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INTRODUCTION 

This paper is devoted to one of the problems in the history of mathematics, namely, the history 
of the appearance of the basic arithmetic operations and, more specifically, the appearance of 
multiplication. 

I was repeatedly asked how the method of fast multiplication of multiplace numbers was found. 
In turn, 1 became interested in how the mankind arrived at the multiplication method that was 
the only known one before 1960 and was called the "ordinary", "well-known", "school", etc., 
multiplication. The aim of the present paper is to answer these questions. 

I will use various mathematical notions and symbols that were not, of course, known in the 
ancient times when arithmetic appeared. These notions make it possible to understand more 
correctly and to interpret more meaningfully the essence of this matter from the mathematical 
standpoint. 

The history of mathematics deals primarily with the mathematical problems that have attained 
a high degree of abstractness and a high degree of development. In this case the related math
ematical notions ha ve already been defined, the hypotheses and the proofs of the theorems ha ve 
been stated, and the theories have been constructed. This substantially simplifies the task of the 
investigator because his position of that of his ancient opponent are equalized to a notable degree. 
Both of them can apply similar logical arguments, use literal notation, and so on. For instance, 
extensive investigations are devoted to the Pythagorean school, Euclid 's Elements, and the works 
by Archimedes and Diophantus. However, it is interesting and significant to know when one or an
other notion (method or technique) was devised (found) and what caused the invention (discovery) 
of this notion (method or technique). 

In what follows we will assume that the numbers are represented in the binary number system. 
The symbols O and 1 in this system are called bits. The operation of recording a sign, adding, sub
tracting, or multiplying two bits, or writing parentheses is regarded as one bit operation (sometimes 

called an elementary operation or, simply, an operation). When speaking about an operation, we 
will always mean a bit operation if this is clear from the context. 

l. INFORMATION THEORY, COMPUTERS AND THEIR ROLE IN THE DEVELOPMENT 
OF CYBERNETICS 

Information transmission theory and the creation of computers stimulated the development of 
mathematical cybernetics. Beginning with the 50s A.N. Kolmogorov worked actively in this area 
of mathematics, and he was the first to formulate problems on computational complexity (about 
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1956). Kolmogorov emphasized (see [1, p. 251]) that " ... the series of my works on information 
theory was created late in the 50s and 60s under a strong influence of publications by Norbert 
Wiener and Claude Shannon {1948)." 

2. ENTROPY AND THE COMPLEXITY OF THE TABULATION PROBLEM 

By that time the notion of entropy of discrete sets introduced by Shannon had already been 
widely applied, for instance, in the works by Kolmogorov [2) and Vitushkin [3). For example, 

Vitushkin wrote in his monograph [3, pp. 18, 19): 

"Definition (Shannon). Let X be aset consisting ofn elements x 1,x2, • • • ,Xn. The number 

H(X) = log n is called the entropy of the set X. Thus, the number H(X) defined by the power 

of the set X shows of how many of (binary) places the most economical table for x E X must be 
formed." 

In particular, given the positive integers less than 2m, whose number is 2m - 1, it suffices to 
have m binary digits to represent these numbers in the binary number system. 

In the above-mentioned monograph by Vitushkin sorne of his original works on estimating the 
tabulation complexity (i.e., the complexity of an approximate tabular representation) for different 

function classes are presented. Hence, a very clear idea of complexity had already existed at the 
end of the 50s. 

3. COMPUTATIONAL COMPLEXITY 

We will consider the simplest situation. Let f = f(x) be a real-valued function of a real 

argument x, a :S x :S b, and let f(x) satisfy on (a, b) the Lipschitz condition of arder a, O <a< 1, 

x2 E (a, b), i.e., let the inequality 

hold for X¡, x2 E (a, b). 
Let n be a positive integer. 
Definition l. To evaluate f ( x) at the point x = x0 E (a, b) to within n places means to find 

a number A such that 
lf(xo) -Al :S 2-n · 

Definition 2. The infimum of the number of bit operations sufficient for evaluating f(x) at 

the point x = x0 to within n places is called the computational complexity for f(x) at the point 
X= x0• 

Thus, the computational complexity for f(x) at the point x = x0 is a function of n and, of 

course, of J(x) and x0 • We will denote this function by 

and call it the computational complexity for f. The question arises asto what the behavior of S1(n) 
is as n -t +oo for a class of functions f or for sorne concrete functions f. The problem was stated 
in this way by Kolmogorov in about 1956 (perhaps not exactly in these words but, essentially, in 

this very form; for the statement of the problem see [4, 5]). In particular, Ofman, who is one of the 
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first investigators of S1 (n), wrote in [5, p. 51]: "I obtained the presented results when working on 
& broader investigation program that was outlined by A.N. Kolmogorov. The further development 
turned out to be more difficult. Difficulties appear even in estimating the algorithmic complexity 
of the ordinary multiplication of binary m-digit numbers." 

To find an upper estímate for S1 (n), the algorithms are constructed with whose aid the quantity 

A is calculated. For a concrete algorithm, the number of bit operations used in this algorithm 

is estimated. This number is exactly an upper estímate for S1 (n). Since the four arithmetical 

operations, namely, addition, subtraction, multiplication, and division are first of all used, it is 
necessary to know the number of bit operations which is sufficient for performing these operations. 
Definitions 1 and 2 imply that the numbers x0 and A can be represented in the forro of the integraí 
part and m = en binary digits after the binary point, i.e., 

where éi, 8i =O or 1, j = 1, 2, ... , m, m= en, and e= e( a) > O is a constant. Since the integral 

pa.rts [A] and (x0] are fixed, and n-+ +oo, the operations are, in fact, performed on m-digit numbers 
or, after the replacernent of m by n, on n-digit nurnbers. 

Therefore, the prirnary problern in the complexity theory is the problem of estimating the 
number of bit operations sufficient for calculating the sum, difference, product, and quotient of two 
n-digit nurnbers a and b. Note that division (with a remainder) reduces to addition, subtraction, 

and multiplication of numbers (this problem will be discussed in greater detail sornewhat later). 

Thus, let a and b be two n-digit numbers (for simplicity, integers) represented in the binary 
number system. Their representation requires 2n bit operations. Consequently, the complexity of 

addition (subtraction) of two n-digit numbers is not less than 3n. At the same time, when adding 

(subtracting) in an ordinary manner, we perform at most 4n bit operations. Hence, the arder of the 
number of bit operations which are necessary and sufficient for performing addition and subtraction 
is the same. 

The next problem relates to the number of operations sufficient for cornputing ab. lt is easy to see 
(this was imrnediately pointed out by Kolmogorov) that this problem is equivalent to investigating 

the behavior of S1(n), where f = f(x) = x2 • lndeed, we have 

and, hence, the complexity of computing ab reduces to the complexity of computing x 2
• The 

function S¡(n) for f = x2 is denoted by M(n). Thus, M(n) is the complexity of computing a2
, 

where a is an n-digit number (or the complexity of multiplication of two n-digit numbers). 

4. OML ALGORITHM AND ITS COMPLEXITY 

The multiplication method, which is considered to be standard, is the long (column) multipli

cation. In what follows, we will refer to it as OML (Ordinary Multiplication). This method was 

created (found) very long ago. A similar method was already widely used as early as the times 
of ancient Sumerians and Egyptians, i.e., more than four thousand years ago, and there is every 
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reason to believe that it has existed for at Ieast six millennia. The appearance of OML will be 
discussed below in greater detail. We shall now estímate M(n) using the OML algorithm. Let the 

number a contain at least n/2 unities in its binary representation. Then the table of numbers that 

corresponds to a2 and OML and must still be added up contains at least n2 /2 bits (and no more 

than 2n2 bits). No more than 8n2 operations are required for adding n at most 2n-digit numbers. 

Thus, we derive the following estima tes for M ( n): 

or, if we are interested only in an upper estímate, M(n) = O(n2). 

5. KOLMOGOROV n2 CONJECTURE 

In 1956 ( or a little earlier) Kolmogorov put forward the conjecture that the lower estímate for 

M(n) is of the order of n2 • lt is natural to call it the Kolmogorov n2 conjecture. Probably, its 

appearance is based on the fact that throughout the history of mankind people have been using the 

OML whose complexity is O(n2), and if a more economical method existed, it would have already 
been found. 

In particular, this conjecture was discussed at one of the meetings of the Moscow Mathematical 
Society in 1956. There Kolmogorov spoke about the "Czech" method for representing numbers 

(the Czech number system or, briefly, CSS) in a given system of residue classes and about the 
multiplication complexity in CSS. The CSS was suggested by the Czech researchers Svoboda and 
Valach in [6]. Let p 1 < p2 < ... < p~; be prime numbers. Then, every positive integer a that is less 

than p1p2 ••• p~; can be uniquely represented in the (CSS) form 

where 
O ~ a; < Pi , j = 1, ... , k. 

Addition, subtraction, and multiplication of numbers in CSS are performed digit by digit. Let us 
estímate multiplication complexity in CSS. Let a and b be n-digit positive integers, i.e., a < 2n 
and b < 2n, let Pi be successive prime numbers beginning with p1 = 2, and let k be the smallest 
positive integer satisfying the condition 

2n < P1P2 · · • P1:· 

The definition of k and the well-known law of distribution of prime numbers imply that 

1:-1 k 

L:Iogp; ~ n log2 < L:logpi, 
i=l i=l 

n x L log p x k log k, 
p$klogk 

i.e., k is of the order of njiogn. Moreover, each number Pi is of the order of j logj, i.e., each ai 

is of the order of j log j, j 2: 2. To find a2 , 

2 rv ( 2 2 2) a = ap a2 , ••• , al: , 
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we have to determine aJ, 1 ~ j ~k. The number of binary digits in ai is of the arder of logj, the 

computational complexity for aj (we use OML) is O(log2j), and the computational complexity for 

a2 in CSS is a quantity of the arder of 

k 

í:log2j =o( -
1 

n log2n) = O(n logn). 
i=l ogn 

Vitushkin made the following remark concerning this estimates: "lf the people lived in CSS, then 
the n 2 conjecture would not exist." Kolmogorov replied that number systems (NS) appeared in 
measurements and were meant for measuring quantities and, in particular, comparing the measured 
quantities (measurement is, in fact, nothing other than the comparison of a measured quantity 

to a standard). However, in CSS it is impossible to find out which of the two given numbers 

a~ (a¡, a2 , ••• , at) and b ~ (b1, b2, ••• , bt) is larger (smaller) until each of them is represented in a 
positional NS. It is clear that the conversion of a and b from a positional NS to CSS or vice versa 

requires a large number of operations, and therefore no improvement of the estímate for M(n) can 

be obtained in this way. 
The natural character of assumptions similar to the n2 conjecture was noted, for instance, by 

Babenko in [7, p. 5]: "lt is well-known how important a good number system is for the development 
of science, and even in ancient Babylonia we find the excellent sexagesimal system for integers and 
fractions. As regards number systems and calculation techniques, it seems that the final and best 
solutions were found in science long ago." 

6. DISPROOF OF THE n2 CONJECTURE 

In the autumn of 1960 a seminar on mathematical problems in cybernetics was held at the 
Faculty of Mechanics and Mathematics at Moscow U niversity under the guidance of Kolmogorov, 

where Kolmogorov stated the n 2 conjecture and posed sorne problems concerning the estimation 
of the complexity of the solution of linear systems of equations and sorne other similar kinds of 
computations. 1 began to think actively about the n2 conjecture, and exactly within a week 1 

found that the algorithm with whose aid 1 hoped to derive a lower estímate for M(n) provided an 

estímate of the form 
log23 = 1.5849 .... 

After the next seminar 1 told Kolmogorov about the new algorithm and about the disproof of the n 2 

conjecture. Kolmogorov was very agitated because this contradicted his very plausible conjecture. 
At the next meeting of the seminar, Kolmogorov himself told the participants about my method, 
and at this point the seminar was terminated. Later in 1962 Kolmogorov wrote a short article 
(probably in collaboration with Ofman) and published it in Doklady Akad. Nauk SSSR. The article 
was entitled: A. Karatsuba and Yu. Ofman, "Multiplication of Multiplace Numbers on Automata" 
(Doklady Akad. Nauk SSSR, vol. 145, No. 2, pp. 293-294). I learned about the article only when 1 

was given its reprints. The unusual character of this publication was also characterized by the fact 

that Kolmogorov presented for publication two papers [5] and [8) simultaneously on February 13, 
1962. 

This started an intensive activity in this area of applied mathematics which was called "fast 
computations." lt is still in progress. lt will be discussed in greater detail below. 
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7. KML ALGORITHM AND ITS COMPLEXITY 

In this section 1 present my algorithm for multiplying numbers. Now it is caBed the KML 

algorithm or, briefly, KML (Karatsuba Multiplication) (e.g., see [9]). 
As was noted, multiplication of two numbers reduces to squaring a number. For instance, it is 

required to square an n-digit number a. Without loss of generality, we assume that n = 2m. We 
representa in the following form: a= 2n•a1 + a2 , 2n1 = n, where a 1 and a2 are n 1-digit numbers. 
We have 

Moreover, 

i.e., 

(1) 

Since a 1 and a2 are n 1-digit numbers, the sum a1 + a2 is, at most, an (n1 + 1)-digit number. 

Therefore it can be represented as 
a1 + a2 = é + 2a3 , 

where é =O or 1 and a3 is an n 1-digit number. Consequently, 

It follows from (1) and (2) that 

(2) 

(3) 

We will compute a2 according to (3). Let <p(n) be the number of (bit) operations sufficient for 

computing the square of an n-digit number with the use of relation (3). The right-hand side of (3) 
shows that it is necessary to square three n 1-digit numbers, namely, a 1 , a2 , and a3 ; this requires 

3<p(n1) operations. Then each of the resulting values must be multiplied by one of the numbers 

2n, 2n•, and 2n•+2 , which requires at most 6n operations (multiplication by a power of 2 reduces 

to adding an appropriate number of zeros on the right of the multiplicand). Then it is necessary 

to add together (we mean an algebraic sum) seven, at most, 2n-digit numbers, which requires no 

more than 
4 · 2n · 4 + 4(2n + 2) · 2 + 4(2n + 2) = 56n + 24 

operations. Thus we derive for <p(n) the inequality 

<p(n) ~ 3<p(n1) + 6n + 56n + 24 ~ 3<p(n1) + 70n. (4) 

Furthermore, setting 2ni+l =ni, j = 1, ... , m- 1, we obtain 

(5) 

Since ni+1 = 2m-j-l, we have nm = 1 and, trivially, <p(1) = l. Using (4) and (5) we can prove by 

induction that the inequality 

(6) 
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holds for j ~ l. Indeed, this is true for j = l. Assuming that this relation holds true for j, we 
prove it for j + 1 ::; m. The substitution of (5) into (6) results in 

cp(n) ::; 3i+1cp(ni+I) + 3i · 70n; + 3i-l · 70n;_ 1 + ... + 3 · 70n1 + 70n, 

which is what we had to prove. 

We now set j =m, cp(nm) = cp(1) = 1, and n; = 2m-j in (6) and obtain 

cp(n) ::; am + 3m-l . 70nm-1 +3m-2 . 70nm-2 + ... + 3. 70n¡ + 70n 

=3m+ 3m-l · 70 · 2 +3m-2 · 70 · 22 + . .. + 3 · 70 · 2m-l + 70 ·2m 

( 2 (2)2 (2)m-l (2)m) ( 2) -1 = 3m 1 + 70 · 3 + 70 · 3 + ... + 70 · 3 + 70 · 3 < 70 • 3m · 1 - 3 = 210 • 3m. 

Since n = 2m, m = log2n, we have 

cp(n) < 210n1og,s, log23 = 1.5849 .... 

In particular, it follows that 

i.e., the n2 conjecture is disproved . 
Note that when estimating cp( n), we overestimated the related constants intentionally so that all 

calculations become as simple as possible. These calculations can be performed more economically, 
and this will result in a much smaller constant than 210. Practica! application of KML will be 
discussed later. 

There also exists an alternative version of KML, in which two n-digit numbers a and b are 
multiplied directly. As before, we represent a and b in the form 

and find 

2n1 = n, 

ab = (2n'a1 + a2)(2n'b1 + b2) = 2na1b1 + 2n'(a2bl + a1b2) + a2b2 

= 2na1b1- 2n'a1b1 + a2b2- 2n'a2b2 + 2n' (al+ a2)(b1 + b2)· (7) 

In this relation we have three products of the form a1b1 , a2b2 , and (a1 + a2 )(b1 + b2). Each of the 

factors is at most an (n1 + 1)-digit number. We again denote by cp(n) the number of operations 

sufficient for computing products of two n-digit numbers with the use of relation (7) and obtaín 

the ínequality 

<p(n) < 3<p(n1) +en, 

where e> O is an absolute constant and 2n1 = n. This relation gíves the estímate 

where e1 > O is an absolute constant. 
lt is quite clear that by splitting a and b into a greater than two number of summands, we 

can derive a more accurate estímate for M ( n). A little la ter we will discuss in detail the further 

development offast computations and sorne refined estimates for M(n). Now we turn to the ancient 

history of fast computations. 
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8. ANCIENT ARITHMETIC 

Horno sapience has been performing calculations beginning with the prehistoric times. These 
calculations were the most primitive: addition, subtraction, multiplication, and division of small 
numbers. Arithmetic and, along with it, mathematics appeared only when large numbers were 

encountered. Indeed, if a and b are small numbers (of the order of unity), then, in our terminology, 

the complexity ofthe operations a+b, a-b, and ab = a+a+ ... +a is 0(1), and there is no essential 
distinctions between them. However, if a and b are n-digit numbers, the additive operations, i.e., 

addition and subtraction, require O(n) operations, whereas the computation of the product ab 

defined as a result of repeated addition requires O(n2") operations. This fact characterizes the 
fundamental distinction between multiplication and addition or subtraction. The operation of 
division of a by b with a remainder, a = bq + r, O ~ r < b, is of the same complexity (division 

is performed as a successive subtraction of the numbers b from a, i.e., a - (b + b + ... + b) = r, 

O~r<b). 

1 also want to point out that at the present time it is known that sorne animals are capable of 
adding, subtracting, and, hence, multiplying small numbers. 

When people started dealing with large numbers, it was quite natural that positional NS's were 
to appear first. A rather detailed study of this problem was carried out by specialists in the history 

of mathematics (e.g., see (7, 10-13]), and 1 will not dwell on it. 

People added, subtracted, multiplied and divided numbers. The first division techniques were 
rather primitive, and the divisors were small numbers or sorne special kinds of numbers. Everything 

that is connected with division has also been investigated in detail in [10, 11]. For the time being, 
we will consider only the additive operations and multiplication. Note that these operations reached 
us in its original form. The place and time of their appearance were not determined exactly. The 
most ancient sources are the Sumerian cuneiform inscriptions, the Egyptian papyrus of Rhind, and 
the so-called Moscow papyrus, which is believed to be two centuries older than the Rhind papyrus. 
Future archeological discoveries may indicate that aríthmetíc appeared much earlier. There are 
hypotheses that in Africa there exist developed ancient civilizations which are no less than 20 
thousand years old. An indirect confirmation of these hypotheses is given by the photographic 
surveys of the American austronauts. However, all this is an object for future investigations. At 
present 1 want to consider only one problem, namely, an example of multiplication in the Rhind 
papyrus (see [10]). In all other sources the authors present their own examples to demonstrate the 

calculation methods of the ancients. 1 will present sorne facts from the works on this subject. 

The information about the Rhind papyrus in the monograph by Van der Waerden [10] is the 

following. The papyrus was written in Egypt about 1800 B.C. "The scribe Ahmose asserts that it 
stems from the original written in the Middle Kingdom (2000-1800 B.C.)." lt contains 84 problems 

devoted to calculation techniques and uses the decimal number system. Van der Waerden writes 
in his book: "Addition of these numbers encounters no difficulties because it is only necessary to 
calculate the numbers of unities, tens, hundreds, etc. Duplication is a special case of addition, and 
it is not difficult either. However, of extreme peculiarity is Multiplication. 

lt is performed by means of duplication and addition of the resulting values. Asan example, we 
first present the multiplication 12 x 12 in Problem No. 32 of the Rhind papyrus in the hieroglyphic 

representation (which must be read from right to left) and then in modern representation." 1 present 
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here only the modern version: 

1 12 
2 24 

/4 48 
/8 96 Sum is 144. 

177 

"Quadruplication and octuplication yield a 12-fold increase of the given number 12. The numbers 
that must be successively added together are marked by a backslash on the right (on the left in 

the "translation"). The result 144 is preceded by the hieroglyph dmd representing a scroll with a 

seal." Then Van der Waerden writes: "This Egyptian multiplication method is a basis of the en tire 
calculation technique. lt must be very ancient, but in this very form it was preserved until the 
Hellenistic epoch, and in the Greek schools it was called the "Egyptian" calculation. Even in the 
Middle Ages 'duplatio' (duplication) was considered to be asan independent operation." 

Another source is the monograph by Struik [13] where the Rhind papyrus containing 84 prob

lems is mentioned and also the Moscow papyrus (25 problems) , which is probably two centuries 
older. They present calculation techniques. Struik writes: "On the basis of this number system 
the Egyptians constructed primarily additive arithmetic, i.e., it is mainly aimed at reducing all 
multiplications to repeated additions. For instance, multiplication by 13 is obtained by multiplying 
first by 2, then by 4, then by 8, and then adding together the results of the multiplications by 4 
and by 8 and the original number. For example, to compute 13 X 11 they wrote 

and then added together all numbers marked by the asterisk, which gave 143. 
Here we see an interpretation of Egyptians' method, rather than the original example from the 

papyrus. 1 also give a quotation from the paper by Bashmakova and Yushkevich (see [12, p. 29]): 

"The Egyptian system is also of interest due to the role that the number 2 plays in it. Originally 
it probably served as the base of the number system ... Survivals of the binary system are reflected 
in Egyptians' multiplication method, which reduced to successive duplication and addition. For 
instance, to multiply the number n by 15, the Egyptians used the following (schematic) pattern: 

n · 15 = n(1 + 2 + 22 + 23
) = n · 1 + n · 2 + n · 22 + n · 23

, i.e., they represented the factor in the 
binary system and then performed the multiplication by each binary digit separately." 

In what follows, we will refer to the Egyptian multiplication method as EML. 

9. COMPLEXITY OF THE EML ALGORITHM 

lt is easy to formalize the EML and estímate its complexity. We represent b in the form of the 
binary expansion 

where 

O :S n 1 < n2 < ... < n - l. 
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Then ab can be represented as 

ab = a. 2n' +a. 2n2 + ... +a. 2n-l. (8) 

Beginning with a, we apply successive addition to obtain 

2 22 2n1 2n2 2n-l a, a, ... , a, ... , a, ... , a, 

i.e., in this way aH terms on the right-hand side of (8) are found. On adding these terms together, 

we determine ab. Each of the terms is, at most, an 2n-digit number, and the number of the 
terms is less than n. Therefore, the number of operations sufficient for computing the sum is 
O(n2 ). To find each of the numbers 2a, 22a, etc., we need O(n) operations, and, finaHy, the 

calcuiation of 2n-la also requires O(n) operations because each time we add together at most 

2n-digit numbers. Consequently, to obtain the terms on the right-hand side of (8), it suffices to 

perform O(n2 ) operations. Hence, the complexity of EML is O(na) and coincides with that of 

O M L. 

10. OML AS A DIRECT CONSEQUENCE OF EML 

It is easy to see that if the terms on the right-hand side of (8) are obtained not by a successive 
addition, but by adding an appropriate number of zeros on the right of a, then we obtain OML 
instead of EML. I believe that people arrived at OML immediately after the symbol O appeared. 

11. EML AS A THEORETICAL REALIZATION OF THE WEIGHING ON BEAM SCALES 

The basis for the appearance of EML was probably the weighing on beam scales with two pans. 

The fastest way for obtaining the weight a· 2n-l consists in that, with the initial weight a on the Ieft 
pan, one first obtains a on the right and thus receives a weight 2a; proceeding from 2a, one finds 
2 · 2a = 22a, and so on, until 2n-la is obtained. With aH weights of the form a, 2a, 22a, ... , 2n-la 
at one's disposal, one finds a weight ab, where bis an arbitrary n-digit number, by adding. This is 
just the EML algorithm, whose later modification is OML. Note that beam scales and the weighing 
on them also contributed to the appearance of the binary number system. 

Further conjectures in this direction lead to sorne new conclusions. Beam scales and the beams 
themselves appeared simultaneously with Horno sapience and even earlier. The simplest pair of 
scales is a man's two arms, and, hence, the very structure of the human body, i.e., the existence of 
arms, served as a basis for the appearance of the binary NS and the EML and OML methods. 

1 believe that the invention of beams, beam scales is as important for the mankind as the 
invention of the wheel. 

12. MODERN STATE OF FAST COMPUTATIONS 

Let us discuss briefly the further development of fast computations and the modern state of 
this line of investigation (after 1962). First of aH we will show that division reduces to addition, 
subtraction, and multiplication of numbers. 

lt has been mentioned, that division of a number a by a number b with a remainder, i.e., the 
calculation of the numbers q and r in the relation 

a= qb + r, O Sr< b, 
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reduces to addition, subtraction, and multiplication, and if a and b are at most n-digit numbers, 
then the complexity of the division of a by bis of the order of O(M(n)). 

First, one computes the number 1/b to within 2-n-l, i.e., the numbers é 1 , ... , én+l in the 
relation 

1 b =O, é1 • • .én+l + () · 2-n-l, IOI $ l. 

In this case q is equal to one of the following three numbers: [a· O,é1 ... én+1] ± 0.1. Consequently, 

the determination of q requires O(M(n)) operations. The numbers é 1 , ... , én+l can be found with 
the aid of the following lemma. 

Lemma. Let 1/2 < x < 1 and s = 1/x. If 

then, for su = xs~ - 2s~:, we have 

is- s2~:1 < T2k. 

The number 3/2 is taken as the first approximation, i.e., as s1 • The division is performed in (7] 

in this way (see also (14, 15]). 

13. ON SOME FAST ALGORITHMS STIMULATED BY KML 

The KML algorithm is a source and a prototype of all fast multiplications (for a brief survey of 

the history of this problem see (15]). This first of all relates to the Strassen algorithm for matrix 

multiplication {1969), which, in essence, is the application of KML to multiplication of matrices 

(see [16]). In this case, addition, subtraction, multiplication of two matrix elements, recording of a 
matrix element, and recording of an arithmetical operation are regarded as a single operation .. 

lndeed, as is known, matrices are multiplied "blockwise", i.e., if A and B have the form 

where A and B are n x n matrices, n = 2m, and A;i and B;i are n 1 x n1 matrices, 2n1 n, 

respective! y ( the "blocks" of the matrices A and B), then we ha ve 

where C;i are n 1 x n 1 matrices such that 

etc. Relations for the matrices C;i show that their determination requires 8 multiplications of 

n 1 x n 1 matrices and 4 additions. This algorithm provides an estímate of the form O(n3 ) for the 
multiplication of two n x n matrices. However, the ordinary multiplication of matrices also requires 

O( n3 ) operations. Strassen [16] found an identity which requires 7 rather than 8, multiplications 

of blocks and 18 additions. The Strassen identity has the following form. 
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Let 

Then 
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I = (A11 + A22)(B11 + B22), 
II = (A21 + A22)Bu, 
III = Au(Bt2- B22), 
IV = A22( -B11 + B21), 
V = (A11 + A12)B22, 
VI = ( -A11 + A21) (Bu+ B12), 
VII = (A12 - A22)(B21 + B22). 

C11 = I +IV - V+ VII, 
C21 = li +IV, 
C12 = III +V, 
C22 = 1 + III - II + VI. 

Therefore, if '1/J(n) is the complexity of multiplication of two n x n matrices, then the application 
of the Strassen identity results in 

,P(n) ~ 1'1/J(n/2) +en, 

log2 7 = 2, 807 ... , 

where e > O and c1 > O are absolute constants. It is clear that the Strassen estimate can be refined 
by partitioning the factors A and B into smaller blocks and finding a greater number of dependent 
multiplications. By now this has been performed by many authors, but the attempts to obtain 

,P(n) = O(n2+e), where é >O is an arbitrary number, have yet failed (1995). 

lt should be mentioned that Strassen was on probation for severa! months in 1965 under the 
guidance of Kolmogorov who familiarized him with the entire area of computational complexity 
and all the achievements in this field. 

Another fast method is the algorithm of fast (discrete) Fourier transform discovered by Cooley 

and Tukey in 1965 [17], which, I believe, was also stimulated by KML. In particular, Schonhage, 

Grotefeld, and Vetter [9] write about the KML method as a prototype of all types of fast multipli
cations. 

14. REFINEMENT OF KML 

As was mentioned, by splitting a into a large number of terms, i.e., representing a in the form 

where a0 , a 1 , a2 , ••• , ar are m-digit numbers and rm = n, we have 

where 

c.= L aiav. 
i+v=• 
OSi,vSr 

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 211 1995 



THE COMPLEXITY OF COMPUTATIONS 181 

The coefficients e, can be found from the system of equations 

2r 
(ao + a1x + a2x2 + ... + arxr)2 = ¿ e,x·, 

•=0 
where one should set x = O, ±1, ... , ±2r. By selecting the optimal value of r, we can find the 
corresponding estímate for M(n). In this way, the estímate for M(n) was refined by the three 

authors: Toom [18], Cook [19], and Schonhage [20]. The improved estímate is of the form 

(9) 

where e > O is an absolute constant. Note that Schonhage used a special residue arithmetic, which 
allowed him to diminish the constants in (9). 

Finally, in 1971 Schonhage and Strassen [21] constructed an algorithm with an upper estímate 

for M(n) that is at present the best: 

M(n) = O(n logn loglogn) . 

The construction of the Schonhage-Strassen algorithm is essentially based on the application of the 

fast Fourier transform (for computing e,). 

15. FAST COMPUTATION OF ALGEBRAIC AND SIMPLEST TRANSCENDENTAL 
FUNCTIONS 

If y= f(x) is an algebraic function, then we have 

S1 (n) = O(M(n)). 

The proof of this relation is essentially based on the Newton method of tangents; (see [7, 14]). If 

y= f(x) is a simplest transcendental functions (e.g., f(x) =ex, the inverse of ex, a trigonometric 

function, or sorne superposition of these functions and algebraic functions), then we have 

S1 (n) = O(M(n) log n). (10) 

The proof of this relation essentially uses an iterative method, elliptic integrals, AGM ( the Gaussian 

algorithm of arithmetic and geometric means), and the Landen transformation (see [22, 23]). 

16. FAST COMPUTATION OF HIGHER TRANSCENDENTAL FUNCTIONS 

If y= f(x) is a higher transcendental function (the Euler gamma function, a Bessel function, a 

hypergeometric function, etc.), then we have 

(11) 

Sorne results relating to this subject were published by Borwein and Borwein in [24] without 
presenting the computation algorithms and with an indication that these are iterative algorithms. 
In recent years E.A. Karatsuba suggested a new method for fast computation of the simplest and 
higher transcendental functions, which is not iterative, admits of paralleling, and called it FEE 

(fast evaluation of functions of the type of the Siegel .&functions) [25-27]. In particular, in these 

papers an interesting fact was revealed, namely estímate (11) is obtained for these functions on the 
condition that the parameters of the computed functions and the value of x0 are algebraic numbers 
(which is an exact analog of the well-known theorems in the theory of algebraic numbers). 
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17. IMPLEMENTATION OF FAST ALGORITHMS 

It is difficult to give an exhaustive survey of implementations of fast algorithms and, in particu
lar, KML, because, for instance, the KML algorithm, which has a very simple logical structure, can 
be realized with the aid of a microcircuit, and it is impossible to trace these implementations if they 
are not reflected in the project. Here I only point out the above-mentioned excellent monograph 
by Schonhage, Grotefeld, and Vetter (9], which presents the authors' results on the possibility of 
implementation of KML and the Schonhage-Strassen multiplication algorithm. 

In May 1981 1 gave my manuscript of a short article "Actual Computations" to Professor 
V.A. Mel'nikov, one of the leading supercomputer researchers in the USSR, where 1 suggested sorne 
realizations of fast computation algorithms for elementary functions, the simplest transcendental 
functions, and, of course, for KML. 1 have no information about any actual technological realization 
of these algorithms. 

18. LOWER ESTIMATES 

The problem of lower estimates for S 1 ( n) and, in particular, for M ( n), remains unsolved. In 
this area, nothing but sorne trivial results of the type 

n < M(n) 

are known. There are many results concerning lower estimates under sorne constraints on the 
algorithms used (e.g., see [7]), but this is quite a different line of investigation. We can state the 
following hypotheses: 

(I) 

(11) 

(III) 

sup M(n) = +oo; 
n n 

sup M(n) >O; 
n n log n 

sup s,(n) >o 
2 , 

n n 

where f(x) = r(x), x0 = 1r. However, at present no approaches to their proof are known. 

CONCLUSION 

In connection with the presented investigation that trace a way from the ancient times to 
the present day, I want to emphasize an important fact related to the modern development of 
mathematics. In recent decades, many investigators published a great number of mathematical 
works. Whereas the classics of mathematics regarded the science of mathematics as an objective 
refiection of reality, many of the new investigators do not share this opinion. They proclaim that 
mathematics is a result of pure imagination. Their task is to invent a notion, a theory, a proof, 
etc. As to the classics, they held to a quite different viewpoint on the work of a mathematician, 
which was reflected in their statements of the type "I found a solution to the problem," "1 found a 
proof', "I found a notion", etc. These two words to "invent" and to "find" demonstrate a profound 
distinction between the two tendencies in mathematics and between the two approaches to the 
mathematical investigation. 

1 express my deep gratitude to D.V. Senchenko for valuable remarks. 
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