; t[k2] := t[kL
ELSIF r[t[m]].eor THEN (*close run¥*)
DEC(k2); tx := t[m]; t[m] := t[k2]; t[k2] :=x
END
UNTIL k2 = 0;
INC();
IFj=NTHEN :=0END
UNTILK1 =0
UNTILL = 1;
RETURN Files.Base(w[t[0]])
END BalancedMerge

2.4.4. Polyphase Sort

We have now discussed the necessary techniqudsaaedacquired the proper background to investigatke
program yet another sorting algorithm whose peréoree is superior to the balanced sort. We havetbeg¢n
balanced merging eliminates the pure copying opastnecessary when the distribution and the mergin
operations are united into a single phase. Thetiguearises whether or not the given sequencesidoeil
processed even more efficiently. This is indeedctse; the key to this next improvement lies inndioaing
the rigid notion of strict passes, i.e., to usegbguences in a more sophisticated way than byyalhaving
N/2 sources and as many destinations and exchasginges and destinations at the end of each distin
pass. Instead, the notion of a pass becomes diffireemethod was invented by R.L. Gilstad [2-3] aalied
Polyphase Sort.

It is first illustrated by an example using threggences. At any time, items are merged from twoces
into a third sequence variable. Whenever one okthece sequences is exhausted, it immediatelyniexo
the destination of the merge operations of data fiee non-exhausted source and the previous destina
sequence.

As we know thah runs on each input are transformed intouns on the output, we need to list only the
number of runs present on each sequence (insteapecffying actual keys). In Fig. 2.14 we assuna th
initially the two input sequencd$ andf2 contain 13 and 8 runs, respectively. Thus, infittsé pass 8 runs
are merged fronfil andf2 to f3, in the second pass the remaining 5 runs are mhdrgem f3 andfl ontof2,
etc. In the endil is the sorted sequence.

f1 f2 3
13 8
N N
-
5 0 8

Fig. 2.14. Polyphase mergesort of 21 runs withcdisaces

A second example shows the Polyphase method wstg@ences. Let there initially be 16 rungrl5 on
f2, 14 onf3, 12 onf4, and 8 orf5. In the first partial pass, 8 runs are merged ittn the endf2 contains
the sorted set of items (see Fig. 2.15).

f1 f2 3 4 f6
16 15 14 12
- N N N
—
8 7 6 4 8

(=} = N A%o (oo il

1 0 1 1 1
0 1 0 0 0

Fig. 2.15. Polyphase mergesort of 65 runs withcfiisaces

Polyphase is more efficient than balanced mergauses; giveN sequences, it always operates witiNaf-
way merge instead of &W2-way merge. As the number of required passes igappately log, n, nbeing
the number of items to be sorted aXdoeing the degree of the merge operations, Polgpopasmises a
significant improvement over balanced merging.

Of course, the distribution of initial runs was efaitly chosen in the above examples. In orderid fout
which initial distributions of runs lead to a proganctioning, we work backward, starting with tfieal
distribution (last line in Fig. 2.15). Rewritingethtables of the two examples and rotating eachtrpwne
position with respect to the prior row yields Tab®.13 and 2.14 for six passes and for three axnd si
sequences, respectively.

L al) &) Sumdl)
0 1 0 1

1 1 1 2

2 2 1 3

3 3 2 5

4 5 3 8

5 8 5 13

6 13 8 21

Table 2.13 Perfect distribution of runs on twolsatges.

L al) &b &) al) a(l) Sumgl)
0 1 0 0 0 0 1

1 1 1 1 1 1 5

2 2 2 2 2 1 9

3 4 4 4 3 2 17

4 8 8 7 6 4 33

5 16 15 14 12 8 65

Table 2.14 Perfect distribution of runs on fivesences.
From Table 2.13 we can deduce for L > 0 the retatio

g(L+1) = a(l)
a(L+1) = a(l) +a(l)

76

and a(0) =1, a(0) = 0. Defining {1 = a(i), we obtain fori >0
far = f+fq, =1, §=0

These are the recursive rules (or recurrence eadtdefining théibonacci numbers
f=0,1,1,2,3,5,8,13,21, 34,55, ..

Each Fibonacci number is the sum of its two preskms. As a consequence, the numbers of initia am
the two input sequences must be two consecutiveniitti numbers in order to make Polyphase work

properly with three sequences.
How about the second example (Table 2.14) wittssgquences? The formation rules are easily desased

a(L+1) = a(l)

a(L+1) = a(b) +a(l) = a(l) + a(L-1)

a(L+l) = a(b) +a(l) = a(l) + a(L-1) + a(L-2)

&(L+1l) = a(b) + a(l) = a(l) + a(L-1) + a(L-2) + a(L-3)

g(L+1) = a(b) + a(L) = a(l) + a(L-1) + a(L-2) + a(L-3) + a(L-4)

Substituting ffor a(i) yields

fog = fi+fa+f+fs+f, fori>4
f4 =1
fi =0 fori<4

These numbers are thl@bonacci numbers of order.4n general, the Fibonacci nhumbers of order p are
defined as follows:

fiua(p) = {(P) + fa(p) + ... + fi(p) fori>p
fop) =1)
fip) =0 for O<i<p

Note that the ordinary Fibonacci numbers are todseder 1.

We have now seen that the initial numbers of rons fperfect Polyphase Sort withsequences are the sums
of anyN-1,N-2, ... , 1 (see Table 2.15) consecutive Fibonaggibers of ordeN-2. This apparently implies
that this method is only applicable to inputs whosenber of runs is the sum Nf1 such Fibonacci sums.
The important question thus arises: What is to creedvhen the number of initial runs is not suchdmal
sum? The answer is simple (and typical for sutthatons): we simulate the existence of hypothegaapty
runs, such that the sum of real and hypotheticed isia perfect sum. The empty runs are calledmy runs

But this is not really a satisfactory answer beeailsimmediately raises the further and more diffic
gquestion: How do we recognize dummy runs duringging? Before answering this question we must first
investigate the prior problem of initial run distwtion and decide upon a rule for the distributidractual

and dummy runs onto th¢1 tapes.
2 3 4 5 6 7

1

2 3 5 7 9 11 13

3 5 9 13 17 21 25

4 8 17 25 33 41 49

5 13 31 49 65 81 97

6 21 57 94 129 161 193

7 34 105 181 253 321 385

8 55 193 349 497 636 769
9 89 355 673 977 1261 1531
10 144 653 1297 1921 2501 3049
11 233 1201 2500 3777 4961 6073
12 377 2209 4819 7425 9841 12097
13 610 4063 9289 14597 19521 24097
14 987 7473 17905 28697 38721 48001

Table 2.15 Numbers of runs allowing for perfestrpution.

77

In order to find an appropriate rule for distriloumtj however, we must know how actual and dummy eues
merged. Clearly, the selection of a dummy run freequencé means precisely that sequernde ignored
during this merge. resulting in a merge from fett@nN-1 sources. Merging of a dummy run from sl
sources implies no actual merge operation, butaasthe recording of the resulting dummy run orotiput
sequence. From this we conclude that dummy runsidhoe distributed to the-1 sequences as uniformly as
possible, since we are interested in active mergesas many sources as possible.

Let us forget dummy runs for a moment and congtieproblem of distributing an unknown number afsu
onto N-1 sequences. It is plain that the Fibonacci nusileérorderN-2 specifying the desired numbers of
runs on each source can be generated while thébdigin progresses. Assuming, for exampNes 6 and
referring to Table 2.14, we start by distributinms as indicated by the row with index L =1 (1111, 1); if
there are more runs available, we proceed to ttenserow (2, 2, 2, 2, 1); if the source is stilt eahausted,
the distribution proceeds according to the thirdl (d, 4, 4, 3, 2), and so on. We shall call the index
level Evidently, the larger the number of runs, thehbigis the level of Fibonacci numbers which,
incidentally, is equal to the number of merge passeswitchings necessary for the subsequent Ebe.
distribution algorithm can now be formulated iriratfversion as follows:

1. Let the distribution goal be the Fibonacci nurselmd ordemN-2, level 1.

2. Distribute according to the set goal.

3.If the goal is reached, compute the next le¥&lilmonacci numbers; the difference between thedthose
on the former level constitutes the new distributgal. Return to step 2. If the goal cannot behed
because the source is exhausted, terminate thiédisin process.

The rules for calculating the next level of Fibariamumbers are contained in their definition. Wa taus
concentrate our attention on step 2, where, wigfivan goal, the subsequent runs are to be distibane
after the other onto thH-1 output sequences. It is here where the dummg have to reappear in our
considerations.

Let us assume that when raising the level, we tettwr next goal by the differencedat i = 1 ... N-1, where

d; denotes the number of runs to be put onto sequeéndhis step. We can now assume that we immegiatel
put d dummy runs onto sequenicand then regard the subsequent distribution asefilacement of dummy
runs by actual runs, each time recording a replaoérhy subtracting 1 from the count @hus, the d
indicates the number of dummy runs on sequéemdeen the source becomes empty.

It is not known which algorithm yields the optindiktribution, but the following has proved to beery
good method. It is calledorizontal distribution(cf. Knuth, Vol 3. p. 270), a term that can be enstbod by
imagining the runs as being piled up in the fornsitds, as shown in Fig. 2.16 fobf= 6, level 5 (cf. Table
2.14). In order to reach an equal distribution efaining dummy runs as quickly as possible, their
replacement by actual runs reduces the size opiles by picking off dummy runs on horizontal level
proceeding from left to right. In this way, the suare distributed onto the sequences as indicatetdir
numbers as shown in Fig. 2.16.

8
1
7 _____
2 3 4
6 boeobooo b
5 6 7 8
5 ____________________
9 10 11 12
4 ____________________
13 14 15 16 17
3 _________________________
18 19 20 21 22
2 b b
23 24 25 26 27
l _________________________
28 29 30 31 32

Fig. 2.16. Horizontal distribution of runs

We are now in a position to describe the algorithrithe form of a procedure callsglect which is activated
each time a run has been copied and a new souseteited for the next run. We assume the existehae
variablej denoting the index of the current destination eege. aand ¢ denote the ideal and dummy
distribution numbers for sequenice

j, level: INTEGER;
a,d: ARRAY N OF INTEGER,;

These variables are initialized with the followwagues:

a=1 d=1 fori=0 .. N-2
an-1=0,d1=0 dummy
j=0, level=0

Note thatselectis to compute the next row of Table 2.14, i.ee Walues #L) ... a.1(L) each time that the
level is increased. The next goal, i.e., the déffiees d= g(L) - a(L-1) are also computed at that time. The
indicated algorithm relies on the fact that theulisy d decrease with increasing index (descending stair i
Fig. 2.16). Note that the exception is the traositirom level O to level 1; this algorithm mustréslere be
used starting at level Belectends by decrementing by 1; this operation stands for the replacemerd of
dummy run on sequengdy an actual run.

PROCEDURE select;
VAR i, z: INTEGER,;

BEGIN
IF d[j] < d[j+1] THEN INC())
ELSE

IF d[j] = 0 THEN

INC(level); z := a[0];
FORi:=0TO N-2 DO
d[i] := z + a[i+1] - a[i]; a[i] := # a[i+1]
END
END ;
j=0
END ;
DEC(d[]])
END select

Assuming the availability of a routine to copy a fiom the sourcerc woth rider R ontd; with riderr;, we
can formulate the initial distribution phase asdwk (assuming that the source contains at leastumy:

REPEAT select; copyrun
UNTIL R.eof

Here, however, we must pause for a moment to rekalleffect encountered in distributing runs in the
previously discussed natural merge algorithm: Téet that two runs consecutively arriving at the sam
destination may merge into a single run, causeageemed numbers of runs to be incorrect. By dayitie
sort algorithm such that its correctness does apedd on the number of runs, this side effect efelysbe
ignored. In the Polyphase Sort, however, we aréiquéarly concerned about keeping track of the éxac
number of runs on each file. Consequently, we caafford to overlook the effect of such a coincitién
merge. An additional complication of the distrilmuti algorithm therefore cannot be avoided. It beme
necessary to retain the keys of the last item @fdkt run on each sequence. Fortunately, our mgiéation

of Runsdoes exactly this. In the case of output sequeridist represents the item last written. A next
attempt to describe the distribution algorithm datllerefore be

REPEAT select;
IF f[j].first <= f0.first THEN continue old ruiEND ;
copyrun

UNTIL R.eof

78

The obvious mistake here lies in forgetting tifigfirst has only obtained a value after copying the fiust
A correct solution must therefore first distribatee run onto each of ti¢1 destination sequences without
inspection ofirst. The remaining runs are distributed as follows:

WHILE ~R.eof DO
select;
IF r[j].first <= R.first THEN
copyrun;
IF R.eof THEN INC(d]j]) ELSE copyrun END
ELSE copyrun
END
END

Now we are finally in a position to tackle the maiolyphase merge sort algorithm. Its principal cuiee is
similar to the main part of thB-way merge program: An outer loop whose body merges until the
sources are exhausted, an inner loop whose bodyesier single run from each source, and an innermost
loop whose body selects the initial key and tratsttiie involved item to the target file. The privadi
differences to balanced merging are the following:

1.Instead of\, there is only one output sequence in each pass.

2.Instead of switching\ input andN output sequences after each pass, the sequercestated. This is
achieved by using a sequence index map

3.The number of input sequences varies from rurug at the start of each run, it is determinemnfrthe
counts gdof dummy runs. If @> 0 for alli, thenN-1 dummy runs are pseudo-merged into a single dummy
run by merely incrementing the coutif of the output sequence. Otherwise, one run is egefgpm all
sources with g= 0, andd; is decremented for all other sequences, indicdtiajone dummy run was taken
off. We denote the number of input sequences iregbin a merge b

4.1t is impossible to derive termination of a phéry the end-of status of tihkel'st sequence, because more
merges might be necessary involving dummy runs ftieat source. Instead, the theoretically necessary
number of runs is determined from the coefficieqtsThe coefficients jawere computed during the
distribution phase; they can now be recomputedwardk

The main part of the Polyphase Sort can now beutated according to these rules, assuming that-all
sequences with initial runs are set to be readlsaicthe tape map is initially set te-ti.

REPEAT (*merge from t[0] ... t{{N-2] to t[N-1]*)
z := a[N-2]; d[N-1] := 0;
REPEAT k := 0; (*merge one run*)
(*determine no. of active input sequences*)
FORi:=0 TO N-2 DO
IF d[i] > 0 THEN DEC(d[i]) ELSE ta[K] :Hil; INC(k) END
END ;
IF k =0 THEN INC(d[N-1])
ELSEmerge one real run from t[0] ... t[k-1] to t[N-1]
END ;
DEC(z)
UNTIL z=0;
Runs.Set(r[t{N-1]], it{N-1]));
rotate sequences in map t; compute a[i] for nexelg
DEC(level)
UNTIL level =0
(*sorted output is f[t[0]]*)

The actual merge operation is almost identical whtt of theN-way merge sort, the only difference being
that the sequence elimination algorithm is somewtmapler. The rotation of the sequence index mapthe
corresponding count$ (and the down-level recomputation of the coeffitéeg) is straightforward and can
be inspected in detail from Program 2.16, whichiesents th€olyphasealgorithm in its entirety.

79

PROCEDURE Polyphase(src: Files.File): Files.File;
VAR, j, mx, tn: INTEGER;
k, dn, z, level: INTEGER,;
X, min: INTEGER,;
a, d: ARRAY N OF INTEGER;
t, ta: ARRAY N OF INTEGER; (*index maps*)
R: Runs.Rider; (*source*)
f: ARRAY N OF Files.File;
r: ARRAY N OF Runs.Rider;

PROCEDURE select;
VAR, z: INTEGER,;
BEGIN
IF d[j] < d[j+1] THEN INC(j)
ELSE
IF d[j] =0 THEN
INC(level); z := a[0];
FORi:=0TO N-2 DO
d[i] := z + a[i+1] - a[i]; a[i] := z + a[i+1]
END
END ;
j:=0
END ;
DEC(d[j])
END select;

PROCEDURE copyrun; (*from src to f[j]*)
BEGIN

REPEAT Runs.copy(R, r[j]) UNTIL R.eor
END copyrun;

BEGIN Runs.Set(R, src);
FORi:=0TO N-2 DO
ali] =1, d[i] := 1, f[i] := Files.New("); Files.Set(r[i], f[i], 0)
END ;
(*distribute initial runs*)
level :=1;j:=0; a[N-1] := 0; d[N-1] := 0;
REPEAT select; copyrun UNTIL R.eof OR (j = N-2);
WHILE ~R.eof DO
select; (*r[j].first = last item written on f[j)
IF r[j].first <= R.first THEN
copyrun;
IF R.eof THEN INC(d[j]) ELSE copyrun END
ELSE copyrun
END
END ;

FORi:=0 TO N-2 DO {[i] :=i; Runs.Set(r[i], i END ;
t[N-1] := N-1;
REPEAT (*merge from t[0] ... t{N-2] to {[N-1]*)
z .= a[N-2]; d[N-1] := 0;
fIt{N-1]] := Files.New(""); Files.Set(r[t{N-1]]f{t{{N-1]], 0);
REPEAT k := 0; (*merge one run*)
FORi:=0TO N-2 DO
IF d[i] > 0 THEN DEC(dI[i]) ELSE talk] := t[i]iNC(k) END
END ;

80

IF k =0 THEN INC(d[N-1])
ELSE (*merge one real run from t[0] ... t[k-D]tfN-1]*)
REPEAT mx := 0; min := r[ta[O]].first; i := 1;
WHILE i<k DO
X = r[ta[i]].first;
IF x < min THEN min := x; mx := i END ;
INC(i)
END ;
Runs.copy(r[ta[mx]], r[tIN-11]);
IF r[ta[mx]].eor THEN ta[mx] := talk-1]; DECJKEND
UNTILk =0
END ;
DEC(2)
UNTIL z =0;
Runs.Set(r[t[N-1]], fit[N-1]]); (*rotate sequens*)
tn ;= t[N-1]; dn := d[N-1]; z := a[N-2];
FORi:=N-1TO 1BY -1 DO
tli] = t[i-1]; d[i] := d[i-1]; a[i] := a[i-1] - z

END ;
t[0] := tn; d[0] := dn; a[0] := z; DEC(level)
UNTIL level =0 ;

RETURN f{t[0]]
END Polyphase

2.4.5. Distribution of Initial Runs

We were led to the sophisticated sequential sopiragrams, because the simpler methods operating on
arrays rely on the availability of a random accasse sufficiently large to hold the entire setdafa to be
sorted. Often such a store is unavailable; insteafficiently large sequential storage devices agkapes or
disks must be used. We know that the sequentidingomethods developed so far need practically no
primary store whatsoever, except for the file Insffend, of course, the program itself. Howeveis & fact

that even small computers include a random acpessary store that is almost always larger thantwha
needed by the programs developed here. Failingatceraptimal use of it cannot be justified.

The solution lies in combining array and sequeioctng techniques. In particular, an adapted asmaymay

be used in the distribution phase of initial runthvthe effect that these runs do already havengtteL of
approximately the size of the available primaryadstore. It is plain that in the subsequent meags¢s no
additional array sorts could improve the perforneabecause the runs involved are steadily growing in
length, and thus they always remain larger thanatrelable main store. As a result, we may fortelyat
concentrate our attention on improving the alganithat generates initial runs.

Naturally, we immediately concentrate our searchttoa logarithmic array sorting methods. The most
suitable of them is the tree sortldeapsortmethod (see Sect. 2.2.5). The heap may be regasdadunnel
through which all items must pass, some quickersamde more slowly. The least key is readily pickéd
the top of the heap, and its replacement is a &ffigient process. The action of funnelling a comgiat from
the input sequencsrc (rider r0) through a full heapl onto an output sequendest (rider rl) may be
described simply as follows:

Write(r1, H[0]); Read(r0, H[Q]); sift(0, n-1)

Sift is the process described in Sect. 2.2.5 for giftire newly inserted compondrg down into its proper
place. Note thaltl, is the least item on the heap. An example is shiowsig. 2.17. The program eventually
becomes considerably more complex for the follow&gsons:

1. The hea is initially empty and must first be filled.
2. Toward the end, the heap is only partially dijland it ultimately becomes empty.
3.We must keep track of the beginning of new tinrder to change the output indeat the right time.

81

82

il H= | 15 0
§ 15 | 10 |e— / \ <« 31 | 27 ?
18 20
29 33 24 30
18
§ 10 | 15 |e— / \ <« 27 ?
29 20
31 33 24 30

Fig. 2.17. Sifting a key through a heap
Before proceeding, let us formally declare thealalgs that are evidently involved in the process:

VAR L, R, x: INTEGER;
src, dest: Files.File;
r, w: Files.Rider;
H: ARRAY M OF INTEGER; (*heap*)

M is the size of the hedp. We use the constanthto denoteM/2; L and R are indices delimiting the heap.
The funnelling process can then be divided inte fiistinct parts.

1.Read the firstnh keys from src (r) and put them into the upper bélhe heap where no ordering among
the keys is prescribed.

2.Read anothanh keys and put them into the lower half of the hesfbing each item into its appropriate
position (build heap).

3.SetL to M and repeat the following step for all remainingis onsrc. FeedH, to the appropriate output
sequence. If its key is less or equal to the kethefnext item on the input sequence, then this ibex
belongs to the same run and can be sifted intpriper position. Otherwise, reduce the size ofttbap
and place the new item into a second, upper hedpgibuilt up to contain the next run. We indictite
borderline between the two heaps with the indeXhus, the lower (current) heap consists of tem#t H
... H.-1, the upper (next) heap of H. Hy.1. If L = 0, then switch the output and relseb M.

4.Now the source is exhausted. First,&h M; then flush the lower part terminating the curnemt, and at
the same time build up the upper part and graduelbgate it into positions H.. Hg.1.

5.The last run is generated from the remainingsten the heap.

We are now in a position to describe the five staigedetail as a complete program, calling a proced
switchwhenever the end of a run is detected and sonmndotalter the index of the output sequence bas t
be invoked. In Program 2.17 a dummy routine is usstdad, and all runs are written onto sequelest

If we now try to integrate this program with, foistancePolyphase Sortve encounter a serious difficulty. It
arises from the following circumstances: The godgram consists in its initial part of a fairlyroplicated
routine for switching between sequence variabled, ralies on the availability of a procedwapyrunthat
delivers exactly one run to the selected destinafitlne Heapsortprogram, on the other hand, is a complex
routine relying on the availability of a closed pedureselectwhich simply selects a new destination. There

would be no problem, if in one (or both) of the gmams the required procedure would be called &gies
place only; but instead, they are called at seydagles in both programs.

This situation is best reflected by the use obeoutine(thread); it is suitable in those cases in whiehesal
processes coexist. The most typical representetittee combination of a process that produceseastrof
information in distinct entities and a process t@mtsumes this stream. This producer-consumeicesip
can be expressed in terms of two coroutines; orteesfi may well be the main program itself. The atine
may be considered as a process that contains omerer breakpoints. If such a breakpoint is encaedte
then control returns to the program that had attv#he coroutine. Whenever the coroutine is callgalin,
execution is resumed at that breakpoint. In oumgte, we might considePolyphase Soras the main
program, calling uporopyrun which is formulated as a coroutine. It considtthe main body of Program
2.17 in which each call gfwitchnow represents a breakpoint. The testefod of filewould then have to be
replaced systematically by a test of whether ortm@tcoroutine had reached its endpoint.

PROCEDURE Distribute(src: Files.File): Files.File;
CONST M =16; mh =M DIV 2; (*heap size*)
VAR L, R: INTEGER;

X: INTEGER,;

dest: Files.File;

r, w: Files.Rider;

H: ARRAY M OF INTEGER; (*heap*)

PROCEDURE sift(L, R: INTEGER);
VAR |, j, x: INTEGER,;
BEGIN i:=L;j:= 2*L+1; x := HI[i];
IF (j < R) & (H[j] > H[j+1]) THEN INC(j) END ;
WHILE (j <= R) & (x > HJ[j]) DO
HI] == H[j]; i := J; j := 2%j+1;
IF (j < R) & (HI[j] > H[j+1]) THEN INC(j) END
END ;
H[i] := x
END sift;

BEGIN Files.Set(r, src, 0); dest .= Files.New('Fjtes.Set(w, dest, 0);
(*step 1: fill upper half of heap*)
REPEAT DEC(L); Files.ReadInt(r, H[L]) UNTIL L = mh
(*step 2: fill lower half of heap*)
REPEAT DEC(L); Files.ReadInt(r, H[L]); sift(L, MJIUNTIL L = 0;
(*step 3: pass elements through heap*)
L := M; Files.ReadInt(r, x);
WHILE ~r.eof DO
Files.Writelnt(w, H[0]);
IF H[0] <= x THEN
(*x belongs to same run*) H[0] := x; sift(0, -1
ELSE (*start next run*)
DEC(L); H[O] := HIL]; sift(0, L-1); H[L] := x;
IF L < mh THEN sift(L, M-1) END ;
IF L=0 THEN (*heap full; start new run*) L ¥ END
END ;
Files.ReadInt(r, x)
END ;
(*step 4: flush lower half of heap*)
R:=M,;
REPEAT DEC(L); Files.Writelnt(w, H[0]);
H[O] := HIL]; sift(0, L-1); DEC(R); H[L] := H[R];
IF L < mh THEN sift(L, R-1) END
UNTILL = 0;

83

84

(*step 5: flush upper half of heap, start new run*)
WHILE R >0 DO
Files.WriteInt(w, H[0]); H[0] := H[R]; DEC(R); $i(0, R)
END ;
RETURN dest
END Distribute

Analysis and conclusiondihat performance can be expected froRolyphase Sonwith initial distribution
of runs by aHeapsor? We first discuss the improvement to be expdayeidtroducing the heap.

In a sequence with randomly distributed keys theeeted average length of runs is 2. What is tmigtle
after the sequence has been funnelled throughmdfesizem ? One is inclined to saw, but, fortunately,
the actual result of probabilistic analysis is mbeltter, namel2m (see Knuth, vol. 3, p. 254). Therefore, the
expected improvement factorris

An estimate of the performance of Polyphase camgdtbered from Table 2.15, indicating the maximal
number of initial runs that can be sorted in a gimamber of partial passes (levels) with a giveminerN of
sequences. As an example, with six sequences &edpof sizen = 100, a file with up to 165’680’1200
initial runs can be sorted within 10 partial pas3éss is a remarkable performance.

Reviewing again the combination Bblyphase Sorand Heapsort one cannot help but be amazed at the
complexity of this program. After all, it perforntise same easily defined task of permuting a séeofs as

is done by any of the short programs based ontth&lst array sorting principles. The moral of trtire
chapter may be taken as an exhibition of the faligw

1. The intimate connection between algorithm andedrying data structure, and in particular theuiafice of
the latter on the former.

2.The sophistication by which the performance gfragram can be improved, even when the available
structure for its data (sequence instead of aisagther ill-suited for the task.

Exercises

2.1. Which of the algorithms given for straightdrson, binary insertion, straight selection, bbbbrt,
shakersort, shellsort, heapsort, quicksort, araigétt mergesort are stable sorting methods?

2.2. Would the algorithm for binary insertion stitbrk correctly if L < R were replaced by L < R time
while clause? Would it still be correct if thetstment L := m+1 were simplified to L := m? If not,
find sets of values al ... an upon which the akt@r@gram would fail.

2.3. Program and measure the execution time aothtfee straight sorting methods on your computet, an
find coefficients by which the factors C and M hawde multiplied to yield real time estimates.

2.4. Specifty invariants for the repetitions in theee straight sorting algorithms.

2.5. Consider the following "obvious" version o&tprocedure Partition and find sets of valugs.a 1
for which this version fails:

i:=0;j:=n-1;,x:=a[n DIV 2];
REPEAT

WHILE afi] <x DO i:=i+1 END;

WHILE x < a[j] DO j:=j-1 END;

w = a[i]; afi] := a[j]; afj] :==w
UNTIL i > |

2.6. Write a procedure that combines the Quickaod Bubblesort algorithms as follows: Use Quicksort

to obtain (unsorted) partitions of length m (1 <m); then use Bubblesort to complete the taskeNot
that the latter may sweep over the entire arrap @lements, hence, minimizing the bookkeeping
effort. Find that value of m which minimizes theatosort time. Note: Clearly, the optimum value of
m will be quite small. It may therefore pay to tbe Bubblesort sweep exactly m-1 times over the
array instead of including a last pass establistiiegact that no further exchange is necessary.

