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If algorithm TVS is run on tree T', the set of split nodes output is U - { x}. 
Since T' has ::; n nodes, U - { x} is a minimum cardinality split set for T'. 
This in turn means that IW'I 2". IUI - 1. In other words, IWI 2". IUI. D 

EXERCISES 

1. For the tree of Figure 4.2 solve the TVSP when (a) J = 4 and (b) 
J = 6. 

2. Rewrite TVS (Algorithm 4.3) for general trees. Make use of pointers. 

4.4 JOB SEQUENCING WITH DEADLINES 

We are given a set of n jobs. Associated with job i is an integer deadline 
di 2". 0 and a profit Pi > 0. For any job i the profit Pi is earned iff the job is 
completed by its deadline. To complete a job, one has to process the job on 
a machine for one unit of time. Only one machine is available for processing 
jobs. A feasible solution for this problem is a subset J of jobs such that each 
job in this subset can be completed by its deadline. The value of a feasible 
solution J is the sum of the profits of the jobs in J, or LiEJ Pi· An optimal 
solution is a feasible solution with maximum value. Here again, since the 
problem involves the identification of a subset, it fits the subset paradigm. 

Example 4.2 Let n = 4, (p1,p2,p3,p4) = (100, 10, 15, 27) and (d1, d2, d3, d4) = 
(2, 1, 2, 1). The feasible solutions and their values are: 

feasible processing 
solution sequence value 

1. (1, 2) 2, 1 110 
2. (1, 3) 1, 3 or 3, 1 115 
3. (1, 4) 4, 1 127 
4. (2, 3) 2, 3 25 
5. (3, 4) 4, 3 42 
6. (1) 1 100 
7. (2) 2 10 
8. (3) 3 15 
9. (4) 4 27 

Solution 3 is optimal. In this solution only jobs 1 and 4 are processed and 
the value is 127. These jobs must be processed in the order job 4 followed 
by job 1. Thus the processing of job 4 begins at time zero and that of job 1 
is completed at time 2. D 

jcampos
Cuadro de texto
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To formulate a greedy algorithm to obtain an optimal solution, we must 
formulate an optimization measure to determine how the next job is chosen. 
As a first attempt we can choose the objective function LiEJ Pi as our op
timization measure. Using this measure, the next job to include is the one 
that increases L,iEJ Pi the most, subject to the constraint that the resulting 
J i8 a feasible solution. This requires us to consider jobs in nonincreasing 
order of the Pi 's. Let us apply this criterion to the data of Example 4.2. We 
begin with J = 0 and LiEJ Pi = 0. Job 1 is added to J as it ha8 the large8t 
profit and J = {1} is a feasible solution. Next, job 4 i8 considered. The 
solution J = {1,4} is also feasible. Next, job 3 is considered and discarded 
as J = {1, 3, 4} i8 not feasible. Finally, job 2 is considered for inclusion into 
J. It is discarded as J = {1, 2, 4} is not feasible. Hence, we are left with 
the solution J = {1, 4} with value 127. This is the optimal solution for the 
given problem instance. Theorem 4.4 proves that the greedy algorithm just 
described always obtains an optimal solution to this sequencing problem. 

Before attempting the proof, let us see how we can determine whether 
a given J is a feasible solution. One obvious way is to try out all possible 
permutations of the jobs in J and check whether the jobs in J can be pro
cessed in any one of these permutations (sequences) without violating the 
deadlines. For a given permutation /J = ii, i2, i3, ... , ik, this is easy to do, 
since the earlie8t time job iq, 1 :::;_ q ::; k, will be completed is q. If q > diq, 
then using IJ, at least job iq will not be completed by its deadline. However, 
if I JI = i, this requires checking i! permutations. Actually, the feasibility 
of a set .J can be determined by checking only one permutation of the jobs 
in J. This permutation is any one of the permutations in which jobs are 
ordered in nondecreasing order of deadlines. 

Theorem 4.3 Let J be a set of k jobs and /J =ii, i2, ... , ik a permutation 
of jobs in J such that di 1 ::; di 2 ::; • • • ::; di,. Then J is a feasible solution iff 
the jobs in J can be proce8sed in the order /J without violating any deadline. 

Proof: Clearly, if the job8 in J can be processed in the order /J without 
violating any deadline, then J is a feasible solution. So, we have only to 
show that if J is fea8ible, then /J represents a possible order in which the 
jobs can be processed. If J is feasible, then there exists 1J

1 = Ti, T2, ... , Tk 

such that drq ~ q, 1 ::; q ::; k. Assume 1J
1 cl IJ. Then let a be the least index 

such that Ta cl ia· Let Tb = ia. Clearly, b > a. In IJ
1 we can interchange 

Ta and Tb· Since dra 2 drb' the resulting permutation IJ
11 = si, s2, ... , sk 

represents an order in which the jobs can be processed without violating 
a deadline. Continuing in thi8 way, 1J

1 can be transformed into /J without 
violating any deadline. Hence, the theorem is proved. D 

Theorem 4.3 is true even if the jobs have different processing times ti 2 0 
(see the exercises). 
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Theorem 4.4 The greedy method described above always obtains an opti
mal solution to the job sequencing problem. 

Proof: Let (Pi, di), 1 ::; i ::; n, define any instance of the job sequencing 
problem. Let I be the set of jobs selected by the greedy method. Let J 
be the set of jobs in an optimal solution. We now show that both I and J 
have the same profit values and so I is also optimal. We can assume I cl J 
as otherwise we have nothing to prove. Note that if J C I, then J cannot 
be optimal. Also, the case I C J is ruled out by the greedy method. So, 
there exist jobs a and b such that a E I, a tJ_ J, b E J, and b tJ_ I. Let a be 
a highest-profit job such that a E I and a tJ_ J. It follows from the greedy 
method that Pa ~ Pb for all jobs b that are in J but not in I. To see this, 
note that if Pb >Pa, then the greedy method would consider job b before job 
a and include it into I. 

Now, consider feasible schedules S1 and S1 for I and J respectively. Let 
i be a job such that i E I and i E J. Let i be scheduled from t to t + 1 in 
S1 and t' tot'+ 1 in S1. If t < t', then we can interchange the job (if any) 
scheduled in [t', t' + 1] in S1 with i. If no job is scheduled in [t', t' + 1] in I, 
then i is moved to [t', t' + l]. The resulting schedule is also feasible. If t' < t, 
then a similar transformation can be made in S1. In this way, we can obtain 
schedules S~ and S~ with the property that all jobs common to I and J are 
scheduled at the same time. Consider the interval [ta, ta+ 1] in S~ in which 
the job a (defined above) is scheduled. Let b be the job (if any) scheduled 
in S~ in this interval. From the choice of a,pa ~Pb· Scheduling a from ta 
to ta + 1 in s~ and discarding job b gives us a feasible schedule for job set 
J' = J- {b} U {a}. Clearly, J' has a profit value no less than that of J and 
differs from I in one less job than J does. 

By repeatedly using the transformation just described, J can be trans-
formed into I with no decrease in profit value. So I must be optimal. D 

A high-level description of the greedy algorithm just discussed appears 
as Algorithm 4.5. This algorithm constructs an optimal set J of jobs that 
can be processed by their due times. The selected jobs can be processed in 
the order given by Theorem 4.3. 

Now, let us see how to represent the set J and how to carry out the test 
of lines 7 and 8 in Algorithm 4.5. Theorem 4.3 tells us how to determine 
whether all jobs in J U { i} can be completed by their deadlines. We can 
avoid sorting the jobs in J each time by keeping the jobs in J ordered by 
deadlines. We can use an array d[l : n] to store the deadlines of the jobs 
in the order of their p-values. The set J itself can be represented by a one
dimensional array J[l : k] such that J[r], 1 ::; r ::; k are the jobs in J and 
d[ J[l ]] ::; d[ J[2]] ::; · · · ::; d[ J[k ]] . To test whether JU { i} is feasible, we have 
just to insert i into J preserving the deadline ordering and then verify that 
d[ J[r ]] ::; r, 1 ::; r ::; k + 1. The insertion of i into J is simplified by the use 
of a fictitious job 0 with d[O] = 0 and J[O] = 0. Note also that if job i is 
to be inserted at position q, then only the positions of jobs J[q], J[q + 1], 
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Algorithm GreedyJob(d, J, n) 
/ / J is a set of jobs that can be completed by their deadlines. 
{ 

.l:={l}; 
for i := 2 to n do 
{ 

if (all jobs in JU {i} can be completed 
by their deadlines) then J := .l U { i}; 

} 
10 } 

Algorithm 4.5 High-level description of job sequencing algorithm 
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... , J[k] are changed after the insertion. Hence, it is necessary to verify 
only that these jobs (and also job i) do not violate their deadlines following 
the insertion. The algorithm that results from this discussion is function 
JS (Algorithm 4.6). The algorithm assumes that the jobs are already sorted 
such that Pl 2: P2 2: · · · 2: Pn· Further it assumes that n 2: 1 and the deadline 
d[i] of job i is at least 1. Note that no job with d[i] < 1 can ever be finished 
by its deadline. Theorem 4.5 proves that JS is a correct implementation of 
the greedy strategy. 

Theorem 4.5 Function JS is a correct implementation of the greedy-based 
method described above. 

Proof: Since d[i] 2: 1, the job with the largest Pi will always be in the 
greedy solution. As the jobs are in nonincreasing order of the Pi 's, line 
8 in Algorithm 4.6 includes the job with largest Pi· The for loop of line 
10 considers the remaining jobs in the order required by the greedy method 
described earlier. At all times, the set of jobs already included in the solution 
is maintained in .J. If J[i], 1 ::; i ::; k, is the set already included, then J is 
such that d[J[i]] ::; d[J[i + 1]], 1 ::; i < k. This allows for easy application 
of the feasibility test of Theorem 4.3. When job i is being considered, the 
while loop of line 15 determines where in J this job has to be inserted. The 
use of a fictitious job 0 (line 7) allows easy insertion into position 1. Let w 
be such that d[J[w]] ::; d[i] and d[J[q]] > d[i], w < q::; k. If job i is included 
into J, then jobs .J[q], w < q ::; k, have to be moved one position up in J 
(line 19). From Theorem 4.3, it follows that such a move retains feasibility 
of .l iff d[J[q]] cl q, w < q ::; k. This condition is verified in line 15. In 
addition, i can be inserted at position w + 1 iff d[i] > w. This is verified in 
line 16 (noter= won exit from the while loop if d[J[q]] cl q, w < q::; k). 
The correctness of JS follows from these observations. D 
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Algorithm JS(d,j, n) 
I I d[i] 2: 1, 1 :S i :S n are the deadlines, n 2: 1. The jobs 
11 are ordered such that p[l] 2: p[2] 2: · · · 2: p[n]. J[i] 
I I is the ith job in the optimal solution, 1 :S i :S k. 
I I Also, at termination d[J[i]] :S d[J[i + 1]], 1 :Si< k. 
{ 

d[O] := J[O] := O; I I Initialize. 
J[l] := 1; 11 Include job 1. 
k := 1; 
for i := 2 to n do 
{ 

} 

I I Consider jobs in nonincreasing order of p[i]. Find 
I I position for i and check feasibility of insertion. 
r := k; 
while ((d[J[r]] > d[i]) and (d[J[r]] -:f= r)) do r := r - 1; 
if ((d[J[r]] :S d[i]) and (d[i] > r)) then 
{ 

} 

I I Insert i into J[ ] . 
for q := k to (r+ 1) step -1 do J[q+ 1] := J[q]; 
J[r + 1] := i; k := k + 1; 

return k; 
24 } 

Algorithm 4.6 Greedy algorithm for sequencing unit time jobs with dead
lines and profits 

For JS there are two possible parameters in terms of which its complexity 
can be measured. We can use n, the number of jobs, and s, the number of 
jobs included in the solution J. The while loop of line 15 in Algorithm 4.6 is 
iterated at most k times. Each iteration takes 8(1) time. If the conditional 
of line 16 is true, then lines 19 and 20 are executed. These lines require 
8(k - r) time to insert job i. Hence, the total time for each iteration of 
the for loop of line 10 is 8(k). This loop is iterated n - 1 times. Ifs is 
the final value of k, that is, s is the number of jobs in the final solution, 
then the total time needed by algorithm JS is 8(sn). Since s :S n, the 
worst-case time, as a function of n alone is 8(n2

). If we consider the job 
set Pi = di = n - i + 1, 1 :S i :S n, then algorithm JS takes 8(n2

) time 
to determine J. Hence, the worst-case computing time for JS is 8(n2

). In 
addition to the space needed for d, JS needs 8(s) amount of space for J. 
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Note that the profit values are not needed by JS. It is sufficient to know that 
Pi 2: Pi+l, 1 ::; i < n. 

The computing time of JS can be reduced from O(n2
) to nearly O(n) 

by using the disjoint set union and find algorithms (see Section 2.5) and a 
different method to determine the feasibility of a partial solution. If J is a 
feasible subset of jobs, then we can determine the processing times for each 
of the jobs using the rule: if job i hasn't been assigned a processing time, 
then assign it to the slot [a - 1, a], where a is the largest integer r such 
that 1 ::; r ::; di and the slot [a - 1, a] is free. This rule simply delays the 
processing of job i as much as possible. Consequently, when J is being built 
up job by job, jobs already in J do not have to be moved from their assigned 
slots to accommodate the new job. If for the new job being considered there 
is no a as defined above, then it cannot be included in J. The proof of the 
validity of this statement is left as an exercise. 

Example 4.3 Let n = 5,(p1, ... ,p5) = (20,15,10,5,1) and (d1 1 ... ,d5) 
= (2, 2, 1, 3, 3). Using the above feasibility rule, we have 

J assigned slots job considered action profit 
(/J none 1 assign to [1, 2] 0 

{1} [1, 2] 2 assign to [O, 1] 20 
{1, 2} [O, 1], [1, 2] 3 cannot fit; reject 35 
{1, 2} [O, 1], [1, 2] 4 assign to [2, 3] 35 

{1, 2, 4} [O, 1], [1, 2], [2, 3] 5 reject 40 

The optimal solution is J = {1, 2,4} with a profit of 40. D 

Since there are only n jobs and each job takes one unit of time, it is 
necessary only to consider the time slots [1: - 1, i], 1 ::; i ::; b, such that 
b = min { n, max {di}}. One way to implement the above scheduling rule is 
to partition the time slots [i-1, i], 1 ::; i ::; b, into sets. We use i to represent 
the time slots [i - 1, i]. For any slot i, let ni be the largest integer such that 
ni ::; i and slot ni is free. To avoid end conditions, we introduce a fictitious 
slot [-1, OJ which is always free. Two slots i and j are in the same set iff 
ni = nj. Clearly, if i and j, i < j, are in the same set, then i, i + 1, i + 2, ... , j 
are in the same set. Associated with each set k of slots is a value f (k). Then 
f (k) = ni for all slots i in set k. Using the set representation of Section 2.5, 
each set is represented as a tree. The root node identifies the set. The 
function f is defined only for root nodes. Initially, all slots are free and we 
have b + 1 sets corresponding to the b + 1 slots [i - 1, i], 0 ::; i ::; b. At this 
time f ( i) = i, 0 ::; i ::; b. We use p( i) to link slot i into its set tree. With 
the conventions for the union and find algorithms of Section 2.5, p(i) = -1, 
0 ::; i ::; b, initially. If a job with deadline dis to be scheduled, then we need 
to find the root of the tree containing the slot min{n, d}. If this root is j, 
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then f (j) is the nearest free slot, provided f (j) -:/= 0. Having used this slot, 
the set with root j should be combined with the set containing slot f (j) - 1. 

Example 4.4 The trees defined by the p( i) 's for the first three iterations 
in Example 4.3 are shown in Figure 4.4. D 

trees 
job . 
. act10n 

considered 
J f 0 1 2 3 4 5 1,d 1 = 2 select 

0 8) 8) 8) 8) 8) 8) 
p(O) p(l) p(2) p(3) p(4) p(5) 

{ 1} f 0 1 3 4 5 2,d2 = 2 select 

8) ~) 8) 8) 8) 
p(O) 1 p(3) p(4) p(5) 

p(2) 

{ 1,2} f(l)=O f(3)=3 f(4)=4 f(5)=5 3,d3=l reject 

A 8) 8) 8) 
p(3) p(4) p(5) 

Figure 4.4 Fast job scheduling 

The fast algorithm appears as F JS (Algorithm 4. 7). Its computing time 
is readily observed to be O(na(2n, n)) (recall that a(2n, n) is the inverse 
of Ackermann's function defined in Section 2.5). It needs an additional 2n 
words of space for f and p. 
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1 Algorithm F JS( d, n, b, j) 
2 I I Find an optimal solution J[l : k]. It is assumed that 
3 11 p[l] ~p[2] ~ ... ~p[n] and that b = min{n,maxi(d[i])}. 
4 { 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 } 

I I Initially there are b + 1 single node trees. 
for i := 0 to b do J[i] := i; 
k := O; I I Initialize. 
for i := 1 to n do 
{ I I Use greedy rule. 

} 

q := CollapsingFind(min(n, d[i])); 
if (f[q] -:f= 0) then 
{ 

} 

k := k + 1; J[k] := i; I I Select job i. 
rn := CollapsingFind(f[q] - 1); 
WeightedUnion(m, q); 
f[q] := J[m]; 11 q may be new root. 

Algorithm 4. 7 Faster algorithm for job sequencing 

EXERCISES 
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1. You are given a set of n jobs. Associated with each job i is a processing 
time ti and a deadline di by which it must be completed. A feasible 
schedule is a permutation of the jobs such that if the jobs are processed 
in that order, then each job finishes by its deadline. Define a greedy 
schedule to be one in which the jobs are processed in nondecreasing 
order of deadlines. Show that if there exists a feasible schedule, then 
all greedy schedules are feasible. 

2. [Optimal assignment] Assume there are n workers and n jobs. Let Vij 

be the value of assigning worker i to job j. An assignment of workers to 
jobs corresponds to the assignment of 0 or 1 to the variables Xij, 1 ::::; i, 
j ::::; n. Then Xij = 1 means worker i is assigned to job j, and Xij = 0 
means that worker i is not assigned to job j. A valid assignment is 
one in which each worker is assigned to exactly one job and exactly 
one worker is assigned to any one job. The value of an assignment is 
Li Lj VijXij· 




