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Abstract— A person buried by a snow avalanche can be found
by measuring the magnetic field generated by an avalanche
beacon or ARVA carried by the victim. However, the signals
received are difficult to interpret and require people with good
training on the actual searching techniques. In this paper we
show that the search can be automated using SLAM techniques.
The rescuer is equipped with an inertial sensor to estimate its
own motion and a triple antenna to obtain 3D measurements
of the magnetic field generated by the victim’s ARVA. Both
measurements are used to build a ”robocentric” map that
contains the location of the victim relative to the rescuer. To solve
this highly non-linear SLAM problem we propose and compare
two alternative solutions based on a sum of Gaussinas (SOGs)
filter and a Particle filter. We present simulation results showing
that, for comparable computing times, the SOGs solution gives
more accurate results.

I. INTRODUCTION

Time is essential when rescuing people buried in the snow
by an avalanche: during the first 15 minutes, a victim is found
alive with a 93% of probability whereas this probability falls to
25% after 45 minutes [1]. The most useful device to localize
the victims is an avalanche beacon or ARVA (Appareil de
recherche de Victimes d’Avalanche). An ARVA is a transceiver
that generates an oscillating magnetic field of 457kHz whose
characteristics are defined on the standard ETS 300718. If an
avalanche occurs and buries completely one or more victims,
the rescuers must switch their ARVAs to reception mode and
search the avalanche area trying to detect the magnetic field of
the victim’s ARVA and finding its location. To be successful,
rescuers must be trained on the basic search techniques, briefly
explained in [2]. Even for trained rescuers, there are some
challenging situations such as deep burials or multiple close
victims that may cause confusion and delay the rescue.

Our objective is to develop new localization techniques to
automate and speed up the search. In this paper we show that
finding the victims can be seen as a SLAM problem [3],[4],
where the rescuer takes the role of the robot and the victims are
the features to be mapped. The observations are measurements
of the magnetic field vector generated by the victim’s ARVAs
taken with a 3D antenna carried by the rescuer. Preliminary
work was presented in [2], assuming that the trajectory of the
rescuer was perfectly known. Here we generalize the results
to the full SLAM problem, where only imprecise information
about the rescuer motion is available.

In classical SLAM the map contains the location of the
robot and the environment features relative to a fixed reference.
In our application we want to estimate the location of the
victims relative to the rescuer. Although this information could
be computed from an absolute map when needed [3], it
seems more natural to build a map relative to the rescuer
using robocentric SLAM [5]. This technique has the additional
advantage of reducing the effects of linearization errors.

The main difficulty for solving this SLAM problem is the
high non-linearity of the magnetic field measurement equation.
As a result, the pdf describing the estimated location of a
victim after a few measurements is far from being Gaussian
and linear estimation techniques as the EKF become useless.
In this paper we propose and compare two solutions based on
a Sum of Gaussians filter [6] and on a particle filter [7].

The rest of the paper is structured as follows. Section II
presents the robocentric SLAM equations used to describe
the problem. In section III a solution based on the SOGs
filter is proposed. Section IV discusses different approaches to
the problem using particle filters. Finally, section V presents
comparative simulation showing the results obtained by both
methods.

II. ROBOCENTRIC MAPPING

In the robotic SLAM literature the map is usually built
with respect to an absolute reference frame which generally
coincides with the initial location of the robot. However, in this
SLAM application, it is more natural to represent the location
of the transmitters (map) with respect to the current location of
the receiver (robot). This information and its uncertainty can
be directly used to guide the rescuer to approach and find the
victims. Therefore, our SLAM implementation will be based
on the Robocentric Mapping [5]. An additional advantage of
this technique is that reduces the effects of the linearization
on the quality of the stochastic map.

In this work, two main reference frames are used. The
first one is a local geographic reference frame G with its x
axis pointing North, y axis pointing West and z axis pointing
up, centered at the receiver’s position. The second one is a
reference frame R attached to the receiver’s antenna and it
is used to represent the components of the magnetic field
measured. Its origin coincides with that of the geographic
frame and its axis are aligned with the three coils of the



Fig. 1. Relation between local Geographic frame and Receiver frame after
a movement

antenna. We assume that the x axis points to the rescuer’s
forward direction, the y axis points to the rescuer’s left and
the z axis points upwards.

The stochastic state vector used represents the location
of the receiver and the transmitters in the local geographic
reference:

x̂k =




GkΨ̂Rk
Gk x̂T1

...
Gk x̂Tn


 ; Pk =




PRk
. . . PRkTn

...
. . .

...
PTnRk

. . . PTn


 (1)

where GkΨ̂Rk
=

[
ψ̂, θ̂, φ̂

]T

are the roll , pitch and yaw
angles which define the orientation of the receiver antenna with
respect to the geographic frame. The corresponding rotation
matrix is given by:

GkRRk
= Rot(z, φ̂)Rot(y, θ̂)Rot(x, ψ̂) (2)

The nth transmitter is described by its position in cartesian
coordinates, and its magnetic moment vector, that encloses the
information about the orientation and power of its antenna:

Gk x̂Tn =
[

Gk p̂Tn
Gkm̂Tn

]
(3)

The basic steps of the robocentric SLAM algorithm are
detailed next. For the rest of the paper, a unique transmitter
will be assumed.

A. Receiver motion

A set of sensors attached to the antenna can provide the
information required to estimate the antenna orientation with
respect to the geographic frame and its displacement because
of the rescuer’s movement. The vector which describes the
transformation between two consecutive receiver locations
(figure 1) is:

Rk−1xRk
=

[
Rk−1pRk
Rk−1ΨRk

]

= Rk−1 x̂Rk
+ wk (4)

wk ∼ N(0, Qk)

where Rk−1pRk
is the translation component and Rk−1ΨRk

is
the rotation component. The motion Rk−1 x̂Rk

estimated has
an associated process noise covariance Qk.

The components of the state vector xk in the new reference
frame Gk can be calculated using the displacement as follows:

GkΨRk
=Gk−1 ΨRk

=Gk−1 ΨRk−1 ⊕Rk−1 ΨRk
(5)

or in rotation matrix terms

GkRRk
=Gk−1 RRk

=Gk−1 RRk−1
Rk−1RRk

(6)

where the ⊕ operator represents the composition of rotations
as described in [8].

The vector pT1 that describes the position of the transmitter
with respect to the current geographic reference frame can be
easily obtained by:

GkpT1 = Gk−1pT1 − Gk−1RRk−1 · Rk−1pRk
(7)

where (Gk−1RRk−1 · Rk−1pRk
) is the vector that goes from

the origin of the reference Gk−1 to the origin of Gk expressed
in Gk−1 coordinates.

Finally, the magnetic moment mT1 does not change when
going from Gk−1 to Gk since its pointing direction and
modulus are the same in both references:

GkmT1 =Gk−1 mT1 (8)

Equations (5, 7, 8) can be condensed in a unique function f ,
called composition equation which gives the new state vector
after a movement:

xk = f(xk−1,
Rk−1 xRk

)

=




Gk−1ΨRk−1 ⊕ Rk−1ΨRk
Gk−1pT1 − Gk−1RRk−1 · Rk−1pRk

Gk−1mT1


 (9)

B. The prediction step

In the robocentric approach the composition equation is
postponed until the composition step. Instead, the displace-
ment vector Rk−1xRk

is included, with its corresponding
covariance Qk and correlation with the state Ck, in the
stochastic vector xk−1:

x̂∗
k|k−1 =

[
x̂k−1

Rk−1 x̂Rk

]
(10)

P∗
k|k−1 =

[
Pk−1 Ck

Ck Qk

]
(11)



where superscript ∗ will denote the state vector augmented
with the inclusion of the displacement.

Postponing the composition, the estimated relative move-
ment will be first improved in the estimation step of the EKF
reducing the effects of the linearization in the process equation.

C. The estimation step

The components of the magnetic field with respect to an
arbitrary reference frame can be obtained in any position of
the space from [2]:

H =
1

4πr5
A m (12)

A =


 2r2x − r2y − r2z 3rxry 3rxrz

3rxry 2r2y − r2x − r2z 3ryrz
3rxrz 3ryrz 2r2z − r2x − r2y



(13)

where r = pR − pT is the radio vector that goes from the
transmitter to the receiver. In this equation r and m must be
expressed in coordinates of the reference frame selected.

The measurement equation is:

Rkzk = hk(x∗
k|k−1) + vk (14)

hk(x∗
k|k−1) = RkRGk

GkH

vk ∼ N(0, Rk)

where GkH are the components of the magnetic field in
reference Gk, RkRGk

is the rotation matrix associated with
RkΨGk

and vk is the measurement noise.
Using this measurement, a new state estimate can be ob-

tained with the classical EKF update equations. The new state
vector and its covariance are denoted by x̂∗

k|k and P ∗
k|k .

D. The composition step

Finally the original size of the state vector is obtained
again modifying its components by the improved displacement
vector. To obtain the original state vector and its covariance
the composition equation evaluated in the new estimates is
applied:

x̂k = fk(x̂∗
k|k) (15)

Pk = FkP
∗
k|kF

T
k

where Fk = ∂fk
∂x∗

k

∣∣∣
(x̂∗

k|k)

III. SOGS FILTER

We know from [2] that the posterior pdf p(xk|Zk) as-
sociated with this problem is multimodal during the initial
steps of the localization. Therefore, the standard Kalman filter
equations as defined in the previous section cannot be directly
implemented in this case. The error in the approximation of
the posterior by a unimodal gaussian distribution would be
excessive. In this paper two methods are proposed to improve
the approximation. The first one is based on the sum of
gaussians filter (SOGs) and it is discussed in this section, the
second one is based on the particle filter and it is explained
on section IV.

Algorithm 1 : SOGs Filter.
for i = 1 to N do

Prediction Step:

x̂∗(i)
k|k−1 =

[
x̂(i)

k−1
Rk−1 x̂Rk

]

P
∗(i)
k|k−1 =

[
P

(i)
k−1 Ck

Ck Qk

]

Estimation Step:
Hk = ∂hk

∂x∗
k

∣∣∣
(x̂

∗(i)
k|k−1)

Kk = P
∗(i)
k|k−1H

T
k (HkP

∗(i)
k|k−1H

T
k +Rk)−1

x̂∗(i)
k|k = x̂∗(i)

k|k−1 +Kk(zk − hk(x̂∗(i)
k|k−1))

P
∗(i)
k|k = (I −KkHk)P ∗(i)

k|k−1

w
(i)
k = η w

(i)
k−1 N(zk;hk(x̂∗(i)

k|k−1), HkP
∗(i)
k|k−1H

T
k +Rk)

Composition Step:
Fk = ∂fk

∂x∗
k

∣∣∣
(x̂

∗(i)
k|k )

x̂(i)
k = fk(x̂∗(i)

k|k )

P
(i)
k = FkP

∗(i)
k|k F

T
k

end for

A. SOGs review

Any pdf p(x) can be approximated by a sum of gaussians
[6]:

p̂(x) =
n∑

i=1

w(i)N(x; x̄(i), P (i)) (16)

where
∑n

i=1 w
(i) = 1, w(i) ≥ 0.

If the number of terms n increases and the covariances P (i)

tend to zero, p̂(x) converges uniformly to p(x).
The prediction and update steps of the SOGs filter are

based on the corresponding steps of the EKF for each of
the gaussians [6]. Thus, by managing a bank of EKFs the
posterior can be properly approximated. The accuracy of the
approximation depends on the relation between the degree of
uncertainty each gaussian represents and the degree of local
nonlinearity of the functions that are approximated by the
corresponding step of the EKF.

The actualization of the importance weights w(i)
k can be

calculated from:

w
(i)
k =

w
(i)
k−1N(zk;hk(x(i)

k ), S(i)
k )∑

j w
(j)
k−1N(zk;hk(x(j)

k ), S(j)
k )

(17)

where S(i)
k is the innovation covariance matrix of the gaussian

i at instant k. To speed up the process, after each iteration,
gaussians with negligible weights can be eliminated.

Using the equations described in section II, the robocentric
implementation of the SOGs for the problem proposed is given
by algorithm 1

B. Initialization of the Gaussians

Using the first magnetic field measurement G1z1 expressed
in geographic coordinates we can calculate the minimum and



Algorithm 2 : Vanilla Particle Filter.
for i = 1 to N do

sample from x(i)
k|k−1 ∼ p(xk|x(i)

k−1,
Rk−1 xRk

)

w(i) = p(zk|x(i)
k|k−1)

end for
for i = 1 to N do

draw x(i)
k|k from {x(j)

k|k−1} with probability ∝ w(j)

end for

maximum range at which the transmitter can be located [2]:

rmin =
(

mmin

4π|G1z1|
) 1

3

rmax =
(

2 ·mmax

4π|G1z1|
) 1

3

It is also known [9] that the burial depth of avalanche
victims is less than 3m in 95% of the cases. Using both results,
the transmitter can be located in any position G1pT1 inside a
cylinder ring around the receiver. In order to approximate a
uniform distribution, this region is covered by a set of Gaus-
sians. The orientation component G1Ψ(i)

R1
of each gaussian is

initialized with the initial misalignment between G1 and R1

frames. The value of G1mT1 is computed using the measured
value z1 and equation (12). All gaussians are given the same
initial weight wi = 1/n, where n is the total number of
gaussians.

C. Search Control

The mean and covariance of the SOGs distribution are
easily calculated from the mean and covariance of its Gaussian
components [10]:

x̄ =
n∑

i=1

w(i)x̄(i)

Px =
n∑

i=1

w(i){P (i) + (x̄ − x̄(i))(x̄ − x̄(i))T } (18)

where x̄(i) and P (i) are the mean and covariance of the ith
Gaussian.

The automatization of the searching algorithm is as follows.
Initially, the rescuer is directed to follow the direction of the
magnetic flux lines. When the receiver position is far enough
(in terms of mahalanobis distance) from the mean of the SOGs
distribution, the rescuer is directed towards this mean.

IV. PARTICLE FILTER

To compare with the SOGs approach we have also devel-
oped a particle filter solution that also uses the robocentric
representation. In this case, the composition is not postponed
because the particle filter can deal with nonlinear functions
without approximations. After the first magnetic field measure-
ment, an initial set of particles is generated in a similar way
to the one described in III-B. Next, a vanilla particle filter that
samples the complete state vector xk can be used (algorithm
2). However, the results obtained are extremely poor. The main
reason seems to be related to the GkmT1 component of the

Algorithm 3 : Rao-Blackwellized Particle Filter.
for i = 1 to N do

sample from
Ψ(i)

k|k−1,p
(i)
k|k−1 ∼ p(Ψk,pk|Ψ(i)

k−1,p
(i)
k−1,

Rk−1 xRk
)

ẑ(i)
k = hk(Ψ(i)

k|k−1,p
(i)
k|k−1, m̂

(i)
k−1)

Hmk
= ∂hk

∂mk

∣∣∣
(m̂

(i)
k−1)

Kk = M
(i)
k−1H

T
mk

(Hmk
M

(i)
k−1H

T
mk

+Rk)−1

m̂(i)
k = m̂(i)

k−1 +Kk(zk − ẑ(i)
k )

M
(i)
k = (I −KkHmk

)M (i)
k−1

w
(i)
k = η w

(i)
k−1 N(zk; ẑ(i)

k , Hmk
M

(i)
k−1H

T
mk

+Rk)
end for
for i = 1 to N do

draw Ψ(i)
k|k,p

(i)
k|k from {Ψ(j)

k|k−1,p
(j)
k|k−1} with probability

∝ w
(j)
k

end for

state vector, that is a static parameter as shown by equation
(8). As it is known, particle filters require process noise to
maintain particle diversity after the resampling step. Otherwise
the filter will suffer from particle deprivation [11]. We have
tried to add an artificial process noise to the parameter GkmT1 ,
as proposed by [12], without significant improvements on the
filter performance.

We have developed a second implementation based on a
Rao-Blackwellized particle filter [7] following a derivation
similar to the proposed in the FastSLAM [13]. Using this
technique the posterior is factorized into two probabilities:

p(xk|zk,uk) = p(Ψk,pk,m|zk,uk)
= p(m|Ψk,pk, zk,uk)p(Ψk,pk|zk,uk) (19)

where u represents the receiver motion and the superscript
k means the data obtained up to time instant k. The first
part, corresponding to the magnetic moment, will be estimated
with a Kalman filter whereas the rest of the state vector will
be estimated with a particle filter (algorithm 3). For each
particle, the initial value for m will be computed from the
first measurement of the magnetic field using equation (12).
Notice the linear relation in the measurement equation between
z and m. As a consequence, the estimation of m with the
Kalman filter will be performed without any approximation.
The covariance matrix of the magnetic moment m is denoted
by M .

It is important to determine when to carry out the resampling
operation in order to reduce the probability of eliminating
particles that are near the transmitter. In our case, this is
specially true in the initial steps of the searching. The criterion
selected is based on the effective sample size N̂eff which
determines the approximate number of samples that actually
contribute to the estimate [14]. It is defined as

N̂eff =
1∑N

i=1(w
(i)
k )2

(20)



The resampling step is performed only when N̂eff is below a
given threshold.

The search control implemented to guide the receiver to-
wards the transmitter is similar to the one described in III-C.

V. RESULTS

In this section simulation results obtained with the SOGs
and RBPF are studied. Figures 2 and 3 show three snapshots
of the performance of both filters for the same problem. In
this case, the initial distance between transmitter and receiver
is 53 meters. Each edge of the simulated surface represents 10
meters approximately. After the first measurement, gaussians
and particles are distributed in a cylinder-ring (left figures).
The receiver antenna is located at the center of the ring
whereas the transmitter represented by a big arrow is situated
on the left. The arrow points in the direction of the magnetic
moment of the transmitter antenna. A few steps later (central
figures), the posterior pdf is reduced to a smaller region that
contains the real location of the transmitter. For the SOGs
filter, half of the gaussians have been already eliminated
whereas for the RBPF the particles have been concentrate
around the transmitter by the resampling step. At this point
the rescuer is going straightforward to the victim’s location.
Right figures show a more advanced step of the search. The
uncertainty in the location of the victim has been greatly
reduced and the posterior begins to be similar to a single
gaussian in both cases.

To analyze the performance of the proposed algorithms 100
tries have been performed. On each try the position, orientation
and power of the transmitter is randomly chosen. It is assumed
that the receiver is moving at 1m/s taking a measurement
per second. The initial distance between the rescuer and the
transmitter varies from 40 to 60 meters.

The initial number of gaussians used in all the tries is 1700.
This number is consecutively reduced during the search. In
the final steps, less than 15 gaussians usually survived. In
the RBPF 5000 particles are maintained during all the search.
For this number of gaussians and particles the algorithms can
be implemented in real time and have comparable computing
times.

Table I summarizes the results of the 100 tries. The number
of steps required to find the transmitter is quite similar in
both algorithms. The error rows represent the difference, in
meters, between the true victim’s location and the estimated
location obtained with the SOGs and the RBPF. A more
detailed description of these errors are shown on figures 4,
5. As can be appreciated on figure 5, there are 25 tries in the
particle filter in which the algorithm has failed in more than 1
meter in the estimation of transmitter location. A supervised
run of these cases shows that the filter has suffered from
particle deprivation, loosing particles near the real location of
the transmitter. To assure robustness, the number of particles
can be incremented, but then the time needed is greater than in
the gaussian case. Figure 4 shows the errors obtained with the
SOGs filter. As can be seen, errors are bounded and mainly
distributed in the interval [0.1, 0.4] meters. Therefore, for the
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Fig. 4. SOGs distribution errors after 100 tries. Errors are concentrated in
the interval [0.1, 0.4] meters
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Fig. 5. Particles distribution errors after 100 tries. The big bin on the right
represents the accumulation of all estimation errors > 1 meter

implementations explained, the SOGs filter seems to be more
robust.

VI. CONCLUSIONS

A robocentric SLAM approach has been implemented in
this paper to localize a person buried in the snow by an
avalanche. Using this technique the location of the victim is
estimated with respect to the current location of the rescuer.
With this information, the rescuer can be directly guided to
approach and find the victim.

Since the posterior that characterizes the location of the
transmitter is multimodal, classical SLAM techniques based
on Kalman Filter cannot be directly applied. Instead two

TABLE I

COMPARISONS BETWEEN SOG FILTER AND RAO-BLACKWELLIZED

PARTICLE FILTER

MAX MEAN MEDIAN
SOGs error 0.66 0.23 0.21
RBPF error 32.5 2.27 0.28

Initial receiver distance 60 50.4 51
Steps SOGs 93 62 61
Steps RBPF 99 64 64



Fig. 2. Initial distribution of the Gaussians in a cylinder-ring (left), After some steps some hypothesis disappear (middle), Gaussians concentrate near the
real location of the transmitter (right).

Fig. 3. Initial distribution of the particles in a cylinder-ring (left), After some steps the resampling process distributes particles in the vicinity of the transmitter
(middle), Particles concentrate near the real location of the transmitter (right).

alternative solutions based on SOGs filter and particle filter
are proposed.

In both algorithms, the victim is localized in a comparable
number of steps. However, for the implementations proposed,
the SOGs filter seems to be more robust and accurate in the
estimation.

Future work will study improvements of the SOGs filter.
The problem of finding several victims and the best trajectory
of the rescuer to reduce their uncertainty localization will be
also addressed.
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