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Greedy algorithms aim to solve a combinatorial optimization problem by suc-
cessively adding elements to a set with the goal to construct a set of highest
possible weight, assuming a maximization problem. The greedy strategy is sim-
ple: The algorithm always seeks to add the element with highest possible weight
available at the time of selection that does not violate the structure of an opti-
mal solution in an obvious way. Kruskals minimum spanning tree algorithm is
an example of a greedy algorithm.

In these notes, we briefly discuss the basic principles underlying many greedy
algorithms. For the proofs, the reader should refer to the references.

Notation. If E is a set, then the set consisting of all subsets of E is called
the power set of E. The power set of E is denoted by 2E . We denote by A \B
the set difference of A and B, i.e., A \B = {x ∈ A |x 6∈ B}.

Matroids and Beyond. A set system is a pair M = (E,S) consisting of a
finite set E and a subset S of 2E . A set system M = (E, S) is called a matroid
if and only if it satisfies
M1. ∅ ∈ S;
M2. If Y in S and X ⊆ Y , then X in S;
M3. If X, Y are in S and |X| > |Y |, then there is an x in X \ Y such that

Y ∪ {x} in S.
A set system satisfying M2 is called hereditary. The axiom M3 is sometimes
called the exchange axiom.

Example 1. Let E denote the set of columns of a matrix A over the field R of
real numbers. We define S by

S = {F ⊆ E | the columns in F are linearly independent over R}.

Then the set system (E, S) is a matroid. Indeed, the properties M1 and M2
are obvious, and M3 is a consequence of the Steiniz exchange theorem. This
matrix example is the eponym for the term matroid.

Example 2. Let E denote the set of edges of some undirected graph G = (V, E).
We define S by

S = {F ⊆ E | (V, F ) is a forest}.
Then (E, S) is a matroid, called the graphical matroid of the graph G.

We can formulate greedy algorithms based on matroids. The graphical ma-
troid underlies Kruskal’s minimum spanning tree algorithm, as we will see. How-
ever, there are greedy algorithms that cannot be formulated with the help of
matroids. For example, Dijkstra’s single source shortest path algorithm.
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Korte and Lovasz observed that in many cases the second axiom of a matroid
is not needed, and introduced the notion of a greedoid. A greedoid is a set
system (E, S) satisfying M1 and M3.

A directed graph is called connected if and only if the underlying undirected
graph is connected. A directed graph is called a branching if and only if the
underlying undirected graph is a forest and each vertex has at most one entering
edge. A connected branching is called an arborescence. An arborescence with
n vertices has n−1 edges. Thus, there exists one vertex without incoming edge;
this vertex is called the root of the arborescence.

Proposition 3. Let E be the edge set of a directed graph G = (V, E). Let r be
a vertex in V . Define

S = {F ⊆ E | (V, F ) is an arborescence rooted at r}.
Then (E,S) is a greedoid, called the directed branching greedoid of G.

Proof. It is clear that M1 holds. If (V1, F1) and (V2, F2) are arborescences in
G rooted at r with |F1| > |F2|, then |V1| = |F1| + 1 > |F2| + 1 = |V2|. Let x
be a vertex in V1 \ V2. Then the path from r to x in (V1, F1) contains an edge
(v, w) with v in V2 such that w is not in V2. This edge can be added to (V2, F2)
so that F2 ∪ {(v, w)} is in S. Therefore, M3 holds as well.

Sometimes even more general set systems are considered. A set system
(E,S) satisfying
A1. ∅ ∈ S;
A2. For every nonempty set X in S there exists an element x in X such that

X \ {x} is contained in S.
is called an accessible set system.

Exercise 4. Show that a greedoid is an accessible set system.

In a greedy algorithm, we want to add one element at a time, so accessible set
systems are the most general set systems that can be used for greedy algorithms.
The greedy algorithm works for all matroids, but unfortuntately not for all
greedoids or accessible set systems. However, one can characterize the greedoids
and the accessible set systems for which a greedy algorithm works.

Let M = (S,E) an accessible set system. The elements of S are called the
feasible sets of M . If M is a matroid, then the feasible sets are also known as
independent sets. A maximal feasible set is called basis; in other words, a
basis is a feasible set that is not properly contained in another feasible set.

Exercise 5. Show that in a greedoid all bases have the same cardinality.

Weight Functions. Let M = (E,S) be an accessible set system. A linear
weight function on M is a function w : E → R that is, by abuse of notation,
extended to S by defining the weight w(X) of a feasible set X in S by

w(X) =
∑

x∈X

w(x).
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We say that a weight function w is positive if and only if w(x) > 0 for all x
in E.

For an accessible set system M = (E, S) with weight function w : E → R,
we can consider the optimization problem

Maximize w(B) for all bases B of M . (1)

Greedy Algorithm for Matroids. Let M = (E, S) be an accessible set
system a matroid and w a positive linear weight function on M . The greedy
algorithm for (M, w) is given by

Greedy(E,S, w)
T := ∅;
sort E in monotonically decreasing order by weight w;

for x in E taken in monotonically decreasing order do
if T ∪ {x} in S then T := T ∪ {x}; fi;

od;
return T ;

We call an element of S optimal if it has maximal weight. Since we use
positive weight functions, an optimal set is a basis.

Proposition 6 (Matroids exhibit the Greedy Choice Property). Suppose that
M = (E, S) is a matroid with positive linear weight function w and that E is
sorted into monotonically decreasing order by weight. Let x be the first element
of E such that {x} is an independent set, if any such x exists. If x exists, then
there exists an optimal set in S that contains x.

Proof. See [Cormen, Leiserson, Rivest, Stein, Introduction to Algorithms, 2nd
edition, Lemma 16.7].

Proposition 7. Let M = (E,S) be a matroid. If x is an element of E such
that {x} 6∈ S, then A ∪ {x} 6∈ S for all A in S.

Proof. Seeking a contradiction, we assume that A ∪ {x} ∈ S. However, this
would imply that {x} in S by M2, contradicting our assumption {x} 6∈ S.

Let M = (E,S) be a matroid. Let x be an element in E such that {x} is
contained in S. We define

Ex = {y ∈ E | {x, y} ∈ S},
Sx = {B ⊂ E \ {x} |B ∪ {x} ∈ S}.

Then (Ex, Sx) is a matroid called the contraction of M by x.

Proposition 8 (Matroids exhibit the Optimal Substructure Property). Let x
be the first element of E chosen for the matroid M = (E,S). The remaining
problem of finding a maximum-weight independent subset containing x reduces
to finding a maximum-weight independent subset of the contraction Mx of M
by x.
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Proof. See [Cormen, Leiserson, Rivest, Stein, Introduction to Algorithms, 2nd
edition, Lemma 16.10].

Theorem 9. If M = (E, S) is a matroid with positive linear weight function,
then Greedy(M,w) returns an optimal subset.

Beyond Matroids. Let us now consider the greedy algorithm for more gen-
eral accessible set systems. Unfortunately, it does not make sense to use the
previous version of the greedy algorithm for accessible set systems that are not
hereditary. Indeed, it might happen that an element x cannot be added to the
current feasible set T , but later it might be allowed to add x to a newly created
feasible set, say, T ∪ A. If w(x) > w(y) for some y in A, then the previous
algorithm would be incorrect.

Let M = (E, S) be an accessible set system and w a linear weight function
on M . The greedy algorithm for (M, w) is given by

Greedy2(E,S,w)
T := ∅;
X := E;

while there exists x in X such that T ∪ {x} in S do
choose x in X satisfying T ∪ {x} in S such that
w(x) ≥ w(y) for all y in X with T ∪ {y} in S;
T := T ∪ {x};
X := X \ {x};

od;
return T ;

As I have mentioned earlier, this algorithm does not work correctly for all
accessible set systems, not even for all greedoids. The next theorem characterizes
the greeoids for which the above greedy algorithm is correct for any weight
function.

Theorem 10. Let M = (E,S) be a greedoid. The algorithm Greedy2 pro-
duces for each weight function an optimal solution if and only if M satisfies the
following axiom:
SE1. For J,K in S with |J | = |K|+ 1, there exists an element a in J \K such

that K ∪ {a} and J \ {a} are contained in S.

More generally, we can ask for which accessible set systems does the Greedy2
algorithm always solve the optimization problem for any positive linear weight
function? This problem was solved in [P. Helman, B.M. Mont, H.D. Shapiro,
An Exact Characterization of Greedy Structures, SIAM J. Discr. Math, 1993].
In this case, the accessible set system must be embeddable into a matroid and
satisfy some additional constraints. After you have gained some familiarity with
matroids and greedoids, you can easily read the above paper.
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