
An Exact Characterization of Greedy Structures

Paul Helman, Bernard M.E. Moret, and Henry D. Shapiro

Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

ABSTRACT

We present exact characterizations of structures on which the greedy algorithm produces optimal solu-
tions. Our characterization, which we call matroid embeddings, complete the partial characterizations
of Rado, Gale, and Edmonds (matroids), and of Korte and Lovasz (greedoids). We show that the greedy
algorithm optimizes all linear objective functions if and only if the problem structure (phrased in terms of
either accessible set systems or hereditary languages) is a matroid embedding. We also present an exact
characterization of the objective functions optimized by the greedy algorithm on matroid embeddings.
Finally, we present an exact characterization of the structures on which the greedy algorithm optimizes
all bottleneck functions, structures which are less constrained than matroid embeddings.

1 Introduction

Obtaining an exact characterization of the class of problems for which the greedy algorithm returns an optimal solu-
tion has been an open problem. Rado [9], Gale [3], and Edmonds [1] independently showed that matroids characterize
a subclass of problems on which the greedy algorithm always optimizes linear objectives; their results are limited by
the assumption that the greedy algorithm operates on a hereditary set system, whereas most common greedy algo-
rithms operate on set systems that do not obey the heredity axiom. Faigle [2] has provided an exact characterization
of the partially ordered set systems on which the greedy algorithm optimizes linear objectives, but the assumption of
a partial order, which constrains the choices of the greedy algorithm, limits the characterization. Korte and Lovasz
[6; 7] have defined greedoids, a generalization of matroids, and have provided necessary and sufficient conditions for
the greedy algorithm to be optimal with respect to linear objectives when run on greedoids. But greedoids are both too
general (the greedy algorithm need not return an optimal solution on a greedoid) and too constraining: there exist set
systems on which the greedy algorithm always optimizes linear objectives, but which are not greedoids. Goecke [4]
has given necessary and sufficient conditions for the optimization of linear objectives over set systems by a variant of
the greedy algorithm, but his variant of the greedy algorithm (find any solution, partial or complete, which optimizes
the objective) does not fit well in many standard applications of the greedy algorithm, in particular, applications where
the objective function is to be minimized.

We solve the open problem by presenting three exact characterizations, all based on a very general model of the
problem structure:

1. an exact characterization, which we call a matroid embedding, of the structure of problems on which the greedy
algorithm optimizes all linear objectives;

2. a similar characterization for bottleneck objectives; and

3. an exact characterization of the objective functions optimized by the greedy algorithm on matroid embeddings.

Our presentation is in four parts. First we set the stage by briefly recalling the definitions and main existing results
pertaining to set systems and the greedy algorithm. Next we introduce additional properties, relate them to the existing
structures, and prove our main result. In a third part, we extend these results to a family of objective functions and then
examine one particular class, the bottleneck functions, and give an exact characterization of the problems on which
the greedy algorithm optimizes these objectives. The fourth part extends our results from set systems to languages.
We conclude with some general observations and a number of open questions.

2 Preliminaries

We include this section for readers unfamiliar with the terminology; other readers may wish to skip to the next section.
Let S be a set and C a collection of subsets of S; the pair (S; C) is called a set system. In order to simplify the

notation, we let ext(X) = fx j X [fxg 2 C g. A set system is an accessible set system if it obeys the two axioms:

(trivial axiom) ; 2 C
(accessibility axiom) If X 2 C and X 6= ;, then 9x 2 X such that X � fxg 2 C.

In an accessible set system, (S; C), the elements of C are called feasible sets; a maximal feasible set (i.e., one which
is not contained in any other) is called a basis. A set system is a hereditary set system (also known as a simplicial
complex or an independence structure) if it obeys the trivial axiom and:

(heredity axiom) If X 2 C and Y � X , then Y 2 C.

Given an arbitrary, but non-empty set system (S; C), we define its hereditary closure as the set system (S; C�), whereC� = fY � X j X 2 Cg.
Let (S; C) be a set system. An objective function is an assignment of values to the subsets of S, f : 2S ! R.

We define the optimization problem for f over (S; C) as the problem of finding a basis, B 2 C, such that f(B) =maxf f(X) j X is a basis of (S; C) g. (Note that only bases are candidates for solution; further note that we restrict
our discussion to maximization problems: mutatis mutandis, identical results hold for minimization problems.) Given
a weight assignment to the elements of S, w:S ! R, the induced linear objective function is defined by f(X) =Px2X w(x), for X � S, and the induced bottleneck objective function is defined by f(X) = minx2X w(x), forX � S.

Informally, the greedy algorithm, when run on a set system, builds a solution by beginning with the empty set and
successively adding the best remaining element while maintaining feasibility. (Korte and Lovasz [7] have considered
a variant known as the worst-out greedy algorithm; we do not pursue it further here.) The accessibility of a set system
allows any feasible set, and in particular any basis, to be built one element at a time from the empty set—a necessary
condition for the greedy algorithm to succeed. Formally, we define the best-in greedy algorithm on an accessible set
system (S; C), with objective function f : 2S ! R, as follows. The algorithm starts with the empty set, ;; at each
step, i, it chooses an element xi 2 S such that

1. fx1; x2; : : : ; xig 2 C; and

2. f�fx1; : : : ; xig� = max�f�fx1; : : : ; xi�1; yg� �� fx1; : : : ; xi�1; yg 2 C	;

the algorithm terminates when it can no longer incorporateanother element into its partial solution, i.e., when extfx1; : : : ; xi�1g =;.

Definition 1. A feasible set X is a greedy set under f if there exists a sequence ;, fx1g, fx1; x2g, : : : , fx1; : : : ; xig,: : : , fx1; : : : ; xi; : : : ; xkg = X of feasible subsets ofX such that, for each i, f(fx1; : : : ; xi�1; xig)=maxff(fx1; : : : ; xi�1; yg)j fx1; : : : ; xi�1; yg is feasibleg. A basis with this property is called a greedy basis. 2
The greedy algorithm, for any objective function f , can construct only greedy sets under f ; using the proper tie-
breaking rule, it can construct any greedy set under f . We say that an accessible set system (S; C) is pathological
if there exist feasible sets A and B, with A � B, such that B is a basis and ext(A) = ;. Due to the presence
of pathologies, the greedy algorithm can terminate at a set that is not a basis. One could, as a result, redefine the
optimization problem as the problem of finding a non-extensible set of maximal value. Our results hold under this
interpretation as well.

A greedoid is an accessible set system (S; C) that obeys the following axiom:

(augmentation axiom) If X;Y 2 C and jX j = jY j+ 1, then 9x 2 X � Y such that Y [fxg 2 C.

A matroid is a hereditary set system that obeys the augmentation axiom. (Note that the bases of a greedoid or matroid
have equal cardinality and that pathologies cannot occur.) This axiom is often phrased more generally:

(exchange axiom) If X;Y 2 C and jY j < jX j, then 9x 2 X � Y such that Y [fxg 2 C.

In the presence of the trivial axiom, the exchange axiom is equivalent to the combination of the accessibility and
augmentation axioms.

Rado [9], Gale [3], and Edmonds [1] independently proved that the best-in greedy algorithm optimizes all linear
objective functions over a hereditary set system (S; C) if and only if (S; C) is a matroid. Korte and Lovasz [6; 7]
defined greedoids and proved that the best-in greedy algorithm optimizes all linear objective functions over a greedoid(S; C) if and only if (S; C) obeys the following axiom:

(strong exchange axiom) Let A;B 2 C, with B a basis and A � B. If x 2 S � B is such that A [fxg 2 C, then9y 2 B �A such that A [fyg 2 C and B [fxg � fyg 2 C.

3 An Exact Characterization

We propose two new axioms in order to establish an exact characterization. The first is a strengthened version of
accessibility for bases. An accessible set system, (S; C), is extensible if it obeys the following axiom:

(extensibility axiom) If X and B are feasible sets, with B a basis and X � B, then there exists y 2 B �X such
that X [fyg is feasible.

Note that every greedoid is extensible. An accessible set system, (S; C), is closure-congruent if it obeys the following
axiom:

(closure-congruence axiom) 8X 2 C, 8x; y 2 ext(X), 8E � S � X � ext(X), X [fxg [E 2 C� =)X [fyg [E 2 C�.

Example 1. Consider an accessible set system that models the minimum spanning tree problem on some connected
graph G. The ground set is the set of edges of G and the feasible sets are the subtrees of G. The bases of (S; C)
are then the spanning trees of G. If T is a feasible set, then we have ext(T) = f e j e has exactly one endpoint inTg. This set system is a generalization of the setting of Prim’s algorithm (in which feasible sets are all subtrees of G
that include a designated vertex), yet remains more restrictive than the setting of Kruskal’s algorithm (in which the
feasible sets are the subforests of G). For this set system, the closure-congruence axiom reduces to the assertion:

Let T be any subtree of G, e and e0 two edges in ext(T), and E � S � T � ext(T) any collection of
edges; then T [feg[E is a subforest of G (and hence in the hereditary closure of (S; C)) if and only ifT [fe0g [E is a subforest of G.

It is readily verified that this condition is obeyed. For any E � S�T�ext(T), each of T [feg[E and T [fe0g[E
is a subforest if and only if E is an acyclic collection of edges, each member of which is an edge with neither endpoint
in T . 2
Although every hereditary set system is closure-congruent (because, in a hereditary set system, the empty set is the
only choice for E in the definition of closure-congruence), not every greedoid is closure-congruent.

Example 2. Let (S; C) be given by S = fa; b; cg and C = f;; fag; fbg; fa; bg; fb; cgg; this set system is a greedoid,
but it is not closure-congruent. The hereditary closure of this greedoid is the matroid given by C = f;; fag; fbg; fcg; fa; bg; fb; cgg.
The greedoid and its closure are shown below.q qq qq��� @@@ ���@@@ ���fa; bg fb; cgfag fbg;

the greedoid

q qq q qq��� SSS ��� SSSQQQQ ����fa; bg fb; cgfag fcgfbg;
its hereditary closure

To see that the closure-congruence axiom fails on this set system, consider X = ;. Now, ext(;) = fa; bg, and takeE = fcg � S � ; � fa; bg. Since ; [fbg [E = fb; cg is in C and a fortiori in the closure, ; [fag [E = fa; cg
should be in the closure, but it is not. 2

q q q q q q
closure-congruent extensible

hereditary augmentation

PrimKruskalKnapsack
?

Nearest Neighbor TSP

6
Generalized Prim

6
Example 2

...
................................

........................
.....................

..................
................

...............
..............

.............
............
...........
...........
...........
..........
...........
..........
..........
..........
..........
...........
...........
............

............
.............

..............
...............

................
..................

....................
........................

...............................
..

..
................................

........................
.....................

..................
................

...............
..............

.............
............
...........
...........
...........
..........
...........
..........
..........
..........
..........
...........
...........
............

............
.............

..............
...............

................
..................

....................
........................

...............................
..

...

..
...................

................
.............
............
............
...........
...........
..........
..........
..........
..........
..........
...........
...........

............
.............

...............
.................

..........................
... ..

...................
................

.............
............
............
...........
...........
..........
..........
..........
..........
..........
...........
...........

............
.............

...............
.................

..........................
...

Figure 1: The Relationships Among Varieties of Accessible Set Systems�� �� �� ���� ��qq qq q q q q qS�X�Y q q q q q q q q qX � Y q q q q q qY
0 1

w1 �� ���� �� �� ��qq qq q q q q qS�X�Y q q q q q q q q qX � Y q q q q q qY
0 1

w2
Figure 2: The Weight Assignments Used in Proving that C� is a Matroid

Greedoids that obey the strong exchange axiom are closure-congruent (a corollary of Theorem 1), but there exist
extensible, closure-congruent accessible set systems that do not obey the augmentation axiom and hence do not define
greedoids: the set system of Example 1 (“Generalized Prim”) is one such.

Definition 2. A matroid embedding is an accessible set system which is extensible, closure-congruent, and the hered-
itary closure of which is a matroid. 2
Our previous observations about Example 1 show that it is a matroid embedding, yet not a greedoid. Indeed, the three
conditions defining a matroid embedding are independent. Figure 1 shows the relationships among our axioms and
previously defined structures.

We can now prove our main result, which solves the open problem.

Theorem 1. Let (S; C) be an accessible set system; then the following are equivalent:

1. For every positive weighted linear objective function, (S; C) has an optimal greedy basis.

2. (S; C) is a matroid embedding.

3. For every linear objective function, the greedy bases of (S; C) are exactly its optimal bases. 2
Proof: We prove the implications (1) =) (2) and (2) =) (3); the implication (3) =) (1) is trivial.(1) =) (2) We begin by showing that C� must be a matroid, a result first derived by Helman [5]. Assume two sets,X; Y 2 C�, with jX j = jY j+ 1, between which augmentation fails in C�. Since augmentation fails, no basis

that contains all of Y can contain any element of X � Y . We design a pair of weight assignments, w1 andw2, such that: (i) the relative ordering of elements by weight is the same under both w1 and w2 and distinct
elements get assigned distinct weights in each weight assignment—so that w1 and w2 share the same unique
non-extensible greedy set; and (ii) w1 and w2 share no optimal basis, thereby contradicting (1) and proving the
result. Figure 2 illustrates how the two weight assignments are chosen. Observe that, under w1, an optimal
basis cannot contain all of Y , while, under w2, an optimal basis must contain all of Y .

We now prove that (S; C) is extensible. Let A � B, A;B 2 C, with B a basis. Since (S; C) is accessible, there
exists a sequence of feasible sets ;; fx1g; fx1; x2g; : : : ; fx1; x2; : : : ; xkg = A; denote the other elements of

S by xk+1, xk+2, : : : , xn. We force the greedy algorithm to construct each set in the sequence leading to A by
assigning weights as follows: w(xi) = (1 + �=i for 1 � i � k1 for xi 2 B �A� for xi 2 S �B.

Thus B is the unique optimal basis; since the greedy algorithm must start by constructing A, it can constructB only if A is extensible to B, as desired.

Finally, we show that (S; C) is closure-congruent. Let A 2 C, x; y 2 ext(A), and E � S � A � ext(A),
with A [fxg [E 2 C�. In the style of the previous construction, we force the greedy algorithm to constructA, followed by the set A [fyg, by using a weight assignment that gives very high weights to elements of A
and E, high weights to x and y, and very low weights to all other elements. Since A [fxg [E 2 C� there is
a basis B containing A [fxg [E. The greedy algorithm must begin by constructing A [fyg and constructs
some optimal basis B0; but then we must have E � B0 and thus A [fyg [E 2 C�.(2) =) (3) (Note that the structure of a matroid embedding ensures that all non-extensible sets are bases.) Assume
that, for some linear objective function f , some greedy basis, Bg, is not optimal. LetA be a greedy subset ofBg
of maximal size, with the property thatA is contained in some optimal basisB. SinceA itself cannot be a basis,ext(A) is not empty. Let x be an element that the greedy algorithm can add to A. We haveA[fxg 6� B, or elseA [fxg would be a greedy subset of Bg contained in B, contradicting the maximality of A. By extensibility,
there exists y 2 B\ ext(A); set E = B�A� ext(A). Observe that A[fyg[E is in C�, so that, by closure-
congruence, so is A[fxg[E. Because (S; C�) is a matroid, we can apply the exchange axiom to A[fxg[E
with respect to B, yielding some basis B0. B and B0 differ by one element: B0 contains x at the expense of
some other element in ext(A), say z. Since the greedy algorithm chose to augment A with x, we know thatw(x) � w(z), so that f(B0) � f(B) and thus B0 is an optimal basis. But then A [fxg � B0 is a greedy
subset of Bg , which contradicts the maximality of A. A similar argument also shows that every optimal basis
is greedy: if some non-greedy optimal basis, B, exists, let A be its largest greedy subset; note that we must
have jBj � jAj + 2, since otherwise A can be extended to B and that extension must be greedy because B is
optimal. But then B0, produced as above, has a larger objective value than B, because, since A [fzg � B is
not greedy, we must have w(x) > w(z); hence B is not optimal, yielding the desired contradiction.

Q.E.D.

This theorem subsumes the results of Rado [9], Gale [3], and Edmonds [1], as well as Theorem 4.2 of Korte and
Lovasz [7]; more importantly, unlike these results, it provides an exact structural characterization of the problems on
which the best-in greedy algorithm works for all linear objectives.

4 Other Classes of Objective Functions

4.1 Consistent Functions

We identify the largest class of functions to which the results of the previous section apply.

Definition 3. Let f() be an objective function and S the ground set.� f() is consistent if, given sets T � T 0 � S and elements x; y 2 S � T 0, we havef(T [fxg) � f(T [fyg) =) f(T 0 [fxg) � f(T 0 [fyg);� f() is strictly consistent if we can further assert thatf(T [fxg) > f(T [fyg) =) f(T 0 [fxg) > f(T 0 [fyg);� f() is weakly consistent if we strengthen the hypothesis used in consistency to exclude equality, i.e., if we
have f(T [fxg) > f(T [fyg) =) f(T 0 [fxg) � f(T 0 [fyg): 2

Note that linear objectives are strictly consistent, while bottleneck objectives are consistent.

Theorem 2. Let S be a set and f() a function defined on 2S .

1. f() is strictly consistent if and only if, for each matroid embedding on S, the greedy bases are exactly the
optimal bases.

2. f() is consistent if and only if, for each matroid embedding on S, all greedy bases are optimal.

3. f() is weakly consistent if and only if, for each matroid embedding on S, some greedy basis is optimal. 2
Proof:

1. To show the only if part, it is enough to observe that, in the proof of Theorem 1, the inequalities involvingw(x)
and w(z) can be replaced by inequalities involving f(A [fxg) and f(A [fzg). Letting T 0 = B \ B0, the
strict consistency of f leads to the same contradictions as in the previous proof.

In order to prove the if part, assume that f() fails consistency (strict or not) on sets T; U and elements x; y =2 T ,
with U \ (T [fx; yg) = ;. Consider the matroid embedding depicted below.p pp ppp

pppppp ppppppZZZ ���ppppp
T [fxg [U T [fyg [UT [fxg T [fygT;

If f() is not consistent, then we have f(T[fxg) � f(T[fyg) and yet also f(T[fxg[U) < f(T [fyg[U).
But then T [fxg [U is a suboptimal greedy basis, the desired contradiction. If f() is not strictly consistent,
then we have f(T [fxg) > f(T [fyg) and yet also f(T [fxg[U) � f(T [fyg[U). But then T [fyg[U
is an optimal basis and yet is not greedy, the desired contradiction.

2. and 3. The same proof techniques apply, with the obvious changes.

Q.E.D.

4.2 An Exact Characterization of Greedy Structures for Bottleneck Functions

Bottlenecks functions form an important subclass of consistent functions. Formally, we define a (simple) bottle-
neck function to be an objective function of the form f(A) = minx2Aw(x); by convention, we set f(;) = 1 +maxx2S w(x). Our previous results show that the greedy algorithm is optimal for all bottleneck objective functions
when run on a matroid embedding. Korte and Lovasz [6] considered a generalization of bottleneck objectives in
which the weight of an element is a non-decreasing function of the size of the feasible set in which it could be in-
cluded; they showed that the greedy algorithm is optimal for all such generalized bottleneck objectives only if the set
system defines a greedoid. Since not every matroid embedding is a greedoid, this result does not hold when restricted
to simple bottleneck objectives.

The matroid embedding structure is not necessary to ensure optimality of the greedy algorithm for accessible set
systems with bottleneck objectives. In particular, it is easily verified that optimality for all bottleneck objectives on
an accessible set system does not imply that the hereditary closure of the set system is a matroid.

Example 3. The simple greedoid given by S = fa; b; c; dg with feasible sets ;, fag, fbg, fa; bg, fa; cg, and fb; dg,
and pictured below with its hereditary closure, provides the desired counterexample.

q q qq qq@@@ ��� @@@ ���@@@ ���fa; cg fa; bg fb; dgfag fbg;
the greedoid

q q qq q q qq��� @@@ ��� @@@ ��� @@@@@@ ���PPPPPPP �������fa; cg fa; bg fb; dgfcg fag fbg fdg;
its hereditary closure

The closure fails augmentation on, say, fcg and fb; dg and thus is not a matroid, but it is easily verified that the best-in
greedy algorithm optimizes all bottleneck objectives on this set system. 2
We introduce a more restricted property. An accessible set system (S; C) is strongly extensible if it obeys the following
axiom:

(strong extensibility axiom) For any X;B 2 C, with B a basis and jX j < jBj, there exists x 2 B �X such thatX [fxg 2 C.

The bases of any strongly extensible accessible set system are of the same cardinality; in fact, a hereditary set system
is strongly extensible if and only if it is a matroid.

Lemma 1. Let (S; C) be an accessible set system. If, for every positive weighted bottleneck function f , there exists
a greedy basis that is also optimal, then (S; C) is extensible and all of its bases have equal cardinality. 2
Proof: Assume that there exists a basis B and a feasible set, A � B such that either: (i) A is non-extensible; or (ii)
for all x 2 ext(A), A [fxg 6� B. We force the greedy algorithm to construct A by assigning suitable weights, also
giving elements of S�B very low weights. But now the greedy algorithm must terminate with a suboptimal feasible
set. If A is non-extensible, then it is the unique non-extensible greedy set, so that there does not exist an optimal
greedy basis, contrary to the hypothesis of the lemma. Otherwise, because A cannot be extended with an element
of B, any greedy basis contains an element of S �B and thus is not optimal.

Assume that at least two sizes of bases exist; let C be an arbitrary non-minimal size basis and let B be a minimal
size basis, such that among all minimal size bases, B shares with C a largest size feasible subset, A. Note that A
is a proper subset of B and cannot itself be a basis. Since (S; C) is extensible and since A � C, there exists somey 2 ext(A) such that A [fyg � C; note that, by our assumption of maximality of A, y =2 B. We force the greedy
algorithm to construct the set A [fyg and then to complete it in suboptimal manner by assigning suitable weights,
including very low weights for elements of S�B. Under such an assignment, basis B is optimal. The greedy bases
constructed must all contain A[fyg and, by our assumption of the maximality of A, have size greater than jBj. Thus
at least jB�Aj elements must be added to A[fyg; since B is a basis, these elements cannot all come from B. Thus
all greedy bases are suboptimal, the desired contradiction.

Q.E.D.

Theorem 3. Let (S; C) be an accessible set system; then the following are equivalent:

1. For every positive weighted bottleneck function, (S; C) has an optimal greedy basis.

2. (S; C) is strongly extensible.

3. For every bottleneck function, (S; C) has at least one greedy basis and all its greedy bases are optimal. 2
Proof: As before, only two of the three implications are non-trivial.(1) =) (2) Assume that there exist A; B 2 C, where B is a basis, with jAj < jBj and ext(A) \ B = ;. By

the previous lemma A must be extensible. We force the greedy algorithm to construct A and to extend it to a
suboptimal basis by assigning suitable weights, including very low weights to elements of S�B�A. Since A
cannot be extended by an element of B, every greedy basis has very low value, while B is an optimal basis
with higher value, the desired contradiction.

(2) =) (3) (Note that any non-extensible set must be a basis, by strong extensibility.) For some assignment of
weights, assume that some greedy basis B is suboptimal. Let A be a greedy subset of B of maximal size that:
(i) the greedy algorithm can extend it to the greedy basis B; and (ii) is a subset of some optimal basis, B0.
Let A [fxg be a greedy set extensible to B. Since the set system is strongly extensible, there also existsy 2 B0 � A such that A [fyg is feasible, but note that A [fyg cannot be a greedy set extensible to B, as
this would contradict the maximality of A. Since A [fyg � B0, we have f(A [fyg) � f(B0); since the set
system is strongly extensible (and thus allows A[fxg to be extended with elements from some optimal basis),
since A is maximal, and since the objective function is determined by the minimum weight of its arguments,
we also have f(B0) > f(A[fxg). Combining these two inequalities yields f(A[fyg) > f(A[fxg), which
contradicts the fact that the greedy algorithm can choose x.

Q.E.D.

5 Exact Characterizations of Greedy Languages

While set systems have been the traditional setting for defining and studying greedy algorithms, several researchers
have recognized the desirability of extending the results to more general settings (Helman [5], Korte and Lovasz [6]).
In this section, we demonstrate that our exact characterizations extend directly to hereditary languages.

In the language world, feasible structures are ordered sets, or strings, generally called simple words. Let S be
a set and L a collection of simple words on S; further let s(�) for each � 2 L denote the (unordered) subset of S
corresponding to � and let s(L) denote the collection of unordered subsets corresponding to the words of L—i.e.,s(L) = fA j A = s(�); � 2 Lg. We say that (S;L) is a hereditary word system (or hereditary language) if it obeys
the two axioms:

(trivial axiom) L 6= ;
(heredity axiom) If � 2 L and � is a prefix of � (i.e., � = �
 for some string
), then also � 2 L.

If (S;L) is a hereditary language, we call the elements of L feasible words and any feasible word � with the property
that there does not exist x 2 S with �x 2 L is called a basic word. For any word �, let ext(�) denote the setfx j �x 2 Lg. Note that, if (S;L) is a hereditary language, then (S; s(L)) is an accessible set system. We define
the hereditary closure of a hereditary language, (S;L), to be the hereditary closure, (S; s�(L)), of the corresponding
accessible set system, (S; s(L)).

There is a very natural link between hereditary languages and the greedy algorithm, as hereditary languages record
the full history of the execution of the algorithm. Formally, the best-in greedy algorithm on a hereditary language(S;L) with objective function f :L ! R starts with the empty string �; at each step i, it chooses an element xi 2 S
such that

1. x1x2 : : : xi 2 L; and

2. f�x1x2 : : : xi� = max�f�x1 : : : xi�1y� �� x1 : : : xi�1y 2 L	;

the algorithm terminates when it has constructed a basic word. A feasible word x1x2 : : : xk is a greedy word under f
if, for each 1 � i � k, f(x1 : : : xi�1xi) = maxf f(x1 : : : xi�1y) j x1 : : : xi�1y 2 Lg. Given an objective function
on S, an objective function f on words is, respectively, a linear, bottleneck, or consistent function if there is a linear,
bottleneck, or consistent function g on sets such that f(�) = g(s(�)) for all words �. This implies that if � is a
permutation of �, then f(�) = f(�), a property often called stability.

The necessary and sufficient conditions for hereditary languages are (essentially) the obvious language versions
of the accessible set system conditions. Consider the following language version of each our axioms. A hereditary
language (S;L) is extensible if it obeys:

(extensibility axiom) If �; � 2 L, � is a basic word, and s(�) � s(�), then 9x 2 s(�)� s(�) such that �x 2 L.

A hereditary language (S;L) is closure-congruent if it obeys:

(closure-congruence axiom) 8� 2 L, 8x; y 2 ext(�), 8E � S � s(�) � ext(�), s(�) [fxg [E 2 s�(L) if and
only if s(�) [fyg [E 2 s�(L).

A hereditary language, (S;L), is strongly extensible if it obeys:

(strong extensibility axiom) If �; � 2 L, � is a basic word, and j�j < j�j, then 9x 2 s(�)�s(�) such that �x 2 L.

Definition 4. A (language) matroid embedding is a hereditary language which is extensible, closure-congruent, and
the hereditary closure of which is a matroid. 2
The situation regarding pathologies is more complex for hereditary languages than for accessible set systems; we say
that a hereditary language is pathological if there exists a pair of basic words �1 and �2 such that s(�1) � s(�2). In
the language world, pathologies appear natural: if � and � form a pathology, then this simply means that � cannot
be a prefix of �.

In spite of these differences, all of our theorems hold in their obvious rephrasing.

Theorem 4. Let (S;L) be a hereditary language; then the following are equivalent:

1. For every positive weighted linear objective function f , there exists an optimal greedy basic word.

2. (S;L) is a matroid embedding.

3. For every linear objective function, the greedy basic words are exactly the optimal basic words. 2
The generalization to the language world is not trivial, in the sense that there exist distinct language-based matroid
embeddings corresponding to the same set-based matroid embedding; i.e., there exists a language-based matroid em-
bedding which contains two feasible words that are equal as sets but have different extension sets.

Example 4. The language over the ground set fa; b; c; dgwith words �, a, b, ac, ab, ba, bd, acb, abc, bad, bda, abcd,acbd, badc, and bdac, pictured below, is a matroid embedding.q q q qq q q qq q q qq qq@@@ ��� @@@ ���QQQQ ����
acbd abcd badc bdacacb abc bad bdaac ab ba bda b�

Note that the words ab and ba are equal as sets, yet we have ext(ab) = fcg, but ext(ba) = fdg. A second language-
based matroid embedding corresponding to the same set-based matroid embeddingcan be constructed by first building
the set-based matroid embedding, then building the new language-based matroid embedding by including a feasible
word for each accessibility path in the set system. 2
This result should be contrasted with a theorem of Korte and Lovasz [6] showing that greedoids do not give rise to
such situations.

The results presented so far for hereditary languages completely parallel those for accessible set systems. The
same is almost true for the class of bottleneck functions. However, certain pathologies (that can occur in hereditary
languages but not in set systems) allow the greedy algorithm to optimize all bottleneck functions on languages that fail
to obey even the weaker of the extensibility axioms. By proving results paralleling Lemma 1 and Theorem 3, we can
establish the following exact characterization of greedy optimality for bottleneck functions on hereditary languages.

Theorem 5. The best-in greedy algorithm run on a hereditary language optimizes all bottleneck functions if and only
if the language is strongly extensible (except with respect to pairs of sets that form pathologies). 2

6 Conclusion

We have presented exact characterizations of problem structures on which the greedy algorithm optimizes linear,
bottleneck, and, more generally, consistent objective functions. These exact characterizations apply both to accessible
set systems and hereditary languages and answer questions raised, and only partially answered, by Edmonds, Korte
and Lovasz, and others.

Our results provide a framework for future research: what are additional structural properties of matroid embed-
dings? how can constraints about the objective function be traded against constraints on the language structure? A
consequence of our results is that the linear objectives are the hardest of all consistent objectives to optimize by greedy
methods on matroid embeddings, in the sense that, if they are optimized, then so too is any other consistent objective.
This suggests a study of families of objective functions along much the same lines as classical complexity theory; in
this direction, Lengauer and Theune [8] have demonstrated reductions among cost functions for path problems. Now
that we have a proper setting for optimal greedy algorithms, we can investigate the complexity of such algorithms.
This problem is harder than it may seem, since much of the structure used is given implicitly, by a feasibility oracle
or some such theoretical construct: an efficient greedy algorithm results from both a fast feasibility check and a fast
identification of the best extension.

7 References

1. J. Edmonds, “Matroids and the greedy algorithm,” Math. Programming 1 (1971), pp. 127–136.

2. U. Faigle, “The greedy algorithm for partially ordered sets,” Discr. Math. 28 (1979), pp. 153–159.

3. D. Gale, “Optimal assignments in an ordered set: an application of matroid theory,” J. Combin. Theory 4
(1968), pp. 176–180.

4. O. Goecke, “A greedy algorithm for hereditary set systems and a generalization of the Rado-Edmonds charac-
terization of matroids,” Discr. Appl. Math. 20 (1988), pp. 39–49.

5. P. Helman, A theory of greedy structures based on k-ary dominance relations, Tech. Rep. CS89-11 (1989), Dept.
of Computer Science, U. of New Mexico.

6. B. Korte and L. Lovasz, “Mathematical structures underlying greedy algorithms,” Lecture Notes in Comput.
Sci. 177, Springer Verlag, Berlin (1981), pp. 205–209.

7. B. Korte and L. Lovasz, “Greedoids and linear objective functions,” SIAM J. Alg. Disc. Meth. 5 (1984), pp.
229–238.

8. T. Lengauer and D. Theune, “Unstructured path problems and the making of semirings,” Proc. 2nd Workshop
on Data Structures and Algorithms WADS-91, Lecture Notes in Comput. Sci. 519, Springer Verlag, Berlin
(1991), pp. 189–200.

9. R. Rado, “A note on independence functions,” Proc. London Math. Soc. 7 (1957), pp. 300–320.

