570 Chapter 26 All-Pairs Shortest Paths

26.3-3
Suppose that w(u,v) > 0 for all edges (1, v) € E. What is the relanonshlp
between the weight functions w and @?

| % 26.4 A general framework for solving path problems in directed graphs

In this section, we examine “closed semirings,” an algebraic structure that
yields a general framework for solving path problems in directed graphs.
We start by defining closed semirings and discussing how they relate to a
calculus of directed paths. We then show some examples of closed semi-
rings and a “generic” algorithm for computing all-pairs path information.
Both the Floyd-Warshall algorithm and the transitive-closure algorithm
from Section 26.2 are instantiations of this generic algorithm.

Definition of closed semirings

A closed semiring is a system (S,®,®,0, 1), where S is a set of elements,
@ (the summary operator) and © (the extension operator) are binary oper-
ations on S, and 0 and 1 are elements of S, satisfying the following eight
properties:

1. (S,®,0) is a monoid:

s S is closed under &: aobeSforala,bes.
« @ is associative: a® (bdc)=(asb)dcforalla,b,ceSl.
« 0is an identity for @: ae0=0@a=aforallacS.

Likewise, (S,®,1) is a monoid.

. 0 is an annihilator: a©0=00a=0foralla € S.

. @ is commutative: a®b=b@a foralla,beS.

@ is idempotent. a®a=a forallaeS.

. © distributes over @ a0 (bac)=(aob)d(avc)and (boc)oa=
(boa)®(coa)foralla,b,ceS.

6. If a;, a2, as, ... is a countable sequence of elements of S, then asamd

a3 @ --- is well defined and in S.

7. Associativity, commutativity, and idempotence apply to infinite sum-
maries. (Thus, any infinite summary can be rewritten as an infinite
summary in which each term of the summary is included just once and
the order of evaluation is arbitrary.)

8. ® distributes over infinite summaries: a® (b, &b, ®b3@®--+) =(a© b1)&
(@aob)@®(a®b;)® --and (@18 ®mea38--)0b=(a,0b)e(@0b)d
(aseb)®---

26.4 A general framework for solving path problems in directed graphs 371

A calculus of paths in directed graphs

Although the closed-semiring properties may seem abstract, they can be
related to a calculus of paths in directed graphs. Suppose we are given a
directed graph G = (V, E) and a labeling function /.. V x V — S mapping
all ordered pairs of vertices into some codomain S. The label of edge
(u,v) € E is denoted A(u,v). Since 4 is defined over the domain V' x V,
the label A(u, v) is usually taken as 0 if («,v) is not an edge of G (we shall
see why in a moment).

We use the associative extension operator @ to extend the notion of
labels to paths. The label of path p = (vy,va,..., V) is

},(p) = A(U],UZ) @A(’Uz, '03) OR @A(U_k—ls'vk) :

The identity T for ® serves as the label of the empty path.

As a running example of an application of closed semirings, we shall
use shortest paths with nonnegative edge weights. The codomain S is
RZ% U {oo}, where R20 is the set of nonnegative reals, and A(7, j) = w;;
for all {,j € V. The extension operator ® corresponds to the arithmetic
operator +, and the label of path p = (vy,v,..., V) is therefore

Ap) = Au1,02) ©A(V2,V3) @+ © A(V—1, Vi)
= Wy + Wy + 0+ Wy
w(p) .
Not surprisingly, the role of 1, the identity for @, is taken by 0, the identit_y
for +. We denote the empty path by &, and its label is A(¢) = w(g) = 0= 1.
Because the extension operator ©@ is associative, we can define the label

of the concatenation of two paths in a natural way. Given paths p; =
(v1,v2,...,V) and pr = (Vg, Ugy1, - - -, U;), their concatenation is

pl 0p2 e (v19v29'°-:Uksvk-l-l"“’v[) ’
and the label of their concatenation is

Aprop2) = Av,02) @A(V2,03) @ @ A(Vp—1, V) ©

Ak Vies1) @ Vg1, Vier2) © -+ - © AVy—1, 1)
(A(v1,v2) ©@ A(V2,¥3) @ -+ @ A(Vg—1, %)) @

(AVks V1) © AVky1, Vies2) @ -+ @ A(Vy—1, 1))
Ap1) @ A(p2) -

The summary operator @, which is both commutative and associative,
is used to summarize path labels. That is, the value A(p;) @ A(p2) gives a
summary, the semantics of which are specific to the application, of the
labels of paths p; and p».

Our goal will be to compute, for all pairs of vertices i, j € V, the sum-
mary of all path labels from i to j:

572

Chapter 26 All-Pairs Shortest Paths

lj=EPAp) . (26.11)

P
i~ j

We require commutativity and associativity of & because the order in
which paths are summarized should not matter. Because we use the anni-
hilator 0 as the label of an ordered pair (u,v) that is not an edge in the
graph, any path that attempts to take an absent edge has label 0.

For shortest paths, we use min as the summary operator @. The identity
for min is co, and oo is indeed an annihilator for +: @ + co = co + g = 0o
for all a € R2% U {co}. Absent edges have weight oo, and if any edge of a
path has weight oo, so does the path.

We want the summary operator & to be idempotent, because from equa-
tion (26.11), we see that @ should summarize the labels of a set of paths.
If p is a path, then {p} U {p} = {p}; if we summarize path p with itself,
the resulting label should be the label of p: A(p) ® A(p) = A(p).

Because we consider paths that may not be simple, there may be a count-
ably infinite number of paths in a graph. (Each path, simple or not, has a
finite number of edges.) The operator & should therefore be applicable to a
countably infinite number of path labels. That is, if a;, a3, as, ... is a count-
able sequence of elements in codomain S, then the label a; G a, G a3 & - -
should be well defined and in S. It should not matter in which order we
summarize path labels, and thus associativity and commutativity should
hold for infinite summaries. Furthermore, if we summarize the same path
label a a countably infinite number of times, we should get a as the result,
and thus idempotence should hold for infinite summaries.

Returning to the shortest-paths example, we ask if min is applicable to
an infinite sequence of values in R2% U {co}. For example, is the value
of min;2, {1/k} well defined? It is, if we think of the min operator as
actually returning the greatest lower bound (infimum) of its arguments, in
which case we get ming-, {1/k} = 0.

To compute labels of diverging paths, we need distributivity of the ex-
tension operator ® over the summary operator @. As shown in Figure 26.7,
suppose that we have paths u £ v, v & x, and v & y. By distributivity,
we can summarize the labels of paths p; o p, and p; o p; by computing
either ((p1) © A(p2)) @ ((p1) @ A(p3)) or A(p1) © (A(p2) @ A(p3)).

Because there may be a countably infinite number of paths in a graph, ®
should distribute over infinite summaries as well as finite ones. Figure 26.8,
for example, contains paths « & v and v £ x, along with the cycle v 5 v.
We must be able to summarize the paths p; ops, pjocops, piococops, ...
Distributivity of ® over countably infinite summaries gives us

(4(p1) @ A(p2)) & (A(p1) @ A(c) ® A(p2))

S (A1) @A) @A) O Ap)) & -

Ap1) © (Ap2) & (Alc) @A(p2)) @ (Alc)@A(c) @ A(p2)) & ---)
Ap)o (Teco(coc) @ (cococ) & ---) @ Ap).

26.4 A general framework for solving path problems in directed graphs 573

Figure 26.7 Using distributivity of ® over @. To summarize the labels of paths
p1op; and p; o p;, we may compute either (A(p) ® A(p2)) ® (A(p)) ® A(p3)) or
A(p1) © (A(p2) ® A(p3))-

Figure 26.8 Distributivity of ® over countably infinite summaries of &. Because
of cycle c, there are a countably infinite number of paths from vertex v to vertex x.
We must be able to summarize the paths p; e pp, pyecops, piococops, ...

We use a special notation to denote the label of a cycle that may be
traversed any number of times. Suppose that we have a cycle ¢ with label
A(c) = a. We may traverse ¢ zero times for a label of A(¢) = 1, once for a
label of A(c) = a, twice for a label of A(c) ® A(c) = a ® q, and so on. The
label we get by summarizing this infinite number of traversals of cycle ¢ is
the closure of a, defined by

a*=T®a® (a0a) ® (@Caca) & (a0acaca) & - .

Thus, in Figure 26.8, we want to compute A(p;) ® (4(c))* ® A(p2).
For the shortest-paths example, for any nonnegative real a € RZ0U {0},

a* = 1}1{1:1:([)1{1(:.51}
= 0.

The interpretation of this property is that since all cycles have nonnegative
weight, no shortest path ever needs to traverse an entire cycle.

Examples of closed semirings

We have already seen one example of a closed semiring, namely §; =
(R2°U{oo}, min, +, 00, 0), which we used for shortest paths with nonnega-
tive edge weights. (As previously noted, the min operator actually returns
the greatest lower bound of its arguments.) We have also shown that a* = 0
for all @ € R2% U {o0}.

Chapter 26 All-Pairs Shortest Paths

We claimed, however, that even if there are negative-weight edges, the
Floyd-Warshall algorithm computes shortest-path weights as long as no
negative-weight cycles are present. By adding the appropriate closure op-
erator and extending the codomain of labels to RU{—o0, +o0}, we can find
a closed semiring to handle negative-weight cycles. Using min for @ and -
+ for ©, the reader may verify that the closure of a € RU {—c0, +o0} is
- { 0 ifa>0,

T 1= ifa<0.

The second case (@ < 0) models the situation in which we can traverse
a negative-weight cycle an infinite number of times to obtain a weight
of —oo on any path containing the cycle. Thus, the closed semiring to
use for the Floyd-Warshall algorithm with negative edge weights is S, =
(RU {—00, 400}, min, +, +00,0). (See Exercise 26.4-3.)

For transitive closure, we use the closed semiring S3 = ({0, 1},V, A, 0, 1),
where A(i,j) = 1 if (i,j) € E, and A(i,j) = 0 otherwise. Here we have
=1*= L.

A dynamic-programming algorithm for directed-path labels

Suppose we are given a directed graph G = (¥, E) with labeling function
A:V x ¥V — S. The vertices are numbered 1 through n. For each pair of
vertices I, j € V', we want to compute equation (26.11):

l; j= @ l(p) >

i j
which is the result of summarizing all paths from i to j using the summary
operator @. For shortest paths, for example, we wish to compute

by = (i, j) = min {w(p)} .
()

There is a dynamic-programming algorithm to solve this problem, and
its form is very similar to the Floyd-Warshall algorithm and the transitive-
closure algorithm. Let ng) be the set of paths from vertex i to vertex j
with all intermediate vertices in the set {1,2,...,k}. We define

=@).
peQly)

Note the analogy to the definitions of dg.‘) in the Floyd-Warshall algo-

rithm and Igf) in the transitive-closure algorithm. We can define I,-(f) recur-
sively by

=1 (I Vo el . (26.12)

Recurrence (26.12) is reminiscent of recurrences (26.5) and (26.8), but
with an additional factor of (l;(:;c_l))* included. This factor represents the

26.4 A general framework for solving path problems in directed graphs 575

summary of all cycles that pass through vertex k£ and have all other vertices
in the set {1,2,...,k — 1}. (When we assume no negative-weight cycles in
the Floyd-Warshall algorithm, (c{*~")* is 0, corresponding to T, the weight
of an empty cycle. In the transitive-closure algorithm, the empty path from
k to k gives us (t,(!;c_”)* = 1 = 1. Thus, for both of these algorithms, we
can ignore the factor of (l}i‘”)*, since it is just the identity for ®.) The
basis of the recursive definition is
o= {Je i,
y lei(i,j) fi=j,
which we can see as follows. The label of the one-edge path (i, j) is simply
A(i, j) (which is equal to 0 if (i, j) is not an edge in E). If, in addition,
i = j, then 1 is the label of the empty path from i to i.

The dynamic-programming algorithm computes the values lﬁ-‘) in order

of increasing k. It returns the matrix L") = (l,(;'))

CoMPUTE-SUMMARIES(4, V')
I ne|V|
2 fori—1ton

3 do for j—1ton

4 do ifi=j

5 then [\ — T& A(i, /)

6 else 1)) — A(i, j)

7 fork«—1ton

8 do fori—1ton

9 do for j— 1tonm
10 do I — 5 Ve (I 0 (" 0 87"
11 retarn L™

The running time of this algorithm depends on the time to compute ©,
@, and *. If we let T, Ty, and T, represent these times, then the running
time of COMPUTE-SUMMARIES is ©(n3(Tp + Tg + T.)), which is ©(n3) if
each of the three operations takes O(1) time.

Exercises

26.4-1
Verify that S| = (R2°U {co}, min, +, 00, 0) and S3 = ({0, 1}, V, A, 0, 1) are
closed semirings.

26.4-2
Verify that .S; = (RU{—c0, +cc} , min, +, +o0, 0) is a closed semiring. What
is the value of a + (—oc) for a € R? What about (—oc) + (+00)?

