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ABSTRACT

We present exact characterizations of structures on which the greedy a gorithm produces optimal solu-
tions. Our characterization, which we call matroid embeddings, complete the partial characterizations
of Rado, Gale, and Edmonds (matroids), and of Korte and Lovasz (greedoids). We show that the greedy
algorithm optimizesall linear objectivefunctionsif and only if the problem structure (phrased in terms of
either accessible set systems or hereditary languages) is a matroid embedding. We also present an exact
characterization of the objective functions optimized by the greedy algorithm on matroid embeddings.
Finally, we present an exact characterization of the structures on which the greedy algorithm optimizes
all bottleneck functions, structures which are less constrained than matroi d embeddings.

1 Introduction

Obtaining an exact characterization of the class of problems for which the greedy a gorithm returns an optimal solu-
tion hasbeen an open problem. Rado [9], Gale[ 3], and Edmonds| 1] independently showed that matroids characterize
asubclass of problems on which the greedy a gorithm always optimizes linear objectives; their results are limited by
the assumption that the greedy algorithm operates on a hereditary set system, whereas most common greedy algo-
rithms operate on set systems that do not obey the heredity axiom. Faigle [2] has provided an exact characterization
of the partially ordered set systems on which the greedy algorithm optimizes|linear objectives, but the assumption of
apartial order, which constrains the choices of the greedy algorithm, limits the characterization. Korte and Lovasz
[6, 7] have defined greedoids, a generalization of matroids, and have provided necessary and sufficient conditionsfor
the greedy algorithm to be optimal with respect to linear objectiveswhen run on greedoids. But greedoidsare bothtoo
general (the greedy algorithm need not return an optimal solution on agreedoid) and too constraining: there exist set
systems on which the greedy algorithm always optimizes linear objectives, but which are not greedoids. Goecke [4]
has given necessary and sufficient conditionsfor the optimization of linear objectivesover set systems by avariant of
the greedy algorithm, but his variant of the greedy algorithm (find any solution, partial or complete, which optimizes
the objective) doesnot fit well in many standard applicationsof the greedy al gorithm, in particular, applicationswhere
the objective function is to be minimized.

We solve the open problem by presenting three exact characterizations, al based on avery general model of the
problem structure:

1. anexact characterization, which we call amatroid embedding, of the structure of problemson which the greedy
algorithm optimizes al linear objectives;

2. asimilar characterization for bottleneck objectives; and
3. an exact characterization of the objective functions optimized by the greedy a gorithm on matroid embeddings.

Our presentation is in four parts. First we set the stage by briefly recalling the definitions and main existing results
pertaining to set systemsand the greedy algorithm. Next weintroduceadditional properties, relatethemtotheexisting
structures, and proveour mainresult. Inathird part, we extend theseresultsto afamily of objectivefunctionsand then
examine one particular class, the bottleneck functions, and give an exact characterization of the problems on which
the greedy algorithm optimizes these objectives. The fourth part extends our results from set systems to languages.
We conclude with some general observations and a number of open questions.



2 Prdiminaries

Weincludethissection for readers unfamiliar with the terminology; other readersmay wish to skip to the next section.
Let S be aset and C acollection of subsets of S; the pair (S,C) is called a set system. In order to simplify the
notation, welet ext(X) = {z | X U{z} € C }. A set systemisan accessible set systemif it obeysthe two axioms:

(trivial axiom) 0 € C
(accessibilityaxiom) If X € C and X # (), then 3z € X suchthat X — {z} € C.

In an accessible set system, (.9, C), the elements of C are called feasible sets; amaximal feasible set (i.e., one which
is not contained in any other) is called abasis. A set system is a hereditary set system (also known as a simplicial
complex or an independence structure) if it obeysthetrivial axiom and:

(heredityaxiom) If X e CandY C X, thenY € C.

Given an arbitrary, but non-empty set system (S, C), we defineits hereditary closure as the set system (.S, C*), where
C*={Y CX|Xec(}

Let (S,C) be aset system. An objective function is an assignment of values to the subsets of S, f:2° — R.
We define the optimization problem for f over (S, C) as the problem of finding abasis, B € C, such that f(B) =
max{ f(X) | X isabasisof (S,C) }. (Note that only bases are candidates for solution; further note that we restrict
our discussion to maximization problems. mutatismutandis, identical results hold for minimization problems.) Given
aweight assignment to the elements of S, w: S — R, the induced linear objective function is defined by f(X) =
> .ex w(z), for X C S, and the induced bottleneck objective function is defined by f(X) = min,ex w(x), for
XCaS.

Informally, the greedy algorithm, when run on a set system, builds a sol ution by beginning with the empty set and
successively adding the best remaining element while maintaining feasibility. (Korteand Lovasz [ 7] have considered
avariant known asthe wor st-out greedy algorithm; we do not pursueit further here.) The accessibility of aset system
allows any feasible set, and in particular any basis, to be built one element at atime from the empty set—a necessary
condition for the greedy a gorithm to succeed. Formally, we define the best-in greedy algorithm on an accessible set
system (S, C), with objective function f:2° — R, asfollows. The agorithm starts with the empty set, §; at each
step, 4, it chooses an element z; € S such that

0.

Definition 1. A feasibleset X isagreedy set under f if thereexistsasequence®, {z1 }, {x1, 22}, ..., {z1,. .., 2},
oo {2} = X of feasiblesubsetsof X suchthat, foreachi, f({z1,...,x;—1,2;}) = max{f({x1, ..
| {z1,...,z;_1,y} isfeasible}. A basiswith this property is called a greedy basis. a

The greedy algorithm, for any objective function f, can construct only greedy sets under f; using the proper tie-
breaking rule, it can construct any greedy set under f. We say that an accessible set system (S, C) is pathological
if there exist feasible sets A and B, with A C B, such that B is abasis and ext(4) = (. Due to the presence
of pathologies, the greedy algorithm can terminate at a set that is not a basis. One could, as a result, redefine the
optimization problem as the problem of finding a non-extensible set of maximal value. Our results hold under this
interpretation as well.

A greedoid is an accessible set system (.S, C) that obeys the following axiom:

(augmentationaxiom) If X,Y € Cand | X| = |Y|+ 1,thendz € X —Y suchthatY U {2} € C.

A matroid isahereditary set system that obeysthe augmentation axiom. (Notethat the bases of a greedoid or matroid
have equal cardinality and that pathologies cannot occur.) This axiom is often phrased more generally:

(exchangeaxiom) If X, Y e Cand Y| < | X|,then3z € X —Y suchthatY U {z} € C.

. 7xi717y})



In the presence of the trivial axiom, the exchange axiom is equivalent to the combination of the accessibility and
augmentation axioms.

Rado [9], Gale[3], and Edmonds[1] independently proved that the best-in greedy algorithm optimizesall linear
objective functions over a hereditary set system (S, C) if and only if (S,C) isamatroid. Korte and Lovasz [6, 7]
defined greedoidsand proved that the best-in greedy al gorithm optimizesall linear objectivefunctionsover agreedoid
(S,C) if and only if (S, C) obeysthe following axiom:

(strong exchange axiom) Let A, B € C,with B abasisand A C B. Ifz € S — Bissuchthat AU {z} € C, then
Jye B— Asuchthat AU{y} e CandBU {2} — {y} € C.

3 An Exact Characterization

We propose two new axioms in order to establish an exact characterization. The first is a strengthened version of
accessibility for bases. An accessible set system, (S, C), isextensibleif it obeysthe following axiom:

(extensibility axiom) If X and B arefeasible sets, with B abasisand X C B, then thereexistsy € B — X such
that X U {y} isfeasible.

Notethat every greedoidisextensible. Anaccessible set system, (.S, C), isclosure-congruent if it obeysthefollowing
axiom:

(closure-congruence axiom) VX € C,Vz,y € ext(X),VE C S — X —ext(X), X U{2}UEFE € C* =
XU{y}UE€ecC".

Example 1. Consider an accessible set system that model s the minimum spanning tree problem on some connected
graph G. The ground set is the set of edges of G and the feasible sets are the subtrees of G. The bases of (.5,C)
are then the spanning trees of G. If T is afeasible set, then we have ext(T') = { e | e has exactly one endpoint in
T'}. Thisset system is ageneralization of the setting of Prim’s algorithm (in which feasible setsare all subtreesof G
that include a designated vertex), yet remains more restrictive than the setting of Kruskal’s algorithm (in which the
feasible sets are the subforests of G). For this set system, the closure-congruence axiom reduces to the assertion:

Let T be any subtree of G, e and ¢’ two edgesin ext(T),and E C S — T — ext(T') any collection of
edges; then T'U {e} U E isasubforest of G (and hencein the hereditary closure of (S, C)) if and only if
T U {e'} U E isasubforest of G.

Itisreadily verified that thisconditionisobeyed. Forany E C S —T —ext(T),eachof TU{e}UE andTU{e'} UE
isasubforest if and only if £ isan acyclic collection of edges, each member of which isan edge with neither endpoint
inT. m|

Although every hereditary set system is closure-congruent (because, in a hereditary set system, the empty set is the
only choicefor E in the definition of closure-congruence), not every greedoid is closure-congruent.

Example2. Let (S,C) begivenby S = {a,b,c}andC = {0, {a}, {b}, {a,b}.{b, c}}; thisset systemisagreedoid,
butitisnot closure-congruent. Thehereditary closureof thisgreedoi disthematroidgivenby C = {0, {a}, {b}, {c}, {a, b}, {b, c}}.
The greedoid and its closure are shown below.

{a,b} {b, c} {a,b} {b, c}
{o}
{a} (v} {a} {c}
0 0
the greedoid its hereditary closure

To see that the closure-congruence axiom fails on this set system, consider X = (). Now, ext(0) = {a, b}, and take
E={c} CS—-0-{a,b}. Snce U {b} UE = {b,c}isinC and afortiori intheclosure, ) U {a} U E = {a,c}
should bein the closure, but it is not. a
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Figure 2: The Weight Assignments Used in Proving that C* isaMatroid

Greedoids that obey the strong exchange axiom are closure-congruent (a corollary of Theorem 1), but there exist
extensible, closure-congruent accessible set systemsthat do not obey the augmentati on axiom and hence do not define
greedoids: the set system of Example 1 (“Generalized Prim”) is one such.

Definition 2. A matroid embeddingisan accessible set system whichisextensible, closure-congruent, and the hered-
itary closure of which isamatroid. a

Our previousobservations about Example 1 show that it isamatroid embedding, yet not agreedoid. Indeed, thethree
conditions defining a matroid embedding are independent. Figure 1 shows the relationships among our axioms and
previously defined structures.

We can now prove our main result, which solves the open problem.

Theorem 1. Let (S, C) be an accessible set system; then the following are equiva ent:
1. For every positive weighted linear objective function, (S, C) has an optimal greedy basis.
2. (S,C) isamatroid embedding.

3. For every linear objective function, the greedy bases of (S, C) are exactly its optimal bases.

Proof: We provetheimplications (1) = (2) and (2) = (3); theimplication (3) = (1) istrivial.

(1) = (2) Webegin by showing that C* must be amatroid, aresult first derived by Helman [5]. Assume two sets,
X, Y e C*,with | X| = |Y| + 1, between which augmentation failsin C*. Since augmentation fails, no basis
that contains all of Y can contain any element of X — Y. We design a pair of weight assignments, w; and
we, such that: (i) the relative ordering of elements by weight is the same under both w; and w, and distinct
elements get assigned distinct weights in each weight assignment—so that w, and w» share the same unique
non-extensiblegreedy set; and (ii) w, and w, shareno optimal basis, thereby contradicting (1) and proving the
result. Figure 2 illustrates how the two weight assignments are chosen. Observe that, under w,, an optimal
basis cannot contain all of Y, while, under w,, an optimal basis must contain all of Y.

We now provethat (S, C) isextensible. Let A C B, A, B € C, with B abasis. Since (.9, C) isaccessible, there
exists a sequence of feasible sets 0, {z1}, {1, 22}, ..., {71, 29, ..., 2} = A; denote the ather elements of
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Sbyziit, Teya, .- ., 2. Weforcethe greedy algorithm to construct each set in the sequenceleadingto A by
assigning weights as follows:

w(z;) =41 forz; e B—A
€ forz;, € S— B.
Thus B is the unique optimal basis; since the greedy algorithm must start by constructing A, it can construct
B onlyif Aisextensbleto B, asdesired.

Finally, we show that (S,C) is closure-congruent. Let A € C, z,y € ext(A),and E C S — A — ext(A),
with AU {z} U E € C*. Inthe style of the previous construction, we force the greedy algorithm to construct
A, followed by the set A U {y}, by using aweight assignment that gives very high weights to elements of A
and E, high weightsto = and y, and very low weightsto all other elements. Since A U {z} U E € C* thereis
abasis B containing A U {z} U E. The greedy algorithm must begin by constructing A U {y} and constructs
some optimal basis B’; but thenwe must have E C B’ andthus AU {y} U E € C*.

{1+e/i for1<i<k

(2) = (3) (Notethat the structure of amatroid embedding ensuresthat all non-extensible sets are bases.) Assume
that, for somelinear objectivefunction f, somegreedy basis, B, isnot optimal. Let A beagreedy subset of B,
of maximal size, with the property that A iscontainedin someoptimal basis B. Since A itself cannot be abasis,
ext(A) isnotempty. Let x bean element that the greedy algorithmcanaddto A. Wehave AU{z} ¢ B, orelse
A U {z} would be agreedy subset of B, contained in B, contradicting the maximality of A. By extensibility,
thereexistsy € Bnext(A); st E = B— A—ext(A). Observethat AU {y}UE isinC*, so that, by closure-
congruence, sois AU {z} U E. Because (S, C*) isamatroid, we can apply theexchangeaxiomto AU {z} UE
with respect to B, yielding some basis B’. B and B’ differ by one element: B’ contains z at the expense of
some other element in ext(A), say z. Since the greedy algorithm chose to augment A with z, we know that
w(x) > w(z), sothat f(B') > f(B) and thus B’ is an optimal basis. But then A U {z} C B’ isagreedy
subset of B, which contradicts the maximality of A. A similar argument also shows that every optimal basis
is greedy: if some non-greedy optimal basis, B, exists, let A be its largest greedy subset; note that we must
have |B| > |A| + 2, since otherwise A can be extended to B and that extension must be greedy because B is
optimal. But then B’, produced as above, has alarger objective value than B, because, since AU {z} C B is
not greedy, we must have w(z) > w(z); hence B is not optimal, yielding the desired contradiction.

QE.D.

This theorem subsumes the results of Rado [9], Gale [3], and Edmonds [1], as well as Theorem 4.2 of Korte and
Lovasz [ 7]; moreimportantly, unlike these results, it provides an exact structural characterization of the problemson
which the best-in greedy algorithm worksfor all linear objectives.

4 Other Classes of Objective Functions

4.1 Consistent Functions
We identify the largest class of functionsto which the results of the previous section apply.
Definition 3. Let f( ) be an objective function and S the ground set.

e f()isconsistentif, givensetsT ¢ T’ C S and elementsz, y € S — T’, we have
FTU{a}) > f(TU{y}) = f(T" U{x}) > f(T" U {y});
o £( ) isstrictly consistent if we can further assert that
FTu{a}) > F(TU{y}) = f(T" U{x}) > f(T" U {y});

e f( )isweakly consistent if we strengthen the hypothesis used in consistency to exclude equality, i.e., if we
have

fTufa}) > f(TU{y}) = f(T"U{z}) = F(T" U{y}). 0



Note that linear objectives are strictly consistent, while bottleneck objectives are consistent.
Theorem 2. Let S beaset and f( ) afunction defined on 2.

1. f( ) isstrictly consistent if and only if, for each matroid embedding on S, the greedy bases are exactly the
optimal bases.

2. f()isconsistentif and only if, for each matroid embedding on S, all greedy bases are optimal.

3. f() isweskly consistent if and only if, for each matroid embedding on S, some greedy basisis optimal.
m|

Pr oof:

1. Toshow theonly if part, it isenough to observethat, in the proof of Theorem 1, theinequalitiesinvolving w(zx)
and w(z) can be replaced by inequalitiesinvolving f(A U {z}) and f(A U {z}). LettingT’ = B n B’, the
strict consistency of f leads to the same contradictions as in the previous proof.

Inorder to provetheif part, assumethat f( ) failsconsistency (strict or not) onsets 7', U and elementsx, y ¢ T,
withU N (T U {z,y}) = @. Consider the matroid embedding depicted below.

Tu{z}uU Tu{ytuU

TU{z} T U {y}
T

0

If £()isnotconsistent, thenwehave f(TU{x}) > f(TU{y}) andyetdso f(TU{z}uU) < f(TU{y}ul).
ButthenT U {2} U U isasuboptimal greedy basis, the desired contradiction. If f( ) isnot strictly consistent,
thenwehave f(TU{x}) > f(TU{y})andyetdso f(TU{z}uU) < f(TU{y}uU). ButthenT U{y}uU
isan optimal basis and yet is not greedy, the desired contradiction.

2. and 3. The same proof techniques apply, with the obvious changes.

Q.ED.

4.2 An Exact Characterization of Greedy Structuresfor Bottleneck Functions

Bottlenecks functions form an important subclass of consistent functions. Formally, we define a (smple) bottle-
neck function to be an objective function of the form f(A) = min,c4 w(z); by convention, we set () = 1 +
max,cs w(x). Our previous results show that the greedy algorithm is optimal for all bottleneck objective functions
when run on a matroid embedding. Korte and Lovasz [6] considered a generalization of bottleneck objectivesin
which the weight of an element is a non-decreasing function of the size of the feasible set in which it could be in-
cluded; they showed that the greedy algorithm s optimal for all such generalized bottleneck objectivesonly if the set
system definesa greedoid. Since not every matroid embeddingisagreedoid, thisresult does not hold when restricted
to simple bottleneck objectives.

The matroid embedding structure is not necessary to ensure optimality of the greedy algorithm for accessible set
systems with bottleneck objectives. In particular, it is easily verified that optimality for all bottleneck objectives on
an accessible set system does not imply that the hereditary closure of the set system isa matroid.

Example 3. Thesimple greedoid givenby S = {a, b, ¢,d} with feasible sets 0, {a}, {b}, {a, b}, {a,c}, and {b, d},
and pictured below with its hereditary closure, provides the desired counterexample.



{a,c} {a, b} {b,d} {a,c} {a, b} {b,d}
o) f) ) {d)

0 0
the greedoid its hereditary closure

The closurefailsaugmentation on, say, {c} and {b, d} and thusis not amatroid, but it is easily verified that the best-in
greedy algorithm optimizes all bottleneck objectives on this set system. |

Weintroduceamorerestricted property. Anaccessibleset system (.S, C) isstrongly extensibleif it obeysthefollowing
axiom:

(strong extensibility axiom) For any X, B € C, with B abasisand | X| < |B|, thereexistsz € B — X such that
Xu{z}eC.

The bases of any strongly extensible accessible set system are of the same cardinality; in fact, ahereditary set system
isstrongly extensibleif and only if it isamatroid.

Lemmal. Let(S,C) bean accessible set system. If, for every positive weighted bottleneck function f, there exists
agreedy basisthat is also optimal, then (S, C) is extensible and all of its bases have equal cardinality. a

Proof: Assumethat there existsabasis B and afeasible set, A C B such that either: (i) A isnon-extensible; or (ii)
foral z € ext(A), AU {z} € B. Weforcethe greedy algorithm to construct A by assigning suitable weights, aso
giving elementsof S — B very low weights. But now the greedy algorithm must terminate with asuboptimal feasible
set. If A is non-extensible, then it is the unique non-extensible greedy set, so that there does not exist an optimal
greedy basis, contrary to the hypothesis of the lemma. Otherwise, because A cannot be extended with an element
of B, any greedy basis contains an element of S — B and thusis not optimal.

Assumethat at |east two sizes of bases exist; let C' be an arbitrary non-minimal size basisand let B be a minimal
size basis, such that among al minimal size bases, B shares with C' alargest size feasible subset, A. Notethat A
is aproper subset of B and cannot itself be abasis. Since (S, C) isextensible and since A C C, there exists some
y € ext(A) suchthat A U {y} C C; notethat, by our assumption of maximality of A, y ¢ B. We force the greedy
algorithm to construct the set A U {y} and then to complete it in suboptimal manner by assigning suitable weights,
including very low weights for elements of S — B. Under such an assignment, basis B is optimal. The greedy bases
constructed must all contain AU {y} and, by our assumption of the maximality of A, havesizegreater than | B|. Thus
atleast | B — A| elementsmust beadded to A U {y}; since B isabasis, these elements cannot all comefrom B. Thus
all greedy bases are suboptimal, the desired contradiction.

Q.E.D.

Theorem 3. Let (S, C) be an accessible set system; then the following are equiva ent:
1. For every positive weighted bottleneck function, (S, C) has an optimal greedy basis.
2. (S,C) isstrongly extensible.

3. For every bottleneck function, (S, C) has at |east one greedy basis and all its greedy bases are optimal.

Proof: Asbefore, only two of the three implications are non-trivial.

(1) = (2) Assume that thereexist A, B € C, where B isabasis, with |A| < |B| and ext(4) N B = (. By
the previouslemma A must be extensible. We force the greedy algorithm to construct A and to extend it to a
suboptimal basis by assigning suitable weights, including very low weightsto elementsof S — B — A. Since A
cannot be extended by an element of B, every greedy basis has very low value, while B is an optimal basis
with higher value, the desired contradiction.



(2) = (3) (Note that any non-extensible set must be a basis, by strong extensibility.) For some assignment of
weights, assume that some greedy basis B is suboptimal. Let A be agreedy subset of B of maximal size that:
(i) the greedy algorithm can extend it to the greedy basis B; and (ii) is a subset of some optimal basis, B’.
Let A U {z} be a greedy set extensible to B. Since the set system is strongly extensible, there also exists
y € B' — Asuchthat A U {y} isfeasible, but note that A U {y} cannot be a greedy set extensibleto B, as
thiswould contradict the maximality of A. Since AU {y} C B’, wehave f(A U {y}) > f(B’'); sincethe set
systemisstrongly extensible (and thusallows AU {z} to be extended with elementsfrom some optimal basis),
since A ismaximal, and since the objective function is determined by the minimum weight of its arguments,
weasohave f(B') > f(AU{x}). Combining thesetwo inequalitiesyields f (AU {y}) > f(AU{z}), which
contradicts the fact that the greedy a gorithm can choose z.

QE.D.

5 Exact Characterizations of Greedy L anguages

While set systems have been the traditional setting for defining and studying greedy algorithms, several researchers
have recognized the desirability of extending the resultsto more general settings (Helman [5], Korteand Lovasz [6]).
In this section, we demonstrate that our exact characterizations extend directly to hereditary languages.

In the language world, feasible structures are ordered sets, or strings, generally called simple words. Let S be
aset and £ acollection of smple words on S; further let s(«) for each « € £ denote the (unordered) subset of .S
corresponding to « and let s(£) denote the collection of unordered subsets corresponding to the words of £—i.e.,
s(L)={A] A=s(a), a € L}. Wesay that (S, L) isahereditary word system (or hereditary language) if it obeys
the two axioms:

(trivial axiom) £ # 0
(heredity axiom) If a € £ and g isaprefix of a (i.e., « = 3~ for somestring ), thenalso 5 € L.

If (S, £) isahereditary language, we call the elements of £ feasible words and any feasible word a with the property
that there does not exist = € S with az € L iscaled abasic word. For any word a, let ext(a) denote the set
{z | ax € L}. Notethat, if (S, L) isahereditary language, then (S, s(£)) is an accessible set system. We define
the hereditary closure of a hereditary language, (S, £), to be the hereditary closure, (.S, s*(£)), of the corresponding
accessible set system, (.5, s(£)).

Thereisavery natural link between hereditary languagesand the greedy algorithm, as hereditary languagesrecord
the full history of the execution of the algorithm. Formally, the best-in greedy algorithm on a hereditary language
(S, £) with objectivefunction f: £ — R starts with the empty string \; at each step 7, it chooses an element x; € S
such that

1 z12o...2; € L; and
2. f(x1x2...xi) = max{f(xl...xi,ly) |x1 XY E E};

the algorithm terminateswhen it has constructed abasic word. A feasibleword ;x5 . . . z;, isagreedy word under f
if,foreach1 <i <k, f(zy...2;-12;) = max{ f(x1...2;_1y) | 21 ... 2,1y € L }. Given an objective function
on S, an objectivefunction f on wordsis, respectively, alinear, bottleneck, or consistent function if thereisalinear,
bottleneck, or consistent function ¢g on sets such that f(a) = g(s(«)) for al words a. Thisimpliesthat if 3 isa
permutation of «, then f(3) = f(«a), aproperty often called stability.

The necessary and sufficient conditions for hereditary languages are (essential ly) the obvious language versions
of the accessible set system conditions. Consider the following language version of each our axioms. A hereditary
language (S, £) isextensibleif it obeys:

(extensibility axiom) If o, 3 € L, fisabasicword, and s(a) C s(3), then 3z € s(5) — s(«) suchthat ax € L.
A hereditary language (S, £) is closure-congruent if it obeys:

(closure-congruenceaxiom) Va € L, Vz,y € ext(a), VE C S — s(a) — ext(a), s(a) U{z} UE € s*(L£) if and
onlyif s(a) U {y} UE € s*(L).



A hereditary language, (S, £), isstrongly extensibleif it obeys:
(strong extensibility axiom) If o, 3 € £, Bisabasicword, and |a| < |§], then3z € s(8) — s(a) suchthat ax € L.

Definition 4. A (language) matroid embedding is a hereditary language which is extensible, closure-congruent, and
the hereditary closure of which isamatroid. a

The situation regarding pathol ogiesis more complex for hereditary languagesthan for accessible set systems; we say
that a hereditary language is pathological if there exists a pair of basic words 3; and 82 such that s(3;) C s(52). In
the language world, pathologies appear natural: if a and 3 form a pathology, then this simply means that « cannot
be a prefix of j.

In spite of these differences, al of our theorems hold in their obvious rephrasing.

Theorem 4. Let (S, £) be ahereditary language; then the following are equivalent:
1. For every positive weighted linear objective function f, there exists an optimal greedy basic word.
2. (S, L) isamatroid embedding.

3. For every linear objective function, the greedy basic words are exactly the optimal basic words.
m|

The generalization to the language world is not trivial, in the sense that there exist distinct language-based matroid
embeddings corresponding to the same set-based matroid embedding; i.e., there exists alanguage-based matroid em-
bedding which contains two feasible words that are equal as sets but have different extension sets.

Example 4. Thelanguageover theground set {a, b, ¢, d} withwords ), a, b, ac, ab, ba, bd, acb, abe, bad, bda, abed,
acbd, badc, and bdac, pictured below, is a matroid embedding.

acbd abed  bade bdac

Note that the words ab and ba are equal as sets, yet we have ext(ab) = {c}, but ext(ba) = {d}. A second language-
based matroid embedding corresponding to the same set-based matroid embedding can be constructed by first building
the set-based matroid embedding, then building the new language-based matroid embedding by including afeasible
word for each accessibility path in the set system. a

This result should be contrasted with atheorem of Korte and Lovasz [6] showing that greedoids do not give rise to
such situations.

The results presented so far for hereditary languages completely parallel those for accessible set systems. The
sameis amost true for the class of bottleneck functions. However, certain pathologies (that can occur in hereditary
languagesbut not in set systems) allow the greedy algorithm to optimize all bottleneck functionson languagesthat fail
to obey even the weaker of the extensibility axioms. By proving results paralleling Lemma 1 and Theorem 3, we can
establish the following exact characterization of greedy optimality for bottleneck functions on hereditary languages.

Theorem 5. Thebest-in greedy algorithm run on ahereditary language optimizesall bottleneck functionsif and only
if the languageis strongly extensible (except with respect to pairs of sets that form pathologies). a



6 Conclusion

We have presented exact characterizations of problem structures on which the greedy algorithm optimizes linear,
bottleneck, and, more generally, consistent obj ectivefunctions. These exact characterizationsapply bothto accessible
set systems and hereditary languages and answer questions raised, and only partially answered, by Edmonds, Korte
and Lovasz, and others.

Our results provide a framework for future research: what are additional structural properties of matroid embed-
dings? how can constraints about the objective function be traded against constraints on the language structure? A
consequenceof our resultsisthat thelinear objectivesarethe hardest of all consistent objectivesto optimizeby greedy
methods on matroid embeddings, in the sensethat, if they are optimized, then so too isany other consistent objective.
This suggests a study of families of objective functionsaong much the samelines as classical complexity theory; in
thisdirection, Lengauer and Theune[8] have demonstrated reductionsamong cost functionsfor path problems. Now
that we have a proper setting for optimal greedy a gorithms, we can investigate the complexity of such algorithms.
This problem is harder than it may seem, since much of the structure used is given implicitly, by afeasibility oracle
or some such theoretical construct: an efficient greedy algorithm results from both afast feasibility check and afast
identification of the best extension.
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