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Abstract—In this paper we describe a system for underwater
navigation with AUVs in partially structured environments, such
as dams, ports or marine platforms. An imaging sonar is used
to obtain information about the location of planar structures
present in such environments. This information is incorporated
into a feature-based SLAM algorithm in a two step process:
(1) the full 360° sonar scan is undistorted (to compensate for
vehicle motion), thresholded and segmented to determine which
measurements correspond to planar environment features and
which should be ignored; and (2) SLAM proceeds once the
data association is obtained: both the vehicle motion and the
measurements whose correct association has been previously
determined are incorporated in the SLAM algorithm. This two
step delayed SLAM process allows to robustly determine the
feature and vehicle locations in the presence of large amounts of
spurious or unrelated measurements that might correspond to
boats, rocks, etc. Preliminary experiments show the viability of
the proposed approach.
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Fig. 1. Acoustic image superposed to a harbor satellite image
I. INTRODUCTION

The possibility of having truly autonomous vehicles heavily
depends on their ability to build accurate models or maps @fore difficult to interpret than laser scans because it is subject
the environments they traverse, and to know their location ia more angular uncertainty. Also, spurious measurements are
them. This has made this problem, known as Simultaneomsich more frequent. Underwater SLAM systems using sonars
Localization and Mapping (SLAM), the focus of a greausually look for point features in the environment, which are
deal of attention in recent years [1], [2], [3]. Many foreseewery infrequent naturally in most underwater applications, and
applications indoors, outdoors, on land, on air, and underwatBus artificial landmarks have to be deployed.
will be possible once robust and efficient SLAM algorithms In this paper we describe an underwater SLAM system for
are available. AUVs using an imaging sonar that builds a feature-based map

SLAM is currently considered solved for environments obf the environment, consisting in line features corresponding to
limited size [4]. Algorithms based on both Extended Kalmaplanar structures in the environment. These types of structures
Filters (EKFs) [5], [6], [7] and Particle Filter (PFs) [8], [9] are present in many environments of interest for AUVs such as
can be used to map indoor and outdoor at least partiahams, ports, or marine platforms (See Figure 1). They can be
structured environments. Many of these systems use lassed to accurately determine the location of the vehicle in the
scanners, which provide precise 2D and 3D depth informaticgnvironment, as it has been shown in indoor and outdoor urban
More recently, cameras are being used in SLAM systems deevironments. We use a mechanically scanning imaging sonar,
to their reduced cost and the possibility of obtaining textusme low cost acoustic sensor with an operating range of up to
information of the environment [10]. 100 meters which is usually used for obstacle detection. This

In some specially challenging environments and applicanaging sonar provides 260° scan of the environment 6.6
tions, such as underwater environments, it is not possildeconds. In contrast with laser scanners, this sensor provides
to use lasers, and there are also many difficulties in usifaQO returns of different intensities for each beam, making
cameras, among other issues due to lighting conditions. Sonare difficult the extraction of information regarding features
scanners have been used for a long time in underwater systannsh as stable planar structures. An additional difficulty lies in
in general, and more recently for underwater SLAM systentise fact that when mounted on an AUV, the resulting scan is
[11], [12]. The range information provided by sonars is muctlistorted due to vehicle motion. To obtain an initial estimation



of motion, the vehicle has a Doppler Velocity Log (DVL) that ©
provides an estimation of velocity, as well as a compass and
two inclinometers to provide absolute orientation.

SLAM cannot be carried out in the standard way because
the information provided by the sensor in one direction is
insufficient to carry out feature extraction and data association
[6]. In this paper we describe the two step SLAM process that
is carried out: (1) the fulB60° sonar scan is undistorted (to
compensate for vehicle motion), thresholded and segmented tr ,
determine which measurements correspond to planar environ
ment features and which should be ignored (section Il); and (2) {
both the vehicle motion and the measurements whose correc @
association has been previously determined are incorporate:
in the SLAM algorithm (section IIl). Preliminary experiments
(section IV) were carried out in our underwater laboratory to
show the viability of the proposed approach.
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Il. SEGMENTATION AND FEATURE EXTRACTION

Mechanically scanning sonars perform scans in a 2D plagg. 2. (a) Schematic representation of the environment where the sonar data
by rotating a sonar beam through a series of small anqvere gathered. The highlighted zones represent the expected sonar returns.

steps_. For each em_itted beam, Qistance Vs. echo-ampli_tg{ﬁ%ﬁéf] %?friﬁigrggg] acoustic data, (b) distorted and (c) undistorted image
data is returned forming an acoustic image of the surroundings

(Figure 2). The scanning rate of these devices is really slow in

comparison with multibeam sonars. For this reason, the vehicle - n”
movement along a complete scan usually induces importantXx :f(XR,kfl): i
distortions in the acoustic image (See Figure 2(b)). Extracting

features from this kind of images produces inaccuracies atth:

yield to poor results. To cope with the slow scanning rate

of the low cost imaging sonars, we propose a 2 step line 7~ =[z,9.2,¢,0.4]"; v* =[u,v,w,p,q,r]" (3)
extraction procedure. First, the trajectory of the vehicle is cpoh cpshsb—spod cpslodtsvsp 0 O 0
estimated at the same time that the acoustic beams are grabbed | [/, 5 450+ cvctd stsdep—soop 0 0 0

(described in section A). Then, when the position of each bea ()= —s0 chs¢p cfcg 0 0 0 @

is known, the distortion induced by motion is compensated 0 0 0 L spt  cptd

(Figure 2(c)). The segmentation procedure together with the g g 8 g s ;700 c;ij

Hough transform yield the lines present in the undistorted

acoustic image as reported in section B. where, as defined in [13}” is the position and attitude vector
) o referenced to a base frani andv” is the linear and angular

A. Trajectory estimation velocity vector referenced to the robot coordinate frafie

In order to be able to correct the image, whenever a née coordinate frame3 is oriented to the north. Hence, the
sonar beam is read, it is tagged with the current robot posecAmpass measurements can be straight forward integrated.
SonTek Argonaut DVL unit which includes a compass, 2 incliAlthough in this model the velocity is considered to be
nometers and a depth sensor is used to estimate the robot gesstant, in order to allow for slight movements, the velocity
(navigation problem). Sonar beams are read at 30 Hz whifemodelled as the integral of a stationary white naigewith
DVL readings arrive asynchronously at a frequency withigd diagonalQ in the order of magnitude of the maximum
1.5 Hz interval. An EKF is used to estimate the 6DOF rob@cceleration increment that the robot can experiment over a
pose whenever a sonar beam is read. DVL readings are usatple period.

asynchronously to update the filter. To reduce noise inherent v =" +v,T (5)

to the DVL measurements, a simple 6DOF constant velocity

kinematics model is used instead of a more conventional E[v,]=0; Ev,v =4 Q (6)
/ Y .

dead reckoning method. Since AUVs are commonly operated

describing rectilinear transects at constant speed during surt#gnce, the acceleration noise is additive in the velocity (Equa-
missions, we believe that the proposed model is a simple tign 5) and propagates nonlinearly to the position. Finally, the
realistic way to describe the motion. Equations 1 and 2 shawodel prediction and update is carried out as detailed below:
the state vector and the proposed state space model: 1) Prediction: The estimate of the state is obtained as:

x, =[n",v"] @) x,, =fx,, ) (@)



and its covariance matrix as:

B B T T
PR,k = FkaPR.k—lFR,k + GRJc Qk GR.k (8) F = FR,k 012><6k :| G = |: GR‘k :| (15)
whereF,, and G,, are the Jacobian matrices of partial Ocxiz Towxon * Ogpexr2

derivatives of the non-linear model functighwith respect to Finally. at th i ) ds to be adanted
e s, and e e espcivey oot o o ko v coin.
2) Update: The model prediction is updated by the standatkEiy Ing z u : , Ing

Kalman filter equations each time a new DVL measuremesinoothing continues until the end of the scan when we have in
is available: the state vector the best trajectory estimation. At the beginning

. of the next scan, the previously stored positions are removed
Zg, = (U, 0, W, Uy, Vo, War s D5 0,00, 24, (9) before resuming the process.

where subindex stands for bottom tracking velocityy for
through water velocity; for inclinometers and: represents B. Line extraction

the compass. The measurement model is: o . .
P Once an estimation of the vehicle trajectory through the

Zg, = Hslkxf“H +w, (10) sonar scan has been obtained, it is time to search for possible
features. Since objects present in the environment appear
0s5  Oss Loy Onpg as high echo-amplitude returns, a thresholding is applied to
H, = Osis Opxa Ly Oaya (11) discard low echo returns which contain no significant informa-
0,5 Tos Oss Oy tion. Then, a search for local maximums is carried out for each
001 0,5 0,5 0, beam. This reduces the number of considered measurements

wherew, (measurement noise) is a zero-mean white noisewithout appreciable loss in the accuracy of the features. Since
- we know the coordinates of each single echo retffnwith
Elw]=0; Elw,w]=4, R (12)  respect to the vehicle reference R, the corrected position is

Since the DVL sensor provides a status measurement for gnputed using with the vehicle position after the cloning
bottom tracking and water velocity, depending on the quali§focess (through the transformation-point feature composition
of the measurements, different versions of #ematrix are operator [6]):
used to fuse one (removing row 2), the other (removing row %2 =5 ox" (16)
1), or both readings (using the full matrix). oo

3) Trajectory SmoothingSince the line extraction processrigure 3(a) shows the resulting position of the thresholded
is started when the fulB60° scan is completed, a smoothingsonar returns from a single scan.
procedure is used to provide the best estimate of the wholg=q, |ine extraction in this type of images, a Hough trans-
trajectory followed by the robot through the current scafom with a particular voting scheme has been used. When
Hence, during the scanning, the state is augmented with e@Ghyacting lines from sonar data using voting schemes like
beam pose, and each DVL reading cause adjustments to |ij,gh, authors [6] have proposed to vote to all the tangent
whole trajectory. Assuming an augmented state Ve&tdr |ines to the sonar arc. In that case, the sonar beam had around
composed of both the actual vehicle state estimation at tigg.3ge of aperture. When dealing with our imaging sonar,
k and the rest of previqusly stored po'sitions, the smoothing\i%ich makes use of narrow horizontal beas# of aperture)
performed by augmenting the state with a copy (or clone [14))e opserved that the narrow beams were able to detect walls
of the actual position estimat’ and placing it immediately \hose surface was not tangent to the corresponding arc, but
below the vehicle statg&’: within an interval. For this reason, we propose to vote not

only to the tangent lines but to the lines with a slope slightly

0 v, PL L PP LPY higher or lower than the tangent ones. Since we are interested
v’ Pi, . P? an.k ,,,an’k‘l inBIine features, the Hough space i_s parameteriz_eq}’ap)and_
& ﬁf po_ Bk B ) B'k ) PBk | a3 0. Then_, each sonar return p03|t_|on vo_te on this d_|scret|zed
k K " ! " parametric space for all the candidate lines according to the
: : : .o above mentioned sonar model. In Figure 3(b) the resulting
i’ S P P P Hough votation space is shown. The selection among the

As a consequence of this state augmentation, the equatiSﬁgd'date lines starts by rejecting the lines which had not

presented in Sections 1I-A.1 and 1I-A.2 need to be adapted rggelved a minimum number of votes. Next, the most voted

line from each cluster is selected. Finally we force the line to

follows: - . . A .
xi " f(gi ,0) have a minimum density of points, filtering those whose points
N B are scattered through line. At the end of the process, the point-

. n, . . . .
f‘ = ’” (14) to-line association has been established. The result is the set

: : of detected lines together with the set of points belonging to
7713 ﬁf them conveniently labelled.
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Then, it is necessary to update the estimated error covariance
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Fig. 3. Hough transform for line detection. (a) High echo-amplitude returns 0 0 ... I 0

and the winning lines. (b)The obtained Hough voting space J 0 0 J

20
where J,, and J,, are the Jacobians of the composition
1. DELAYED SLAM transformation [15] andejm is the covariance of the point
measured from the vehicle with the sonar. The same procedure
Each time a scan is completed, the segmentation alﬁorepeated for all the points.
hé) Merge sonar returns:At the end of a scan, the state

feature extraction process provides a set of features and t tor should tain the detected i ith total taint
correspondences with the measured points. This informatigrc O Should contain the detected fines (with total uncertainty)

is only available when the entire scan is processed. Therefo?@f]I :)het:;/ corret:s pono_llntg sor;atrhm?_asure_zmentfs. fl\s ':(he associa-
the SLAM algorithm must run in a delayed manner lon between the points an € lInes 1S pertectly known we

. . L . can merge the information and thus, estimate the line state.
The stochastic map information is stored in the state vec 9

101 ) . :
B . . : . ts suppose thak{, is the hypothesis relating each sonar
x” which contains the vehicle statﬁ,eshmated as expla'nedreturn with its associated line. Since both the features and

oo e e i tounonts Tl i s MeSSUETens belong (0 the i, e can represet

9 PO gs-. " t6ndition that the points correspond to each line by an ideal
augmentation makes it necessary to adapt the equations in a . : .
2 X . - measurement equation without noise:

similar way as reported in 14 and 15. From this, the algorithm

will be structured in two steps: z, =h, (x/)=0

Then, the state can be updated using a modified version of
A. Line feature estimation the EKF update equations [6], with, = 0 and covariance
equal to zero. A$1HP is the point to line distance nonlinear

The process of the line estimation uses the informati?antion it is necessary to linearize. The update is performed
obtained from the feature extraction algorithm to initialize the ry ' P P

L : as:
lines in the map and then process the associated measuremerits

B T B T -1
to estimate the line uncertainty. Ky, = Pklk—lHHp (HHP Pklk—lHHp ) (20)
1) Initialization: At the beginning of a scan, the state is %F =%% _ h, (%) (21)
. . N . k klk—1 Hp Hp k
augmented with the previously detected IlneLBs :
B B
P =1- K, H, )Pk‘H (22)
X7 P 0 ... 0 ) ) )
5(1? OR p? 0 After the update, the lines have been estimated using the
< - Ly PP — Ly T (17) information from the points. Hence, the lines are correlated
0 : 0 : : : with the vehicle pose and its uncertainty has been totally
Xf 0 0o ... PLB d(_atermined frqm the uncertainty of the corresponding points.
" " Finally, the points are removed from the state vector.
Wherex? = [p”,0"]" and the line parameters” and B. Matching lines between scans

0" are the values obtained by the Hough transform. The linegyery time a scan is completed, a set of lines is estimated
covariance® are initialized with a large uncertainty valueand introduced into the stochastic map. Lines from different
as an uninformative prior. scans may correspond to the same object from the environ-

2) Update: The vehicle movement is estimated as usuahent. They are thus susceptible to be associated and merged
but when a selected measurement happens it is introducednirorder to correct the whole state.



Fig. 5. Water tank at the Research Center on Underwater Robotics of the
University of Girona

like obstacle avoidance and target tracking. It can perform
scans in a 2D plane by rotating a fan-shaped sonar beam of
3° of horizontal beamwidth and0° of vertical beamwidth.
Fig. 4. The GARBIWY During the experiment, the sensor was set up to work within
a range of 10 meters, capturing a sonar return every 0.1 meters
(100 measurements per beam). Its scanning rate was set to the
1) Compatibility test:To produce the update, an associatiomaximum (around; seconds per 860° scan).
hypothesis is needed. For this purpose, an individual compatin order to estimate the vehicle movement an Argonaut DVL
ibility test is performed at the end of each scan between edethm Sontek was used. The DVL is a sensor specially designed
new line and all the lines previously in the map. Again, afor ROV/AUV applications which measures ocean currents
ideal measurement equation without noise is used: and vehicle speed over ground, by means of the Doppler shift
effect, and altimetry. Moreover, the unit is also equipped with
a compass/tilt sensor which permits to recollect attitude data, a
essure sensor to estimate the depth and a temperature sensor
r sound speed calculations.
The GARBIY carried out a guided trajectory of around
D: = h,,, (f{kB)THHk P’ Hik h,, (%) <x,. (23) 42 meters, consisting on several loops; 161 complete sonar
scans were taken.
DistanceD;, is the Mahalanobis distance. The correspondenceThe final map obtained is shown in Figure 6. The es-
is accepted if the distance is less tbajﬁa, with o defined as timated lines are shown in light gray, represented within
the confidence level and= dim(h,,). a 95% confidence level, while the tank contour had been
The Nearest Neighbor (NN) selection criterion determindsghlighted for easier identification. For comparison purposes
that among the features that satisfy (23), the one with thee trajectory estimated using dead reckoning of the DVL
smallest Mahalanobis distance is chosen and hypotligsis measurements (blue dash-dotted line) is represented together
is accepted. with the SLAM estimated one (black line). As it can be seen,
2) Merge compatible lines:Having an HypothesisH, the dead reckoning trajectory has an important drift, which is
relating compatible lines, an update of the stochastic map cz@ntrolled using the proposed SLAM algorithm. As the tank

Z, :h?‘-tk (Xf)ZO

Taking into account that the Jacobian of the nonlinear functifé

h,, is H,,, a compatibility test can be written as:

be performed: dimensions are known, they can be used as a ground truth for
5 - 5 1 evaluation of the resulting map. Figure 7 shows the error plots
Kwk =P M, (Hwk Pkuc_lan ) (24)  for the estimation of the length of the four boundary walls.
5 .n s We can clearly see that most of the time errors remain inside
X, =%, — Ky, hﬁk (x,) (25)  the 20 bounds.
P, =(I1-K, H, )P/ (26) V. CONCLUSION

The lines estimated in the last scan which match with a featureMost of the previous work in underwater SLAM has been
already in the map can now be eliminated from the state. focused on the use of point features. The main contribution of
this work consists on carrying out underwater SLAM detecting
IV. EXPERIMENTAL RESULTS lines using sonar imagery in a partially structured environment
We carried out an experiment with the GAREY (See like harbors or dams. We propose a method to correct the
Figure 4) in the water tank of the Underwater Roboticsiotion that induces distortion commonly present in the sonar
Research Center at the University of Girona (See Figure Spans gathered with low cost, slow, mechanically scanning
The vehicle was equipped with a Miniking Imaging sonar froraonar. Trajectory smoothing by cloning along a sonar scan
Tritech, a sensor designed for use in underwater applicatidgasarried out to the best estimate of the robot trajectory at the



end of the scan. The smoothing improves the results when the ACKNOWLEDGMENT
velocity measurements coming from the DVL are very noisy Thjs research has been funded in part by the Difecci
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enclosing the lines tangent to the sonar arc, has probed to be
very important for line detection. One of the weakest points

of our current implementation stands for the low frequency ofy)
the DVL measurements. This is particularly important for the

heading, forcing us to use a pessimistic error model for thé
compass. Using a higher frequency compass, would allow us to
increment the operation velocity of the robot, specially the yau#g]
rate, without compromising the correction of the distortion. 4]
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