
Geometric Object Recognition

in Multisensor Systems
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Chapter 1

Multisensor Object
Recognition

1.1 Introduction

Object recognition is one of the fundamental areas of research in intelligent
robotics. Identifying and locating objects on the workspace of a robot is con-
sidered a fundamental problem to solve in order to develop more flexible and
powerful robotic systems. In industrial robotic tasks, the perirobotic engi-
neering required to structure the robot environment has become increasingly
cost-ineffective. Furthermore, robots are being introduced in unstructured
and less predictable environments, such as indoor and outdoor exploration.
Thus, it is necessary to improve their ability to perceive and interpret their
workspace.

Actually, there is a great variety of sensing devices that can be used
to extract environment information, such as vision systems, infrared, ul-
trasound and laser proximity sensors, force and torque sensors, structured
light systems and many more. Nevertheless, sensors give partial, inaccurate
and error-prone information. The use of several sensors allows to overcome
these limitations, as individual sensing capabilities are sinergistically com-
plemented and redundancy in multisensorial information allows the system
to be more robust to sensor error or malfunction.

Sensors can obtain parametric and geometric information. Parametric
descriptors are global properties of objects, such as their color, texture, and
form descriptors. Parametric recognition is generally stated as a statistical
classification problem, and can be very efficient in some situations, where
objects can be found isolated and in predetermined poses. Unfortunately,

7



8 CHAPTER 1. MULTISENSOR OBJECT RECOGNITION

it is very unrobust in situations where objects are partially occluded and
jumbled together. These types of scenes can be analyzed more adequately
using geometric recognition. Geometric information is related to local fea-
tures of the object surface, such as edges, planar surfaces, pegs, holes, etc.
Geometric recognition is based on the search for correspondences between
a set of sensed features and a database of geometric models of the objects.
There are two factors that make geometric recognition a difficult problem:

• Information extracted from the environment is generally low level,
subject to uncertainty in measurement and ambiguity in interpretation.

• Unstructured environments confronts us with an exponential solution
space, even if only a limited set of known objects (that is, where de-
tailed models are available) is considered.

Uncertainty is introduced by sensors that give inaccurate, and sometimes
spurious measurements; by data processing algorithms and methods that can
be approximate and thus introduce errors; and by the observation-model
matching process, whose performance is affected by occlusion and similarities
between object models, or between different poses of objects. Uncertainty
can be classified into two categories:

• Quantitative uncertainty. It is related to the imprecision of geometric
information such as object or feature location, and to measured prop-
erties of geometric entities such as dimensions, distances, and angles.
This kind of uncertainty is normally introduced by inaccurate sensor
measurements during the data acquisition process, and by the use of
approximate methods.

• Qualitative uncertainty. It refers to the validity of an interpretation
of sensor observations. Since recognition is a matching process, an
observation can have many potential pairings that would support dif-
ferent hypotheses on the object identity and location. (An observation
can also be spurious.) Therefore, qualitative uncertainty is related to
the symbolic association of observations to models in the recognition
process.

Reduction in the exponential complexity of geometric recognition can be
achieved by the application of two fundamental ideas: the use of validation
mechanisms that allow the system to discard entire subspaces of the solution
space from further consideration, and the use of strategies for the generation
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and verification of hypotheses, that can help the system in searching the
solution space more efficiently to obtain more plausible hypotheses promptly.

The fundamental contributions of this work are the definition of such val-
idation mechanisms and hypothesis management strategies, making an ex-
plicit consideration of uncertainty. The fundamental objective of our work is
generality: we are concerned with the development recognition mechanisms
that can be applied to any combination of sensors or geometric features,
making them adequate for their use in multisensor systems. In the next
sections we formally define the recognition problem, and have a closer look
at the currently proposed recognition schemes, in order to precisely identify
which aspects of recognition constitute the contribution of the present work.

1.2 Problem Definition

Formally, the multisensor recognition problem can be stated in the following
way: let E = {e1, . . . , es} be a set of s diverse sensorial observations of
geometric features of the surface of the objects present in the scene, obtained
by different sensors. Let O = {O1, . . . , Or} be a set of r object models that
the system is capable of recognizing. Let M = {m1, . . . , mn} be the set of
model features of all object models. Each object model Oi has an associated
set of geometric features, Oi = {mi1 , . . . , mini

} ⊆ M. (For simplicity in
notation, the model and its set of features are denoted with the same letter.)

The goal of the recognition system is to generate an interpretation, in
terms of the identity and localization of objects, that best fits the set of
observations. Such an interpretation relates each observation ej with a
model feature mk by means of a pairing pi = (ej ,mk). Let P denote the
set of all pairings. An interpretation is a set of object-location hypotheses
H = {h1, . . . , hh}, where each hypothesis has the form:

hi = {Instance of Oj at LOhi
, Shi

, Chi
, Uhi

}
where LOhi

is the hypothesized object location, the set Shi ⊆ P is the set of
pairings which support the hypothesis, Chi ⊆ Oj is the set of features whose
location in the scene has been predicted but were not found, and constitute
the hypothesis counterevidence, and Uhi ⊆ Oj is the set of model features
that have not been verified, and constitute its potential support.

The space of solutions is usually represented by means of an interpreta-
tion tree [Grimson 87] (fig. 1.1). This tree has s levels; each node at a level
k, called a k-interpretation, provides an interpretation for the first k sensor-
ial observations. Each node of the tree has n+1 branches, corresponding to
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Figure 1.1: Interpretation tree that represents the solution space

each of the alternative interpretations for the observation k (including the
possibility that the observation be spurious, denoted by *). Given s obser-
vations and n model features, and considering that a sensorial observation
can be spurious, we have that there are (n + 1)s terminal nodes, or leaves,
in the interpretation tree. That is, the number of possible interpretations
for the full set of observations grows exponentially with s.

The recognition of an object implies carrying out two tasks: determining
the identity of the object, and computing its location in the scene. Object
identification is a search problem, while computing its location is an es-
timation problem. This twofold goal has given rise to two fundamental
recognition schemes:

• The identifying before locating scheme [Grimson 90a], where the iden-
tity of the object is determined first, and then its location in the scene
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is estimated. In this scheme, the validation of a hypothesis is done
using location independent constraints, a set of simple and fast valida-
tions of geometric relations between features, that are independent of
object location.

• The identifying while locating scheme [Faugeras 86], in which identifi-
cation and localization are carried out simultaneously. The availability
of an estimated location of the object during the identification process
allows to use location dependent constraints, which constitute a pow-
erful validation mechanism.

There are some basic aspects of the recognition problem that are common
to both schemes, and some others that are substantially different. In the
following sections we will describe these schemes in a top-down fashion, in
order to identify their similarities and differences.

1.3 The Identifying before Locating Scheme

The identifying before locating scheme is based on separating the processes
of determining the identity of the object, and of determining its location
in the scene. In algorithm 1.1, we give a basic and simple implementa-
tion of this approach, where one object model is considered1. Function
search for pairings returns a set of hypotheses, where the hypothesized
location of the object has not been estimated. Function locate and validate
performs this estimation with the purpose of determining which hypotheses
are consistent. Let us study each of these steps in detail.

1.3.1 Searching for pairings

Given that identification is a search problem of exponential complexity, the
idea behind the identifying before locating scheme is to use very simple and
fast validation mechanisms to determine whether a given hypothesis is con-
sistent with the set of observations. Such validations can be made using
geometric constraints. Geometric constraints are a set of parameters that
derive from the dimensions of the features and from their relative location.
If they involve only one feature, they are denominated unary constraints.
For example, an observed edge of length le can only correspond to a model
edge of length lm ≥ le. It is also possible to validate geometric constraints

1This is sufficient for illustrative purposes, and its extension to the consideration of
several objects is straightforward.
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FUNCTION identify before locating (E, M)

; E: set of sensorial observations
; M: set of model features

; returns Hv , a set of object-location hypotheses, that are
; consistent interpretations of the set of observations

Hg := search for pairings (∅, E, M);
Hv := locate and validate (Hg);

RETURN Hv ;
END;

Algorithm 1.1: Identifying before Locating

FUNCTION search for pairings (Sh, E, M)

; Sh: current set of pairings
; E: remaining observations to be paired
; M: set of candidate model features

; This function selects an observation from E, and uses binary constraints
; to determine which model features of M can be paired with it.
; For each acceptable pairing, it recurs to accumulate new pairings for Sh

H := ∅;
IF E = ∅ THEN

H := H∪ {Sh};
ELSE

e := select observation (E); (Chapter 6)
FOR m ∈ M DO

p := (e, m);
IF satisfy unary constraints (p) THEN

binary := TRUE;
FOR pp = (ep, mp) ∈ Sh WHILE binary DO

binary := satisfy binary constraints (pp, p); (Chapter 3)
OD;
IF binary THEN

H := H ∪ search for pairings (Sh ∪ {p} , E \ {e} , M);
FI;

FI;
OD;
H := H ∪ search for pairings (Sh, E \ {e} , M);

FI;

RETURN H;
END;

Algorithm 1.2: Searching for pairings
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between pairs of features. Such constraints are denominated binary con-
straints. For example, two observed edges may only correspond to two model
edges whose relative distance and angle is the same (taking into account sen-
sor precision). These two types of geometric constraints can be computed
and validated without having an estimation of the object location. For this
reason we call them location independent constraints.

The hypothesis generation process is based on traversing the interpre-
tation tree in search for consistent interpretations. In algorithm 1.22, this
process is written as a recursive procedure in which, at each step of the
recursion, all consistent pairings between an observation e and the model
features in M are obtained.

Note that for candidate pairing p, it is verified whether it satisfies the
binary constraints with each of the pairings already included in the current
set of pairings Sh. Thus, the number of binary constraints to verify for a
given hypothesis grows polynomially with the number of paired observations.
Even if computing and validating these geometric constraints is fast (in
terms of runtime), this may lead to a great amount of computation.

An important issue regarding this hypothesis generation process is the
selection of the observation e that should be processed next (implemented
in the select observation function). The most suitable observation is the
one that generates as few pairings as possible. This allows to discard inco-
herent hypotheses in the upper levels of the interpretation tree, eliminating
large subtrees from further consideration. For this purpose, the generally
accepted criteria is to select salient features, features that are less frequent
in the models because of their geometric characteristics or their size.

1.3.2 Locating and Validating

The validation of location independent constraints assures only local con-
sistency. This means that, in a hypothesis, the geometry of any pair of
observations is consistent with their corresponding model features, but this
does not assure that the interpretation is globally consistent [Grimson 90a].
Therefore, it is necessary to estimate the object location in order to deter-
mine whether the location of each observation and that of its corresponding
model feature coincide, taking into account sensor precision. This validation
is related to the fact that we consider rigid objects, that is, we only consider
transformations that preserve the distance between points of the object.

2This algorithm is equivalent to the one proposed in [Grimson 90a], where it is written
in a nonrecursive way.
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FUNCTION locate and validate (H)

; H: set of hypotheses h whose object location has not been estimated
; and contain only the support pairings Sh

; For each hypothesis, the object location is estimated and the global
; consistency is validated using the rigidity constraint

Hv := ∅;
FOR Sh ∈ H DO

Lh := estimate object location (Sh); (Chapter 2)
valid := TRUE;
FOR p ∈ Sh WHILE valid DO

valid := satisfy rigidity constraint (Lh, p); (Chapter 3)
OD;
IF valid THEN

Hv := Hv ∪ h;
FI;

OD;

RETURN Hv ;
END;

Algorithm 1.3: Locating and Validating

Consequently, it is called the rigidity constraint. It is one of several con-
straints that can be validated only when an estimation of the object location
is available, the location dependent constraints. Algorithm 1.3 implements
this hypotheses validation mechanism.

Object localization is usually carried out using some estimation method
that finds a transformation such that the error between each transformed
model feature and its corresponding observed feature is minimal in some
sense. In [Tardós 92a, Tardós 92b], Tardós develops a general integration
mechanism for uncertain geometric information, based on the Extended
Kalman and information filters, which we adopt in this work.

1.4 The Identifying while Locating Scheme

The fundamental idea behind the identifying while locating recognition scheme
is that an estimation of the location of the hypothesized object is a very im-
portant source of information for the identification process. For this reason,
the complexity of the recognition process can be reduced if identification
and localization are performed simultaneously.
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FUNCTION identify while locating (E, M)

; E: set of available observations
; M: set of model features

; Generates hypotheses using two independent observations that allow to
; determine the object location, so that they can be verified using
; location dependent constraints

REPEAT
ef := select first observation (E); (Chapter 6)

es := select second observation
(
E \

{
ef

}
, ef

)
; (Chapter 6)

Hg := search for pairings
(
∅,

{
ef , es

}
, M

)
;

Hv := ∅;
FOR h ∈ Hg DO

Lh := estimate object location (Sh); (Chapter 2)
Hv := Hv ∪ verify hypothesis (h, E, M);
Hg := Hg \ {h};

OD;
E := E \ {ef , es};

UNTIL Hv 6= ∅;

RETURN Hv ;
END;

Algorithm 1.4: Identifying while Locating

1.4.1 Hypothesis Generation

The goal of the hypothesis generation process is to use the smallest set of
observations that allow to determine the object location. Normally, two in-
dependent observations are necessary to determine the object location (see
algorithm 1.4). In order to obtain a precise estimation of the object location,
functions select first observation and select second observation
should choose observations that are independent and with low location un-
certainty. These observations should also have as few pairings as possible, so
that the number of alternative hypotheses be small. We generate all possible
pairings for this limited set of observations with the search for pairings
function presented in algorithm 1.1.

1.4.2 Hypothesis Verification

For the verification of the resulting hypotheses, the estimated location of
the object allows the system to validate each additional pairing for global
consistency using the rigidity constraint. This constraint validation simply
consists in determining whether the location of the observation in the scene
coincides with the predicted location of the model feature according to the
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FUNCTION verify hypothesis (h, E, M)

; h : object-location hypothesis to verify
; E: set of available observations
; M: set of model features

; selects an observation and determines which model features satisfy
; the rigidity constraint with it, those pairings are included in the hypothesis’ support
; and the object location is refined

H := ∅;
IF E = ∅ THEN

H := H∪ {h};
ELSE

e := select observation (E); (Chapter 6)
FOR m ∈ M DO

p := (e, m);
IF satisfy rigidity constraint (Lh, p) THEN (Chapter 3)

Lhp := refine object location (Lh, p); (Chapter 2)

Shp := Sh ∪ {p};
H := H ∪ verify hypothesis (hp, E \ {e} , M);

FI;
OD;
H := H ∪ verify hypothesis (h, E \ {e} , M);

FI;

RETURN H;
END;

Algorithm 1.5: Data-driven Hypothesis Verification

hypothesis. Nevertheless, this constraint validation is more discriminant
because it validates global consistency.

Hypothesis verification can be carried out in a data-driven fashion (see
algorithm 1.5). An observation is selected, and it is determined whether
it can be paired with one of the model features. If an acceptable pairing
is found, the function recurs with an object location estimation refined by
the inclusion of the new pairing. This process continues until there are no
more available observations. Note that only one validation of the rigidity
constraint is necessary for each potential pairing. Thus, the number of
validations for a given hypothesis grows linearly with the number of pairings.

Hypothesis verification can also be carried out in a model-driven manner
(see algorithm 1.6). This consists in selecting a model feature, predicting
its location in the scene, and determining whether it coincides with some of
the available observations. It has the advantage that it allows to determine
regions in the scene where the features should be searched for. If there is
no more sensorial information available, a sensor can be used to scan this
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FUNCTION verify hypothesis (h, E, M)

; h : object-location hypothesis to verify
; E: set of available observations
; M: set of model features

; Selects a model feature and determines which observations satisfy
; the rigidity constraint with it, those pairings are included in the hypothesis’ support
; and the object location is refined

H := ∅;
IF E = ∅ THEN

H := H∪ {h};
ELSE

m := select model feature (M); (Chapter 6)
FOR e ∈ E DO

p := (e, m);
IF satisfy rigidity constraint (Lh, p) THEN (Chapter 3)

Sh := Sh ∪ {p};
Lh := refine object location (Lh, p); (Chapter 2)

FI;
H := H ∪ verify hypothesis (h, E, M\ {m});

OD;
FI;

RETURN H;
END;

Algorithm 1.6: Model-Driven Hypothesis Verification

region to verify the presence of the feature.

1.5 Obtaining more Information from the Scene

The result of both recognition schemes may be a set of globally consistent
hypotheses that provide alternative interpretations of the observations. The
only way in which we can determine which is correct is to obtain additional
sensorial information.

One way of disambiguating between several hypotheses is to determine
a sensor location from which the obtained measurement (usually a surface
point using proximity) would allow us to determine which of the compet-
ing hypotheses is correct. Different techniques are applied to this problem
[Grimson 86, Cameron 90, Ellis 92]. The general idea is to determine a sens-
ing direction from which the predicted observations corresponding to each
alternative hypothesis are more distant from each other, and thus, more
discriminant.

This solution can obtain the correct hypothesis very fast. However, it
considers only sensing operations corresponding to obtaining points from
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the surface, and it does not take into account how uncertain the estimated
location of the object may be, and how the sensing operation can improve
this estimation. For these reasons, we wish to study the use of goal-directed
perception strategies, in which the system simultaneously analyzes how to
verify an object hypothesis and refine its estimated location.

1.6 Organization of the work

In the preceding sections we have outlined the fundamental issues related
to geometric object recognition in multisensor systems. In this work we
concentrate our efforts in five fundamental areas:

• The obtention of observation models for different types of sensors and
geometric features, where both the characteristics of the geometric
feature and the precision of the involved sensor are explicitly taken into
account. In chapter 2, observation models are developed for two types
of sensors: mobile proximity and mobile 2D vision. These observation
models will be used as case studies throughout this work, illustrating
the generality of our contributions to the object recognition problem.

• The analysis of validation mechanisms, known as geometric constraints.
In chapter 3 we propose a general procedure to validate both location
independent and location dependent constraints under uncertainty.
Such procedures take into account the precision of the sensor that
gives the observation and the characteristics of the involved geometric
features.

• The definition of mechanisms to determine the precision and relevance
of an object-location hypothesis, as a function of the set of observations
that support the hypothesis. This subject, studied in chapter 4, allows
us to propose strategies for the selection of sensorial observations and
model features to which direct the system’s attention, so that the most
plausible hypotheses are generated first and verified rapidly.

• The analysis of perception tasks that can make use of a priori infor-
mation about the location of a feature, with the goal of verifying the
presence of the feature in the scene, and reducing the uncertainty of
the object location. We propose a method that allows to compare the
potential benefit of using different sensors for a perception task, and
to compute a sensor location such that this benefit is maximal. These
goal-directed perception strategies are described in chapter 5.
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• The study of the two alternative recognition schemes, the identifying
before locating and the identifying while locating schemes. In chapter
6 we show that from the constraint validation point of view, simulta-
neous identification and localization can improve the performance of
recognition. Given the importance of having a precise estimation of
the object location as soon as possible, we develop a general proce-
dure to determine whether a set of observations allow to determine
the location of the object, and to calculate this location. Within the
identifying while locating scheme, we propose a set of strategies for
the generation and verification of hypotheses that can help reduce the
complexity of the recognition process.



20 CHAPTER 1. MULTISENSOR OBJECT RECOGNITION



Chapter 2

Modeling Uncertain
Geometric Information

Summary

In this chapter we discuss the advantages of the use of probabilistic models
over set-based models in representing geometric uncertainty. We favor the
use of probabilistic models because of the high complexity associated with the
use of set-based models in the representation of the uncertainty of the loca-
tion of a geometric entity, and because is seems more feasible that sensorial
observations of geometric entities have Gaussian distributions of error. We
briefly describe the Symmetries and Perturbation model (SPmodel), a gen-
eral method for the representation of the location of any geometric entity
and its uncertainty, proposed in [Tardós 91]. The SPmodel is a probabilis-
tic model whose main advantage is its generality: it is valid for any object,
geometric feature or sensorial observation. It has been used to establish a
general integration method that allows to obtain a suboptimal estimation of
location for objects or features from a set of partial and uncertain sensorial
observations [Tardós 91, Tardós 92a, Tardós 92b]. In this chapter we also
obtain observation models for different types of geometric elements given by
two types of sensors: mobile proximity and mobile 2D vision. These obser-
vation models will be used throughout this work as case studies to illustrate
the generality of the proposed recognition scheme.

21
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2.1 Introduction. Set-based .vs. Probabilistic Mod-
els

Most of the existing models to represent uncertain geometric information
can be classified into two main groups: set-based models and probabilistic
models. In set-based models, the imprecision in the location x of a geometric
entity observed using a sensor P is described by a bounded region RP , which
corresponds to the set of feasible locations for the geometric entity:

x ∈ RP

The fusion of geometric information is accomplished using algebraic op-
erations on the regions limited by the error bounds. Given a set of obser-
vations {RP1 , . . . , RPn} of the geometric element, its estimated location is
given by (fig. 2.1.a):

R =
n⋂

i=1

RPi

An example of the use of this approach appears in [Brooks 82, Brooks 85],
where the uncertain location of a mobile robot is represented with a cylindri-
cal volume of error, associated to the robot location parameters (x, y, θ) (in
configuration space). Given a set of robot motions, the resulting uncertainty
in the new robot location is estimated from the uncertainty associated to
each of the commanded robot motions, and from the performed perception
operations.

This approach is also used in [Grimson 84, Grimson 90a] to develop a
set of geometric constraints to verify the consistency between model and
observed features of an object considering the uncertainty associated to the
sensor information. In 3D, the uncertainty in position is represented by
a spherical region, characterized by its radius, and uncertainty in orienta-
tion is represented by a conic region, characterized by its spreading angle.
This radius and spreading angle depend on the sensor precision. The work
of Ellis [Ellis 91] deals with obtaining tighter error bounds than those ob-
tained by Grimson. Faugeras and Herbert [Faugeras 86] also use tolerances
in validating the pairing of sensed and model features.

Probabilistic models represent the uncertain location of a geometric el-
ement using a probability distribution—usually Gaussian. For Gaussian dis-
tributions, a significance value α defines an ellipsoidal region where the
probability of finding the true value of x is 1− α, given by:
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(a) (b)
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Figure 2.1: (a) Set-based representation and integration; (b) Probabilistic
representation and integration

P
{
(x− x̂)T C−1 (x− x̂) < D2

m,α

}
= 1− α

where x̂ is the mean value of x, C its covariance, and D2
m,α is the value

of the chi-square distribution with m = dim(x) degrees of freedom, for a
significance level α. This allows to represent graphically the uncertainty
regions associated with probabilistic models (fig. 2.1.b).

Fusion can be carried out using optimal estimation methods. Given
n sensorial observations {(x̂P1 , CP1), . . . , (x̂Pn , CPn)} of the same geometric
element, the estimated value and covariance of its location are given by:

x̂ =

(
n∑

i=1

C−1
Pi

)−1 n∑

j=1

C−1
Pj

x̂Pj ; C =

(
n∑

i=1

C−1
Pi

)−1

The mobile robot HILARE [Chatila 85] uses this approach to estimate
its location and model its indoor environment. In [Smith 88], this approach
is used to build and update a stochastic map of the relationships among a
set of geometric entities. The estimation of these relationships is done using
the extended Kalman filter (EKF). A Bayesian approach to obtaining a con-
sistent interpretation of a set of uncertain and disparate sensor observations



24CHAPTER 2. MODELING UNCERTAIN GEOMETRIC INFORMATION

(a)  Set-based (b)  Probabilistic

Figure 2.2: (a) More discrepant observations produce more precise esti-
mations of uncertainty; (b) The discrepancy of the integrated observations
affects only the mean value of the estimation
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is proposed in [Durrant-Whyte 87]. Under the Gaussianity hypothesis, this
procedure is equivalent to the Kalman filter. The 3DPO system [Bolles 86]
uses this representation model to test the consistency of matches between
sensed and model features of objects. This representation model is also used
in [Porrill 88] and [Pollard 89] to obtain estimated values and covariances
for the geometric relations between uncertain observations.

There is considerable controversy about the use of either model [Smith 88,
Sabater 91, Hager 93]. With respect to this controversy, there are two fun-
damental issues that must be considered: appropriateness and practicality.

2.1.1 Appropriateness

Which fusion method models more adequately the problem is an important
matter because each fusion method leads to very different estimations of
uncertainty:

• In set-based methods, more discrepant observations lead to a greater
reduction of uncertainty in the location of the involved geometric el-
ement (fig. 2.2.a), while in probabilistic methods the resulting uncer-
tainty is only function of the uncertainty of the observations, not of
the observation values (fig. 2.2.b). This is because set-based methods
rely on the certainty that the true location lies within the given bound.
Thus, this error bound must be large enough to assure this—which can
lead to very conservative estimations of error.

• Fusion methods in probabilistic models rely on the independence of
the fused observations. The fusion of two independent observations
with similar value leads to uncertainty reduction, which is not the
case in set-based methods (fig. 2.3). Thus, if the observations are not
independent, probabilistic methods lead to optimistic estimations of
uncertainty [Sabater 91]. However, independence can be guaranteed
using different sensors, or different points of view with a mobile sensor.

• From a probabilistic point of view, set-based models can be thought
of as having uniform distribution functions over the region RP . It
seems less feasible that sensorial observations of geometric features
have uniform distributions of error. Theoretically, the central limit
theorem states that the combination of several independent sources of
information used in estimating a location tends to follow a Gaussian
distribution [Smith 88, Durrant-Whyte 88]. Some experiments carried
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(a)  Set-based

(b)  Probabilistic

+ =

+ =

Figure 2.3: The fusion of two similar observations observation (a) does not
affect the result of the estimation; (b) reduces the uncertainty of the esti-
mation

out in our laboratory with proximity and vision sensors also tend to
support the gaussianity hypothesis [Herranz 91, Sagüés 92a].

2.1.2 Practicality

There are two aspects to consider when analyzing the complexity of man-
aging uncertain geometric information:

• Complexity in propagating uncertainty: the complexity of set-based
representations in nonlinear problems can be high [Hager 93]. Local-
ization problems are nonlinear problems involving position and ori-
entation components, where these are coupled. Consider the object
in figure 2.4.a. Given the location of the object represented by the
location of a reference O in its center, with uncertainty in position
and orientation represented graphically by a circle and a cone respec-
tively, the resulting uncertainty in the location of point A is complex
to represent. If we consider problems in 3D space, the complexity of
representation becomes unmanageable. Probabilistic methods provide
simple linear approximations to represent the uncertainty associated
to the location of A (fig. 2.4.b). Supposing we are dealing with small
amounts of error, the approximation is precise enough.
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O

A

O

A

(a)  Set-based (b)  Probabilistic

Figure 2.4: In representing localization problems (a) set-based methods are
very complex; (b) probabilistic methods provide simple approximations

• Complexity in fusing: in set-based methods, fusion is straight-forward
only in the one-dimensional linear case. The complexity of the fusion
algorithm grows with the number of parameters to be estimated (an
important parallelization effort to reduce the required computation
time for carrying out set-based operations can be found in [Fisher 91]).
Some simplifications can be considered to reduce this complexity, but
at the cost of loosing precision in the estimation (fig. 2.5). An example
of this approach to complexity reduction can be found in [Brooks 85].

In summary, since we are dealing with a nonlinear problem involving
the estimation of six parameters, set-based methods will be either much
more complex to apply, or the resulting estimations of errors will be more
conservative.

2.2 The SPmodel

The arguments given above have led us to prefer the use of probabilistic
models for the representation of uncertain geometric information. In prob-
abilistic uncertainty representation models, the location of an element is
represented by a parameter vector, and the available knowledge about it is
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(a) (b)

Figure 2.5: When fusing information using set-based methods, (a) the form
of the resulting estimation is increasingly more complex; or (b) an artificial
error must be introduced to maintain the simplicity of form of the estimation

characterized by the mean and covariance of an associated probability dis-
tribution function. The fusion of sensorial information can be done using
optimal estimation techniques, such as the extended Kalman filter.

The main drawback of current approaches is that they use a different set
of parameters to represent the location of each type of geometric element.
In [Tardós 91, Tardós 92a] Tardós presented a general method for the rep-
resentation of the location of any geometric entity and its uncertainty: the
Symmetries and Perturbations model (SPmodel). For completeness, and to
fix the notation used, this model and the associated fusion mechanism are
briefly presented next.

The SPmodel combines the use of probability theory to represent the
imprecision in the location of a geometric element, and the theory of sym-
metries to represent the partiality due to the characteristics of each type of
geometric element. In [Popplestone 84], Popplestone points out the benefit
of applying group theory [Hall 76]—on which the theory of symmetries is
based—to analyze some types of relationships between features of an ob-
ject. Thomas [Thomas 88b] calculates the common symmetries of a set of
geometric elements, and uses them to determine assembly plans satisfying
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the constraints imposed by each geometric element.
In the SPmodel, a reference E is associated to every geometric element

e. Its location is given by the transformation tWE relative to a base refer-
ence W . To represent this transformation, we use a location vector xWE ,
composed of three Cartesian coordinates and three Roll-Pitch-Yaw angles:

xWE = (x, y, z, ψ, θ, φ)T

where:

tWE = Trans(x, y, z) · Rot(z, φ) · Rot(y, θ) · Rot(x, ψ)

The composition of location vectors is represented with operator ⊕, and the
composition with the inverse is abbreviated as ª:

xAC = xAB ⊕ xBC = xAB ª xCB

xCB = ªxBC

The estimation of the location of an element is denoted by x̂WE , and
the estimation error is represented locally by a differential location vector
dE relative to the reference attached to the element. Thus, the true location
of the element is:

xWE = x̂WE ⊕ dE

Our model also exploits the concept of symmetries of a geometric ele-
ment, defined as the set SE of transformations that preserve the element.
It has been shown that the symmetries of any geometric element are a sub-
group of the group of transformation (T , ·). For example, the symmetries
of an infinite edge are the set of continuous translations (Tx) and rotations
(Rx) along the edge. There is also a cyclic symmetry of 180 degrees around
any axis perpendicular to the edge, corresponding to the two opposite edge
orientations (fig. 2.6).

Cyclic symmetries must be taken into account as alternate hypotheses
when matching two features in the recognition process. To account for the
continuous motion symmetries, we assign in dE a null value to the degrees of
freedom corresponding to them, because they do not represent an effective
location error. We call perturbation vector the vector pE formed by the non
null elements of dE . Both vectors can be related by a row selection matrix
BE that we call self-binding matrix of the geometric element:

dE = BT
EpE ; pE = BEdE
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Figure 2.6: Examples of symmetries of an infinite edge

For example, in the case of an edge, the symmetries are Tx Rx, and thus we
have:

dE = (0, dy, dz, 0, dθ, dφ)T

pE = (dy, dz, dθ, dφ)T

BE =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




To obtain the self-binding matrix BE , it is enough to eliminate from the
unity matrix I6 the rows corresponding to the symmetries of the geometric
element (the first for Tx and the fourth for Rx, in the case of an edge). Based
on these ideas, the SPmodel represents the information about the location
of a geometric element e by a triplet LWE = (x̂WE , p̂E , CE), where:

xWE = x̂WE ⊕BT
EpE

p̂E = E[pE ]
CE = Cov(pE)

Transformation x̂WE is an estimation taken as base for perturbations, p̂E

is the estimated value of the perturbation vector, and CE its covariance.
When p̂E = 0, we say that the estimation is centered. Figure 2.7 shows some
examples of geometric elements with their continuous motion symmetries.

The main advantage of this model is its generality: it is valid for any
object, geometric feature or sensorial observation. Moreover, the represen-
tation of uncertainty using a perturbation vector does not depend on the
base reference used, has a clear interpretation, and is not overparameter-
ized. Problems related to singularities found in other representations are
also avoided, because the perturbation vector is considered small, that is,
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Tx = {Trans(a, 0, 0) | a ∈ IR}
Txyz = {Trans(a, b, c) | a, b, c ∈ IR}
Rx = {Rot(x, ψ) | ψ ∈ (−π, π]}
Rxyz = {Rot(u, θ) | u ∈ IR3, θ ∈ (−π, π]}

Figure 2.7: Continuous motion symmetries of some geometric elements
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its values will be far from the singularity of the RPY angles representation,
θ = ±π/2. In the next subsections we will define the fundamental operations
derived from the SPmodel.

2.2.1 Operations with the SPmodel

In most operations with uncertain locations represented with the SPmodel,
it is necessary to calculate the uncertainty in one reference due to the uncer-
tainty in the location of another reference. The expressions for transforming
differential locations between references are:

dA ⊕ xAB = xAB ⊕ dB

dB = J−1
AB dA = JBA dA

Cov(dB) = JBA Cov(dA) JT
BA

(2.1)

where JBA is the Jacobian of transformation xBA [Paul 81] (see appendix
A).

Centering an Uncertain Location

Given an uncertain location LWE = (x̂WE , p̂E , CE), where p̂E 6= 0, it can
be transformed to LWE′ = (x̂WE′ , p̂E′ , CE′), where p̂E′ = 0, as follows:

x̂WE′ = x̂WE ⊕BT
Ep̂E

CE′ =
(
BEJ−1

2⊕
{
BT

Ep̂E , 0
}

BT
E

)
CE

(
BEJ−1

2⊕
{
BT

Ep̂E , 0
}

BT
E

)T
(2.2)

where J2⊕ is the Jacobian of the composition of location vectors [Smith 88]
(see appendix A):

J2⊕{x1,x2} =
∂(y ⊕ z)

∂z

∣∣∣∣
y=x1, z=x2

Changing the Associated Reference

Consider a geometric element e, whose estimated location is given by LWE =
(x̂WE , p̂E , CE). Suppose we choose to represent the location of the geometric
element using a different associated reference F . Let xEF represent the
relative location between E and F . Vector xWF will be given by:
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xWF = xWE ⊕ xEF

= x̂WE ⊕BT
EpE ⊕ xEF

= x̂WE ⊕ xEF ⊕ JFEBT
EpE

Thus, the estimated location of F with respect to W is given by LWF =
(x̂WF , p̂F , CF ), where:

x̂WF = x̂WE ⊕ xEF

p̂F = BF JFE BT
E p̂E

CF = BF JFEBT
E CE BEJT

FEBT
F (2.3)

This operation, the composition between an uncertain location LWE and a
location vector xEF , will also be denoted by ⊕. Thus:

LWF = LWE ⊕ xEF

where LWF is given by (2.3). This result is useful in situations where refer-
ence F is more appropriate to express the location of the geometric element.
Such a situation occurs in the computation of the geometric relations be-
tween two uncertain features (chapter 3).

Composing two Uncertain Locations

Consider a geometric element e, whose estimated location with respect to
a reference F is given by LFE = (x̂FE , p̂E , CE). Suppose reference F is
affected by a location error with respect to W , independent from the error
which affects E, and this error is given by LWF = (x̂WF , p̂F , CF ). To
compute the uncertain location of E with respect to W we proceed as follows:
vector xWE will be given by:

xWE = xWF ⊕ xFE

= x̂WF ⊕BT
F pF ⊕ x̂FE ⊕BT

E pE

= (x̂WF ⊕ x̂FE)⊕ (JEF BT
F pF ⊕BT

E pE)
' (x̂WF ⊕ x̂FE)⊕ JEF BT

F pF + BT
E pE

where JEF is the Jacobian of transformation xEF . Given that the values of
the components of differential location vectors can be considered small, their
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composition (⊕) can be approximated by their sum (+). Thus, the uncertain
location of E with respect to W is given by LWE = (x̂WE , p̂W

E , CW
E ), where:

x̂WE = x̂WF ⊕ x̂FE

p̂W
E = BEJEF BT

F p̂F + p̂E

CW
E = BEJEF BT

F CF BF JT
EF BT

E + CE (2.4)

Again, we will use the symbol ⊕ to express the composition between uncer-
tain locations. Thus:

LWE = LWF ⊕ LFE

where LWE is given by (2.4). This composition is useful in situations where
the location of a geometric element is expressed with respect to a reference
affected by an error, such as an observation obtained by a sensor mounted
on the robot hand (section 2.4.1).

Changing the Base Reference

Consider a geometric element e, whose estimated location with respect to a
reference F is given by LFE = (x̂FE , p̂E , CE). Suppose we wish to express
the location of E with respect to an alternative reference W . Vector xWE

is given by:

xWE = xWF ⊕ xFE

= xWF ⊕ x̂FE ⊕BT
E pE

The uncertain location of E with respect to W will be given by LWE =
(x̂WE , p̂E , CE), where:

x̂WE = xWF ⊕ x̂FE (2.5)

Again, we will use the symbol ⊕ to express the composition between a
location vector and an uncertain location. Thus:

LWE = xWF ⊕ LFE

where LWE is given by (2.5).
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2.3 Integrating Uncertain Geometric Information

In [Tardós 91], the SPmodel is used to establish a general integration mech-
anism that allows to obtain a suboptimal estimation of location for objects
or features from a set of partial and uncertain sensorial observations. The
estimation of the location of an object or feature from a set of geometric
observations is nonlinear, due to the existence of orientation terms, and can
be solved using the extended Kalman filter or the extended information filter
[Gelb 74, Bozzo 83]. In this work we prefer the information filter formula-
tion because it simplifies the analysis of the influence of each observation on
the estimation of the object location.

The extended information filter is formulated as follows: let x be the
state vector whose value is to be estimated, and let there be n independent
and possibly partial observations yk of x, where k ∈ {1, . . . , n}, affected by
white Gaussian noise:

ŷk = yk + uk ; uk ∼ N(0, Sk)

Let each observation yk be related to x by an implicit nonlinear function
of the form fk(x,yk) = 0. Since fk is nonlinear due to orientation terms, we
use a first order approximation:

fk(x,yk) ' hk + Hk(x− x̂) + Gk(yk − ŷk)

where:

hk = fk(x̂, ŷk) ; Hk =
∂fk
∂x

∣∣∣∣
(x̂,ŷk)

; Gk =
∂fk
∂y

∣∣∣∣
(x̂,ŷk)

(2.6)

The estimation x̂n of the state vector and its covariance Pn after integrating
the n measurements are:

x̂n = PnMn ; P−1
n = Qn =

n∑

k=1

Fk ; Mn = −
n∑

k=1

Nk (2.7)

where:

Fk = HT
k (GkSkG

T
k )−1Hk ; Nk = HT

k (GkSkG
T
k )−1hk (2.8)

This is the nonrecursive formulation of the information filter, which is
equivalent to a least squares estimation in batch mode: integrating a block
of n measurements at the same time. Formulations of the recursive infor-
mation filter and Kalman filter can be found in [Tardós 91]. We apply the
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information filter to three different estimation problems, as explained in the
next subsections.

2.3.1 Feature Location Estimation from a Set of Subfeatures

Partial observations of a feature, such as a point on an edge or on a plane,
the normal of a plane, or a 2D image of an edge (we denominate them sub-
features), can be used to estimate the location of the associated geometric
feature [Tardós 92a]. Let LWE = (x̂WE , p̂E , CE) represent the estimated
location of the feature e. Let Pk be a reference frame associated to a partial
observation pk, whose location is represented by LWPk

= (x̂WPk
, p̂Pk

, CPk
).

We can apply the information filter to this problem by considering the per-
turbation vector of the feature as the state to be estimated, and the pertur-
bation vector of each subfeature as the measurements (for simplicity, and
without loss of generality, we will consider both P and E as centered esti-
mations):

x = pE ; x̂ = p̂E = 0
yk = pPk

; ŷk = p̂Pk
= 0

Sk = CPk

Every subfeature imposes a constraint on the location of the associated
feature. The pairing between the observation and the feature imposes a
constraint on the relative transformation xPkE that can be expressed by
means of the binding matrix of the pairing BPkE :

BPkE xPkE = 0

This constraint is denominated the inverse constraint, and it expresses the
fact that the observed subfeature location and the location of its associated
feature must coincide, up to the symmetries of the pairing. It is also possible
to express the pairing using the direct constraint:

BEPk
xEPk

= 0

These constraints give us the implicit measurement function fk. Whether we
can use the direct or inverse constraint depends on the types of the involved
subfeature and feature. In case we use the direct constraint as the implicit
state function, we have (fig. 2.8):
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Figure 2.8: Transformations involved in the pairing between an observed
subfeature Pk and its associated feature E (from [Tardós 91])

fk(x,yk) = BEPk
xEPk

= BEPk
(ªBT

EpE ⊕ x̂EPk
⊕BT

Pk
pPk

)

= BEPk
(ªBT

Ex⊕ x̂EPk
⊕BT

Pk
yk)

= 0

Since we consider that the feature and the subfeatures are centered estima-
tions, from (2.6) we have:

hk = BEPk
x̂EPk

Hk = −BEPk
J1⊕{0, x̂EPk

}BT
E

Gk = BEPk
J2⊕{x̂EPk

, 0}BT
Pk

(2.9)
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Figure 2.9: The relative location between an edge and a point on the edge
is given by xEPk

= (x, 0, 0, ψ, θ, φ)T

where J1⊕ and J2⊕ are the Jacobians of the composition of location vectors
[Smith 88] (see appendix A):

J1⊕{x1,x2} = ∂(y⊕z)
∂y

∣∣∣
y=x1, z=x2

J2⊕{x1,x2} = ∂(y⊕z)
∂z

∣∣∣
y=x1, z=x2

In case we use the inverse constraint as the implicit state function, we
have:

fk(x,yk) = BPkExPkE

= BPkE(ªBT
Pk

pPk
⊕ x̂PkE ⊕BT

EpE)

= BPkE(ªBT
Pk

yk ⊕ x̂PkE ⊕BT
Ex)

= 0

Once more, considering that the feature and the subfeatures are centered
estimations, from (2.6) we have:

hk = BPkEx̂PkE

Hk = BPkEJ2⊕{x̂PkE , 0}BT
E

Gk = −BPkEJ1⊕{0, x̂PkE}BT
Pk

(2.10)

Example 2.1: Estimating the location of an edge
A problem of this type is the estimation of the location of an edge from a set of
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observations of points on the edge (fig. 2.9). In this case, the pairing relationship
can be expressed using the inverse constraint. Given that the point belongs to the
edge, the set of possible values for the transformation between the edge E and the
point Pk is given by Tx Rxyz. Thus, the binding matrix of this pairing is given by:

BEPk
=

[
0 1 0 0 0 0
0 0 1 0 0 0

]

This binding matrix expresses that if the relative location between an edge and
a point is given by the relative location vector xEPk

= (x, y, z, ψ, θ, phi)T , then
the point belongs to the edge if:

BEPk
xEPk

= (y, z)T = 0

¦

2.3.2 Object Location Estimation from a Set of Features

We can use the information filter to estimate the location of an object from a
set of observations of its features [Tardós 92b]. Let LWO = (x̂WO, d̂O, CO)
represent the estimated location of the object O. Let Ek be a reference
frame associated to an observed feature ek, whose location is represented by
LWEk

= (x̂WEk
, p̂Ek

, CEk
). Let Mk be the reference associated to the model

feature mk, to which we want to pair it. The relative location between the
model feature and the object is represented by xOMk

, and can be found
in the object model. In this case, we consider the perturbation vector of
the object as the state to be estimated, and the perturbation vector of the
feature as the measurement:

x = dO ; x̂ = d̂O = 0
yk = pE ; ŷk = p̂E = 0

Sk = CEk

In this case, the implicit measurement function fk corresponds to the
pairing between the observation and the model feature, which can be ex-
pressed as the inverse constraint on the relative transformation xEkMk

by
means of the self-binding matrix of the feature BEk

:

BEk
xEkMk

= 0

This constraint, denominated inverse constraint, expresses the fact that the
location of the observed feature and the estimated location of the model
feature must coincide up to symmetries. We have (fig. 2.10):
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Figure 2.10: Transformations involved in the pairing between an observed
feature Ek and its associated model feature Mk (from [Tardós 91])

fk(x,yk) = BEk
xEkMk

= BEk
(ªBT

Ek
pEk

⊕ x̂EkMk
⊕ JMkOdO)

= BEk
(ªBT

Ek
yk ⊕ x̂EkMk

⊕ JMkOx)
= 0

where JMkO is the Jacobian of transformation xMkO between the model
feature and the object, which can be obtained from the geometric model of
the object. Since we consider that the feature and the object are centered
estimations, from (2.6) we have:

hk = BEk
x̂EkMk

Hk = BEk
J2⊕{x̂EkMk

, 0}BT
Ek

BEk
JMkO

Gk = −BEk
J1⊕{0, x̂EkMk

}BT
Ek

(2.11)

Example 2.2: Estimating the object location using edges
Given an observed edge with associated reference Ek, and a model edge with refer-
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Figure 2.11: The relative location between an observed edge and its corre-
sponding model edge is given by xEkMk

= (x, 0, 0, ψ, 0, 0)T

ence Mk, their coincidence can be expressed using the inverse constraint (fig. 2.11).
Given that the self-binding matrix of the edge BEk

is given by:

BEk
=




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 ,

if the relative location between the observed edge is given by the relative location
vector xEkMk

= (x, y, z, ψ, θ, φ)T , we have that the inverse constraint is:

BEk
xEkMk

= (y, z, θ, φ)T = 0

¦

2.3.3 Object Location Estimation from a Set of Subfeatures

It is also possible to directly integrate partial observations of a feature to
improve the estimated location of the object. In this case we apply the in-
formation filter in the following way: let Pk be a reference frame associated
to the observed subfeature, and let Mk be the one associated to the corre-
sponding model feature. In this case we consider the perturbation vector of
the object as the state to be estimated, and the perturbation vector of the
subfeature as the measurement:

x = dO ; x̂ = d̂O = 0
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Ô

M

O

xOM

x OM

d
O

Estimated Object

Real object

Observation
error

dP

Object-feature
transformation

k

k

k k

k
k

k

k

k

k

k

M  Pkk

Figure 2.12: Transformations involved in the pairing between an observed
subfeature Pk and its associated model feature Mk (from [Tardós 91])

yk = pPk
; ŷk = p̂Pk

= 0
Sk = CPk

The pairing between both can be expressed as a constraint on the rel-
ative transformation xMkPk

by means of the binding matrix of the pairing.
Whether we can use the direct or inverse constraint as implicit measurement
function fk depends on the type of subfeature and feature:

BMkPk
xMkPk

= 0 Direct Constraint
BPkMk

xPkMk
= 0 Inverse Constraint

If we use the direct constraint we have that (fig. 2.12):
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Figure 2.13: The relative location between a plane and a point on the plane
is given by xMkPk

= (x, y, 0, ψ, θ, φ)T

fk(x,yk) = BMkPk
xMkPk

= BMkPk
(ªJMkOdO ⊕ x̂MkPk

⊕BT
Pk

pPk
)

= BMkPk
(ªJMkOx⊕ x̂MkPk

⊕BT
Pk

yk)
= 0

Considering the subfeature and the object location estimations centered,
from (2.6) we have:

hk = BMkPk
x̂MkPk

Hk = −BMkPk
J1⊕{0, x̂MkPk

}JMO

Gk = BMkPk
J2⊕{x̂MkPk

, 0}BT
Pk

(2.12)

If we use the inverse constraint we have that:

fk(x,yk) = BPkMk
xPkMk

= BPkMk
(ªBT

Pk
pPk

⊕ x̂PkMk
⊕ JMkOdO)

= BPkMk
(ªBT

Pk
yk ⊕ x̂PkMk

⊕ JMkOx) = 0
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Considering that the feature and the object are centered estimations we
have:

hk = BPkMk
x̂PkMk

Hk = BPkMk
J2⊕{x̂PkMk

, 0}JMkO

Gk = −BPkMk
J1⊕{0, x̂PkMk

}BT
Pk

(2.13)

Example 2.3: Estimating the object location using points on planes
Given an observation of a point on a plane, with associated reference Pk, and a
model plane with reference Mk, their coincidence can be expressed using the direct
constraint (fig. 2.13). Given that the point belongs to the plane, the set of possible
values for the transformation between the plane Mk and the point Pk is given by
Txy Rxyz. Thus, the binding matrix of this pairing is given by:

BMkPk
=

[
0 0 1 0 0 0

]

This binding matrix expresses that if the relative location between a plane and
a point is given by xMkPk

= (x, y, z, ψ, θ, φ)T , then the point belongs to the plane
if:

BMkPk
xMkPk

= z = 0

¦

2.3.4 Information Matrices

In the integration mechanism described above, matrix Qn, the inverse of the
covariance matrix Pn, accumulates information regarding the estimation of
the location. For this reason, it is denominated information matrix of the
estimation. The contribution of location information given by each pairing
between an observation and a model feature is contained in matrix Fk, de-
nominated information matrix of the pairing. These matrices are useful in
determining how the inclusion of another pairing will improve the estimation
of the location (chapters 4 and 5).

Algorithm 2.1 implements the integration process given here for a set
of observed features. It is important to note that the integration process
stated in this way is completely general. It allows to integrate geometric
information about any type of geometric feature in a uniform way. The only
information needed is the binding matrix of the involved feature or pairing.
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FUNCTION estimate object location (Sh)

; Sh = {pi = (ei, mi) : i = 1, · · · , n}: initial pairings used to generate the hypothesis

; obtains an initial estimation for the location of the object
; returns the uncertain location vector of the object, LWO

x̂WO := calculate object location (p1, p2);

d̂O := 0;
CO := ∞;

LWO := (x̂WO, d̂O, CO);
FOR p in Sh DO

LWO := refine object location (LWO, p);
OD;

RETURN LWO;
END;

FUNCTION refine object location (LWO, p)

; LWO = (x̂WO, p̂O, CO): current estimated object location
; p = (e, m): pairing to include in the hypothesis
; e = (LWE , BE), m = (xOM , BM )

; refines the object location with the given pairing, using the Extended information filter
; returns the uncertain location vector of the object, LWO

x̂EM := ªx̂WE ⊕ x̂WO ⊕ xOM ;
hk := BE x̂EM ;
Hk := BEJ2⊕{x̂EM , 0}BT

EBEJMO;
Gk := −BEJ1⊕{0, x̂EM}BT

E ;
Sk := CE ;
Fk := HT

k (Gk Sk GT
k )−1 Hk;

Nk := HT
k (Gk Sk GT

k )−1 hk;

Q := C−1
O + Fk;

M := Q d̂O −Nk;

d̂O := Q−1 M ;
CO := Q−1;

RETURN LWO;
END;

Algorithm 2.1: Integrating Geometric Information
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2.4 Observation Modeling

In order to exemplify the use of the SPmodel and the integration mecha-
nism, we will model several types of observations obtained with two types
of sensors: mobile proximity and mobile 2D vision.

2.4.1 Modeling the Sensor Location

Due to the fact that both sensors are mounted on the robot gripper, the un-
certainty of the observations given by them depends both on the uncertainty
of sensor location and the uncertainty of sensor measurements. In this para-
graph we model the uncertainty in the location of a sensor mounted on the
robot gripper, due to robot positioning errors. Let G be a reference repre-
senting the location of the robot gripper in space. For simplicity, we will
suppose that the robot location errors are independent on each axis. Thus,
the uncertain location of the gripper with respect to a world reference, LWG,
will be given by:

x̂WG = (x, y, z, ψ, θ, φ)T

dG = (dx, dy, dz, dψ, dθ, dφ)T

CG = diag(σ2
Rx, σ2

Ry, σ2
Rz, σ2

Rψ, σ2
Rθ, σ2

Rφ)

In this case, the gripper does not have symmetries of continuous motion,
so then BG = I6 and dG = pG. Let S be a reference associated to the
location of the sensor. Let xGS denote the relative transformation between
the gripper and the sensor. According to (2.3), the uncertain location of the
sensor with respect to the world reference is given by:

LWS = LWG ⊕ xGS

where:

x̂WS = x̂WG ⊕ xGS

dS = JSG dG

CS = JSG CG JT
SG

Let E be a reference associated to a sensorial observation e, whose un-
certain location with respect to the sensor reference is given by LSE =
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(x̂SE , p̂S
E , CS

E). According to (2.4), the location of E with respect to W can
be calculated as:

LWE = LWS ⊕ LSE

where:

x̂WE = x̂WG ⊕ xGS ⊕ x̂SE

pE = BE JES JSG dG + pS
E

= BE JEG dG + pS
E

CE = BE JES JSG CG JT
SG JT

ES BT
E + CS

E

= BEJEGCGJT
EGBT

E + CS
E (2.14)

Considering the estimations centered, we have d̂G = 0 and p̂S
E = 0, and

thus p̂E = 0. In this work we will consider robot positioning errors of
0.1 mm and orientation errors of 0.1 deg: σ2

Rx = σ2
Ry = σ2

Rz = 0.01 and
σ2

Rψ = σ2
Rθ = σ2

Rφ = 3.046174198 ∗ 10−6.

2.4.2 Mobile Proximity

Consider the use of a proximity sensor mounted on the robot hand, as shown
in figure 2.14. Let S be the reference associated to the location of the sensor,
so that its z axis is aligned with the sensing direction. Let P be a reference
associated to the location of the observed point. Its measurement error,
expressed in reference S, can be expressed as a translation along the z axis
of the sensor reference, and its angular error can be expressed as rotations
around the x and y axes:

CS = diag(0, 0, σ2
Sz, σ

2
Sψ, σ2

Sθ, 0)

If the sensor is positioned at a distance d from the observed surface, then
we have:

x̂SP = (0, 0, d, −π/2, 0, 0)T

In this case the subfeature is a point, so:

BP =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
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Figure 2.14: Proximity sensor

The Jacobian corresponding to the relative location between P and S is:

JPS =




1 0 0 0 d 0
0 0 −1 0 0 0
0 1 0 −d 0 0
0 0 0 1 0 0
0 0 0 0 0 −1
0 0 0 0 1 0




Thus, from (2.1), the uncertain location of the observed point with respect
to the sensor reference is given by LSP = (x̂SP , p̂S

P , CS
P ), where:

x̂SP = (0, 0, d, −π/2, 0, 0)T

d̂S
P = JPSdS

p̂S
P = BPdS

P

= (d̂x, d̂y, d̂z)T = (0, 0, 0)T

CS
P = BP JPS CSJT

PS BT
P
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= diag (d2σ2
Sθ, σ2

Sz, d2σ2
Sψ)

The relative location of the sensor with respect to the gripper is given
by xGS = (−a, 0, b, 0, 0, 0)T . Thus, according to (2.14), the uncertain
location of the point with respect to the world reference is given by LWP =
(x̂WP , p̂P , CP ), where:

x̂WP = x̂WG ⊕ xGS ⊕ x̂SP

= (x + (b + d) (cosφ sin θ cosψ + sin φ sinψ)− a cosφ cos θ,

y + (b + d) (sin φ sin θ cosψ − cosφ sinψ)− a sinφ cos θ,

z + (b + d) cos θ cosψ + a sin θ,− tan−1(cotψ), θ, φ)T

p̂P = 0
CP = BP JPG CG JT

PG BT
P + CS

P

=




σ2
x σxy 0

σxy σ2
y 0

0 0 σ2
z


 (2.15)

where:

σ2
x = σ2

Rx + (b + d)2 σ2
Rθ + d2 σ2

Sθ

σ2
y = σ2

Rz + σ2
Sz + a2σ2

Rθ

σ2
z = σ2

Ry + (b + d)2 σ2
Rψ + d2 σ2

Sψ + a2σ2
Rφ

σxy = −a (b + d) σ2
Rθ

The value of the parameters corresponding to our sensors are: a = 40 mm,
b = 200 mm, d = 100 mm, σSψ = σSθ = 1.21 deg, σSz = 1 mm.

A proximity sensor can be used to observe different types of geometric
features. In the following paragraphs we will derive observation models for
two types of features: edges and planar surfaces.

Observing Edges

In observing an edge of length l, the sensor is positioned in a direction
perpendicular to one of the adjacent planar surfaces [Montano 91], at a
distance d, and n points are measured at a distance s from each other
(figure 2.15). The location of the edge can be estimated by integrating the
observed points using the information filter, as explained in section 2.3.1.
In this case we have:
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Figure 2.15: Observing an edge using proximity

BE =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




All points will be observed from the same direction (observation is done
using a sweeping movement), and we will place the associated reference in
the center of the edge, giving it the orientation solidary with the sensing
direction. Thus, we have that for each observation k (fig. 2.16):

x̂EPk
= (rk, eyk

, ezk
, 0, 0, 0)T

Sk =




σ2
x σxy 0

σxy σ2
y 0

0 0 σ2
z




We suppose that each observation has the same orientation as the resulting
edge because we consider σSθ = σSψ. The values of σ2

x, σxy, σ2
y and σ2

z are
those of (2.15). Given that an edge has a symmetry of translation along
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Figure 2.16: Relative location of the observed point Pk with respect to the
estimated edge E

the x axis of its associated reference, an observed point on the edge cannot
contribute information in that direction. It can only contribute information
along the y and z axes. Thus, the pairing relationship can be described by
the direct constraint using the following binding matrix:

BEPk
=

[
0 1 0 0 0 0
0 0 1 0 0 0

]

In this way, from (2.9) we have:

hk = (eyk
, ezk

)T ; Hk =

[
−1 0 0 −rk

0 −1 rk 0

]
; Gk =

[
0 1 0
0 0 1

]

From (2.8) we have that for each measure k to be integrated:

Fk =




1
σ2

y
0 0 rk

σ2
y

0 1
σ2

z
− rk

σ2
z

0

0 − rk
σ2

z

r2
k

σ2
z

0
rk
σ2

y
0 0 r2

k
σ2

y




; Nk =

(
−eyk

σ2
y

,−ezk

σ2
z

,
rkezk

σ2
z

,−rkeyk

σ2
y

)T
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Thus, from (2.7), when all n measures have been integrated we have:

Qn =




n
σ2

y
0 0

∑n

k=1
rk

σ2
y

0 n
σ2

z
−

∑n

k=1
rk

σ2
z

0

0 −
∑n

k=1
rk

σ2
z

∑n

k=1
r2
k

σ2
z

0∑n

k=1
rk

σ2
y

0 0
∑n

k=1
r2
k

σ2
y




Mn =

(
−

∑n
k=1 eyk

σ2
y

,−
∑n

k=1 ezk

σ2
z

,

∑n
k=1 rkezk

σ2
z

,−
∑n

k=1 rkeyk

σ2
y

)T

Since we will locate the reference frame associated to the edge in its center,
we have

∑n
k=1 rk = 0,

∑n
k=1 r2

k ' n3 s2

12 . Therefore, Qn becomes:

Qn =




n
σ2

y
0 0 0

0 n
σ2

z
0 0

0 0 n3 s2

12σ2
z

0

0 0 0 n3 s2

12σ2
y




Thus, the final result of the integration process yields:

p̂E = x̂n =
(
−

∑n
k=1 eyk

n
,−

∑n
k=1 ezk

n
,
12

∑n
k=1 rkezk

n3 d2
,−12

∑n
k=1 rkeyk

n3 d2

)T

CE = Pn =
1
n




σ2
y 0 0 0
0 σ2

z 0 0
0 0 12

n2 s2 σ2
z 0

0 0 0 12
n2 s2 σ2

y


 (2.16)

It is interesting to note that the covariance of the estimation depends
on n and s. This means that if we observe more points—n grows—or if we
obtain more distant points—s grows—we obtain a more precise estimation
of the edge location. Therefore, the precision of the observation depends
on the sensor precision (represented by σy and σz), and by the adopted
sensing strategy (represented by n and s). Also, taking into account that if
we observe the whole edge, we have that n s = l, and thus the precision of
the observation also depends on the edge dimensions. Longer edges will be
more precise because n will be greater.
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Figure 2.17: Observing a plane using proximity

Observing Planar Surfaces

Several strategies can be used to observe a planar surface with a proximity
sensor [Montano 91]. The one we model in this section consists in positioning
the sensor in a direction near to the normal to the surface and performing a
cross-shaped movement around the center (figure 2.17). For each movement,
n points are measured at a distance s from each other. Again, we can
estimate the location of the plane by integrating the observed points using
the information filter, as explained in section 2.3.1. A plane has symmetries
along its x and y axes, and around its z axis (Txy Rz). Thus, its self-binding
matrix is:

BE =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




Given that all points will be observed from the same direction, and placing
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estimated plane E

the associated reference of the plane in the center of the cross, we have that
for each observation k (fig. 2.18):

x̂EPk
= (xk, yk, ezk

, 0, 0, 0)T

Sk =




σ2
x σxy 0

σxy σ2
y 0

0 0 σ2
z




An observed point on the plane can only contribute information on the
z direction of the plane reference. Thus, the pairing relationship can be
described by the direct constraint using the following binding matrix:

BEPk
=

[
0 0 1 0 0 0

]

In this way, from (2.9) we have:

hk = ezk
; Hk =

[
1 yk −xk

]
; Gk =

[
0 0 1

]

From (2.8) we have that for each measure k to be integrated:
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Fk =
1
σ2

z




1 yk −xk

yk y2
k −ykxk

−xk −ykxk x2
k


 ; Nk =

1
σ2

z

(ezk
, yk ezk

,−xk ezk
)T

Thus, from (2.7), when all n measures have been integrated we have:

Qn =
1
σ2

z




n
∑n

k=1 yk −∑n
k=1 xk∑n

k=1 yk
∑n

k=1 y2
k −∑n

k=1 xk yk

−∑n
k=1 xk −∑n

k=1 xk yk
∑n

k=1 x2
k




Mn =
1
σ2

z

(
−

n∑

k=1

ezk
,−

n∑

k=1

yk ezk
,

n∑

k=1

xk ezk

)T

Since we will locate the reference frame associated to the plane in the center
of the cross, we have

∑n
k=1 xk =

∑n
k=1 yk =

∑n
k=1 xk yk = 0, and

∑n
k=1 x2

k =∑n
k=1 y2

k ' n3 s2

96 . Therefore, Qn becomes:

Qn =
1
σ2

z




n 0 0
0 n3 s2

96 0
0 0 n3 s2

96




The result of the integration process is:

p̂E = x̂n =
(
−

∑n
k=1 ezk

n
,−96

∑n
k=1 ykezk

n3 s2
,
96

∑n
k=1 xkezk

n3 s2

)T

CE = Pn = σ2
z




1
n 0 0
0 96

n3 s2 0
0 0 0 96

n3 s2


 (2.17)

2.4.3 Mobile Vision

Consider the use of a camera mounted on the robot hand, as shown in figure
2.19. Concentrating on the observation of straight edges, if we only take one
image, we obtain a subfeature associated to the edge that we call a 2D edge.
We can also use two images to completely determine the location of the
edge, obtaining a 3D edge. The models for these two types of observations
are given below.
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Figure 2.19: Camera-in-hand vision system

Observing 2D Edges

Consider the observation of and edge located at a distance d from the camera
(figure 2.19). Taking only one image, the information we obtain about the
edge corresponds to a plane where it rests, called a 2D edge. We associate
to it a reference whose z axis is perpendicular to the plane formed by the
edge and the optical center of the camera. This type of feature has the same
symmetries of a plane (Txy Rz). Thus, in this case we have:

x̂SP = (0, 0, d, −π/2, 0, 0)T

pP = (dz, dψ, dθ)T

BP =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




The values of dz and dθ represent the position and orientation error of the
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edge in the image plane. Since the 2D edge is solidary to the camera position,
the value of dψ can be calculated from dz as:

dψ = −dz

d

Thus, we will use the information filter to estimate only the values of dz

and dθ. For this reason, we will take the binding matrix of the feature to be
estimated as:

BE =
[

0 0 1 0 0 0
0 0 0 0 1 0

]

Each observed pixel only contributes information in the direction of the z
axis of the 2D edge (fig. 2.20). Thus, we will take:

BPk
=

[
0 0 1 0 0 0

]

Suppose the location error of each pixel in the z direction of P is Gaussian,
with expected value 0 and standard deviation σp in mm (this value depends
on the scale factor s (mm /pixel) of the image plane at distance d). We have
that for each observation k (fig. 2.20):

x̂EPk
=

(
rk, 0, ezk

, 0, 0, π/2 + tan−1 (rk/d)
)T

Since the pixel can only contribute information on the z direction of the
plane reference, the pairing relationship can be described using the following
binding matrix:

BEPk
=

[
0 0 1 0 0 0

]

From (2.9) we have:

hk = ezk
; Hk =

[
1 −rk

]
; Gk = 1

From (2.8) we have that for each measure k to be integrated:

Fk =
1
σ2

z

[
1 −rk

−rk r2
k

]
; Nk =

1
σ2

z

(ezk
, rk ezk

)T

Thus, from (2.7), when all n measures have been integrated we have:

Qn =
1
σ2

z

[
n −∑n

k=1 rk

−∑n
k=1 rk

∑n
k=1 r2

k

]
; Mn =

1
σ2

z

(
−

n∑

k=1

ezk
,−

n∑

k=1

rk ezk

)T
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Figure 2.20: Relative location of the observed pixel Pk with respect to the
estimated 2D edge E

Since we will locate the reference frame associated to the 2D edge in the
midpoint of the observed pixels, we have

∑n
k=1 rk = 0, and

∑n
k=1 r2

k ' n3 s2

12 .
Therefore, Qn becomes:

Qn =
1
σ2

z

[
n 0
0 n3 s2

12

]

The result of the integration process is:

x̂n =
(
−

∑n
k=1 ezk

n
,−12

∑n
k=1 rkezk

n3 s2

)T

; Pn =

[
σ2

z
n 0
0 12σ2

z
n3 s2

]

Including the component of the perturbation vector corresponding to ψ, the
estimated location of the plane e will be given by LWE = (x̂WE , p̂E , CE),
where:

CE =
σ2

z

n




1 −1
d 0

−1
d

1
d2

0 0 12
n2 s2




Given that the relative location between the gripper and the sensor is
xGS = Trans(0, a, b), and taking into account the uncertainty in the location
of the gripper, according to (2.14):
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CE =




σ2
z σzψ 0

σzψ σ2
ψ 0

0 0 σ2
θ


 (2.18)

where:

σ2
z = σ2

Ry + (b + d)2 σ2
Rψ +

σ2
Sp

n

σzψ = −(b + d) σ2
Rψ −

σ2
Sp

nd

σ2
ψ = σ2

Rψ +
σ2

Sp

nd2

σ2
θ = σ2

Rφ +
12σ2

Sp

n3 s2

Observing 3D Edges

We can use the camera to estimate the location of an edge by obtaining two
2D edges from two directions such that their relative angle is λ. We use the
two observations to analytically determine the location of the edge, which
lies at the intersection of the two projecting planes (fig. 2.21). Thus, we
can associate a reference E, solidary with the first observation, and locate
the references associated to the two observations P1 and P2 so that:

x̂P1E = (0, 0, 0, 0, 0, 0)T

x̂P2E = (0, 0, 0, λ, 0, 0)T

To estimate the location of the edge we use the information filter taking
the inverse constraint as measurement function. Each observed 2D edge
contributes information to the edge in the direction of the z axis and around
the y axis (fig. 2.22). Therefore, the pairing relationship can be described
by the following binding matrix:

BPkE =
[

0 0 1 0 0 0
0 0 0 0 1 0

]

In this way, from (2.9) we have:

hk = (0, 0)T
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Figure 2.21: Observing a 3D edge

H1 =

[
0 1 0 0
0 0 1 0

]

H2 =

[
sinλ cosλ 0 0

0 0 cosλ − sinλ

]

G1 = G2 =

[
1 0 0
0 0 1

]

From (2.8) we have that the information matrices of the pairings are:

F1 =




0 0 0 0
0 1

σ2
z

0 0
0 0 1

σ2
θ

0

0 0 0 0
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Figure 2.22: The relative location between a plane and an edge contained
in the plane is given by xEPk

= (x, y, 0, ψ, 0, φ)T

F2 =




sin2 λ
σ2

z

sin λ cos λ
σ2

z
0 0

sin λ cos λ
σ2

z

cos2 λ
σ2

z
0 0

0 0 cos2 λ
σ2

θ

− sin λ cos λ
σ2

θ

0 0 − sin λ cos λ
σ2

θ

sin2 λ
σ2

θ




Thus, the information matrix of the estimation is:

Q2 =




sin2 λ
σ2

z

sin λ cos λ
σ2

z
0 0

sin λ cos λ
σ2

z

1+cos2 λ
σ2

z
0 0

0 0 1+cos2 λ
σ2

θ
− sin λ cos λ

σ2
θ

0 0 − sin λ cos λ
σ2

θ

sin2 λ
σ2

θ




Thus, the resulting covariance matrix of the estimated edge is:

CE =




(1+cos2 λ)σ2
z

sin2 λ
− cos λσ2

z
sin λ 0 0

− cos λσ2
z

sin λ σ2
z 0 0

0 0 σ2
θ

cos λσ2
θ

sin λ

0 0 cos λσ2
θ

sin λ
(1+cos2 λ)σ2

θ

sin2 λ




(2.19)

It is interesting to see how the values of the covariance matrix depend
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on the value of λ. When λ = π/2, the two projecting planes are orthogonal,
and the resulting covariance matrix of the edge is:

CE =




σ2
z 0 0 0
0 σ2

z 0 0
0 0 σ2

θ 0
0 0 0 σ2

θ




If the value of lambda is smaller, the values of the covariance matrix
become larger, and thus the estimation becomes less precise. When λ = 0,
the two projecting planes are parallel and the covariance matrix contains
infinite terms (the edge location cannot be determined). The concept of
precision of an estimation is studied in chapter 4. Its relationship with
sensor location is studied in chapter 5.

The parameters of this sensor are a = 70 mm, b = 140 mm. For an edge
located at a distance d = 160 mm, the sensor parameters are s = 1 mm,
and σSp = 0.51 mm.

2.5 Conclusions

In this chapter we have analyzed the advantages of using probabilistic mod-
els over set-based models in representing uncertain geometric information.
We have described the SPmodel, a probabilistic model to represent uncer-
tain geometric information that combines the use of probability theory to
represent the imprecision associated to the location of a geometric entity,
and the theory of symmetries to represent the partiality due to the char-
acteristics of the geometric element. We have also described the use of the
SPmodel in the definition of a general mechanism for the integration of un-
certain geometric information, which is a nonrecursive formulation of the
information filter. We have exemplified the use of the SPmodel and the
integration mechanism by modeling observations given by mobile proxim-
ity and mobile 2D vision sensors. These observation models will help us
illustrate the proposed perception and recognition strategies.

The SPmodel and integration mechanism constitute the backbone of this
work. The concept of symmetries of a geometric element help us to deter-
mine the geometric relations between a pair of features, which constitute the
fundamental concept related to constraint validation (chapter 3). The study
of the information matrix of the estimation and of a pairing is used to define
the concepts of precision of an object-location hypothesis and relevance of a
pairing and of a hypothesis (chapter 4). The information matrix of a pairing
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also allow us to relate the precision of a given sensor, and its location rela-
tive to the perceived feature, with the amount of location information that
the observation will contribute to the estimation of the object location. We
make use of this concept of contribution to compare the potential benefit
of using different sensors for a given perception task, and to determine the
sensor location such that this contribution is maximal (chapter 5). These
concepts are fundamental to study several aspects of the complexity of the
recognition process, and how to reduce it (chapter 6).
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Chapter 3

Geometric Constraints

Summary

Geometric constraints constitute one of the most important sources of infor-
mation to establish the validity of an interpretation of a set of observations
with respect to an object model. This validation mechanism allows to reduce
the complexity of the recognition process by limiting the number of hypotheses
that the system must verify. In this chapter we present a general procedure
to compute and validate geometric constraints between uncertain geometric
features [Neira 93a]. The proposed procedure allows to obtain the geomet-
ric relations between any pair of geometric elements in a systematic way,
with an explicit consideration of the uncertainty due to the use of different
sensors. This makes this constraint validation mechanism well suited for
multisensor systems.

65
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3.1 Introduction

The object recognition process based on the matching between model fea-
tures and sensor observations is of exponential complexity. One of the fun-
damental ideas to reduce this complexity is the use of geometric constraints:
the validation that geometric relations between model features are satisfied
in the observations we are trying to match with them. We can classify
geometric constraints into two categories:

• Location independent constraints, which can be validated without hav-
ing an estimation of the location of the object. They include unary
constraints: dimensions such as edge length, or surface area, and bi-
nary constraints: distances and angles between features.

• Location dependent constraints, based on the availability of the object
location. The fundamental constraint of this type is rigidity: the lo-
cation of an object in the scene determines the location of its features
in the scene.

Geometric relations are a set of parameters that derive from the geom-
etry of each feature, and from the relative location between features. In
systems that rely on one sensor and only consider a specific type of feature
(stereo vision and edges, for example), these parameters are easily derived.
However, in multisensor systems, where different sensors or combinations of
sensors can give geometric information of diverse type, such as dihedrals,
corners or circles, we have the problem of deriving them for each pair of
geometric elements. Thus, the first question that we try to answer here
is: what geometric relations can be established between each combination of
geometric elements?

The validation of geometric constraints is complicated by the diverse na-
ture of sensorial information and its uncertainty. Given that we are dealing
with imprecise sensorial information, the second important problem we must
take into account is: how can we estimate and validate geometric relations
under uncertainty?

Considerable work has been done on the use geometric constraints in ob-
ject recognition. In [Grimson 90a], Grimson proposes a recognition process
which relies on the identifying before locating approach, in which simple
constraints are used to validate the consistency between a set of observa-
tions and an object model, pruning inconsistent interpretations. Grimson
develops unary and binary constraints for features such as edges, circular
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arcs, or cylinders. These constraints are independent of the object loca-
tion and thus can be calculated without estimating it. The Handey system
[Lozano-Pérez 87] uses these types of geometric constraints, applied to edges,
in its matching algorithm to locate objects. One of the main drawbacks of
these approaches is that uncertainty is modeled using error bounds. As we
have seen in chapter 2, this can result in high computational complexity, or
it can lead to conservative estimations of errors.

Porrill [Porrill 88] uses a probabilistic model to establish a mechanism to
combine information from multiple sensors that can be used to locate an ob-
ject given its wireframe representation and a set of observations. Location
independent geometric constraints, such as distances and angles between
edges, are used to impose consistency. Since most geometric relations are
nonlinear functions of the relative feature location, a first-order approxima-
tion is used. Sagüés and Montano [Sagüés 92b] propose a similar approach.
They develop constraint validation mechanisms for vertices, edges and pla-
nar surfaces. In these works, the expressions for the geometric constraints
between specific types of features are derived. However, no general con-
straint validation mechanism is proposed.

An additional drawback of the works of Grimson and Porrill is the fact
that location independent constraints are less discriminant than location
dependent ones, because they only validate local consistency, and thus many
inconsistent interpretations survive up to object location estimation. In
the work of Faugeras [Faugeras 86], the identifying while locating approach
is proposed. Emphasis is made on the use of rigidity in the recognition
process as early as possible, since it is the only constraint that guarantees
global consistency. In general, these and other works [Bolles 86, Crowley 87]
consider a limited number of different features, and intuitively derive a set
of geometric constraints to be used in hypothesis validation. The fact that
the location of each type of feature has a different representation makes
it complex to derive a general method to measure and validate geometric
constraints.

We propose a geometric validation mechanism that is based in the SP-
model [Neira 93a]. The probabilistic representation of uncertainty adopted
in the SPmodel allows to reflect the different capabilities of sensors, and
thus, it is adequate for multisensor systems. The explicit consideration of
the symmetries of a geometric element allows us to develop a general method
to systematically deduce the geometric relations between any combination
of geometric features, not limiting the system to a restricted set of features
or sensors. In our work, location independent and location dependent con-
straints are represented in a uniform way. This allows us to define a general
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mechanism for the validation of geometric constraints under uncertainty.
This chapter is organized as follows: in section 3.2 we show how to

systematically deduce location independent geometric relations and express
them using a uniform representation. This allows us to define a general
mechanism for the validation of location independent geometric constraints
under uncertainty. Section 3.3 is devoted to the study of location dependent
geometric relations for all types of geometric features.

3.2 Location Independent Geometric Relations

In this section we study binary geometric relations: the geometric relations
that determine the relative location of the two geometric features. In gen-
eral, unary geometric relations are particular to each type of geometric fea-
ture, and easy to validate. Furthermore, we only consider parameters that
are invariant under partial occlusion, to allow their application to cluttered
scenes.

3.2.1 Deriving Binary Relations

In general, binary geometric relations are nonlinear functions of the relative
location of the involved geometric features [Sagüés 92b]. Thus, in estimating
the value of these relations and their uncertainty, a first order approximation
is necessary. We propose an approach consisting in systematically obtaining
a linear representation for binary relations, from which estimating their value
and its uncertainty is straightforward. Consider the following example.

Example 3.1: Geometric relations between two edges
Consider a pair of model edges whose location is represented by references A and B
respectively (fig. 3.1). In order to concentrate on occlusion-invariant parameters,
we consider the edges of infinite length. Intuitively, we can see that their relative
location is defined by two parameters: their perpendicular distance, and the angle
between them. Thus, the geometric relations between the two edges are r = (d, α).
Given xAB = (x, y, z, ψ, θ, φ)T , the relative location vector between the two
edges, the distance d and the angle α can be calculated as follows:

d =
y sin θ + z sin φ cos θ√

1− cos2 θ cos2 φ

α = tan−1

(√
1− cos2 θ cos2 φ

cos θ cos φ

)

If we consider that A and B express the uncertain location of observed edges,
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Figure 3.1: Geometric relations between two edges

in order to compute the uncertainty of d due to the uncertainty of xAB , we need
to use a first order approximation of d:

d̂(xAB) = d(x̂AB) +
∂d

∂y
(x̂AB) (y − ŷ)

+
∂d

∂z
(x̂AB) (z − ẑ) +

∂d

∂θ
(x̂AB) (θ − θ̂) +

∂d

∂φ
(x̂AB) (φ− φ̂)

This approach has two fundamental drawbacks:

• The expressions of these approximations are particular for each case, and can
be considerably complex.

• It is not always clear which geometric relations can be measured between a
pair of features.

An alternative method is to find two aligned references Ā and B̄ which equiva-
lently describe the location of the edges, such that d and α are linear functions of
xĀB̄ = (0, 0, z̄, 0, 0, φ̄)T (fig. 3.2):
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Figure 3.2: Reference alignment for two edges

d = z̄

α = φ̄

Note that the aligning transformations tAĀ and tBB̄ belong to the symmetries
of their respective geometric elements: Tx Rx. ¦

Generalization: The idea of finding a pair of aligning transformations
belonging to the symmetries of the corresponding geometric elements can
be generalized in the following way: let tWA and tWB express the location
of two geometric elements A and B with respect to a base reference W , and
let tAB be the transformation that expresses the relative location between
both elements. Let SA and SB denote the subgroups of symmetries of the
corresponding geometric elements. Then, the sets of transformations that
equivalently describe the locations of A and B are:
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LA = tWA · SA ; LB = tWB · SB

The set of all possible transformations between the references associated
to the two geometric elements is given by:

LAB = L−1
A · LB

= (tWA · SA)−1 · (tWB · SB)
= S−1

A · t−1
WA · tWB · SB

= SA · tAW · tWB · SB

= SA · tAB · SB

Thus, the set LAB can be characterized in the following way:

LAB =
{
tĀB̄ = t−1

AĀ
· tAB · tBB̄ | tAĀ ∈ SA ∧ tBB̄ ∈ SB

}
(3.1)

Each transformation that belongs to the set LAB equivalently describes
the relative location of the features. Since geometric relations can be derived
from this relative location, the most simple transformation belonging to
LAB (the one that has the minimum possible number of translations and
rotations) contains one translation or rotation corresponding to each of the
parameters defining the geometric relations between the elements. This
means that there exist references Ā and B̄ where the geometric relations
between the two elements are linear functions of xĀB̄. In the above example
xĀB̄ contains one translation and one rotation corresponding to the distance
and angle between the edges. This transformation is then, the simplest
transformation tĀB̄ that satisfies (3.1).

Our purpose is to describe the general form of xAĀ, xBB̄, xĀB̄ , for all
types of geometric features. We will show that they always exist and in
the general case are uniquely determined, up to common symmetries. In
the following we describe the general procedure to determine the aligning
transformations for all combinations of subgroups of symmetries.

Determination of the Aligning Transformations

Let A and B represent the location of two geometric features. Let SA and
SB be the subgroups of transformations of the corresponding features, and
let tAĀ ∈ SA, and tBB̄ ∈ SB. Let the relative location vector between the
features be xAB = (x, y, z, ψ, θ, φ)T . The general form of xAĀ and xBB̄
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depend on the subgroup of symmetries to which they belong. xĀB̄ can be
easily calculated from:

xĀB̄ = ªxAĀ ⊕ xAB ⊕ xBB̄ (3.2)

Each component of the location vector xĀB̄ = (x̄, ȳ, z̄, ψ̄, θ̄, φ̄)T is
a function of the components of the location vectors xAĀ and xBB̄. The
aligning transformations are obtained by determining the values of the com-
ponents of xAĀ and xBB̄ such that the greatest number of components of
xĀB̄ are anullated. This process is best understood by means of an example.

Example 3.2: Aligning transformations for two edges
Let A and B represent the location of two edges. The symmetries of edges are
Tx Rx, which means SA = SB = Tx Rx. Thus we take:

xAĀ = (xa, 0, 0, ψa, 0, 0)T

xBB̄ = (xb, 0, 0, ψb, 0, 0)T

Our purpose is to find the values of xa, xb, ψa and ψb such that xĀB̄ contains
the minimum number of translations and rotations. From (3.2) we have that the
components of xĀB̄ are given by:

x̄ = x− xa + xb cos θ cos φ (3.3)
ȳ = y cos ψa + z sinψa + xb (cosψa sin φ cos θ − sin ψa sin θ) (3.4)
z̄ = −y sin ψa + z cosψa − xb (sinψa sin φ cos θ + cos ψa sin θ) (3.5)

ψ̄ = tan−1




− (cos φ cos(ψ + ψb) + sin φ sin θ sin(ψ + ψb)) sin ψa

+sin(ψ + ψb) cos ψa cos θ

(cos φ sin(ψ + ψb)− sin φ sin θ cos(ψ + ψb)) sin ψa

+cos(ψ + ψb) cos ψa cos θ


 (3.6)

θ̄ = tan−1


 sin ψa sinφ cos θ + cosψa sin θ√

cos2 θ cos2 φ + (cos ψa sin φ cos θ − sin ψa sin θ)2


 (3.7)

φ̄ = tan−1

(
cosψa sin φ cos θ − sin ψa sin θ

cosφ cos θ

)
(3.8)

To solve this problem, we make the following considerations:

1. There are four free variables: xa, xb, ψa, and ψb. Thus, in the general case
we should be able to anullate four components of xĀB̄ : two distances and
two angles.
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2. Equation (3.3) is the only one that contains xa. Thus, we use this variable
to anullate x̄. We do this by taking:

xa = x− xb cos θ cosφ

3. We can use xb to anullate ȳ or z̄. We choose ȳ (the alternative choice would
yield a completely equivalent solution). For this, we take xb as:

xb = − y cos ψa + z sin ψa

cos ψa sin φ cos θ − sin ψa sin θ

4. Equations (3.7) and (3.8) contain ψa. We use ψa to anullate θ̄:

ψa = − tan−1

(
sin θ

sin φ cos θ

)

5. ψb can be used to anullate the value of ψ̄:

ψb = tan−1

(
cosφ sin θ cosψ + sin φ sin ψ

cosφ sin θ sin ψ − sin φ cosψ

)

This solution makes zero all components of xĀB̄ , but z̄ and φ̄. We can calculate
their value from (3.5) and (3.8):

z =
y sin θ + z sin φ cos θ√

1− cos φ2 cos θ2

φ = tan−1

(√
1− cos φ2 cos θ2

cos φ cos θ

)

This coincides precisely with the expected results. Thus, in the general case, a
distance and an angle are the geometric relations between two edges.

Particular cases: note that this solution is not valid when θ = φ = 0. This corre-
sponds to the case where the two edges are parallel. In this case, the components
of xĀB̄ become:

x̄ = x + xb − xa (3.9)
ȳ = y cosψa + z sin ψa (3.10)
z̄ = z cosψa − y sin ψa (3.11)

ψ̄ =
cos(ψ + ψb) sin ψa − sin(ψ + ψb) cos ψa

− sin(ψ + ψb) sin ψa − cos(ψ + ψb) cos ψa
(3.12)

θ̄ = 0 (3.13)
φ̄ = 0 (3.14)

We obtain a solution in the following way:
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1. Since there is only one remaining angle and two free angular variables, we
can use one to anullate a distance. (Note that the contrary is not possible,
to anullate an angular component with a translation variable.) We choose to
anullate ȳ in (3.10) with ψa:

ψa = − tan−1
(y

z

)

2. The angle ψ can be anullated in (3.12) with the remaining angular variable
ψb:

ψb = tan−1

(
y cosψ + z sin ψ

y sinψ − z cos ψ

)

3. The only remaining variable that can be anullated is x̄. We can use xa to
anullate its value in (3.9):

xa = x + xb

In this case, there only remains one non-zero variable in xĀB̄ :

z =
√

y2 + z2

This indicates that for parallel edges only a distance can be measured. Note
that the value of xb remains free. This is because the distance between parallel
edges can be measured at any point along them.

Again, this solution is not valid when y = z = θ = φ = 0. In this case the edges
are coincident, so the components of xĀB̄ become:

x̄ = x− xa + xb

ȳ = 0
z̄ = 0
ψ̄ = ψ − ψa + ψb

θ̄ = 0
φ̄ = 0

It can be seen that both x̄ and ψ̄ can be easily anullated, still remaining two
free variables:

xa = x + xb

ψa = ψb + ψ

xb free
ψb free
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These particular cases, where there remain free variables in the solutions, corre-
spond to feature locations that do not allow to determine the location of the object.
Therefore, features whose geometric relations belong to one of these particular cases
are avoided during the initial steps of recognition (chapter 6). ¦

The solutions for all the combinations of symmetries are obtained in a
similar way and are summarized in table 3.1. In this table we can find the
general form of vector xĀB̄ . The form that this vector adopts for some
particular cases also appears. For example, given two edges (SA = SB =
Tx Rx), in case they are parallel (θ = φ = 0), only a distance (tz̄) can
be measured. We do not consider features whose relative location is near
these particular cases , because they correspond to situations where the pair
of observations do not allow to determine the object location. A detailed
description of each solution can be found in appendix B.

In summary, given two geometric features A and B, whose subgroups
of symmetries are SA and SB, the location vector corresponding to the
geometric relations between the two elements is computed following these
steps:

1. Using SA and SB and the values of the components of xAB, from the
corresponding table (appendix B) obtain the expressions correspond-
ing to xAĀ and xBB̄, and calculate the values of their components.

2. Calculate xĀB̄ using (3.2).

3. Some components of this location vector correspond to the geometric
relations r between the features and the rest are zero. We use a row-
selection matrix SAB to extract them (the value of SAB depends on
the general form of xĀB̄, described in table 3.1):

r = SAB xĀB̄

Vector r will contain the value of the geometric relations between features
A and B. Function calculate geometric relations is implemented us-
ing this procedure. This function is used to determine the values for the
geometric relations between two geometric elements given their relative lo-
cation xAB, and their respective subgroups of symmetries, SA and SB (see
algorithm 3.1). This will allow to determine whether the geometric relations
between two model features are satisfied by the geometric relations between
two observations.
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SA SB Case of tAB General Form of tĀB̄

Rx Rx tx̄ · tȳ · tz̄ · rφ̄

θ = φ = 0 tx̄ · tȳ
y = z = θ = φ = 0 tx̄

Rx Rxyz tx̄ · tz̄
y = z = 0 tx̄

Tx Tx tȳ · rφ̄ · rθ̄ · rψ̄

θ = 0 tz̄ · rφ̄ · rψ̄

θ = φ = 0 tȳ · tz̄ · rψ̄

Tx Rx tȳ · tz̄ · rφ̄ · rψ̄

Tx Tx Rx tȳ · rφ̄ · rψ̄

θ = φ = 0 tȳ · tz̄
Tx Rxyz tȳ · tz̄

Tx Rx Rx tȳ · tz̄ · rφ̄

θ = φ = 0 tz̄
Tx Rx Tx Rx tz̄ · rφ̄

θ = φ = 0 tz̄
Tx Rx Rxyz tz̄
Txy Rz Rx tz̄ · rθ̄

Txy Rz Rxyz tz̄
Txy Rz Tx rθ̄ · rψ̄

θ = 0 tz̄ · rψ̄

Txy Rz Tx Rx rθ̄

θ = 0 tz̄
Txy Rz Txy Rz rθ̄

θ = ψ = 0 tz̄
Rxyz Rxyz tz̄

tx̄ = Trans(x̄, 0, 0); rψ̄ = Rot(x, ψ̄)
tȳ = Trans(0, ȳ, 0); rθ̄ = Rot(y, θ̄)
tz̄ = Trans(0, 0, z̄); rφ̄ = Rot(z, φ̄)

Table 3.1: Geometric relations for all combinations of symmetries of geo-
metric elements
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Estimating Uncertain Geometric Relations

Let us consider now the estimation of geometric relations between uncer-
tain observations of features. Given two geometric features with associated
references A and B, whose uncertain locations are expressed by LWA =
(x̂WA, p̂A, CA) and LWB = (x̂WB, p̂B, CB) respectively, the geometric re-
lations between them can be calculated by estimating the values of the
components of the location vector xĀB̄ and its covariance. In order to re-
duce errors due to the use of a linear approximation, we will consider the
estimations centered (p̂A = p̂B = 0). The procedure is the following:

1. Calculate the location vectors xAĀ and xBB̄ using the table in appen-
dix B corresponding to SA and SB. These location vectors can be used
to calculate the uncertain location of LWĀ, as follows:

LWĀ = LWA ⊕ xAĀ

According to (2.3), and given that BĀ = BAs, the result will be LWĀ =
(x̂WĀ, p̂Ā, CĀ), where:

x̂WĀ = x̂WA ⊕ xAĀ

p̂Ā = BAJĀABT
A p̂A = 0

CĀ = BAJĀABT
A CA BAJT

ĀABT
A (3.15)

Matrix JĀA is the Jacobian of the transformation represented by xAĀ

(see appendix A). The uncertain location of B̄, LWB = (x̂WB̄, p̂B̄, CB̄),
is calculated in the same way.

2. The relative location vector xĀB̄ is given by:

xĀB̄ = ªxWĀ ⊕ xWB̄

= ª(xWĀ ⊕BT
ApĀ)⊕ (xWB̄ ⊕BT

BpB̄)
= ªdĀ ª x̂WĀ ⊕ x̂WB̄ ⊕ dB̄

= ªdĀ ⊕ x̂ĀB̄ ⊕ dB̄

Thus, we can calculate x̂ĀB̄ and its covariance as follows:



78 CHAPTER 3. GEOMETRIC CONSTRAINTS

x̂ĀB̄ = ªx̂WĀ ⊕ x̂WB̄

Cov(xĀB̄) = J1⊕{0, x̂ĀB̄}BT
ACĀBAJT

1⊕{0, x̂ĀB̄}
+ J2⊕{x̂ĀB̄, 0}BT

BCB̄BBJT
2⊕{x̂ĀB̄, 0} (3.16)

where J1⊕ and J2⊕ are the Jacobians of the composition of location
vectors (see appendix A).

3. To select the elements of this location vector which correspond to the
geometric relations r between the features, we premultiply by the row-
selection matrix SAB, whose values depend on SA and SB, and can be
easily deduced from table 3.1:

r̂ = SAB x̂ĀB̄

Cov (r) = SAB Cov(xĀB̄) ST
AB (3.17)

Vector r̂ and its covariance constitute an estimation of the geometric
relations between A and B.

In summary, the estimation of the geometric relations between two observed
features can be made with function estimate geometric relations, shown
in algorithm 3.1.

Example 3.3: Estimated geometric relations between edges
Suppose we use a proximity sensor to observe two edges of equal length l, mea-
suring n equally distant points for each, we associate to them references A and B.
Supposing the sensor’s measurement precision is equal to σ in all directions, from
(2.16), we have that their covariance matrices would be:

CA = CB =
σ2

n
diag

(
1, 1,

12
l2

,
12
l2

)

Recall from example 3.2.1 that the aligning transformations for two edges are
xAĀ = (xa, 0, 0, ψa, 0, 0)T , xBB̄ = (xb, 0, 0, ψb, 0, 0)T , and xĀB̄ =
(0, 0, z̄, 0, 0, φ̄)T . From (3.15) we have:

CĀ =
σ2

n l2




l2 + 12 x2
a 0 0 12 xa

0 l2 + 12 x2
a −12 xa 0

0 −12 xa 12 0
12 xa 0 0 12
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CB̄ =
σ2

n l2




l2 + 12 x2
b 0 0 12 xb

0 l2 + 12 x2
b −12 xb 0

0 −12 xb 12 0
12 xb 0 0 12




The matrix SAB which selects the desired components of the location vector is:

SAB =
[

0 0 1 0 0 0
0 0 0 0 0 1

]

The covariance of xĀB̄ can be calculated from (3.16) and (3.17), giving:

Cov(r) = 2 σ2

[
6 (x2

a+x2
b)

l2 + 1
n 0

0 12
l2

]

We can see that the uncertainty in the estimation of the distance between
the two edges is related to how far the edges are from the common perpendicular
(described by xa, and xb). This is due to the fact that the uncertainty in the
location of the edge point where the common perpendicular is located is coupled
with the orientation uncertainty of the edge, so that a deviation in edge orientation
produces a deviation in the position of this point. In this case, uncertainty in the
angle between the edges does not depend on the values of xAĀ or xBB̄ . ¦

The preceding example illustrates the fact that the precision in the esti-
mation of geometric relations depends on the relative location between the
features. In general, the estimation becomes less precise when the features
are more distant from each other, or when their relative location is close to
a singular case. This information is useful in determining how discriminant
the constraint validation mechanism will be, and thus, will be useful during
the recognition process.

Computational Considerations

In applying this procedure to compute the necessary transformations, there
are several things that must be taken into account:

1. For any pair of features, it is irrelevant which one you take as A, and
which as B. Nevertheless, one solution may be computationally less
expensive than the other.

Example 3.4: Geometric relations between a dihedral and a vertex
If we associate reference A to the dihedral, we have SA = Tx and SB = Rxyz.
Thus:
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xAĀ = (xa, 0, 0, 0, 0, 0)T

xBB̄ = (0, 0, 0, ψb, θb, φb)T

The solution in this case yields that xĀB̄ = (0, ȳ, z̄, 0, 0, 0)T when:

xa = x

ψa = tan−1

(
sin φ sin θ cos ψ − cosφ sin ψ

cos θ cos ψ

)

θa = − tan−1


 cosφ sin θ cosψ + sin φ sinψ√

cos2 θ cos2 φ + (cos φ sin θ cosψ + sin φ sin ψ)2




φa = − tan−1

(
sin φ cosψ − cos φ sin θ sin ψ

cosφ cos θ

)

On the other hand, if we associate reference A to the vertex, we would have:

xAĀ = (0, 0, 0, ψa, θa, φa)T

xBB̄ = (xb, 0, 0, 0, 0, 0)T

This would yield the following solution:

xb = −x cos θ cos φ− y cos θ sin φ + z sin θ

ψa = ψ

θa = θ

φa = φ

xĀB̄ = (0, ȳ, z̄, 0, 0, 0)T

¦

In general, simpler solutions are preferred.

2. RPY angles have a singularity when θ = ±π/2. The SPmodel repre-
sents orientations using RPY angles. This means that when θ is near
this value, its covariance is very high because a small perturbation may
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cause a great change in its value. This is reflected in the Jacobian ma-
trices, where it originates a division by zero (see appendix A), and
thus, an infinite covariance. Thus, the case when the geometric rela-
tions between two features give this singular solution must be avoided.
The adopted solution consists in rotating the reference associated to
the one of the features so that the value of the θ̄ component of their
relative location vector goes away from the singularity.

Example 3.5: Geometric relations between dihedrals
Consider two geometric features corresponding to dihedrals (S = Tx). Since
dihedrals have no symmetries of rotation, it is not possible to anullate any
angular component of the relative location vector, and it may be the case that
θ̄ approaches ±π/2. This can be solved by rotating the reference associated
to the first dihedral so that the value of θ̄ changes from ±π/2 from 0. This
can be done by modifying (3.2) in the following way:

xĀB̄ = ªxAĀ ª Rot(x,−π/2)⊕ xAB ⊕ xBB̄

This implies altering the convention that the z axes of the reference associated
to a dihedral bisects the angle between the two planes that form the dihedral.
In performing this alteration, it will be the y axes the one who bisects the
angle. ¦

Note that this alteration is only necessary for computing geometric
relations and should be done both in the observations and in the model
features to be paired with them.

3.2.2 Validating Binary Relations

We use the results of the preceding section to define a procedure to vali-
date the geometric relations between two observed features and their cor-
responding model features of an object. Given a vector rm, which contains
the value of the geometric relations between the model features an the ob-
ject, and r̂o, Cov(ro), the estimation of the geometric relations between the
observed features, we can measure the discrepancy between rm and ro using
the Mahalanobis distance [Cuadras 89]:

D2 = (r̂o − rm)T Cov(ro)−1(r̂o − rm) (3.18)

Under the Gaussianity hypothesis, D2 follows a chi-square distribution
with m = dim(rm) degrees of freedom. For a given significance level α, ro

can be considered compatible with rm if:
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FUNCTION satisfy binary constraints (pA, pB)

; pA = (eA, mA) and pB = (eB , mB): pairings between observations and model features
; Determines whether the estimated geometric relations between observations
; eA and eB can be considered compatible
; with the geometric relations between model features mA and mB

; returns TRUE if so, FALSE otherwise

rm := calulate geometric relations (mA, mB);
ro, Co := estimate geometric relations (eA, eB);

D2 := (ro − rm)T C−1
o (ro − rm);

D2
m := chi square (dim(rm), α);

RETURN D2 ≤ D2
m;

END;

FUNCTION calculate geometric relations (mA, mB)

; mA = (xOA, SA) and mB = (xOB , SB): model features
; xOA and xOB : location vectors representing the location of the features relative to the object
; SA and SB : subgroups of symmetries of the features
; Calculates the geometric relations r between two model features A and B
; obtaining from table 3.1 the appropriate
; aligning transformation for symmetries of A and B

xAB := ªxOA ⊕ xOB ;
xAĀ, xBB̄ := calculate from table (xAB , SA, SB);
xĀB̄ := ªxAĀ ⊕ xAB ⊕ xBB̄ ;
r := SAB xĀB̄ ;

RETURN r;
END;

FUNCTION estimate geometric relations (eA, eB)

; eA = (LWA, SA) and eB = (LWB , SB): observations
; LWA = (x̂WA, p̂A, CA) and LWB = (x̂WB , p̂B , CB): uncertain locations
; of the features in the scene
; SA and SB : subgroups of symmetries of the features
; Calculates the estimated value r̂ and covariance Cr̂ of the geometric relations
; between two observed features A and B, obtaining from table 3.1 the appropriate
; aligning transformation for the symmetries of A and B

x̂AB := ªx̂WA ⊕ x̂WB ;
x̂AĀ, x̂BB̄ := calculate from table (x̂AB , SA, SB);
x̂ĀB̄ := ªx̂AĀ ⊕ x̂AB ⊕ x̂BB̄ ;
r̂ := SAB x̂ĀB̄ ;

CĀB̄ := J1⊕{0, x̂ĀB̄}BT
ACĀBAJT

1⊕{0, x̂ĀB̄}+ J2⊕{x̂ĀB̄ , 0}BT
BCB̄BBJT

2⊕{x̂ĀB̄ , 0};
Cr̂ := SAB CxĀB̄

ST
AB ;

RETURN r̂, Cr̂;
END;

Algorithm 3.1: Validating Geometric Constraints



3.3. LOCATION DEPENDENT GEOMETRIC RELATIONS 83

D2 ≤ D2
m,α (3.19)

where D2
m,α is a threshold value, obtained from the χ2

m distribution, such
that the probability of rejecting a good matching is α. This constraint vali-
dation method use used to implement function satisfy binary constraints
(algorithm 3.1).

Example 3.6: Constraint validation for two edges
Continuing with our example, let ∆r = r̂o − rm = (∆z, ∆φ)T be the discrepancy
between the estimated value of the geometric relations of the observed edges and
those of the object model. According to (3.18) we have:

D2 =
n l2

2 σ2

(
(∆z)2

6 x2
b + 6 x2

a + l2
+

(∆φ)2

12

)

For a given significance level α, we have that the observed edges are considered
compatible with the model edges if D2 ≤ D2

m,α. We can see that the value of
D2 increases with n, which means that longer edges will allow the test to be more
discriminant. On the other hand, D2 decreases with σ2, because less precise sensors
decrease the selectivity of the test. D2 also decreases with xa and xb, the relative
distances of the edge references to their common perpendicular. These values can
be large for two reasons:

1. The observed edges are very distant from one another. The effect of the
orientation errors of the edge on the position errors of points on the edge
grow with the distance between the point and the edge reference.

2. The relative location of the edges is close to a singular case. The singular
case for edges is when they are parallel.

The confirms the intuitive idea that distant edges, or edges whose relative
location is close to a singular case, decrease the discriminant power of the constraint
validation mechanism. ¦

3.3 Location Dependent Geometric Relations

In the previous section we studied geometric relations whose values do not
depend on the object location. They are useful to validate the consistency
of a set of observations with respect to a set of model features, without the
need to estimate the location of the object. However, the availability of an
estimation of the location of the object gives us the possibility of applying
some other validation mechanisms on the observations. In this section we
describe the most important location dependent constraints.
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3.3.1 The Rigidity Constraint

The fundamental location dependent constraint is denominated rigidity. In-
tuitively, rigidity states that the location of an object determines the loca-
tion of its features in the scene. Given an estimation LWO = (x̂WO, d̂O, CO)
of the location of an object, and given the relative location of the feature
with respect to the object model, xOM , we can estimate the location of the
feature in the scene as follows:

LWM = LWO ⊕ xOM

According to (2.4), the resulting uncertain location of M is given by LWM =
(x̂WM , p̂M , CM ), where:

x̂WM = x̂WM ⊕ xOM

p̂M = BM JMO d̂O

CM = BMJMOCOJT
MOBT

M (3.20)

The test of whether an observation is compatible with M can be applied
both to observed features and subfeatures. Both cases are explained next.

Rigidity for Features

Given an observed feature whose estimated location in the scene is repre-
sented by LWE = (x̂WE , p̂E , CE), E can be considered compatible with M
if their location coincide, up to symmetries. This condition can be expressed
by the inverse constraint:

BExEM = 0

where BE is the self-binding matrix of the feature. We can measure the
discrepancy between the model feature and the feature observed in the scene
using the Mahalanobis distance:

D2 = (BEx̂EM )T
[
BECov(xEM )BT

E

]−1
BEx̂EM

Distance D2 follows a chi-square distribution with m = dim(pE) =
rank(BE) degrees of freedom. The estimated value of xEM and its covari-
ance can be obtained in the following way:



3.3. LOCATION DEPENDENT GEOMETRIC RELATIONS 85

x̂EM = ªx̂WE ⊕ x̂WM

Cov(xEM ) = J1⊕{0, x̂EM}BT
ACEBEJT

1⊕{0, x̂EM}
+ J2⊕{x̂EM , 0}BT

MCMBMJT
2⊕{x̂EM , 0} (3.21)

We use a hypothesis test similar to (3.19): if the estimated distance is
greater than the threshold D2

m,α, the compatibility hypothesis is rejected.

Rigidity for Subfeatures

Let us now consider the case where the observation is a subfeature, whose
estimated location in the scene is represented by LWP = (x̂WP , p̂P , CP ).
Given a model feature M , we can consider that P is compatible with M if
their relative location satisfies either the direct or inverse constraint:

BMPxMP = 0
BPMxPM = 0

where BMP and BPM are the binding matrices of the pairing, depending
on how this pairing can be expressed. Let us consider the direct constraint.
The discrepancy between the model feature and the subfeature observed in
the scene is measured using the Mahalanobis distance:

D2 = (BMP x̂MP )T
[
BMP Cov(xMP )BT

MP

]−1
BMP x̂MP

In this case, distance D2 follows a chi-square distribution with m =
rank(BMP ) degrees of freedom. The estimated value of xMP and its covari-
ance can be obtained using (3.16). A hypothesis test similar to that of the
preceding paragraph is then applied.

Example 3.7: Rigidity constraints for a point on plane
Suppose we have used a proximity sensor to observe a point of some planar face

of an object. Let P be a reference associated to the location of the point, so that:

p̂P = 0
CP = diag(σ2

s , σ2
s , σ2

s)

Let the estimated object location be LWO = (x̂WO, d̂O, CO), where:



86 CHAPTER 3. GEOMETRIC CONSTRAINTS

O

M

x

y

z

x

y

z

x

y

z

P

x

y

z

o

o

o

zm
xmym

Figure 3.3: Validating the rigidity constraint for a point on a plane

d̂O = 0
CO = diag(σ2

p, σ2
p, σ2

p, σ2
o , σ2

o , σ2
o)

The point has symmetries if rotations around any axis (Rxyz). Thus its self-binding
matrix BP is:

BP =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




The plane has symmetries of translation along its x and y axes, and a symmetry of
rotation around its z axis (Txy Rz). Thus, its self-binding matrix BM is:

BM =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




The binding matrix of the pairing BMP expresses the condition that the point
belong to the plane, that is, the distance of the point to the plane in the z axis of
the reference of the plane must be zero:
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FUNCTION satisfy rigidity constraint (LWO, p)

; LWO: estimated object location
; p = (e, m): proposed pairing
; e = (LWE , SE) , m = (xOM , SM )

; determines whether the location of e and m can be considered compatible

LWM := LWO ⊕ xOM ;
x̂EM := ªx̂WE ⊕ x̂WM ;
CEM := J1⊕{0, x̂EM}BT

ECEBEJT
1⊕{0, x̂EM}+ J2⊕{x̂EM , 0}BT

MCMBMJT
2⊕{x̂EM , 0};

D := (BE x̂EM )T
[
BECEMBT

E

]−1
BE x̂EM ;

Dm := chi square (rank(BE), α);

RETURN D ≤ Dm;
END;

Algorithm 3.2: Validating the Rigidity Constraint

BMP =
[

0 0 1 0 0 0
]

Let us consider a simple case, where xOM = (xo, yo, zo, 0, 0, 0)T (fig. 3.3).
According to (3.20), we have that the location of the model feature is given by
LWM = (x̂WM , p̂M , CM ), where:

CM =




σ2
p + (x2

o + y2
o) σ2

o yo σ2
o −xo σ2

o

yo σ2
o σ2

o 0
−xo σ2

o 0 σ2
o




Suppose x̂MP = (xm, ym, zm, ψm, θm, φm)T . Using (3.21) we can calculate
Cov(xMP ) and use it to calculate D2, which yields:

D2 =
z2
m

σ2
s + σ2

p + ((xm + xo)2 + (ym + yo)2) σ2
o

The value of D2 increases with zm because it measures the discrepancy along
the z axis, the only direction that is involved. D2 decreases with the square of
xm + xo and ym + yo, making the test less discriminant for features whose location
relative to the object is more distant. D2 also decreases with the covariance of
the errors of both the object location and the subfeature location, confirming that
more precise features and object-location hypotheses will yield more discriminant
constraint analysis. ¦

The implementation of satisfy rigidity constraint using the method
given here is shown in algorithm 3.2.
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Figure 3.4: Applying the extension constraints to edges as a location inde-
pendent constraint

3.3.2 The Extension Constraint

From the preceding example we can see that the rigidity constraint validates
whether the point belongs to the infinite plane where its corresponding sur-
face lies. It does not validate whether the point is actually located within
the region occupied by the feature. This is also true for location independent
constraints, since they correspond to parameters that are invariant under
occlusion.

The validation that the observed feature is actually contained in the
region occupied by the corresponding model feature is denominated the
extension constraint. Unlike the other constraint validation methods, the
extension constraint is particular for each type of geometric element. Given
the estimated location of the model feature, it is very simple to validate it
(determining whether the observed feature is located within the predicted
region occupied by the model feature). Nevertheless, it can also be validated
without having an estimation of the object location, that is, during the ini-
tial steps of the hypothesis generation process. In the following we give an
example.

Example 3.8: Validating the extension constraint for an edge
Validating the extension constraint for an edge consists in determining whether the



3.4. CONCLUSIONS 89

most extreme points of the observed edge are contained within the extension occu-
pied by its corresponding model edge. This validation is done after applying location
independent constraints, using the aligned references obtained from this calculation
(fig. 3.4). Let LWEa = (x̂WEa , p̂Ea , CEa) and LWEb

= (x̂WEb
, p̂Eb

, CEb
) represent

the uncertain location of these points.
The procedure consists in estimating the distance between points Ea and Eb

and the aligning reference Ē. This can be done by obtaining an estimation of their
relative location vector, and extracting its x component and its variance, which will
correspond to êmin, Cov(emin) and êmax, Cov(emax.).

Given dmin and dmax, the extension constraint is satisfied if êmin ≥ dmin ∧
êmax ≤ dmax. If either of these conditions is not satisfied, then we must statistically
test for equality. For example, if êmin < dmin, we apply a hypothesis test on:

D2 =
(dmin − êmin)2

Cov(emin)

For a significance level α we will consider dmin and emin compatible if:

D2 < D2
1,α

where D2
1,α is the value of the χ2

1 distribution for α. ¦

3.4 Conclusions

In this chapter we have shown how to derive the geometric relations that
depend on the relative location and symmetries of the involved geometric
elements, and how they can be expressed in the form of an uncertain location
vector. This allows to define a general constraint validation mechanism,
which can be applied to both location dependent and location independent
constraints. This mechanism is based on statistical tests on the components
of the location vector.

This constraint validation mechanism allows the use of diverse geometric
information for recognition. Nevertheless, the discriminancy of constraint
validation largely depends on the precision and relative location of the in-
volved geometric features. That is, imprecise observations, or observations
whose relative location is close to a particular case, have a greater proba-
bility of being spuriously paired. This highlights the importance of having
criteria for the selection of the observations that will allow more discriminant
constraint analysis. The fundamental concepts that allow to establish such
criteria, the precision and relevance of an observation and of a hypothesis,
are discussed in the next chapter. Criteria for the selection of observations
and hypotheses are discussed in chapter 6.
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The constraint validation mechanism proposed here can be used in the
identifying before locating, as well as the identifying while locating approaches.
However, since location independent constraints validate local consistency,
while location dependent constraints validate global consistency, constraint
validation in the identifying while locating scheme can be more discriminant
and computationally less expensive. This subject is analyzed in chapter 6.



Chapter 4

Precision and Relevance

Summary

The fundamental goal of recognition is to obtain precise and relevant object-
location hypotheses. The precision of a hypothesis is related to the uncer-
tainty in the estimation of the location of the hypothesized object. The rel-
evance of a hypothesis is related to how confident the system may be in
the assertion that the set of observations contained in the hypothesis comes
from an instance of the hypothesized object. In this chapter we define two
measurements used to characterize the precision and relevance of an object-
location hypothesis [Neira 93c]. The proposed precision measurement allows
the system to direct its attention to the observations and model features that
can make the estimation more precise. The relevance measurement is gen-
eral for any observation, and takes into account the precision of the sensor
that obtained it, and the characteristics of the involved geometric feature.
Both measurements allow us propose a set of recognition strategies that can
speed up the recognition process (chapter 6).

91
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4.1 Introduction

Robotic object recognition systems have a twofold goal: the identification
and localization of the objects present in the robot workspace. Identification
can be considered a search problem, in which the goal is to find the best
interpretation—in terms of the object models— of a given set of sensorial
observations. Localization is an estimation problem, whose goal is to com-
pute the object location where the discrepancy between the location of the
observations and their corresponding model features is minimal.

One of the fundamental problems of geometric recognition is the char-
acterization of degree of identification and localization of an object location
hypothesis. The precision of a hypothesis is related to the uncertainty in
the estimation of the location of the hypothesized object. The relevance of
a hypothesis is related to how confident the system may be in the asser-
tion that the set of observations contained in the hypothesis comes from an
instance of the hypothesized object.

The characterization of the precision of an object-location hypothesis is
closely related to the method used to model location uncertainty. In sys-
tems that represent location uncertainty using set-based models [Brooks 82,
Brooks 85, Grimson 84, Grimson 90a], the precision of an observation or a
hypothesis may be measured using a bound on the error of position and
orientation. Apparently, this precision measurement has the advantage of
simplicity, but computing the error bounds for a hypothesis given the error
bounds of a set of observation can be very complex [Ellis 91, Fisher 91].
Additionally, such a precision measurement does not allow to determine
whether there is more uncertainty in some directions than in others, and
it tends to be conservative [Brooks 85, Smith 88]. Furthermore, coupling
between position and orientation errors is seldom considered.

In probabilistic models, the precision of the estimation of a location
is related to the eigenvalues of the covariance matrix of the estimation.
The greater its eigenvalues, the more uncertain the estimation. Nakamura
[Nakamura 89] uses the volume of uncertainty, computed as the product of
the eigenvalues of the covariance matrix, as a measurement of the precision
of an estimation. However, the volume of uncertainty does not give an idea of
how much uncertainty there is on each main direction, and how uncertainty
in position compares to uncertainty in orientation. An additional limitation
of this approach is that during the initial steps of recognition the covariance
matrix of the estimation may not be well-defined.

In section 4.2 we study this problem, and propose a precision measure-
ment that overcomes these limitations. It is based on the information matrix
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of the object location estimation, the inverse of the covariance matrix.
The characterization of the relevance of a pairing between a model fea-

ture and an observation to the identification of an object, i.e., how much
information the pairing contributes to support the object location hypoth-
esis, has given rise to a great variety of solutions.

In the first place, some researchers have considered heuristic approaches.
Faugeras [Faugeras 86] does not define a measure of the relevance of each
feature. Instead, he applies three rules to determine the order in which the
primitives are to be considered: avoid small primitives, choose linearly in-
dependent primitives—since they can be used to locate the object—, and
choose primitives that discriminate between alternative positions of the ob-
ject. In some systems, the relevance of a feature is heuristically preassigned
in the object model, such as in [Allen 87], where the system assigns high
priorities to model features which are large or isolated in space and pro-
trude. This allows to order the features by their likelihood of being sensed.
In [Granjean 91], a weight is assigned to each model feature, which is heuris-
tically calculated from its discriminating power, extraction costs, reliability
of extraction, and power of location. In [Lacroix 92], aspect graphs to recog-
nize objects are built and ordered according to the rareness and robustness
of the features composing the aspect.

Bolles and Cain [Bolles 82] propose a method to automatically select
focus features of the CAD models of 2D objects for their recognition and
localization using vision. The selection of these feature depends on their
uniqueness, expected contribution, cost of detection and likelihood of de-
tection. The system concentrates in finding one focal feature in the image,
and uses it to predict nearby features to look for. This approach has been
extended to the three dimensional case in [Bolles 86].

Different formalization efforts have also been done. In [Hutchinson 89],
Hutchinson uses a Dempster-Shafer formalism to express the credibility of
a hypothesis as belief functions of the set of observations, combined using
Dempster’s rule. Bhandarkar [Bhandarkar 92] uses fuzzy sets to describe
qualitative attributes of object features, such as degree of occlusion and
degree of satisfaction of geometric constraints to calculate a weight to each
match and estimate the object location using a Weighted Generalized Hough
Transform. Nagata [Nagata 91] also uses fuzzy sets to determine the degree
of visibility of a model surface, to select the next one that the system should
verify. In [Chen 90], Chen defines three feature utility measurements: de-
tectability, reliability and error rate, and uses them to reduce the execution
time of a vision program.

In [Grimson 90b], Grimson and Huttenlocher relate the relevance of a
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pairing to the probability that it be the result of a conspiracy. That is, the
probability that an observation from a feature other than the one to which is
being paired is located within its uncertainty volume. This volume depends
on bounds on the degree of sensor noise. Grimson and Huttenlocher derive a
threshold for the fraction of model features that must be paired so that the
probability of random conspiracy is small. In [Tardós 91], Tardós proposes a
similar approach, in which the probability of a random conspiracy is related
to the volume of acceptance of the observation, and the uniqueness of the
feature in the models. Tardós points out the limitations of this approach,
which does not take into account the probability of an organized conspiracy,
related to the similarities between the object models.

The fundamental limitation of most of these approaches is that they
concentrate on specific types of features, for example edges. In multisensor
systems, where different sensors may be able to obtain information for a
great variety of geometric features, it is not possible to compare the potential
benefit of selecting observations corresponding to different types of geometric
features, say edges, planes, corners or dihedrals. A second limitation that
one sole bound for sensor error is considered. The use of several sensors
requires taking into account their precision and reliability.

In section 4.3 we propose an approach to characterize the relevance of
a pairing and of a hypothesis, which is closely related to the mechanism
for integrating uncertain geometric information, and thus has all the advan-
tages of generality, and feature and sensor sensibility that characterize such
integration mechanism. The characterization of relevance of a pairing will
be extended to determine the relevance of a sensorial observation, and the
potential relevance of a model feature.

4.2 The Precision of an Object-Location Hypoth-
esis

4.2.1 Regions of Uncertainty

Consider a geometric element e, whose uncertain location with respect to a
reference W is expressed by LE = (x̂WE , p̂E , CE). Intuitively, the precision
of the estimated location of the geometric element is related to how much
its true value can deviate from its estimated value, that is, to its covariance.
We can measure how much the true value of the perturbation vector pE

deviates from p̂E using the Mahalanobis distance [Cuadras 89]:

D2 ∆= (pE − p̂E)T C−1
E (pE − p̂E)
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Given that pE ∼ N (p̂E , CE), we have that D2 follows a chi-square distribu-
tion χ2

m, where m = dim(pE) is the number of d.o.f. that define the location
of the geometric element. A significance level α defines an m-dimensional
region where pE will lie with probability 1− α:

P
{
D2 ≤ D2

m,α

}
= 1− α

where Dm,α is the value of χ2
m for a significance level α. Given m and α,

this value can be obtained from the chi-square tables [Ŕıos 77]. We call
such region an uncertainty region (with probability 1 − α). To graphically
represent regions of uncertainty, we will assume a significance level of α =
0.05, that is, we will draw regions corresponding to a probability of 0.95.

The region defined by the condition D2 ≤ D2
α,m is limited by an ellipsoid

whose equation is:

(pE − p̂E)T C−1
E (pE − p̂E) = D2

m,α (4.1)

The principal axes of this ellipsoid have length Dm,α

√
λi, where λi are

the eigenvalues of CE . Let us illustrate this fact using a two dimensional
example.

Example 4.1: The location of a vertex in 2D
Consider that the geometric element e corresponds to a vertex in two dimensional
space. In this case we have m = 2 and:

pE = (dx, dy)T ; CE =
[

σ2
x σxy

σxy σ2
y

]

Using (4.1), we can calculate the equation of the ellipse that contains the region of
uncertainty with probability 1− α (figure 4.1), which gives:

σ2
y d2

x − 2 dx dy σxy + σ2
x d2

y

σ2
x σ2

y − σ2
xy

= D2
2,α

Considering that ρxy = σxy

σx σy
, the equation becomes:

d2
x

σ2
x

+
d2

y

σ2
y

− ρxy dx dy

σx σy
= D2

2,α (1− ρ2
xy)

The value of D2
2,α can be obtained from the chi-square tables [Rı́os 77]. For example,

for α = 0.05, we have that D2,0.05 = 2.44.
The eigenvalues of the covariance matrix CE are:



96 CHAPTER 4. PRECISION AND RELEVANCE

σx

σy

xd

yd

Dα,2 (1-ρxy
2 )

Dα,2 (1-ρxy
2 )

β

λ2Dα,2

λ1Dα,2

Figure 4.1: Ellipse of uncertainty of a 2D vertex
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λ1 =
σ2

x + σ2
y +

√
(σ2

x − σ2
y)2 + 4 σ2

xy

2

λ2 =
σ2

x + σ2
y −

√
(σ2

x − σ2
y)2 + 4 σ2

xy

2

The eigenvectors corresponding to these eigenvalues give the directions along which
the value of pE can drift more or less from its mean value. That is, the directions
of highest and lowest uncertainty, respectively (λ1 ≥ λ2). The angle β between the
eigenvector related to the largest eigenvalue and the x axis is given by:

β =
1
2

tan−1

(
2 σxy

σ2
x − σ2

y

)

If σxy = 0, then β = 0 or β = π/2 and the eigenvectors coincide with the axes.
When σ2

x = σ2
y, we have that β = ±π/4. If these two conditions are simultaneous,

then the value of β is indeterminate because we are in the degenerate case when
the ellipse becomes a circle. In this case, λ1 = λ2 = σx = σy and all vectors are
eigenvectors.

In this two dimensional case the area of the ellipse is given by:

A = π D2
2,α λ1 λ2

= π D2
2,α det(CE)

¦
This example shows that the precision of an observation is fundamen-

tally related to the eigenvalues of the covariance matrix. The smaller these
eigenvalues are, the smaller the volume of uncertainty becomes.

Let us now generalize the computation of the volume of uncertainty to
the estimated location of an object. Consider an object whose uncertain
location with respect to W is given by LWO = (x̂WO, d̂O, CO). For a given
significance level α, the volume of the ellipsoid defined by the condition
dT

O C−1
O dO < D2

α,m is given by [Tardós 91]:

V = km Dm
m,α

m∏

i=1

λi

= km Dm
m,α det(CO)

where km is a constant which depends of the number of d.o.f. that define
the location of a geometric element (k1 = 2, k2 = π, k3 = 4π/3, k4 = π2/2,
k5 = 8π2/15, k6 = π3/6), and λ1 ≥ λ2 ≥ · · ·λn are the eigenvalues of CO.
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An important property of this volume of uncertainty is that it remains
constant under change of reference. If we change the reference of the object
O to O′, the covariance of the perturbation vector in O′ will be:

CO′ = JO′O CO JT
O′O

where JO′O is the Jacobian of the transformation between O′ and O (see
appendix A). The determinant of CO′ will be:

det(CO′) = det(JO′O CO JT
O′O)

= det(JO′O) det(CO) det(JT
O′O)

Given that the determinant of the Jacobian of any transformation is equal to
1 (appendix A), we have det(JO′O) = 1 and thus the volume of uncertainty
remains constant:

det(CO′) = det(CO)

The relation between the volume of uncertainty and the eigenvalues of
the covariance matrix will help us in defining a measurement for the precision
of an object location hypothesis, but before we can go any further, we must
study the relation between position and orientation errors.

4.2.2 The Influence of Orientation Errors in Position Errors

The location of an object is determined by three position and three orienta-
tion parameters. Since the covariance matrix contains information related
to the uncertainty of both components of the location vector, the eigenval-
ues of the covariance matrix mix position and orientation terms. Therefore,
we must find a way of expressing all the elements in the covariance matrix
in the same units.

An approach to solving this problem lies in the fact that the uncertainty
in the orientation of an object affects the uncertainty in the position of
points of the object. Consider the example in figure 4.2, where the location
of two vertices is predicted from the estimated location of the object. (For
ease of visualization, ellipses around the point are used to depict position
errors, while cones around an axis are used to depict orientation errors; in
some degenerate cases, ellipses become lines as in fig. 4.2.c.) If the object
location is only affected by uncertainty in position (a), then all points of
the object are affected by the same position error. If the object location is
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(a) (b)

(c) (d)

Figure 4.2: Object location errors affect feature location errors

affected by an orientation error, this has an effect in the orientation of the
points (b), and also in their position errors (c). The combined effect of object
location position and orientation errors in the location of features is shown
in (d). In general, the position error of a feature due to the orientation error
of the object is proportional to the distance between the feature reference
and the object reference. This gives us three clues in managing this problem:

Choosing an adequate object reference: In order to reduce the effect
that the orientation error of the object has in the position error of its fea-
tures, the object reference should be located near the geometric center of
the object, where the mean square distance to all surface points is minimal
(fig. 4.3).

Normalize the covariance matrix: Orientation errors can be weighted
by their effect on position errors. This results in normalizing the covari-
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Figure 4.3: Choosing a reference near the center of the object reduces the
coupling effect

ance matrix so that is has only units of position. The normalization of the
covariance matrix of any geometric element can be done in the following
way: let p and o by the number of position and orientation terms of the
perturbation vector pE of the uncertain location of the geometric element.
The normalization is done by means of a matrix NE of the form:

NE = diag(1, · · · , 1︸ ︷︷ ︸
p

, r, · · · , r︸ ︷︷ ︸
o

)

where r is a weighting factor for orientation errors. The normalized covari-
ance matrix will be:

CE = NE CE NT
E (4.2)

In this way we obtain a covariance matrix that expresses all location errors
in the same units. The normalized volume of uncertainty is easily derivable
from (4.2):

det(CE) = det
(
NE CE NT

E

)

= det(NE) det(CE) det(NT
E )

= ro det(CE) ro
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= r2 o det(CE)

Select an appropriate value for r: The value of r can be adjusted
to magnify or reduce the importance of orientation errors. The value of r
should be related to the object or feature size. We give r the value of the
mean radius of the object or feature.

Example 4.2: Edges observed with 2D vision
Suppose we use 2D vision to obtain two images of an edge to determine its estimated
location in the scene, as described in chapter 2. If these two images are obtained
from two orthogonal directions, from (2.19) we have:

CE =
s σ2

p

l




1 0 0 0
0 1 0 0
0 0 12

l2 0
0 0 0 12

l2




where l is the edge length and s the scale factor related to the camera focus and
its distance to the edge (in mm/pixel). In this case the form of NE is:

NE = diag(1, 1, r, r)

The mean distance between points of an edge of length l and its center is
l/4. Giving this value to r, from (4.2) we would obtain the following normalized
covariance matrix:

CE =
s σ2

p

l




1 0 0 0
0 1 0 0
0 0 3/4 0
0 0 0 3/4




We can see that we obtain a covariance matrix with all its components expressed
in the same units. The results show that, in average, the orientation error of the
edge will produce a position error

√
3/4 times the error produced by the position

error of the edge. ¦

4.2.3 A Definition and some Properties of Precision

Let h be an object location hypothesis, composed of n pairings between
model features and sensorial observations. Let Qn be the information matrix
of the estimation of the object location after integrating the n measurements.
Matrix Qn is the result of adding the information matrices of each of the n
pairings, as expressed in (2.7):
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Qn =
n∑

k=1

Fk

Thus, this matrix is well defined during all the steps of the integration
process. Let LWO = (x̂WO, d̂O, CO) represent the uncertain location of the
object, obtained by integrating the n pairings. We have that:

C0 = Q−1
n

Let Qn be the normalized information matrix, where:

Qn = N−T
O Qn N−1

O

So far we have seen that we can relate the precision of the estimated
object location with the probability that dO deviates from d̂0 more than
a given limit. This limit defines an m-dimensional ellipsoid. We have also
seen that the main directions of uncertainty are given by the eigenvectors
of the covariance matrix CO which constitute the main axes of the ellipsoid.
In this way, their corresponding eigenvalues characterize the precision of the
estimation. We have seen that the determinant of the covariance matrix CO

is related to the product of the eigenvalues, and that this volume remains
invariant under change of reference. These reasons seem to suggest the use
of the volume of uncertainty as the precision measurement [Nakamura 89].
Nevertheless, it has some fundamental drawbacks:

• Since the volume is the product of the eigenvalues of the covariance
matrix, it may occur that there is considerable uncertainty in one
direction, and very little in some other, and they would compensate
in the product.

• It is not well defined in all the integration steps, especially in the initial
ones, when the set of observations may not be sufficient to completely
determine the object location. In this case, the information matrix Qn

is singular, and thus, the covariance matrix contains infinite terms.

These limitations can be overcome by using an approximation slightly dif-
ferent from that of the volume of uncertainty. This approximation follows
two ideas:

• Use the inverse of the covariance matrix, the information matrix. Since
the inverse of the eigenvalues of the covariance matrix are the eigenval-
ues of the information matrix, they provide equivalent ways of defining
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precision, with the advantage that the information matrix is well de-
fined throughout all the steps of the integration process.

• Consider only the amount of uncertainty in the most uncertain di-
rection. This direction is related to the smallest eigenvalue of the
information matrix (e.g. the largest eigenvalue of the covariance ma-
trix). A direction of high uncertainty means a large eigenvalue in the
covariance matrix, or equivalently a small eigenvalue of the informa-
tion matrix. The difference is that when uncertainty in this direction
is infinite, the covariance matrix is not defined, while the eigenvalue
of the information matrix becomes zero.

Definition 4.1: Precision of an Object Location Hypothesis
Given an object location hypothesis h, composed of n pairings between model
features and sensorial observations; given Qn, the normalized information
matrix of the estimation of the object location after integrating the n mea-
surements; and given λ1 ≥ λ2 ≥ · · · ≥ λ6, the eigenvalues of Qn, we define
the precision of the estimated location of the object as:

precision(h) ∆=
√

min
{
eigenvalues

(
Qn

)}

=
√

λ6 (4.3)

Next, we will describe the fundamental properties of the measurement of
precision that we have defined.

1. Non-negativity
The value of precision is a non-negative real number. This property
derives from the fact that the information matrix is a positive, semi-
definite matrix. Thus, all its eigenvalues are non-negative real num-
bers.

2. Well-definedness
Precision is always well defined because the information matrix is well
defined throughout all the steps of the integration process. Thus, we
can always calculate its eigenvalues. In the case where the information
matrix is singular (the covariance matrix cannot be calculated), at
least one of the eigenvalues of the information matrix must be zero.
Since all its eigenvalues are non-negative, the resulting precision is
zero. This means that there is some direction in which uncertainty is
infinite.
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Figure 4.4: Object and observation models for simulation

3. Non-decreasing
The precision of an object location hypothesis is a non-decreasing func-
tion of the integrated observations. This derives from the fact that
the smallest eigenvalue of the sum of two matrices is greater than or
equal to the sum of the smallest eigenvalues of the involved matri-
ces [Franklin 68]. This property guarantees that the integration of a
pairing in the hypothesis will not result in a loss of precision in the
estimation. In case of redundant observations, precision remains con-
stant.

4. Units of distance−1

If we describe position errors in millimeters, then all the elements of
the normalized information matrix Qn have units of 1/mm2. This
means that the units of the square roots of its eigenvalues are 1/mm.
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4.2.4 An Example with Simulated Data

In order to analyze the evolution of the precision of an object location hy-
pothesis we will study the case of the estimation of the location of the
object shown in figure 4.4. We will assume that the length of each edge is
16 millimeters. Suppose we have a sensor that can detect vertices, and the
precision of the sensor is such that an observed vertex will have covariance
equal to diag(σ2

x, σ2
y), where σx = 2mm and σy = 3mm.

Let us see how the precision of the hypothesis evolves when the observed
vertices are integrated in the order in which they are numbered. The results
of such an integration process are shown in figure 4.5.a. Given that two
non-coincident vertices completely determine the location of an object in
2D space, the precision of the hypothesis becomes grater than zero only
after integrating the second observation. We can also see that the first
integrated observations have more impact on precision the the last ones. In
general, the contribution of an observation to the precision in the estimated
location of the object depends not only on the precision of the observation
itself, but also on its relative location to the observations that have already
been integrated in the hypothesis. This relative location conditions how
much information the observation will contribute in each direction, and how
it will contribute to reduce the coupling between position and orientation.

This can be best seen by considering integrating the observations in a dif-
ferent order. Figure 4.5.b shows the evolution of the precision of the hypothe-
sis integrating the observations in this order: {1, 7, 4, 10, 5, 11, 8, 2, 9, 3, 12, 6}.
This sequence emerges when considering at each step the observation that
would most contribute to the precision of the estimation. In this case, the
initial observations increment more the precision of the hypothesis than in
the previous case because they are more distant. In conclusion, the selec-
tion of the observations has an important impact in the precision of the
estimated object location. Strategies that can aid the system in performing
this selection will be described in chapter 6.

4.3 The Relevance of Hypotheses and Observa-
tions

The fundamental characteristics that are required from a relevance measure-
ment to be used in multisensor systems are:

• Generality: It is not desirable to tie the recognition scheme to any
particular type of feature. Thus, it should be possible to compute and
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Figure 4.5: Evolution of precision for observations: (a) integrated in sequen-
tial order; (b) integrated in an alternative order

compare the relevance of all types of observations and features.

• Feature Sensibility: Nevertheless being general, the relevance of an
observation must be a function of feature characteristics, such as its
size, the number of degrees of freedom that determine its location, and
the abundance of the feature in the models. Such characteristics are
related to how many observations are needed to completely determine
the object location and to how many alternate interpretations for an
observation can be found in the models.

• Sensor Sensibility: The precision in the location of an observation de-
pends on the sensor precision, and on the sensing strategy. This pre-
cision influences the probability of pairing it with an incorrect model
feature, and the discriminancy of constraint analysis. Thus, it should
be taken into account to compute relevance (additional aspects, such
as reliability and sensing cost, which can be considered in sensor se-
lection processes, are not considered here).

In the following we propose a relevance measurement that satisfies these
requirements.
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4.3.1 The Relevance of a Pairing

The requirements of a relevance measure that we have outlined in the intro-
duction lead us to study the integration mechanism used in estimating the
location of an object. It is a general integration mechanism, in which sensors
and feature characteristics are reflected in the contribution of a pairing to
the estimated object location. Two fundamental facts arise in the study of
the integration mechanism:

• Sensor and feature characteristics are reflected in the covariance matrix
of the observation.

• The amount of location information contributed by a pairing is con-
tained in the information matrix of the pairing, and the location infor-
mation related to a hypothesis is contained in the information matrix
of the estimation.

Let us explore these ideas in further detail.

The Covariance Matrix of an Observation

Two fundamental feature characteristics are reflected in the covariance ma-
trix of an observation: its size and the d.o.f. that define its location. In
general, size is reflected in the covariance matrix because under equivalent
sensing conditions, a sensor will be able to collect more information from
larger features. The number of degrees of freedom that determine the loca-
tion of the feature are reflected in the dimensions of its perturbation vector,
and thus, its covariance matrix.

Example 4.3: The covariance matrix of a proximity edge
If we use a proximity sensor to obtain an observation of an edge, as explained in
chapter 2, the covariance matrix of the resulting observation will be:

CE = diag

(
σ2

y

n
,
σ2

z

n
,
12 σ2

z

n3 s2
,
12 σ2

y

n3 s2

)

where n is the number of observed points, s the distance between each observation,
and σy and σz represent the precision of the sensor. If we consider that the edge
has been completely observed, then n s = l, where l is the edge length. Thus, the
size of the edge is represented by the values of n and s. This covariance matrix has
dimension four: two for edge position and two for orientation. ¦

Sensor characteristics are also directly reflected in the covariance matrix
of the observation (in the example the sensor is represented by σx and σy).
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Furthermore, the sensing strategy used in obtaining the observation may
also influence the resulting covariance matrix. In this case, the distance d
between observed points will determine how many points will be collected.

The Information Matrix of a Pairing

Given a pairing (ek,mk), the information that the pairing contributes to
the object location is contained in the information matrix of the pairing
Fk. Suppose the uncertain location of ek is represented by LWEk

, and the
predicted location of model feature mk is given by LWMk

. In chapter 2 we
have seen that from (2.8) this information matrix Fk is calculated as :

Fk = HT
k (GkSkG

T
k )−1Hk

In the case of the integration of a feature to estimate the location of an
object, from (2.11) we have:

Hk = (BEk
J2⊕{x̂EkMk

, 0}) JMkO

Gk = −BEk
J1⊕{0, x̂EkMk

, }BT
Ek

Sk = CEk

Thus, Fk is calculated as follows:

Fk = (BEk
J2⊕{x̂EkMk

, 0} JMkO)T

(BEk
J1⊕{0, x̂EkMk

, }BT
Ek

CEk
BEk

JT
1⊕{0, x̂EkMk

, }BT
Ek

)−1

(BEk
J2⊕{x̂EkMk

, 0} JMkO) (4.4)

There are four essential aspects of the relationship between the character-
istics of the pairing to be integrated and its contribution to the location of
the object that are captured in this expression:

• The symmetries of the involved geometric element, represented by BE .
Symmetries are related to the degrees of freedom that determine the
location of the feature.

• The discrepancy between the predicted location of the model feature,
and the estimated location of the observation, given by x̂EkMk

, which
affects the value where we choose to linearize the measurement equa-
tion.
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• The relative location of the feature with respect to the object, repre-
sented by JMkO.

• The quality of the observation, represented by its covariance matrix
CEk

.

In the case of the integration of a subfeature pk, paired with a model
feature mk, from (2.12)we have :

Hk = −BMkPk
J1⊕{0, x̂MkPk

}JMkO

Gk = BMkPk
J2⊕{x̂MkPk

, 0}BT
Pk

Sk = CPk

In this case Fk becomes:

Fk = (BMkPk
J1⊕{ ˆ0,xMkPk

} JMkO)T

(BMkPk
J2⊕{x̂MkPk

, 0}BT
Pk

CPk
BPk

JT
2⊕{x̂PkMk

, 0}BT
MkPk

)−1

(BMkPk
J1⊕{0, x̂MkPk

} JMkO) (4.5)

Similar factors relate this information matrix to the characteristics of
the involved geometric feature and to the sensor that obtains the observa-
tion. An additional element in this case is the binding matrix of the pairing
BPkMk

, which determines which d.o.f. of the subfeature location contribute
information to the object location.

The general form of the information matrix of a pairing is:

Fk =

[
Tk Uk

UT
k Rk

]

where Tk represents the contribution of the pairing to the estimation of the
object position, Rk is the contribution to orientation, and Uk represents the
coupling between the position and orientation terms. In the preceding sec-
tion we have seen that the location information contained in the estimation
of an object location can be characterized by the eigenvalues of its infor-
mation matrix Qn. Since the trace of a matrix is equal to the sum of its
eigenvalues [Franklin 68], and trace is a linear operator, the contribution of
the pairing to the position and orientation of the object can be characterized
by the trace of the Tk and Rk submatrices. Matrix Uk contains information
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related to how a change in the value of the position parameters would in-
fluence the orientation parameters, and viceversa. This coupling effect has
influence in the eigenvalues of the information matrix, but they have no
influence on their sum.

Example 4.4: The information matrix of a vertex pairing
Suppose we have an sensor observation of a vertex, whose covariance matrix is:

CEk
= diag

(
σ2, σ2, σ2

)

The binding matrix of this observation is:

BEk
=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




Suppose we pair it with a model vertex mk, whose relative location with respect to
the object location is given by:

xOMk
= (x, y, z, 0, 0, 0)T

The Jacobian of xMkO will be:

JMkO =




1 0 0 0 z −y
0 1 0 −z 0 x
0 0 1 y −x 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




Suppose the relative location between the observation and the model feature is
given by:

x̂EkMk
= (xd, yd, zd, ψd, θd, φd)T

Thus, according to (4.4), the information matrix of the pairing would be:

Fk =
1
σ2




1 0 0 0 z −y
0 1 0 −z 0 x
0 0 1 y −x 0
0 −z y z2 + y2 −yx −zx
z 0 −x −yx x2 + z2 −zy
−y x 0 −zx −zy y2 + x2




where x, y, and z represent the relative location between the object and the vertex.
In this case, from the diagonal elements of the Fk matrix we can see that the pairing
contributes 1

σ2 to the position of the object on each axis. The trace of the position
submatrix Tk is:
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trace(Tk) =
3
σ2

This means that the vertex contributes position information in three d.o.f., with
the precision given by the sensor.

The contribution of the pairing to the orientation of the object around each
axis is equal to the square distance of the vertex to the corresponding axis. The
trace of the orientation submatrix Rk is:

trace(Rk) = 2
x2 + y2 + z2

σ2

This means that the total contribution to orientation is equal to twice the square
distance between the vertex and the object reference. ¦

Note that the contribution of the pairing to the position of the object
is independent of the relative location of the vertex with respect to the
object, while the contribution to orientation depends on the relative location
(more distant vertices contribute more information). This is true for any
observation.

Example 4.5: The information matrix of a proximity edge pairing
Consider a pairing including an edge observed using proximity, whose covariance
matrix is (chapter 2):

CEk
= diag

(
σ2

n
,
σ2

n
,
12 σ2

n3 s2
,
12 σ2

n3 s2

)

The binding matrix of an edge is:

BEk
=




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




Suppose this observation is paired with a model edge mk, whose location relative
to the object location is given by:

xOMk
= (x, y, z, ψ, θ, φ)T

The Jacobian of the location vector xMkO is:

JMkO =




nx ny nz pnx pny pnz

ox oy oz pox poy poz

ax ay az pax pay paz

0 0 0 nx ny nz

0 0 0 ox oy oz

0 0 0 ax ay az
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where nx, ny, nz, ox, oy, oz, ax, ay, az, pnx, pny, pnz, pox, poy, poz, pax, pay,
and paz are the values of the homogeneous matrix representing the relative location
between the object and the edge (see appendix A).

For simplicity, we will consider that the predicted location of the model feature
and the location of the observed edge coincide, that is:

x̂EkMk
= (0, 0, 0, 0, 0, 0)T

Computing the value of the Fk matrix from (4.4) we have that the corresponding
submatrix of position Tk is:

Tk =
n

σ2




o2
x + a2

x ox oy + ax ay ox oz + ax az

ox oy + ax ay o2
y + a2

y oy oz + ay az

ox oz + ax az oy oz + ay az o2
z + a2

z




In this case, the trace of Tk is equal to:

trace(Tk) =
n

(
o2

x + o2
y + o2

z + a2
x + a2

y + a2
z

)

σ2

=
n

(‖o‖2 + ‖a‖2)

σ2

=
2 n

σ2

This expression reflects that each of the n points of the observed edge contributes
information in two d.o.f. of position. The contribution of the edge is the total
contribution of all its observed points.

The orientation submatrix Rk can be written as:

Rk =
n2 s2

σ2




o2
x + a2

x ox oy + ax ay ox oz + ax az

ox oy + ax ay o2
y + a2

y oy oz + ay az

ox oz + ax az oy oz + ay az o2
z + a2

z




+




po2
x + pa2

x pox poypax pay pox poz + pax paz

pox poy + pax pay po2
y + pa2

y poy poz + pay paz

pox poz + pax paz poy poz + pay paz po2
z + pa2

z




The trace of this matrix is (see appendix A):

trace(Rk) =
n3 s2

(
o2

x + o2
y + o2

z + a2
x + a2

y + a2
z

)

12 σ2

+
n

(
po2

x + po2
y + po2

z + pa2
x + pa2

y + pa2
z

)

σ2

=
n

σ2

(
2 n2 s2

12
+ ‖p× o‖2 + ‖p× a‖2

)
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=
n

σ2

(
n2 s2

6
+ 2 ‖p‖2 − ‖p× n‖2

)

=
n

σ2

(
n2 s2

6
+ 2 ‖p‖2 − ‖p‖2 sin2 α

)

=
n

σ2

(
n2 s2

6
+ ‖p‖2 (

1 + cos2 α
))

Thus, the contribution of the pairing in orientation depends on the relative orienta-
tion of the edge with respect to the object. When the edge has a radial orientation,
we have that α = 0 ∨ α = π, and the contribution is greater than if the edge has a
transversal orientation, where α = ±π/2. ¦

In general, the trace of the position submatrix of the information matrix
of a pairing accounts for the number of points contained in an observation,
weighed by the number of d.o.f. in which they contribute information, and
by the precision of the involved sensor. For this reason, we use the trace of
Tk as a measure of the relevance of a pairing.

Definition 4.2: Relevance of a Pairing
Given a pairing pk, whose information matrix is Fk, we define the relevance
of the pairing as:

relevance(pk)
∆= trace(Tk)

In the following we will describe and illustrate the most important prop-
erties of such a relevance measurement:

1. Generality
This relevance measurement can be computed for any type of geomet-
ric feature and subfeature. Its covariance and binding matrices are the
only elements needed to compute it. This property is very important
because allows the system to evaluate the contribution to recognition
of any type of feature obtained by any sensor, and to compare different
types of features, such as edges and planar surfaces, contributing to
make the system truly multisensor.

2. Non-negativity
The Tk matrix is a positive semi-definite matrix, and thus all its eigen-
values are non-negative real numbers. Since the trace of a matrix is
equal to the sum of its eigenvalues, we have that the relevance is non-
negative.
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3. Dependent on Feature Dimensions
As we have already seen, the covariance of the observation is related
to the dimensions of the observed feature, so this information will be
reflected in the information matrix of the pairing. Intuitively, larger
observations should be more relevant because they will have less po-
tential pairings in the models, their location is usually more precise,
and thus constraint analysis will be more discriminant.

Example 4.6: Sensing edges with 2D vision
If we use a 2D Vision system for the observation of edges, where the camera is
positioned at a fixed distance from the edge, the covariance of the observation
is (see chapter 2):

CE =
σ2

p

n




1 − 1
d 0

− 1
d

1
d2 0

0 0 12
n2s2




where d is the distance from the camera to the edge, s is the parameter that
defines the camera resolution (mm/pixel) for a distance d, n is the number
of pixels in the image that correspond to the edge, and σ2

p their uncertainty.
The relevance of the observed 2D edge will be:

relevance(p) =
n

σ2
p

Larger edges will generate more pixels (n will be larger) and thus their rele-
vance will be higher. ¦

4. Dependent of Feature Symmetries
This is a consequence of the fact that the components of the pertur-
bation vector which do not contribute true location information are
not included in the covariance matrix of the observation. In the case
of subfeatures, the binding matrix of the pairing BPkMk

eliminates
these components from the information matrix of the pairing. In this
way, the relevance measurement takes into account how much location
information the observation contributes.

Example 4.7: Sensing points with proximity sensors
We can observe different types of features with proximity sensors, for example
points belonging to an edge or to a plane. Suppose that the covariance of an
observation made with proximity can be modeled as:

CE = diag(σ2
x, σ2

y, σ2
z)
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If the observation corresponds to a point on an edge we have:

relevance(p) =
1
σ2

y

+
1
σ2

z

If it corresponds to a point on a plane:

relevance(p) =
1
σ2

z

This reflects the fact that points on planes give information only in the z

direction, while points on edges give information in the y and z directions. ¦

5. Dependent of Sensor Characteristics
This is also a consequence of the fact that sensor characteristics are
reflected in the covariance matrix of the observation. Given two obser-
vations of features of the same characteristics, obtained using different
sensors, the relevance of each pairing will depend on the precision of
the sensor that obtained it. Again more precise observations have a
smaller probability of being spuriously paired and allow more discrim-
inant constraint analysis.

Example 4.8: Sensing points of a plane with proximity sensors
Using two proximity sensors to observe a point on a plane, where the sen-
sors are positioned in a direction normal to the surface, and given that the
uncertainty in the direction of measurement of the sensors are σ2

z1
and σ2

z2
,

respectively, we have:

relevance(p1) =
1

σ2
z1

relevance(p2) =
1

σ2
z2

Thus, if σ2
z1

> σ2
z2

(sensor 1 is less precise than sensor 2), then we have that
relevance(p1) < relevance(p2). ¦

6. Independent of Feature Location
All features of the same type with the same characteristics should be
equally relevant to identification. Thus, relevance should be indepen-
dent of feature location. This fact can be shown as follows: from (4.4)
we can express the value of Fk as:
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Fk = JT
MkO AJMkO

where A is the matrix resulting from computing the corresponding
expression in (4.4). The values of this matrix do not depend on the
feature location, given by xMkO. Suppose the general form of matrix
A is:

A =

[
Ap Ac

AT
c Ao

]

The general form of the Jacobian matrix JMkO is:

JMkO =

[
R S
0 R

]

where R is the rotation submatrix of the transformation xMkO and
S = (p×n p×o p×a) (see appendix A). We have that the translation
submatrix Tk of the information matrix Fk is given by:

Tk = RT Ap R

Given that R is a unitary matrix, it does not affect the eigenvalues of
Ap, and consequently, the trace of the Tk matrix remains unchanged.

7. Additivity
The sum of the relevances of the set of subfeatures used to estimate
the location of a feature is equivalent to the relevance of the estimated
feature. This is a consequence of the fact that trace is a linear operator,
as so the trace of the information matrix of an estimation is equal to
the sum of the traces of the information matrices of each observations.

Example 4.9: Three points .vs. a plane
Again using a proximity sensor, if we observe a point on a plane and integrate
it directly to the estimation of the object location, its relevance would be:

relevance(pk) =
1
σ2

z

If we observe three non-collinear such points, and estimate the location of
the plane, then the relevance of the resulting plane is:
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relevance(pk) =
3
σ2

z

¦

4.3.2 The Relevance of an Object Location Hypothesis

The total amount of information contained in an estimation of the loca-
tion of an object location hypothesis containing n pairings is given by the
information matrix of the estimation Qn:

Qn =

[
Tn Un

UT
n Rn

]
=

n∑

k=1

Fk =

[ ∑n
k=1 Tk

∑n
k=1 Uk∑n

k=1 UT
k

∑n
k=1 Rk

]

Additivity, the last property of the relevance of a pairing, shows that the
translation submatrix Tn of the information matrix of the estimation of the
object location Qn accumulates the relevance of all the pairings that have
been included in the hypothesis. We will use this fact to define the relevance
of an object location hypothesis.

Definition 4.3: Relevance of an Object Location Hypothesis
Given an object-location hypothesis h, composed by n observation-model pair-
ings, whose information matrix is Qn, we define the relevance of the hypoth-
esis as:

relevance(h) ∆= trace(Tn) =
n∑

k=1

trace(Tk) =
n∑

k=1

relevance(pk)

The fundamental properties of the relevance of a hypothesis defined in this
way are:

1. Non-negative and non-decreasing
This is due to the fact that all eigenvalues of each Tk matrix are non-
negative and add up to the relevance of the hypothesis.

2. It is based solely on the pairings that support of the hypothesis
Alternative hypotheses that include the same observations in their
pairings will have the same relevance.

3. Independent of precision
Two hypotheses may have the same relevance and different precision.
This is because precision is also related to the location of the features,
while relevance is not.
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4.3.3 The Relevance of an Observation

During the initial steps of the recognition process, before pairings between
observations and model features are established, we must be able to select
from among a set of observations the ones that may be more relevant for the
identification of an object. For this purpose, we can extend the definition of
relevance of a pairing taking into account that we do not know a priori what
the values of JMkO and x̂EkMk

should be. Since the relevance of a pairing is
independent of the feature location with respect to the object location, we
can eliminate JMkO from the equation. The relevance does depend on the
value of x̂EkMk

when we relinearize due to estimation errors, and we have
that the values of x̂EkMk

are far from zero. We will suppose that this error
will be small, and thus we will take x̂EkMk

= 0. Assuming these values,
from (4.4) we can calculate an a priori information matrix Ak:

Ak = BT
Ek

C−1
Ek

BEk
(4.6)

In the case where the observation is a subfeature, we take x̂PkMk
= 0,

and from (4.5) we have:

Ak = BT
PkMk

(
BPkMk

BT
Pk

CPk
BPk

BT
PkMk

)−1
BPkMk

(4.7)

Definition 4.4: Relevance of an Observation
Given an observation ek, with binding matrix BEk

, and covariance matrix
CEk

, we define its relevance as:

relevance(e) ∆= trace (Tk) (4.8)

where Tk is the position submatrix of the Ak matrix calculated in (4.6). In
case ek corresponds to a subfeature, given its pairing binding matrix BPkMk

,
its relevance is calculated from the Tk submatrix of the Ak matrix calculated
in (4.7).

Example 4.10: The relevance of a proximity edge
Considering again an edge observed using proximity, as in example 4.3.1, from (4.6)
we have:

Fk =




0 0 0 0 0 0
0 n

σ2
y

0 0 0 0
0 0 n

σ2
z

0 0 0
0 0 0 0 0 0
0 0 0 0 n3d2

12 σ2
z

0

0 0 0 0 0 n3d2

12 σ2
y
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Thus, the relevance of the observation is:

relevance(e) = n

(
1
σ2

y

+
1
σ2

z

)

Longer edges will be more relevant (n will be greater), but also more precise
edges may be more relevant (σy and σz will be smaller). ¦

4.3.4 The Potential Relevance of a Model Feature

During the hypothesis verification step, the system must select a feature
from the object model and verify its presence in the scene. In order to
attain rapid recognition, the system needs a way of choosing among the
model features the ones that will allow it to accept or reject the object
location hypothesis as soon as possible. In this subsection we are interested
in answering the central issue of this problem: given an object model, how
relevant is each of its model features for the recognition of the object?

Since the contribution of a feature to recognition will depend on the rel-
evance of the resulting observation, we can predict how relevant the model
feature would be if it were perceived by some sensor. Our issue then be-
comes: which type of sensor should we use in predicting the relevance of
a model feature? Without any a priori knowledge on which sensor may be
available in the system, we use a prototypical sensor such as a laser proximity
sensor. This type of sensor can be used to observe most types of geometric
features (fig. 4.6). Furthermore, the observation strategy used to observe
different geometric features is very similar, consisting basically on perform-
ing a sweeping movement along the region of interest. Thus, different types
of features can be compared on a fair basis (a generic range-finder would
also be suitable for this purpose). We will define the potential relevance of
a model feature as the relevance that an observation of it would have, using
a laser proximity sensor.

Definition 4.5: Potential Relevance of a Model Feature
Given a model feature m, we define its potential relevance by supposing we
observe it completely in its predicted location with the prototypical sensor.
Let e be such an observation, the potential relevance of the model feature is:

potential(m) ∆= relevance(e)

The potential relevance for some geometric features observed using such
a sensor is shown in table 4.1. Being directly related to the definition of the
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(a) Point on Plane (b) Point on Edge (c) Edge on Plane

(d)  Edge (f)  Circle (g)  Planar Surface

(g)  Corner (h) Semi-dihedral (i)  Dihedral

Figure 4.6: Observing features with laser proximity
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Feature Relevance Parameters
Point on Plane 1

σ2
z

Point on Edge 1
σ2

y
+ 1

σ2
z

Line on Plane d
s σ2

z
d = distance

Edge l
s

(
1
σ2

y
+ 1

σ2
z

)
l = edge length

Circle 2 π r
s

(
1
σ2

y
+ 1

σ2
z

)
r = circle radius

Planar surface a
s2 σ2

z
a = surface area

Corner l1+l2
s

(
1
σ2

y
+ 1

σ2
z

)
l1, l2 = edge lengths

Semidihedral l
s

(
1
σ2

y
+ 2

σ2
z

)
l = edge length

Dihedral l
s

(
1
σ2

y
+ 4

σ2
z

)
l = edge length

Table 4.1: Potential relevance for some geometric elements (s represents the
separation between observed points)

relevance of an observation, the potential relevance of a model feature is also
a general measurement which fundamentally depends on feature characteris-
tics such as dimensions. For example, the relevance of an edge fundamentally
depends on its length. Additionally, such potential relevance measurement
allows to compare the potential benefit of sensing different types of features.

Example 4.11: Comparative potential relevance of an edge and a planar surface
In table 4.1 we can see that an edge of length l is more relevant than a planar
surface of area a if:

σ2
y À σ2

z ⇒ l >
a

s

σ2
y ≈ σ2

z ⇒ l >
a

2 s

where s is the separation between observed points. ¦
Since there may be specialized sensors which can perceive some geometric

feature with higher precision than the prototypical sensor, the recognition
system may maintain statistics on the average precision attained in the
observation of each type of geometric feature, and modify the values of
σ2

y and σ2
z accordingly. This can be considered tuning up the system using

historical sensors for each type of feature. This tune-up will allow the system
to compute the potential relevance of a feature more in accordance to its
available resources.
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The potential relevance can also be used to compute the total relevance
of an object model:

Definition 4.6: Total Relevance of an Object Model
Given an object model O with k features {m1, · · · ,mk} , we define its total
relevance as the sum of the potential relevance of all the features composing
the model:

total(O) ∆=
k∑

i=1

potential(mi)

The total relevance can give an idea of how much information can be
potentially obtained for an object location hypothesis, and thus aid in de-
ciding when an object location hypothesis may be accepted, and when it
must be abandoned.

4.3.5 Relevance and the Recognition Scheme

It is important to stress that the validity of the relevance measurement
greatly depends on how it is used in the context of recognition. The most
important things to consider are:

• Two observations of the same model feature should not be included
together to compute the relevance of the hypothesis, unless they are
partial, non-overlapping observations of different regions of the feature.
Otherwise, this would constitute a way of artificially increasing the
relevance of the hypothesis.

• Intuitively, additional information related to regions already observed
should be less relevant than information related to unobserved regions
of an object. Thus, the recognition scheme should explore unobserved
regions of the object, rather than trying to gather more information
related to regions already observed. The objective will be attained in
our system by the use of this precision measurement, which can aid the
system in drawing its attention to unobserved regions of the object.

• The discrepancy between the model and observed locations is not con-
sidered. That is, it does not favor hypotheses which match better. This
does not constitute a problem, because the constraint analysis allow
to detect and reject potentially spurious and incoherent pairings.

The computations to obtain the proposed precision and relevance mea-
surements are summarized in algorithm 4.1.
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FUNCTION precision (LWO)

; LWO = (x̂WO, d̂O, CO): uncertain object location

; computes the precision of an object-location hypothesis

N := diag(1, 1, 1, r, r, r);

Q̄ := N−T C−1
O N−1;

p := min(eigenvalues(Q̄));

RETURN p;
END;

FUNCTION relevance (e)

; e = (LWE ,SE): observation

; computes the relevance of an observation
; binding matrix Bp selects the position submatrix T

Bp := binding (1, 1, 1, 0, 0, 0, );

T := Bp BT
E C−1

E BE BT
p ;

r := trace (T );

RETURN r;
END;

FUNCTION potential relevance (m)

; m = (xOM ,SM ): observation

; computes the potential relevance of a model feature
; binding matrix Bp selects the position submatrix T
; matrix CM is the covariance matrix of an observation of type M
; using the prototypical sensor

CM := prototypical covariance(m);
Bp := binding (1, 1, 1, 0, 0, 0, );

T := Bp BT
M C−1

M BM BT
p ;

r := trace (T );

RETURN r;
END;

Algorithm 4.1: Computing Precision and Relevance
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4.4 Conclusions

In this chapter we have characterized the degree of recognition of the system
with two measures associated to a hypothesis: its precision and its relevance.
We have defined a precision measurement for the estimated location of an
object which is related to the amount of uncertainty in the most uncertain
direction in the object location. This measure allows the system to deter-
mine which sensorial observation can contribute more information in that
direction. The use of such a precision measurement may imply some amount
of computation, given that it is related to the problem of the determining the
smallest eigenvalue of a square matrix. In some cases, like having a nearly
diagonal matrix, this computation is simplified. Obtaining more precise
hypotheses reduces the probability of accepting incorrect interpretations,
improving the global performance of the recognition process.

We have also proposed a characterization for the relevance of a hypoth-
esis, which is related to the characteristics of the geometric features that
constitute its support, and to the sensor that observed them. This relevance
measurement can be thought of as a generalized size measurement, which
takes into account the number of d.o.f. of object location that the feature
defines, and the precision of the sensor that obtained the observation. The
generality of the proposed relevance measurement allows the system to com-
pare the potential benefit of using different types of geometric features in
the recognition process, and select the ones that may have a smaller number
of potential pairings. Such observations also allow to perform more discrim-
inant constraint analysis, and have a smaller probability of being spuriously
paired. It must be noted that this measurement determines the relevance
of a feature per se, that is, it does not consider the feature potential to dis-
ambiguate between similar objects. However, the computational complexity
associated to performing similarity analysis on the database of object mod-
els and on the set of observations in the scene, may justify the use of the
much simpler analysis proposed here.



Chapter 5

Goal-Directed Perception

Summary

This chapter is devoted to the analysis of perception tasks whose goal is the
verification of an object-location hypothesis and the refinement of its esti-
mated location. We analytically characterize the contribution of a sensor
observation as a function which relates feature characteristics, feature loca-
tion, sensor capabilities and sensor location with its impact in the reduction
of uncertainty in the location of the object [Neira 93b]. This characteriza-
tion allows us to determine how much information can be obtained from a
sensing operation, to compute the sensor location where the gain of infor-
mation is maximal, and to compare the potential benefit of using different
sensors for a perception task. This characterization is applicable to any type
of geometric sensor and feature. We exemplify it with a comparative study
of the use of mobile proximity and mobile 2D vision in the observation of
straight edges.

125
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5.1 Introduction

One of the fundamental problems of multisensor object recognition systems
consists in selecting a sensor for a given perception task, and determining
its location so that the system can obtain as much information as possible
from the sensing operation. This problem is denominated purposive or active
perception, and has been studied from different perspectives.

A first perspective consists in determining a viewpoint from which a sen-
sor observation would be more discriminant, in the sense of disambiguat-
ing between alternative object hypotheses. In [Grimson 86], Grimson works
with a proximity sensor capable of measuring the three-dimensional position
of a point, as well as surface normals. He proposes a procedure to deter-
mine the sensing direction most discriminant to disambiguate between a set
of candidate hypotheses. Ellis [Ellis 92] extends this work by determining
sensing paths, not just directions. In this work, the two-dimensional prob-
lem is studied, and some approximations to the three dimensional problem,
considerably more complex, are given.

Hutchinson et al. [Hutchinson 88] propose an approach in which the
system builds a viewing sphere containing the aspect graphs of all the
competing hypotheses. The recognition system uses this sphere to decide
which viewing point may give more discriminant information. Lee and Hahn
[Lee 90] describe an optimal sensing strategy for a proximity sensor in 3D
polyhedral object recognition, based on the determination of the expected
number of interpretations that the perception task can prune out. In this
work, uncertainty in the location of the object is not considered.

Tang and Lee [Tang 92] describe a recognition process in which the sys-
tem builds a candidate discriminating graph from a set of alternative hy-
potheses. From this graph, the system selects the feature whose presence
would allow to disambiguate between the involved hypotheses. The selec-
tion of a sensor to determine the presence of this feature is stated as a
constraint satisfaction problem, in which the capabilities of each sensor are
described by its set of measurable features, operational range, and working
space. Thus, the selected sensor is the one whose capabilities best satisfy
the set of constraints associated to the feature characteristics and location.

In [Cameron 90], a Bayesian approach to sensor planning for two degrees
of freedom (d.o.f.) is proposed, in which the system determines points of the
scene whose observation with an ideal sensor would give more discriminant
information. Its generalization to the six d.o.f., feature-based, multisensor
case seems complex.

From a second perspective, efforts have been concentrated not on obtain-
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ing more discriminant information, but on obtaining information that allow
complete scene reconstruction. Some researchers have studied the use of
specific sensor combinations in the recognition of objects. Allen [Allen 87]
uses two sensors that are complementary in nature: vision and touch. Due
to the global range of the vision sensor, it is used to acquire information
for the generation of hypotheses. Information required for the verification
is these hypotheses is obtained by the touch sensor that explores regions of
the object that are occluded to vision.

Chiou et al. [Chiou 92] investigate the characteristics of the measure-
ment error for different configurations of two cameras, in order to determine
which camera locations are more suitable to estimate more precisely the
object locations. Maver and Bajcsy [Maver 93] study the more general next
view problem in which the system concentrates its attention in observing
regions of the scene which have been occluded in previous views.

In summary, the goal of the first group of approaches is to disambiguate
between several competing hypotheses, while the goal of the second group
is to verify an object-location hypothesis. Most of the work done in this
area is concerned with one type of geometric feature and considers one class
of sensors. An additional limitation of most of these approaches is that
uncertainty is modeled using maximal error bounds, which can lead to con-
servative estimations of uncertainty.

We study the problem from the second perspective. Nevertheless, we
are interested not only in verifying the identity of the object, but also in
reducing the location uncertainty of the hypothesis. We use the term goal-
directed perception in the context of perception tasks that can make use of a
priori information about the location of a feature required by the recognition
system [Neira 93b]. The goal of the perception task is to verify the presence
of the feature in the scene, and to reduce the uncertainty in the object
location.

We propose a procedure to select a model feature whose observation
would reduce more uncertainty in object location. We also propose a pro-
cedure to select a sensor and compute its location so that the reduction
of uncertainty in observing this feature is maximal. We explicitly consider
information related to the involved geometric feature (its geometrical prop-
erties and range of visibility), as well as sensor capabilities (its precision and
admissible range of locations). We consider all types of geometric features
and sensors, allowing the system to be truly multisensor.

This chapter is organized as follows: section 5.2 deals with the character-
ization of the contribution of sensor observations in reducing the uncertainty
in the location of the object. This characterization is used in sections 5.3 and
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5.4 to study the use of mobile proximity and mobile 2D vision in the obser-
vation of straight edges. Section 5.5 contains a description of the procedure
to select the most contributing feature. In section 5.6 we use an example to
illustrate how the contribution measure can be used to compare the use of
these two sensors in the verification of an object location hypothesis.

5.2 Characterizing the Contribution of an Obser-
vation

Recall from the preceding chapter that during the integration process, the
information matrix of the estimation Qn accumulates location informa-
tion contributed by the sensor observations, and that the location infor-
mation contributed by each observation is contained in the information ma-
trix of the pairing Fk. Consider an observation ek, whose uncertain lo-
cation is represented by LWEk

= (x̂WEk
, p̂Ek

, CEk
), and a model feature

mk, whose location in the scene according to the hypothesis is given by
LWMk

= (x̂WMk
, p̂Mk

, CMk
). In chapter 2 we have seen from (2.8) that this

information matrix Fk is calculated as :

Fk = HT
k (GkSkG

T
k )−1Hk

In the case of the integration of a feature to estimate the location of an
object, from (2.11) we have:

Hk = (BEk
J2⊕{x̂EkMk

, 0}) JMkO

Gk = −BEk
J1⊕{0, x̂EkMk

, }BT
Ek

Sk = CEk
(5.1)

Thus, Fk is calculated as follows:

Fk = (BEk
J2⊕{x̂EkMk

, 0} JMkO)T

(BEk
J1⊕{0, x̂EkMk

, }BT
Ek

CEk
BEk

JT
1⊕{0, x̂EkMk

, }BT
Ek

)−1

(BEk
J2⊕{x̂EkMk

, 0} JMkO) (5.2)

where J1⊕ and J2⊕ are the Jacobians of the composition of location vectors
(see appendix A). Similar expressions can be obtained for the case where ek

represents an observed subfeature. As we have seen, the fundamental factors
that are involved in the calculation of this matrix are the characteristics of
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Figure 5.1: The relative location vector xEkMK
describes the discrepancy

between the observation and the model feature, and the location of the
sensor relative to the model feature

the feature (represented by BEk
), its location relative to the object location

(represented by JMkO), and the characteristics of the sensor and the sensing
strategy (represented by the covariance matrix CEk

). Additionally, we can
see that the relative location of the observation with respect to the predicted
location of the model feature, represented by x̂EkMk

, also influences the
values of the Fk matrix. This location vector represents two things (fig.
5.1):

• The discrepancy between the predicted location of the feature mk and
the observation ek.

• The location of the sensor relative to the model feature. This happens
because we choose to align the reference of the observation with the
corresponding sensor reference. Thus, if the observation reference is
aligned with the sensing direction, this reference changes if the sensor
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varies its location.

In our recognition scheme, the location of the object is estimated as
soon as possible, using the most relevant features, which usually have good
precision. Thus, prediction errors are normally small. This will make the
discrepancy between the predicted location of the feature and its correspond-
ing observation small. Therefore, we will concentrate on the study of x̂EkMk

as a function of the sensor location.
The contribution of location information of a pairing is given by the

eigenvalues of its information matrix Fk. Given that the trace of a matrix is
equal to the sum of its eigenvalues, we can determine how the observation
will contribute to the object location by analyzing the diagonal elements of
the Fk matrix.

Definition 5.1: Contribution of a Pairing to the Position and Ori-
entation of an Object-Location Hypothesis
Given an observation model pairing pk between an observation ek and a
model feature mk, whose information matrix Fk is calculated as above, and
has the general form:

Fk =

[
Tk Uk

UT
k Rk

]

we define the contribution of the pairing to each of the components of the
object location vector as:

contributionx(pk)
∆= Tk[1, 1]

contributiony(pk)
∆= Tk[2, 2]

contributionz(pk)
∆= Tk[3, 3]

contributionψ(pk)
∆= Rk[1, 1]

contributionθ(pk)
∆= Rk[2, 2]

contributionφ(pk)
∆= Rk[3, 3]

The total contribution of the pairing in position and orientation is then given
by:

contributionP (pk)
∆= trace(Tk)

contributionO(pk)
∆= trace(Rk)
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The are two important observations to be made with respect to this
contribution measurement:

• Feature contribution is closely related to feature relevance. The total
contribution of a feature to the position parameters of the object lo-
cation is equal to the relevance of the observation. As we will see in
this chapter, the total contribution in position does not depend on the
sensor location. This means that the sensor location does not affect
the relevance of the observation. The feature contribution concept
simply allows us to analyze the location information that the feature
contributes on each axis. If we locate the sensor so that its contribu-
tion along one axis is greater, its contribution along the others will be
smaller.

• We are not considering the elements of the information matrix Fk

outside of the diagonal, which express the coupling between the com-
ponents of the location vector of the object. This means that we are
not taking into account the potential of the observation in reducing
this coupling. Thus, our contribution is a conservative measurement.
This fact has limited consequences because the precision measurement
always directs the system to explore unobserved regions of the object,
and if we obtain observations from different regions of the object, the
hypothesis will be balanced and the coupling will be small.

Given an object location hypothesis, whose estimated location is given
by LWO, and given a model feature, whose estimated location according
to the hypothesis is given by LWMk

, we propose a procedure to select the
sensor and computing the sensor location where the observed feature will
contribute more location information. This procedure consists in predict-
ing the contribution of the observation to reduce the uncertainty of object
location, supposing there will be no prediction error in the location of the
feature.

Consider the use of some sensor S to verify the location of this feature.
Let LWEk

express the location of the observed feature obtained by this sen-
sor. (The observation reference is aligned with the sensing direction.) Given
that the contribution is a function of the relative transformation between the
location of the observation and of the prediction x̂EkMk

, we can determine
for which values of x̂EkMk

the contribution of Fk is maximal.
The admissible values for x̂EkMk

are restricted by:
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• The pairing relationship between the observation and the model fea-
ture, corresponding to the direct or inverse constraint. In case ek

corresponds to a feature, we have:

BEk
xEkMk

= 0

If there is no prediction error, then we also have:

BEk
x̂EkMk

= 0

Thus, x̂EkMk
must belong to the set of symmetries of the feature. In

case ek corresponds to a subfeature, we have:

BEkMk
xEkMk

= 0

Again, if there is no prediction error, then we also have:

BEkMk
x̂EkMk

= 0

Thus, x̂EkMk
must belong to the set of symmetries of the pairing re-

lationship.

• Constraints on the sensor location due to sensor characteristics. For
example, proximity sensors have a limited range of observation and
they must be positioned in directions near to the normal of the ob-
served surface.

• The range of visibility of the feature. The geometry of the object
restricts the directions from which the feature is observable.

In the next sections we exemplify the proposed sensor and sensing modal-
ity selection method by showing how to select a sensor and computing its
location to verify the predicted location of an edge. Although the analysis
of perception tasks described here is applicable to any type of geometric
sensor, for illustrative purposes we will consider the use of the two types of
sensors modeled in chapter 2: a proximity sensor mounted on the robot fin-
ger, and a 2D vision system that uses a camera mounted on the robot hand.
The comparative study of these two sensors is interesting for the following
reasons:
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• Proximity edges give information on two d.o.f. of position, while 2D
vision gives information in only one.

• 2D vision observes more points (pixels) than it is normally feasible
with proximity.

• Proximity can be considered more reliable than 2D vision. Since it
measures distance, its more close to the object topology. 2D vision
can give spurious observations caused by shadows and other undesired
illumination effects.

• The precision in position that can be obtained with proximity is higher
because the errors due to the gripper positioning for the obtention of
each measured point tend to cancel each other, given that the robot
is appropriately calibrated and there are no systematic positioning
errors. This is not the case in 2D vision, where all pixels in an image
are affected by the same positioning error of the gripper.

• The proximity sensor is constrained to be positioned in a direction
nearly normal to the surface of the face, in order to assure that the
echo signal will be received. On the other hand, the vision sensor can
obtain observations from any direction within the range of visibility of
the feature.

• 2D vision can be considered faster than proximity because it involves
only the camera positioning movement, while proximity performs a
sweeping movement of the sensor along the edge. In this work are not
concerned with sensing costs. Thus, we will study sensing operations
that can be considered equivalent in cost.

In the next two sections we will analyze the measurement of contribution
as a function of sensor characteristics and sensor location for these two types
of sensors. Then we will present a comparative example in which the system
uses this information to select the sensor and computing the sensor location
that are best suited for a specified perception task.

5.3 Mobile Proximity

5.3.1 Computing the Contribution of a Proximity Edge

Suppose we use the proximity sensor to obtain an observation of an edge.
Recall from chapter 2, equation (2.16), that the covariance of an observation
of this type is:
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CEk
=




σ2
y

n 0 0 0
0 σ2

z
n 0 0

0 0 12 σ2
z

n3s2 0

0 0 0 12 σ2
y

n3s2




where n is the number of observed points, and s is the distance between
successive points. The values of σy and σz describe both the sensor and
robot precisions in those directions. In determining the expected value of the
relative location between the observation and the predicted model feature
we make two considerations:

• Given that we have a priori information, that is, the predicted location
of the model feature, we shall locate the sensor so that its sensing
direction is normal to the edge (figure 5.2).

• We will locate the sensor at a fixed distance from the edge. The values
of σy and σz decrease if we reduce this distance, but the sensor has
a limited range of measurement. Also, the risk of collisions must be
avoided.

• Supposing there is no prediction error, the relative transformation be-
tween the observation and the prediction must belong to the set of
symmetries of the feature. Considering that we will completely ob-
serve the edge, we place the reference of the observed feature Ek in
the center of the edge, aligned with the sensing direction:

x̂EkMk
= (0, 0, 0, λ, 0, 0)T

where λ expresses the relative orientation of the sensor with respect
to the model feature reference Mk.

The self-binding matrix of edges is:

BE =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




Thus, to calculate the information matrix Fk, from (5.1) we have:
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Figure 5.2: Observing an edge using proximity

Gk =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Hk =




ox Cλ− ax Sλ oy Cλ− ay Sλ oz Cλ− az Sλ
ox Sλ + ax Cλ oy Sλ + ay Cλ oz Sλ + az Cλ

0 0 0
0 0 0

pox Cλ− pax Sλ poy Cλ− pay Sλ poz Cλ− paz Sλ
pox Sλ + pax Cλ poy Sλ + pay Cλ poz Sλ + paz Cλ
ox Cλ− ax Sλ oy Cλ− ay Sλ oz Cλ− az Sλ
ox Sλ + ax Cλ oy Sλ + ay Cλ oz Sλ + az Cλ




where Sλ = sin(λ) and Cλ = cos(λ), and ox, oy, oz, ax, ay, az, pox, poy, poz,
pax, pay, and paz are the components of the Jacobian JMkO (see appendix
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A). In evaluating which value of λ maximizes this contribution, we make the
following considerations:

• Let [λm, λM ] denote the range of visibility of the edge (considering only
the local geometry of the object). We must select a sensing direction
from which the edge is visible, that is λ ∈ [λm, λM ].

• We are constrained to locate the proximity sensor in a direction near
to the normal of the sensed surface. In the case of an edge, this means
that there are only two possible ranges of values for λ, corresponding
to the normals of the two adjacent faces. Let λ1± ε and λ2± ε denote
them (in our case the value of ε can be around 10o).

The selected direction λ will be the admissible sensor location within
the range of visibility from which the contribution is maximal. In the next
paragraphs we will analyze the algebraic expressions for the contribution of
an observed edge in position and in orientation, without taking into account
such constraints. These will be incorporated to the analysis when comparing
the contribution of this sensor with mobile 2D vision.

Table 5.1 summarizes the expressions of the contribution functions on
each axis. In the following we analyze the expressions of these contribution
functions in position and in orientation.

Contribution to Position in one Axis

Consider the expression for the contribution of the edge along the x axis,
given in table 5.1. We can see that two factors determine the value of λ for
which the contribution of the observation to the object location along the x
axis is greater:

1. Sensor Characteristics: the values of σy and σz determine which loca-
tion contributes more information (fig. 5.3). If the sensor gives equal
precision in axes y and z (σy = σz = σ), we have:

contributionx (pk) = n
a2

x + o2
x

σ2

In this case the contribution does not depend on λ, so any sensor
location will contribute the same information to the x component of
the object location vector.
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axis contribution

x n(ox Cλ−ax Sλ)2

σ2
y

+ n(ox Sλ+ax Cλ)2

σ2
z

y
n(oy Cλ−ay Sλ)2

σ2
y

+ n(oy Sλ+ay Cλ)2

σ2
z

z n(oz Cλ−az Sλ)2

σ2
y

+ n(oz Sλ+az Cλ)2

σ2
z

P n
(

1
σ2

y
+ 1

σ2
z

)

ψ

n
σ2

y

(
(pox Cλ− pax Sλ)2 + n2 s2 (ox Sλ+ax Cλ)2

12

)

+ n
σ2

z

(
(pox Sλ + pax Cλ)2 + n2 s2 (ox Cλ−ax Sλ)2

12

)

θ

n
σ2

y

(
(poy Cλ− pay Sλ)2 + n2 s2 (oy Sλ+ay Cλ)2

12

)

+ n
σ2

z

(
(poy Sλ + pay Cλ)2 + n2 s2 (oy Cλ−ay Sλ)2

12

)

φ

n
σ2

y

(
(poz Cλ− paz Sλ)2 + n2 s2 (oz Sλ+az Cλ)2

12

)

+ n
σ2

z

(
(poz Sλ + paz Cλ)2 + n2 s2 (oz Cλ−az Sλ)2

12

)

O

n ((n2s2+12‖p‖2) (σ2
y+σ2

z)−12 ‖p‖2 f(λ))
12 s σ2

y σ2
z

f(λ) = (cos β sinλ + cos γ cosλ)2 σ2
y

+(cosβ cosλ− cos γ sinλ)2 σ2
z

Table 5.1: Contribution functions for an edge observed using the proximity
sensor; n: number of observed points; s: separation between points; σy and
σz: sensor precision; λ: sensing direction; ox, oy, oz, ax, ay, az, pox, poy, poz,
pax, pay, and paz: components of the Jacobian matrix JMkO; p: position
vector of xOMk

; β and γ: angles between the position vector p and unit
vectors o and a (see appendix A)

2. Feature Location: the contribution of the observation is related to the
values of ox and ax, which determine the edge orientation relative
to the x axis of the object reference. Since n2

x + o2
x + a2

x = 1 (see
appendix A), the contribution is maximal when n2

x = cos2 φ cos2 θ = 0.
This happens when θ = ±π/2 or φ = ±π/2, that is, when the edge
is orthogonal to the x axis of the object reference (fig. 5.4.a). On
the other hand, the contribution is minimal when n2

x = 1, that is,
θ = φ = 0. In this case, the edge is parallel to the x axis of the object
reference (fig. 5.4.b) In this case contributionx (pk) = 0 for any value
of λ. This means that the edge location cannot contribute information
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Figure 5.3: Contribution of an observed edge along the x axis of the object
reference O when σy > σz. (a) minimal when most uncertain direction of
the sensor (axis y of the feature) is aligned with the x axes of the object
reference; (b) maximal when most precise direction of the sensor (axis z of
the feature) is aligned with the x axes of the object reference

in the direction of the x axis.

Total Contribution in Position

The contribution of the edge to the position of the object along all the axes
is equal to the trace of the position submatrix Tk of the information matrix
of the estimation The result is given the P row of table 5.1. We can see that
the contribution to position does not depend on λ. Thus, to improve the
estimated position of the object, any sensor location is equivalent. Its con-
tribution is fundamentally related to the length of the edge—which depends
on n—and to the sensor precision (represented by σ2

y and σ2
z). Note also

that this contribution is independent of the relative location of the feature
with respect to the object. This agrees with the intuitive idea that any point
of the object contributes equivalently to the estimation of position.
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Figure 5.4: The contribution of an observed edge along the x axis (a) is
maximal when the edge is orthogonal to the axis; (b) is zero when the edge
is parallel to the axis

Contribution to Orientation in one Axis

Let us analyze how the observation of an edge using proximity contributes
to an orientation component of the estimation of the object location. In
the case of the ψ component (see table 5.1), we can see again that two
fundamental factors have influence in the value the contribution around the
x axis:

1. Sensor Characteristics: the values of σy and σz condition which ori-
entation renders the maximal and minimal contributions (fig. 5.5).
when σy = σz = σ, the contribution is given by:

contributionψ(pk) =
n3s2

(
o2

x
12 + a2

x
12

)
+ n

(
po2

x + pa2
x

)

σ2

In this case the contribution is independent of the value of λ, so any
sensor orientation contributes the same information.

2. Feature Location: The contribution of the edge depends on its rela-
tive position (represented by pox and pax) and its relative orientation
(represented by ox and ax). When the edge is aligned with the x axis
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Figure 5.5: The contribution of an observed edge to the object location
around the x axis when σy > σz: (a) is minimal; (b) is maximal
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Figure 5.6: The contribution around the x axis depends on feature location;
(a) it is equal to zero when the edge is aligned with the axis; (b) it depends
on relative distance when the edge is parallel to the axis
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(y = z = θ = φ = 0), its contribution to orientation becomes zero
(fig. 5.6.a). When the edge is parallel to the x axis, its contribution
depends on its distance to the edge (fig. 5.6.b):

contributionψ(pk) =
n

(
y2 + z2

)

σ2

Total Contribution to Orientation

The total contribution to orientation, calculated as the trace of the orienta-
tion submatrix Rk of the information matrix of the observation, is given in
row O of table 5.1. Let us analyze the two factors involved in this contribu-
tion:

1. Sensor Characteristics: again which solution is maximal depends on
the values of σy and σz. When σy = σz = σ, the contribution becomes:

contributionO(pk) =
n

6σ2

(
n2 s2 + 6‖p‖2(1 + cos2 α)

)

where α is the angle between p and n (see appendix A). In this case
the value of the contribution is independent of λ and only depends on
the location of the edge.

2. Feature Location: edges more distant to object location contribute
more to orientation, but the orientation of the edge also influences this
value, specifically the value of f(λ). When the edge has transversal
orientation (p ⊥ n), we have cosα = 0, and thus f(λ) = σ2 (fig.
5.7.a). When the edge has a radial orientation (p‖n), we have cosβ =
cos γ = 0, and thus f(λ) = 0 (fig. 5.7.b)

We can draw three general conclusions from this analysis:

1. The sensor orientations where the contributions are minimal and max-
imal are orthogonal. This is true both in the case of mobile proximity
and 2D vision.

2. Features whose location is optimal for contributing location informa-
tion along one axis, are those whose location is less suitable for con-
tributing location information along another.

3. The sensor orientation where the contribution along one axis is max-
imal, is the sensing direction where the contribution along another is
minimal.
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Figure 5.7: The total contribution to orientation depends on feature loca-
tion; (a) it is minimal when the edge is normal to vector p; (b) it is maximal
when the edge is aligned with vector p

5.3.2 Computing the Contribution of a Point on an Edge

The complete observation of an edge can be quite expensive (especially with
proximity sensors), and in some cases the observation of only one point of the
edge gives enough information to refine the estimation of the object location.
Let us first study the contribution that a point on an edge observed with
proximity can make to the location of the object. Let Pk be a reference
associated to the observed point, whose estimated location is represented
by LWPk

= (x̂WPk
, p̂Pk

, CPk
) (fig. 5.8). From (2.15) we have that the

covariance associated to an observation of this type is (chapter 2):

CPk
=




σ2
x σxy 0

σxy σ2
y 0

0 0 σ2
z




Supposing there is no prediction error, the relative location between the
edge and the observed point would be:

x̂MkPk
= (r, 0, 0, λ, 0, 0)T
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Figure 5.8: Observing a point on an edge using proximity

where r is the distance from the point to the reference of the edge, and λ
represents the relative orientation of the sensor with respect to the edge.
The pairing relationship between the edge and a point belonging to it is
described by the following binding matrix:

BMkPk
=

[
0 1 0 0 0 0
0 0 1 0 0 0

]

Thus, from (5.1) we have:

Gk =

[
0 Cλ −Sλ
0 Sλ Cλ

]

Hk =

[
ox oy oz pox + r ax poy + r ay poz + r az

ax ay az pax − r ox pay − r oy paz − r oz

]

The contribution of the observation as a function of the sensor orien-
tation λ gives equal results—in terms of determining the optimal sensor
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axis contribution

x (ox Sλ−ax Cλ)2

σ2
z

+ (ox Cλ+ax Sλ)2

σ2
y

y
(oy Sλ−ay Cλ)2

σ2
z

+ (oy Cλ+ay Sλ)2

σ2
y

z (oz Sλ−az Cλ)2

σ2
z

+ (oz Cλ+az Sλ)2

σ2
y

P 1
σ2

y
+ 1

σ2
z

ψ ((pox+r ax)Sλ+(r ox−pax)Cλ)2

σ2
z

+ ((r ox−pax)Sλ−(r ax+pox)Cλ)2

σ2
y

θ
((poy+r ay)Sλ+(r oy−pay)Cλ)2

σ2
z

+ ((r oy−pay)Sλ−(r ay+poy)Cλ)2

σ2
y

φ ((poz+r az)Sλ+(r oz−paz)Cλ)2

σ2
z

+ ((r oz−paz)Sλ−(r az+poz)Cλ)2

σ2
y

O

(f(r)−‖p‖2 g(λ))
σ2

y σ2
z

f(r) = (r2 + 2 r ‖p‖ cosα + ‖p‖2) (σ2
y + σ2

z)
g(λ) = (cosβ sinλ + cos γ, cosλ)2σ2

y + (cosβ cosλ− cos γ sinλ)2σ2
z

Table 5.2: Contribution functions for a point on an edge observed using the
proximity sensor; r: distance of the point with respect to the edge reference;
σy and σz: sensor precision; λ: sensing direction; ox, oy, oz, ax, ay, az, pox,
poy, poz, pax, pay, and paz: components of the Jacobian matrix JMkO; p:
position vector of xOMk

; β and γ: angles between the position vector p and
unit vectors o and a (see appendix A)

orientation—to those of the preceding subsection. Thus, our analysis will
concentrate in the sensor position, determined by r. The expressions for the
contributions functions are given in table 5.2.

Contribution to Position in one Axis

The contribution of information that the observation gives to the object
position along an axis is given in the corresponding diagonal element of the
information matrix. The contribution functions along each axis are given in
table 5.2. Note that the expressions for the contribution in position do not
depend on the value of r. This is because any point of the edge contributes
the same information to the position of the object.
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Total Contribution to Position

The total contribution in position of one point (row P of table 5.2) only
depends on the sensor precision, not on the relative location of the point
with respect to the object.

Contribution to Orientation in one Axis

The values of λ for which the contributions of the point in orientation around
each axis are maximal (see table 5.2) coincide with the ones that would
maximize and minimize the contribution of the observation of the whole
edge. An additional factor to take into account is the relative distance
between the model feature and the observation, given by r. In determining
the point where the contribution is minimal or maximal is it important
to take into account that the edge has a limited length. Thus, the point of
minimal contribution is the one calculated here if it is contained in the region
occupied by the edge. Otherwise, it will be one of the extremes (the one
that is closest to the point of minimal contribution). The point of maximal
contribution will always be one of the extremes (the one that is further away
from the point of minimal contribution).

For example, in the case where σy = σz = σ, the contribution around
the x axis is:

contributionψ(pk) =
(ox r − pax)2 + (ax r + pox)2

σ2

Deriving with respect to r:

∂

∂ r
contributionψ (pk) = 2

(
o2
x + a2

x

)
r − pax ox + ax pox

σ

The value of r which makes this expression equal to zero is:

rmin = −ax pox − pax ox

o2
x + a2

x

; contributionψ (pk) =
(pox ox + pax ax)2

(o2
x + a2

x) σ2

This corresponds to the point of the edge which is closest to the x axis,
where the contribution of orientation around that axis is minimal (fig. 5.9).

Total Contribution to Orientation

The total contribution of the observation to the orientation of the object
(row O of table 5.2) depends on the relative location of the point with respect
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Figure 5.9: The point of an edge whose contribution to orientation around
the x axis is minimal is the point closest to the axis
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Figure 5.10: The point of the edge where the total contribution to orientation
is minimal is the point closest to the origin of the reference associated to
the object location
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to the edge (represented by f(r)). It can be seen that f(r) is minimal when
r = −p ·n, that is, when the observed point coincides with the closest point
of the edge to the object location (fig. 5.10).

5.4 Mobile 2D Vision

5.4.1 Computing the Contribution of a 2D Vision Edge

Consider the use the camera-in-hand sensor to obtain an observation of an
edge (figure 5.11). The covariance matrix of such an observation is (see
chapter 2):

CPk
=




σ2
z σx ψ 0

σx ψ σ2
ψ 0

0 0 σ2
θ




Supposing there is no prediction error, the estimated value of the relative
transformation between the observation and the prediction would be:

x̂PkMk
= (0, 0, 0, λ, 0, 0)T

In this case, the binding matrix of the pairing is:

BPkMk
=

[
0 0 1 0 0 0
0 0 0 0 1 0

]

Thus, to calculate the information matrix Fk corresponding to such an ob-
servation, we have:

Gk =

[
1 0 0
0 0 1

]

Hk =

[
ox Sλ + ax Cλ oy Sλ + ay Cλ oz Sλ + az Cλ

0 0 0

pox Sλ + pax Cλ poy Sλ + pay Cλ poz Sλ + paz Cλ
ox Cλ− ax Sλ oy Cλ− ay Sλ oz Cλ− az Sλ

]

In order to determine which value of λ maximizes the contribution of the
observation, we make the following considerations:
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Figure 5.11: Observing an edge using 2D vision

• Let [λm, λM ] denote the range of visibility of the edge (considering only
the local geometry of the object). We must select a sensing direction
from which the edge is visible, that is λ ∈ [λm, λM ].

• In this case, we are free to locate the sensor in any direction around
the x axis of the edge.

The optimal sensing direction is obtained by finding the value of λ where the
derivate of the expression of the contribution equals zero. The expressions
for the contributions on all edges are given in table 5.3.

Contribution to Position in one Axis

The contribution of the observation from the optimal sensing direction fun-
damentally depends on the location of the feature relative to the object
location. For example, in the case of the x axis (row x of t able 5.3), when
the edge is parallel to the x axis, we have that ox = ax = 0. This means
that in this case the feature cannot contribute any information along this
axis.
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contribution
λmin; contribution

(
λmin

)

λmax; contribution (λmax)

x (ox Sλ+ax Cλ)2

σ2
z

− tan−1
(

ax
ox

)
; 0

tan−1
(

ox
ax

)
; o2

x+a2
x

σ2
z

y
(oy Sλ+ay Cλ)2

σ2
z

− tan−1
(

ay

oy

)
; 0

tan−1
(

oy

ay

)
; o2

y+a2
y

σ2
z

z (oz Sλ+az Cλ)2

σ2
z

− tan−1
(

az
oz

)
; 0

tan−1
(

oz
az

)
; o2

z+a2
z

σ2
z

P 1
σ2

z

ψ (ox Cλ−ax Sλ)2

σ2
θ

+ (pox Cλ+pax Cλ)2

σ2
z

λmax ± π
2

1
2 tan−1

(
− 2 ox ax σ2

z−2 pox pax σ2
θ

(o2
x−a2

x)σ2
z+(pa2

x−po2
x)σ2

θ

)

θ
(oy Cλ−ay Sλ)2

σ2
θ

+ (poy Cλ+pay Cλ)2

σ2
z

λmax ± π
2

1
2 tan−1

(
− 2 oy ay σ2

z−2 poy pay σ2
θ

(o2
y−a2

y)σ2
z+(pa2

y−po2
y)σ2

θ

)

φ (oz Cλ−az Sλ)2

σ2
θ

+ (poz Cλ+paz Cλ)2

σ2
z

λmax ± π
2

1
2 tan−1

(
− 2 oz az σ2

z−2 poz pax σ2
θ

(o2
z−a2

z)σ2
z+(pa2

z−po2
x)σ2

θ

)

O
‖p‖2
σ2

z
(1− f (λ)) + 1

σ2
θ

f (λ) = (cosβ sinλ− cos γ cosλ)2
− tan−1

(
cos β
cos γ

)
; ‖p‖2

σ2
z

cos2 α + 1
σ2

θ

tan−1
(

cos γ
cos β

)
; ‖p‖2

σ2
z

+ 1
σ2

θ

Table 5.3: Contribution functions for an edge observed using the 2D vision
sensor; σz and σθ: sensor precision; λ: sensing direction; ox, oy, oz, ax, ay,
az, pox, poy, poz, pax, pay, and paz: components of the Jacobian matrix
JMkO; p: position vector of xOMk

; β and γ: angles between the position
vector p and unit vectors o and a (see appendix A)
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Figure 5.12: The contribution of a 2D edge to the position of the object
along x axis (a) is zero when sensed from a direction parallel to the axis;
(b) is maximal when sensed from a direction orthogonal to the axis

Total Contribution to Position

Again we can see the the total contribution of an observation to the position
of the object (row P of table 5.3) is independent of the feature location and
the sensing direction.

Contribution to Orientation in one Axis

The contribution of the observation to an orientation component depends
fundamentally on the sensor location. For example, in the case of the ψ
component (row ψ of table 5.3), the contribution is maximal when the plane
formed by the edge and the focal point of the camera are parallel to the x
axis. This contribution becomes zero when this plane is orthogonal to the
axis (fig. 5.13).

Total Contribution to Orientation

The total contribution to orientation (row O of table 5.3) is minimal when
the plane formed by the edge and the focal point of the camera is orthogo-
nal to the position vector p of the edge (fig. 5.14). On the other hand, the
contribution is maximal when this plane contains the origin of the object
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Figure 5.13: The contribution of a 2D edge to the orientation of the object
around the x axis (a) is zero when sensed from a direction orthogonal to the
axis; (b) is maximal when sensed from a direction parallel to the axis
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Figure 5.14: The total contribution of a 2D edge to orientation (a) is minimal
when the plane formed by the edge and the focal point of the camera is
orthogonal to the position vector p of the edge; (b) is maximal when this
plane contains the origin of the object reference
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Figure 5.15: The total contribution of a 2D edge to orientation (a) is minimal
when the edge has transversal orientation; (b) is maximal when the edge has
radial orientation

reference, that is, when it is parallel to vector p. Note that the minimal
solution depends on the angle α, formed by vectors n and p of the refer-
ence associated to the edge (fig. 5.15.a). When the edge has a transversal
orientation, we have:

cosα = 0 ; contributionO(pk) =
1
σ2

θ

When the edge has radial orientation (p‖n) (fig. 5.15.b), the given solution
is not valid because cosα = ±1 implies cosβ = cos γ = 0 (see appendix
A). In this case the relative orientation of the camera has no influence in
the total contribution of the feature to the orientation of the object, which
always is:

contributionO(pk) =
‖p‖2

σ2
z

+
1
σ2

θ

In addition to the fact the maximal and minimal sensing directions are
orthogonal, in this case we can also see that the sensor directions where
the contribution to position along one axis are maximal, coincide with the
sensing directions where the contribution to orientation around the same
axis is minimal.
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5.5 The Potential Contribution of a Model Fea-
ture

In refining the estimated location of an object, it is necessary to determine
is how much location information each feature can contribute to each com-
ponent of the object location. This information will help us in selecting
the model feature whose location should be verified in order to reduce the
uncertainty in the component of the location vector that we have as goal.

In the previous section we have seen that there are three fundamental
factors that determine the contribution of location information of a feature:
sensor precision, feature dimensions and feature location. In order to com-
pare the potential benefit of different features on a fair basis, we will make
use again of the prototypical sensor defined in section 4.3.4. For this purpose
we will consider that this prototypical sensor is capable of observing points,
whose covariance is given by:

CP = diag(σ2, σ2, σ2)

Assuming this, we can calculate the potential contribution of different model
features. Continuing with our edge examples, we have that according to
table 5.1, the contributions of an edge to each component of the object
location vector are given by:

contributionx(mk) =
n

(
o2
x + a2

x

)

σ2

contributiony(mk) =
n

(
o2
y + a2

y

)

σ2

contributionz(mk) =
n

(
o2
z + a2

z

)

σ2

contributionψ(mk) =
s2n3

(
o2

x
12 + a2

x
12

)
+ n

(
po2

x + pa2
x

)

σ2

contributionθ(mk) =
s2n3

(
o2

y

12 + a2
y

12

)
+ n

(
po2

y + pa2
y

)

σ2

contributionφ(mk) =
s2n3

(
o2

z
12 + a2

z
12

)
+ n

(
po2

z + pa2
z

)

σ2

We can use these functions to determine the potential contribution of
location information of a set of model features.
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R xOR len x y z ψ θ φ

A (0, 100, 0, 0, 0, 0)T 200 0 5 5 50000 26042 26042
B (0, 100,−100, 0, 0, 0)T 200 0 5 5 100000 26042 26042
C (100, 0,−100, 0, 0, π/2)T 200 5 0 5 26042 100000 26042
D (100,−50, 100, 0, 0, π/2)T 100 3 0 3 13125 60000 13125
E (−100,−50, 100, 0, 0, π/2)T 100 3 0 3 13125 60000 13125
F (−100, 50, 50, 0,−π/4,−π/2)T 142 3 1.5 1.5 5625 25313 25313

Table 5.4: Potential contribution for the labeled edges in each of the com-
ponents of the object location vector

Example 5.1: Potential contribution of model edges

Consider the object shown in figure 5.16. We can use the results above to calculate
the potential contribution of each of the edges (labeled A, B, C, D, E, and F ).
The results are shown in table 5.4. For the calculation of this values we have used
s = 50mm, and have eliminated σ from the denominator. From the edge length l
and s we can calculate the value of n as n = l/s + 1.

Several facts can be drawn from this table:

• Edges A and B cannot contribute location information in the x component.
Edge C is the one that contributes more information, because it is the longest
one that is appropriately aligned.

• Edge A and B are the ones that can contribute more information in the
y component, because of their orientation, but edge F can also contribute
information.

• All edges can contribute information to the z component because none is
aligned with the z axis of the object location.

• The contribution to orientation depends on the distance between the edge
and the object reference, and on its relative orientation. For this reason, even
though edges A, B, and C have the same length, edge B contributes more
to ψ, and edge C contributes more to θ.

¦
It must be taken into account that in this a priori analysis there are

several factors that are not taken into account. The first is the local geometry
of the feature. It can happen that an edge may contribute less information
than its potential if the relative angle between its adjacent faces precludes it.
Additionally, the object location may make the edge inaccessible to sensors.
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Figure 5.16: Object model
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The last factor is related to the capacity of the observation in reducing the
coupling between the position and orientation terms of a hypothesis. We
can see from the table that edge D and E give exactly the same potential
contributions in all components, but one of the two may lie in an unobserved
region of the object, and for this reason its observation would balance the
hypothesis better.

Given that an object may potentially have a considerable number of
features, we will use these potential contribution tables to make an initial
selection of the model feature whose location in the scene we should predict.
Limiting the number of features for which we must do further analysis, in
which the factors mentioned above are taken into account, will allow us to
make an adequate selection at a reasonable cost.

5.6 Sensor and Sensor Location Selection

Consider an object-location hypothesis, whose estimated location is given
by LWO = (x̂WO, d̂O, CO). In verifying this object-location hypothesis and
refining its estimated location, we proceed in the following way:

1. Select the most uncertain component of the location vector as the
goal for uncertainty reduction. This can be done by determining the
greatest diagonal element of the normalized covariance matrix CO.
Let α be such component.

2. Using the potential contribution table of the object, select a model
feature ek whose observation may contribute more location information
to the goal α.

3. Given the predicted location of the feature in the scene, x̂WMk
, con-

sider a set of sensors {S1, · · · , Sn} to verify the location of this fea-
ture. Compute the maximal possible contribution for each sensor, and
choose the one that gives the greatest maximal contribution. Let Sm

be such sensor.

4. Let x̂EmMk
be the relative location between the observation and model

feature according to this sensor, where its contribution is maximal.
Compute the sensor location as follows (fig. 5.17):

x̂WSm = x̂WO ⊕ xOMk
ª x̂EmMk

ª x̂SmEm (5.3)
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Figure 5.17: References involved in calculating the sensor location

where the location vector x̂WO represents estimated object location,
xOMk

is the model feature location relative to the object location,
x̂EmMk

represents the expected transformation between the observa-
tion and the model feature where its contribution is maximal, and
x̂SmEm the relative location between the sensor and the observation.

Example 5.2: Sensor selection to observe an edge
Consider the object in figure 5.18. Suppose the system chooses to verify the presence
of the edge whose reference is A. The relative location of A with respect to the
object is xOA = (0, 100, 0, 0, 0, 0)T . Its range of visibility is [−2.35, 1.57]. In this
case, the two admissible orientation ranges for the proximity sensor are λ1 = 0± ε
and λ2 = .78± ε. The contribution functions for the y, z, θ, and φ components of
the object location vector are given in figure 5.19 (these functions, from tables 5.1
and 5.3, are plotted over the range of visibility of the feature).
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Figure 5.18: Viewing angles from observing edge A

There are two general comments that we can make regarding these contribution
graphs:

• We can notice that, in general, it seems that the proximity sensor contributes
more information to position than the vision sensor. This is due to the fact
that the position errors of proximity points due to the location errors of the
robot are independent, and thus tend to compensate each other. This is
not the case in 2D vision, where the position of all pixels is affected by the
same robot location error. In the case of orientation this is less evident,
because 2D vision acquires many more points (pixels) than proximity (we
have considered 200 pixels for 2D vision, and 4 proximity points).

• It seems that the best positions for one sensor seem to be the worst for the
other. This happens because proximity measures distance along the y axes of
the resulting observation (fig. 5.2), while 2D vision perceives position along
the z axis of the resulting observation (fig. 5.11).
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Figure 5.19: Contribution of an edge on the object location, as a function of
the observation angle. (2D-Vision: — , Proximity: - - - , Admissible sensor
locations: • )



160 CHAPTER 5. GOAL-DIRECTED PERCEPTION

Let us now analyze which sensor should be used for different perception tasks:

1. Suppose our goal is to reduce uncertainty along the y axis. From fig. 5.19.a
we can see that the proximity sensor is clearly more suitable. Note that the
sensor orientation where the contribution along the y axis is maximal, is the
same sensor orientation where the contribution along the z axis is minimal
(fig. 5.19.b).

2. If our goal is to reduce uncertainty along the z axis (fig. 5.19.b) proximity is
still best, but its contribution is not as much as in the preceding case, because
of sensor positioning constraints. The contribution of an observation along
the z using proximity is smaller due to the fact that it can only be positioned
in directions nearly normal to the sensed surface.

3. If the goal of the perception task is to reduce uncertainty in the θ component
(around the y axis, fig. 5.19.c), 2D vision can contribute more information,
while if the goal is to reduce uncertainty in the φ component (around the z
axis, fig. 5.19.d), proximity contributes more information.

¦

5.7 Conclusions

This chapter is concerned with the characterization of the location informa-
tion contributed by a sensing operation, and with the determination of the
location of the sensor so that this contribution is maximized. The improve-
ment of the estimation of an object location due to the integration of an
observation is modeled as a function of the involved geometric element, the
sensor characteristics and its location relative to the observed feature. This
characterization is very useful for the strategic planning of perception tasks,
by allowing to compare the potential benefit of a sensing operation to its
estimated cost. There are three general conclusions that we can draw from
this work:

• For a given sensor, the selection of its location greatly depends on the
goal of the perception task. Sensing directions which are maximal for
some goal, are minimal for some other.

• Sensor location constraints can have considerable influence on its ca-
pacity to reduce uncertainty, especially in the case of proximity sensors.

• The object geometry also influences the usefulness of a feature in re-
ducing location uncertainty. The range of visibility of the feature may
limit sensor positioning.
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In general, the usefulness and reliability of a sensing operation are in-
versely proportional to its cost. More discriminant features are in general
larger and more complex, and thus more costly to observe. With respect
to reliability, those sensing operations that can contribute more information
are related to features and areas of the scene of which we are more uncer-
tain. We have calculated the estimated location of the sensor where the
contribution of its observation to the object location is maximal. Calculat-
ing the uncertainty of this estimation, which depends on the precision of
the hypothesized feature location, allows us to bound the region where the
sensor must search for the feature. The size of this region can give an idea
of how costly this sensor operation will be. Future efforts will be directed
to estimate the trade-off between the cost of a sensing operation and its
potential benefit.

In this work, the selection of the model feature and of the sensor and
sensor location used to verify its presence is done considering each object-
location hypothesis in a separate way. In this sense, the utility of the per-
ception task is limited to determining whether the involved object-location
hypothesis is correct or not, and to refine the estimated location of the
object, in case the hypothesis is correct. Future work may be directed to
the analysis of perception tasks allowing to disambiguate between several
competing hypotheses.



162 CHAPTER 5. GOAL-DIRECTED PERCEPTION



Chapter 6

Identifying while Locating

Summary

In this chapter we study the relationship between the two fundamental aspects
of recognition: identification and localization. We analyze the advantages of
the identifying while locating recognition scheme in which identification and
localization are performed simultaneously. We show that the identification
process benefits from having an estimation of the object location because con-
straint analysis can be less costly and more discriminant. The probability of
generating an incorrect interpretation of the sensorial data is reduced, and
the availability of a priori information for sensors allows the use of less costly
and more reliable perception processes. Within this recognition scheme, we
propose the use of several strategies for the generation and verification of
hypotheses that can help reduce the complexity of recognition [Neira 93c].

163
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6.1 Introduction

Identification and localization may be separate processes. One may accu-
mulate sufficient evidence on the identity of an object without estimating
its location. One can also have a small set of observations that allow to
have an estimation of the object location, and yet they may be insufficient
to assert the identity of the object. Consider the object in figure 6.1.a.
Intuitively, the available set of observations (fig. 6.1.b) strongly suggests
that they come from the specified object. Nevertheless, it is not possible
to determine the object location. In terms of precision and relevance, this
object location hypothesis has high relevance and zero precision (without
considering extension constraints, there is infinite location uncertainty in
one direction).

The relationship between the processes that must attain identification
and localization has given place to different recognition schemes. Some
approaches follow the Identifying before Locating scheme, in which identifi-
cation is performed prior to localization. The work of Grimson [Grimson 84,
Grimson 87, Grimson 90a] follows this approach. Grimson states the recog-
nition problem as a search in an interpretation tree, whose nodes are consti-
tuted by observation-model pairings, providing partial interpretations of a
set of sensor observations, and thus, representing the solution space. In or-
der to prune the search and make the process more efficient, he uses location
independent geometric constraints–simple and fast tests—as the fundamen-
tal source of information to validate the consistency of an interpretation.
An estimation of the object location is not required to perform these tests.

Alternative approaches are based on the Identifying while Locating scheme,
where identification and localization are executed simultaneously. In it, ob-
ject location hypotheses are generated with the minimum number of obser-
vations needed to estimate object location. A hypothesis is then verified by
a process in which the location of new features is predicted, and its presence
is verified among the available data or by a sensor. This scheme is used in
[Bolles 82] to identify and locate two dimensional objects. The approach
of Bolles is based on concentrating on the observation of small clusters of
focus features, that the system considers more relevant for the identifica-
tion of the object. Verifying the presence of these focus features requires
estimating the object location and updating it with the inclusion of each
matched observation. The 3DPO System [Bolles 86] extends this approach
to the three dimensional case.

This recognition scheme is also used in [Faugeras 86]. In this work,
recognition starts with a hypothesis generation process, in which the system
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selects the smallest number of observations that allow it to determine the
object location. Object location hypothesis are generated by searching for
compatible features in the database of object models. A hypothesis verifica-
tion process takes place, in which the location of new features in the scene
is predicted and their presence verified. Emphasis is made on the use of the
rigidity constraint in the recognition process as early as possible, since it is
the only constraint that guarantees global consistency. In [Lozano-Pérez 87],
Lozano-Pérez et al. implement this recognition scheme for the robot system
Handey, which locates objects from a pile, from a set of linear segments of
a depth map acquired using a light-stripping triangulation sensor.

One of the fundamental steps of recognition consists in obtaining an
initial estimation of the object location from a set of features. A first prob-
lem consists in deciding whether a set of observations are independent (in
an algebraic sense), that is, allow to completely determine location of the
object. A pair of geometric features are independent if they have no com-
mon symmetries of continuous motion. Thomas [Thomas 88a] and Tardós
[Tardós 91] give a catalog of the conditions under which a pair of features
are independent. In these works, the uncertainty associated to the location
of sensorial observations is not considered. A second problem we face is cal-
culating the object location, and its precision. The majority of works solve
this problem in a feature specific way. However, no general procedure has
been described.

The purpose of this chapter is to show that simultaneous identification
and localization may result in a more efficient recognition scheme. In section
6.2 we analyze the complexity of both recognition schemes from the con-
straint validation point of view. In section 6.3 we derive a general procedure
to determine whether a set of uncertain observations allow to determine the
location of the object and to calculate this location. This analysis will lead
us to propose heuristics for the generation and verification of hypotheses, in
sections 6.4 and 6.5.

6.2 Constraint Based Recognition

The idea behind the identifying before locating scheme is to avoid the com-
putational cost of estimating the object location for a hypothesis that may
be later dismissed. However, an estimation of the object location constitutes
a very important source of information for the following reasons:

1. The number of constraints to verify is smaller: according to the iden-
tifying before locating scheme, given a hypothesis with n observation-
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(a) (b)

Figure 6.1: Identifying without locating

model pairings, the inclusion of another pairing requires the validation
of binary constraints between the new pairing and each of the n exist-
ing pairings in the hypothesis. This means that the number of binary
constraints applied to validate a hypothesis with n pairings is:

n(n− 1)
2

On the other hand, in the identifying while locating approach, having
located the object, the only constraint that must be validated for each
new pairing is rigidity: the observation and predicted model feature
locations must coincide. Thus in this case the number of constraints
that would have been validated for the hypothesis is:

n− 1

In the example of figure 6.2.a, the identifying before locating approach
is used, and thus, each included edge is validated with all the preceding
edges. Figure 6.2.b represents the use of the identifying while locating
approach, where only the location independent geometric relations for
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(a) Recognizing before Locating

1

2

3

(b) Recognizing while Locating

Figure 6.2: Complexity of constraint validation

the first two edges are validated (step 1); these two edges are used
to determine the object location (step 2) and each additional edge is
validated using the rigidity constraint (step 3).

2. Location dependent constraints are tighter: a set of pairings may sat-
isfy all location independent constraints, and yet the interpretation
may not be globally consistent. This implies that in the identifying
before locating scheme, many inconsistent hypotheses may survive until
the object location is estimated. This is because location independent
constraints only assure local consistency, while the availability of an
estimation of the object location allows the validation of location de-
pendent constraints, which assure global consistency. In the example of
figure 6.3.a (from [Grimson 90a]), we can see that the pairings {(A, D),
(B, E), (C, F )} satisfy all constraints even though the interpretation
is not globally consistent (there is no object location where the loca-
tion of all the observed features coincides with the estimated location
of their corresponding model feature). The identifying while locating
approach has the advantage that it allows to validate the tightest pos-
sible geometric constraint, which is rigidity. In figure 6.3.b we can see
that if the object is located using A and C, and the location of B in
the scene is predicted, it does not coincide with the location of E, and
thus the interpretation would be discarded.

Thus, from the constraint validation point of view, the complexity of the
identifying while locating approach is lower than that of the identifying before
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(a) (b) (c)

Figure 6.4: Common symmetries of edges

locating approach. This highlights the importance of having an estimation of
the object location as soon as possible. In the next section we will propose a
general method to determine whether a set of uncertain observations allows
to determine the location of the object, and to compute this location.

6.3 Determining the Object Location

Each feature bounds some degrees of freedom in the location of the object.
Which d.o.f. are bound depends on the symmetries of the feature. For
example, an edge determines two d.o.f. in position and two in orientation
(fig. 6.4.a). Thus, with only one edge, one d.o.f. in position and one in
orientation remain unbound. At a first glance, two edges should suffice to
determine the location of an object. Nevertheless, if the two edges have
common symmetries, as in the case of parallel edges, there would still re-
main some unbound d.o.f. on the location of the object (fig. 6.4.b). To
completely determine the location of the object, a set of features must not
have common symmetries of continuous motion, i.e., the intersection of the
symmetries of the features must be equal to the identity transformation 11
(fig. 6.4.c). Catalogs of the conditions under which two features have no
common symmetries can be found in [Thomas 88a] and [Tardós 91].

In this section we describe such a catalog in an appropriate way to take
into account the uncertainty related to the location of the involved geometric
elements, and to obtain an estimation of the object location.
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6.3.1 Common Symmetries of a Set of Observations

Let {E1, E2, . . . , En} represent the location of a set of n geometric elements
with symmetries {SE1 ,SE2 , . . . ,SEn}, respectively. The symmetries of each
feature are expressed with respect to the reference associated to the feature.
In order to calculate the intersection, we must express each set of symmetries
with respect to a common reference A. Thus, the common symmetries of
the set of features with respect to A can be calculated as:

ASE =
n⋂

i=1

ASEi

=
n⋂

i=1

tAEi · SEi · t−1
AEi

(6.1)

Let us for the moment concentrate on the case when n = 2. The first
problem we must deal with is the selection of an appropriate reference for
calculating the common symmetries of the geometric features. In section
3.2.1 we have seen that given two features whose location is represented by
E1 and E2, we can find references Ē1 and Ē2 such that tĒ1Ē2

contains the
minimum number of translations and rotations. In general, Ē1 and Ē2 are
uniquely determined. Taking advantage of this, we will choose to calculate
the set of common symmetries with respect to Ē1. In case the resulting set
of symmetries is equal to 11, Ē1 can be used to calculate the location of the
object, as we will see later. Thus, according to equation (6.1) we have:

Ē1SE = SE1 ∩
(
tĒ1Ē2

· SE2 · tĒ2Ē1

)
(6.2)

In order to be able to uniquely determine the object location, this set of
symmetries must be equal to the identity. So we can deduce the values of
tĒ1Ē2

that guarantee this condition. Let us study an example.

Example 6.1: Common symmetries of a circle and a planar surface
Let E1 and E2 represent the location of a planar surface and a circular arc, respec-
tively (fig. 6.5). In this case we have:

SE1 = Txy ·Rz ; SE2 = Rx

From table 3.1 we have that the general form of tĒ1Ē2
is tz(z̄) · ry(θ̄). Thus,

according to (6.2), set of common symmetries of the features with respect to Ē1 is:

Ē1SE = (Txy ·Rz)
∩ (

tz(z̄) · ry(θ̄) ·Rx · ry(−θ̄) · tz(−z̄)
)
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Any transformation t belonging to the intersection must satisfy:

t = tx(xa) · ty(ya) · rz(φa)
t = tz(z̄) · ry(θ̄) · rx(ψb) · ry(−θ̄) · tz(−z̄)

Computing the corresponding location vectors and equating their terms we
obtain the following six equations:

xa = z̄ cos θ̄ sin θ̄ (1− cosψb) (6.3)
ya = z̄ cos θ̄ sin ψb (6.4)
0 = z̄ cos2 θ̄ (1− cos ψb) (6.5)

0 = tan−1

(
cos θ̄ sin ψb

sin2 θ̄ + cos2 θ̄ cosψb

)
(6.6)

0 = tan−1


 cos θ̄ sin θ̄ (cos ψb − 1)√

sin2 θ̄ cos ψb + cos2 θ̄)2 + sin2 θ̄ sin2 ψb


 (6.7)

φa = − tan−1

(
sin θ̄ sin ψb

cos2 θ̄ + sin2 θ̄ cos ψb

)
(6.8)

From (6.6) and (6.7) we can deduce that ψb = 0 ∨ θ̄ = ±π/2, giving two
solutions:

• If ψb = 0 then the set of equations becomes:

xa = 0
ya = 0
0 = 0
0 = 0
0 = 0

φa = 0

This means that in the general case, the only transformation that belongs to
the intersection is the identity 11.

• If θ̄ = ±π/2, then we have:

xa = 0
ya = 0
0 = 0
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0 = 0
0 = 0

φa = ∓ψb

This case corresponds to the situation where the circle and the plane are
parallel (fig. 6.5 (b)). In this case equation 6.1 becomes:

Ē1SE = (Txy ·Rz)
∩ (tz(z̄) · ry(π/2) ·Rx · ry(−π/2) · tz(−z̄))
= (Txy ·Rz) ∩ (tz(z̄) ·Rz · tz(−z̄))
= (Txy ·Rz) ∩Rz

= Rz

Thus, a planar surface and a circular arc can be used to establish the location of
the object when θ̄ 6= ±π/2. ¦

The solutions of all the combinations of subgroups of symmetries can be
derived in a similar way, and they are shown in table 6.1.

In most cases, two features are sufficient to determine the location of
an object. But in some cases more than two observations are needed. The
calculation of the set of common symmetries of more than two features can
be easily done in an iterative way:

1. A pair of features is selected and the intersection of their symmetries
is calculated.

2. If it is not equal to 11, the pair of features is grouped into a compound
feature. This new feature will have an associated reference equal to
the aligning reference Ē1 of the first feature that composes it, and its
set of symmetries will be the common symmetries of the two features
ĒSE .

3. Another feature is selected to calculate its common symmetries with
the compound feature. This process continues until you end up with
a reference that expresses the location of the set of features, and the
set of common symmetries of the features expressed in that reference
is 11.

However, it is important to note that the location of Ē1 resulting from
this process depends on the order in which we consider the features. In
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SA SB Case of tĀB̄ SA ∩ SB

Rx Rx y = z = 0, φ = 0, π Rx

otherwise 11
Rx Rxyz z = 0 Rx

otherwise 11
Tx Tx θ = 0, φ = 0, π Tx

otherwise 11
Tx Rx 11
Tx Tx Rx θ = 0, φ = 0, π Tx

otherwise 11
Tx Rxyz 11

Tx Rx Rx y = z = 0, φ = 0, π Rx

otherwise 11
Tx Rx Tx Rx z = 0, φ = 0, π Tx Rx

φ = 0, π Tx

otherwise 11
Tx Rx Rxyz z = 0 Rx

otherwise 11
Txy Rz Rx θ = ±π/2 Rz

otherwise 11
Txy Rz Rxyz Rz

Txy Rz Tx θ = 0 Tx

otherwise 11
Txy Rz Tx Rx θ = 0 Tx

θ = ±π/2 Rz

otherwise 11
Txy Rz Txy Rz φ = 0, π Txy Rz

otherwise Ty

Rxyz Rxyz z = 0 Rxyz

otherwise Rz

Table 6.1: Intersection of the symmetries of two geometric elements, ex-
pressed in A.
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Figure 6.6: The resulting reference depends on the order in which the fea-
tures are considered

figure 6.6 we can see the result of applying this procedure to a set of three
vertices in different order. Thus, in calculating the associated reference of
a set of features, the same order must be applied to the observed features
and to the model features paired with them.

Given that we are dealing with uncertain geometric information, there is
uncertainty in the estimation of the parameters of the relative transforma-
tion between the observations, which is due to the uncertainty in the location
of the observations. For this reason, in selecting the observations to be used
to locate the object, we prefer to use geometric features with low uncertainty,
whose estimated relative location is far from the values that make them have
common symmetries. For example, in table 6.1 we can see that the common
symmetries for two edges are fundamentally determined by their relative
angle φ̄. When the estimated value of this angle approaches 0 or ±π, or
if its covariance is high, the observations should not be used to locate the
object. Otherwise, this would result in a very imprecise object-location hy-
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pothesis, which in turn makes the constraint validation mechanisms weaker,
and results in a less powerful recognition process.

Once we determine that the set of observations have no common sym-
metries of continuous motion, we can calculate the location of the object.
This process is shown in the next section.

6.3.2 Calculating the Object Location

Consider a pair of observations {E1, E2}, whose uncertain locations are rep-
resented by LWE1 = (x̂WE1 , p̂E1 , CE1) and LWE2 = (x̂WE2 , p̂E2 , CE2) with
respect to reference W , and consider their paired features {M1,M2}, whose
location with respect to the object location is represented by xOM1 and
xOM2 . The procedure to determine the location of the object is based on
two ideas:

• Since the feature observations may be partial, due to occlusion, the
pairing relationship does not guarantee that the location of the refer-
ences associated to the observations and model features coincide (fig.
6.7.a), with the object correctly located. However, the relative trans-
formations xE1M1 and xE2M2 must belong to the set of symmetries
of each feature. This guarantees is that their corresponding aligning
references coincide: Ē1 = M̄1 and Ē2 = M̄2 (fig. 6.7.b). This is be-
cause the geometric relations between the geometric features remain
invariant under occlusion.

• If the pair of observations have no common symmetries of continuous
motion, the object location can be uniquely determined.

In order to determine the object location we proceed in the following way:

1. Calculate the relative location vectors x̂E1E2 and xM1M2 .

2. Calculate the aligning transformations xE1Ē1
, xE2Ē2

, xM1M̄1
and xM2M̄2

.

3. Choose Ē1 and M̄1 to represent the location of the set of observations
and features respectively. Since the pairings between the observations
and model features implies E1 = M1, the location of the model in the
scene can be calculated as (fig. 6.7.b):

x̂WO = x̂WE1 ⊕ xE1Ē1
ª xM1M̄1

ª xOM1

= x̂WĒ1
ª xOM̄1
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FUNCTION calculate object location (p1, p2)

; p1 = (e1, m1), p2 = (e2, m2): pairings
; p1 = (LWE1 ,SE1 ), e2 = (LWE2 ,SE2 ): independent observations
; m1 = (xOM1 ,SM1 ), m2 = (xOM2 ,SM2 ): independent model features
; paired with the observations

; returns an initial estimation of the location of the object x̂WO

x̂E1E2 := ªx̂WE1 ⊕ x̂WE2 ;

xE1Ē1
, xE2Ē2

:= calculate from table
(
x̂E1E2 , SE1 , SE2

)
;

xM1M2 := ªxOM1 ⊕ xOM2 ;

xM1M̄1
, xM2M̄2

:= calculate from table
(
xM1M2 , SM1 , SM2

)
;

x̂WO := x̂WE1 ⊕ xE1Ē1
ª xM1M̄1

ª xOM1 ;

RETURN x̂WO;
END;

Algorithm 6.1: Calculating the Object Location

Given that the set of common symmetries of the features is equal to
11, the location of the object in the scene is uniquely determined.

Function calculate object location can be implemented using this
procedure (algorithm 6.1). This procedure allows to obtain an analytic so-
lution for the location of the object. This initial object location can be
used as seed, to linearize the measurement equations, for the object location
estimation process, presented in chapter 2. The two observations used to
calculate this solution must be included in the estimation afterwards.

Once this problem of calculating the object location from a set of ob-
servations is solved, we can concentrate in the problem of selecting the set
of observations to be used in the generation of object location hypotheses.
This is the subject of the next section.

6.4 Hypothesis Generation

The hypothesis generation process fundamentally consists in selecting a pair
of observations, searching in the object models for possible interpretations,
and estimating the object location. The selection of an initial pair of obser-
vations to generate object-location hypotheses it based in three premises:

• The pair must allow to completely determine the location of the object.

• The number of potential pairings between the pair of observations and
model features must be as small as possible.
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• The resulting estimation of the object location must be as precise as
possible.

The choice of the observations has a considerable impact on the precision
of the resulting object location hypothesis. Consider the two dimensional
object shown in figure 6.8.a. Suppose we wish to estimate the location of this
object in the plane. For this, we obtain information about the location of two
vertices of the object (fig. 6.8.b). The following factors have a fundamental
impact in the precision of the resulting object location hypothesis:

• Sensor Precision: If the precision of the sensor used to obtain the
points is greater, evidently this will have a considerable impact in the
precision of the object location. (fig. 6.8.c).

• Feature Location: Features which are more distant to the object ref-
erence have more impact in orientation. Their location with respect
to the other observations also determine how correlated position and
orientation errors will be. In our example, depending on which ver-
tices we observe, we can obtain a considerably different precision in
the estimation of the object location (fig. 6.8.d).

• Feature Type: The type of feature we are observing also influences
the precision of the object location. If we have observations of more
information-contributing features such as edges, we can also obtain
higher precision. (fig. 6.8.e).

In systems based on the identifying before locating approach, the selection
of the observations is solely based on their relevance. This can lead to very
imprecise object location hypotheses. Consider the set of observations in
figure 6.9. Suppose they come from an instance of the object shown in the
figure.

Considering only the relevance in the selection of the observations, we
would choose them in the following order (longer observed edges will be
considered first): {E1, E3, E4, E5, E2}. Supposing we match them correctly,
the evolution of the precision of the hypothesis is the one shown in figure
6.10.a. Note that the object location cannot be estimated until we include
observation E5. On the other hand, if we consider the relevance of the
observations and the precision of the resulting hypothesis, we would choose
them in the following order: {E1, E5, E3, E2, E4}. Even if E3 is more relevant
than E5, we choose E5 as the second one because it allows to estimate the
location of the object. The precision of the hypothesis increases considerably
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faster. Note that if we take into account both precision and relevance, then
the relevance of the hypothesis grows slightly less (figure 6.10.b). This effect
is not normally very pronounced, so we can assume it to guarantee a more
reliable hypothesis verification process.

In the following sections we propose strategies for the selection of ob-
servations that can satisfy the requirements of the hypothesis generation
process.

6.4.1 Selecting the First Observation

Given a set {e1, · · · , en} of sensorial observations of geometric features in the
scene, the hypothesis generation process selects as first observation the most
relevant one. Given that relevance is related to feature size, this observation
may have less potential pairings in the models. Additionally, since relevance
is also related to the number of d.o.f that determine the feature location, and
to the precision of the sensor that obtained the observation, it may allow to
generate more precise object location hypotheses, and its may result in more
discriminant constraint analysis. Function select first observation im-
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Figure 6.10: Evolution of precision and relevance selecting observations by
relevance or by relevance and precision

plements this strategy (see algorithm 6.2).

6.4.2 Selection of the Second Observation

The selection of the second observation is centered around the possibility
of obtaining a precise estimation of the object location. For this purpose,
we carry out the following procedure (see algorithm 6.2):

1. Select observations whose distance to ef is smaller than the maximal
radius of the objects. This reduces the size of the search space.

2. Order the observations according to their relevance. We will consider
each observation to select it as the second observation, and choosing
more relevant observations may reduce the number of its potential
pairings.

3. Select the first observation, call it es and estimate its binary geometric
relations with ef . This allows us to perform symmetries analysis be-
tween them to determine whether they have no common symmetries.
For this, we consult the table to verify whether the estimated values
of their binary relations are far from the values where the two features
have common symmetries.
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FUNCTION select first observation (E)

; E: set of observations
; returns the most relevant observation

e := e | relevance (e) = max
ei∈E

relevance (ei);

RETURN e;
END;

FUNCTION select second observation
(
E, ef

)

; E: set of observations
; ef : observation selected as first

Er := choose proximal observations (E);
Er := order by relevance (Er);
found := FALSE;
FOR es in Er WHILE NOT found DO

r̂, Cr̂ := estimate geometric relations (ef , es);
IF NOT common symmetries (SA, SB , r̂) THEN

x̂WO := x̂WÊf
;

d̂O := 0;

CO :=

(
BT

Ēf
C−1

Ēf
BĒf

+ JT
Ēf Ēs

BT
Ēs

C−1
Ēs

BĒs
JĒf Ēs

)−1

;

found := precision (LWO) ≥ threshold ;
FI;

OD;

RETURN es;
END;

Algorithm 6.2: Selecting Observations

4. We are also interested in obtaining a precise estimation of the object
location. In order to estimate the precision of the resulting object lo-
cation hypothesis, we can calculate the uncertainty in the location of
reference Ēf due to the uncertainty in the location of the two obser-
vation ef and es, which approximately corresponds to the uncertainty
of the object location if its associated reference O coincides with Ēf :

CO ≈ CĒf
=

(
BT

Ēf
C−1

Ēf
BĒf

+ JT
Ēf Ēs

BT
Ēs

C−1
Ēs

BĒf
JĒsĒf

)−1

From this covariance matrix we can determine how precise the result-
ing object location hypothesis will be.

5. If the selected observation es does not satisfy this requirement, we
discard it and go back to step 3.
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We can use r̂, the estimated geometric relations between ef and es, along
with the characteristics of ef and es to search for correspondences in the
models. This is done by searching for all model features of the types of ef

and es whose geometric relations correspond to r̂. The geometric relations
between model features can be precomputed in tables that make this search
more efficient. From these pairs of model features, we select the ones which
satisfy unary constraints with ef and es.

This yields a set of competing object-location hypotheses h = {h1, · · · , hl}
which are supported by ef and es. We can choose to generate only a small
set of hypotheses for verification, and if the solution is not found among
them, more hypotheses can be generated.

6.5 Hypothesis Verification

There is a potentially large set of hypotheses that can explain the selected
pair of observations. In the hypothesis verification process we are faced
with the problem of selecting the order in which we consider the hypotheses,
and the way in which these should be verified. Our hypothesis verification
process is composed of three steps:

• We choose to verify the most precise hypotheses first, because their
verification may be more reliable and less costly.

• If there is more available sensor information, the verification of a hy-
pothesis is carried out in a data-driven manner, in which the system
tries to incorporate the available information.

• Once there is no more available information, further verification and
refinement of a hypothesis is carried out in a model-driven manner, in
which the system predicts the location of a feature in the scene, and
selects a sensor and sensor location to verify its presence.
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Figure 6.11: Alternative hypotheses may have different precision

6.5.1 Hypothesis Selection

Alternative hypotheses for the same set of observations may have different
precision (fig. 6.11), and the precision of the estimation of the object location
has a great impact in the cost and reliability of its verification. As we have
seen in the previous chapter, the verification of the pairings between the
predicted features and observations is carried out using a statistical test that
validates whether their corresponding locations coincide. The precision of
the predicted location of the model feature affects the discriminancy of this
test because the larger the volume of uncertainty of the feature location,
the larger the volume of acceptance of the test (fig. 6.12). This means that
model features with imprecise predicted location have a higher probability
of being spuriously paired. Additionally, the volume of uncertainty is related
to the cost of finding the feature because it defines the size of the region in
the scene in which the feature must be searched for.

6.5.2 Data-Driven Verification

If there are available observations within the region hypothetically occupied
by the object, the system may try to pair them with features in the model.
In this early verification step, augmenting the credibility of the hypothesis
is the central goal, so observations are taken in order of relevance.

We use the fundamental data-driven verification algorithm 1.5 of chapter
1 using the select first observation function of algorithm 6.2 to select
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(a) (b)

Figure 6.12: Precise hypotheses (a) are less costly to verify than (b) impre-
cise hypotheses

the most relevant observation. Given the estimated location of the observa-
tion ei, and the estimated location of the object according to hypothesis hj ,
we estimate the location of the observation relative to the object location,
and search in the model for a feature whose relative location to the object
may be compatible. If such a model feature exists, and the feature and
the observations satisfy the rigidity and extension constraints, the pairing
is established and the observation is integrated into the estimated location
of the object.

The available set of observations can be limited to the ones that are
within the region hypothetically occupied by the object.

6.5.3 Model-Driven Verification

Once there is no more available sensor information, a hypothesis may be
further verified using a prediction-verification scheme, in which the location
of features in the scene is predicted and some sensor is selected to try to ob-
serve it (see algorithm 6.3). The central issue of this prediction-verification
scheme is the selection of the model feature to be predicted. Our approach
consists in selecting the feature that potentially contributes most to the
precision of the hypothesis, until a sufficient level of hypothesis precision is
attained. Then, the potential relevance will be used in the selection of the
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FUNCTION verify hypothesis (h, M)

; h = (LWO,Sh): object-location hypothesis to verify
; M: set of model features

; Selects a model feature and predicts its location in the scene
; selects a sensor and its location to verify the feature

WHILE relevance(h) < thresholdR < relevance(h)+ total(M) DO
m := select model feature (h, M);
LWM := LWO ⊕ xOM ;
e := verify feature (LWM );
IF e 6= null THEN

p := (e, m);
Sh := Sh ∪ {p};
LWO := refine object location (LWO, p);

FI;
M := M\ {m};

OD;

RETURN h;
END;

FUNCTION select model feature(h, M)

; h = (LWO,Sh): object-location hypothesis to verify
; M: set of model features

; decides if precision or relevance is the goal of verification and then
; selects a model feature to maximize the selected goal

IF precision (LWO) > thresholdP THEN
m := m | potential relevance (m) = max

mi∈M
potential relevance (mi);

ELSE
c := most uncertain component (LWO);
m := m | potential contribution (m, c) = max

mi∈M
potential contribution (mi, c);

FI;

RETURN m;
END;

Algorithm 6.3: Model-driven Hypothesis Verification
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feature to predict, so that the relevance of the hypothesis will be augmented.
In the selection of the sensor and the computation of its location, we take
into account which component of the object location is less precise, in order
to direct the sensor to augment this precision, as explained in chapter 5.

Function select model feature implements this model feature selec-
tion strategy (see algorithm 6.3). Function potential relevance calculates
the potential relevance of the model feature, as explained in chapter 4. The
purpose of function potential contribution is to calculate the potential
contribution of the model feature to the object location, as explained in
chapter 5.

6.6 Conclusions

In this chapter we have shown the advantages of having an early estimation
of object location in speeding up the recognition process. Essentially it
allows to validate a smaller set of tighter geometric constraints. We have
given a general procedure to determine whether a set of observations allow
to completely determine the object location and to calculate this location.

We have also seen how the selection of the observations to be used in
the hypotheses generation process has great influence in the precision of the
estimated object location, and thus, in the cost of the hypothesis verification
process. We have also seen that even though identification and localization
are not equivalent processes, they can mutually benefit in a simultaneous
scheme. The observation selection strategies given here are designed to ob-
tain more precise object-location hypothesis, and thus, limit the probability
of accepting an incorrect interpretation of the observations.

The hypothesis verification process proposed here is a two step process in
which the system first tries to make use of the available set of observations in
a data-driven manner. Once there is no more available sensorial information,
hypothesis verification proceeds in a model-driven manner, predicting the
location of features in the scene and selecting a sensor and sensor location
to verify their presence. The system takes into account the precision and
relevance of the object hypothesis to select the feature that may help attain
rapid recognition.
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In this work we have carried out a comparative study of the two fundamen-
tal schemes of geometric object recognition: the identifying before locating
scheme, in which the identity of an object is determined, and then its lo-
cation in the scene estimated, and the identifying while locating scheme,
in which identification and localization are simultaneous processes. We
contribute to solve some fundamental problems that are common to both
recognition schemes, and also some that are specific of each one. Our main
contributions are:

• The definition of general and powerful validation methods that allow
to quickly discard inconsistent interpretations.

• The specification of perception strategies directed towards the obten-
tion of additional sensorial information with the purpose of obtaining
more precise hypotheses.

• The definition of recognition strategies that allow the system to search
more efficiently for plausible interpretations.

Our efforts have been concentrated on the development of methods that
are not based on a specific type of geometric feature or sensor, and for this
reason these methods are suitable for multisensor systems.

We use the SPmodel, a probabilistic model for the representation of
uncertain geometric information. This model can be used to represent the
location of any type of geometric entity and its uncertainty. From a theoretic
and from a practical point of view, it seems a more adequate representation
for uncertain locations than set-based models. This model has been used to
establish a general integration mechanism for uncertain geometric informa-
tion, based on the Extended Kalman and information filters. In chapter 2,
we use a nonrecursive version of the Extended information filter to obtain
observation models for different types of geometric elements given by two

189



190 Conclusions

types of sensors: mobile proximity and mobile 2D vision. These observation
models are used as illustrative examples of the generality of our approach.

In chapter 3, we propose a general method to compute and validate
geometric constraints between uncertain geometric features. This proce-
dure allows to derive both location independent and location dependent
geometric relations for all types of geometric features in a systematic way.
Geometric constraints are validated using a uniform procedure which ex-
plicitly considers the uncertainty associated to the use of different sensors.
This constraint validation mechanism allows to discard regions of the solu-
tion space which only contain inconsistent interpretations of the available
sensorial information.

In chapter 4, we define two measurements used to characterize the rele-
vance and precision of an object-location hypothesis, as a function of the set
of observation-model pairings that support the hypothesis. The precision of
the estimated location of the object allows to determine which feature may
make this estimation more precise. The relevance of an observation is a gen-
eral measurement that allows to compare the contribution of different types
of geometric features to the identification of the object. These measure-
ments allow us to define a set of strategies for the selection of observations
and model features that allow the system to search efficiently in the solution
space. Such strategies are described in chapter 6.

In chapter 5 we propose a set of perception strategies with the twofold
goal of verifying an object-location hypothesis and refining its estimated
location. Obtaining a precise object location allows constraint validation
mechanisms to be more discriminant. Such perception strategies determine
which feature of an object can contribute more location information, select
the most suitable sensor for a given perception task, and compute its location
so that its contribution of location information is maximal.

In chapter 6, we show the advantages of the identifying while locating
recognition scheme. From the constraint validation point of view, the avail-
ability of the estimated object location allows to apply location dependent
constraints, which are more discriminant and less costly validation mecha-
nisms than location independent constraints. Additionally, the probability
of generating an incorrect interpretation of the sensorial data is reduced,
and the availability of a priori information for sensors allows the use of less
costly and more reliable perception processes.

This work is fundamentally a theoretical analysis of the recognition prob-
lem. Thus, our main concerns in the present and near future are the imple-
mentation of the perception and recognition strategies described here. For
this purpose, several undergraduate projects are being carried out, and we
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will soon be able to report their results.
Some aspects of the recognition problem have been considered from a

restricted point of view. One is the use of perception strategies for the
verification of an object location hypothesis. A generalization is required, in
which the system may consider several hypotheses simultaneously, and can
determine which feature will allow to disambiguate between them. Another
issue to be solved is the evaluation of the relevance of a geometric feature
to recognition taking into account possible similarities between objects, and
its capacity in discriminating among them. There are also several aspects
of recognition that remain to be dealt with, such as termination: deciding
when the object recognition process has obtained a suitable interpretation,
and when it will not be possible to obtain one. The termination mechanism
must guarantee that an incorrect interpretation will not be given as solution,
and also limit the probability of missing a correct one.

In the long term, we wish to undertake more general problems, such as
recognition in situations where there is less a priori information about the
scene. A very interesting problem of this type is the exploration of indoor
environments using a mobile robot. This will constitute our area of future
research.
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Appendix A

Transformations and
Jacobian Matrices

A.1 Homogeneous Matrices and Location Vectors

In this work we use two alternative representations for transformations: ho-
mogeneous matrices and location vectors formed by three cartesian coordi-
nates and three Roll-Pitch-Yaw angles. In this section we summarize their
fundamental properties and laws of transformation between the two repre-
sentations. More complete information can be found in [Paul 81].

A homogeneous matrix H is a 4× 4 matrix of the form:

H =

[
R p
0 1

]
=

[
n o a p
0 0 0 1

]
=




nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 0




where: R is a 3× 3 orthogonal rotation matrix: R−1 = RT

p is a 3-dimensional translation vector

n,o,a are the three column vectors that form R

The representation of the elementary transformations using homoge-
neous matrices is the following:
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t = Trasl(x, y, z) H =




1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1




t = Rot(x, ψ) H =




1 0 0 0
0 cos ψ − sinψ 0
0 sinψ cosψ 0
0 0 0 1




t = Rot(y, θ) H =




cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1




t = Rot(z, φ) H =




cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 1 0
0 0 0 1




Transformation composition and inversion is equivalent to homogeneous
matrix product and inversion. Due to the special form of these matrices,
these operations can be carried out as follows:

H3 = H1H2 =

[
R1R2 p1 + R1p2

0 1

]

H−1 =

[
RT −RTp
0 1

]

An RPY location vector is composed of three cartesian coordinates and
three Roll-Pitch-Yaw angles. The form of this vector and the transformation
it represents are:

x = (x, y, z, ψ, θ, φ)T

φ : Roll , θ : Pitch , ψ : Y aw
t = Trasl(x, y, z) Rot(z, φ) Rot(y, θ) Rot(x, ψ)

The conversions between location vectors and homogeneous matrices are
given by:



A.1. HOMOGENEOUS MATRICES AND LOCATION VECTORS 195

H = Hom(x) =



cosφ cos θ cosφ sin θ sinψ − sinφ cosψ cosφ sin θ cosψ + sinφ sinψ x
sinφ cos θ sinφ sin θ sinψ + cosφ cosψ sinφ sin θ cosψ − cosφ sinψ y
− sin θ cos θ sinψ cos θ cosψ z

0 0 0 1




x = Loc(H) =




x
y
z
ψ
θ
φ




=




px

py

pz

atan2(oz, az)
atan2(−nz, nx cosφ + ny sinφ)

atan2(ny, nx)




The submatrix of Hom(x) corresponding to the rotation matrix will be
represented by:

R = Mrot(x)

We shall represent the composition and inversion of location vectors
by means of operators ⊕ and ª respectively, following Smith’s notation
[Smith 88]. To calculate them, location vectors shall be converted to ho-
mogeneous matrices, these shall be multiplied or inverted, and the opposite
conversion shall be carried out:

x3 = x1 ⊕ x2 = Loc(Hom(x1)Hom(x2))
ªx1 = Loc((Hom(x1))−1)

If there are compositions followed by inversions, these shall be abbrevi-
ated by:

x1 ª x2 = x1 ⊕ (ªx2)

From homogeneous matrices, we can obtain a direct graphical interpre-
tation for transformations (fig. A.1). The fundamental properties of this
representation, which are used throughout this work to derive most of the
presented results are:

1. Being R an orthonormal matrix, we have ‖n‖ = ‖o‖ = ‖a‖ = 1, and
thus:
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Figure A.1: Graphical representation of the homogeneous matrix HAB

n2
x + n2

y + n2
z = 1

o2
x + o2

y + o2
z = 1

a2
x + a2

y + a2
z = 1

n2
x + o2

x + a2
x = 1

n2
y + o2

y + a2
y = 1

n2
z + o2

z + a2
z = 1 (A.1)

2. In the same way, n ⊥ o, o ⊥ a, and n ⊥ a. Thus:

n× o = a =⇒ ax = ny oz − nz oy

ay = nz ox − nx oz

az = nx oy − ny ox (A.2)

(p× n) · o = p · a ; (p× o) · n = −p · a
(p× o) · a = p · n ; (p× a) · o = −p · n
(p× a) · n = p · o ; (p× n) · a = −p · o (A.3)
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3. Let p× n = (pnx, pny, pnz)T , p× o = (pox, poy, poz)T , and p× a =
(pax, pay, paz)T . We have:

pnx = py nz − pz ny

pny = pz nx − px nz

pnz = px ny − py nx

pox = py oz − pz oy

poy = pz ox − px oz

poz = px oy − py ox

pax = py az − pz ay

pay = pz ax − px az

paz = px ay − py ax (A.4)

We have:

pn2
x + po2

x + pa2
x = (py nz − pz ny)

2 + (py oz − pz oy)
2 + (py az − pz ay)

2

=
(
n2

z + o2
z + a2

z

)
p2

y +
(
n2

y + o2
y + a2

y

)
p2

z

−2 (ny nz + oy oz + ay az) py pz

= p2
y + p2

z

Similarly:

pn2
y + po2

y + pa2
y = p2

x + p2
z

pn2
z + po2

z + pa2
z = p2

x + p2
y (A.5)

Thus, we have:

‖p× n‖2 + ‖p× o‖2 + ‖p× a‖2 = pn2
x + po2

x + pa2
x

+pn2
y + po2

y + pa2
y

+pn2
z + po2

z + pa2
z

= p2
y + p2

z + p2
x + p2

z + p2
x + p2

y

= 2 ‖p‖2 (A.6)
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4. From Lagrange’s Identity, which states that given two vectors v and
w:

(v ·w)2 = ‖v‖2‖w‖2 − ‖v ×w‖2

we have:

(p · n)2 + (p · o)2 + (p · a)2 = ‖p‖2‖n‖2 + ‖p‖2‖o‖2 + ‖p‖2‖a‖2

−‖p× n‖2 − ‖p× o‖2 − ‖p× a‖2

= 3 ‖p‖2 − 2 ‖p‖2

= ‖p‖2 (A.7)

5. Given that (see fig. A.1):

‖p× n‖2 = ‖p‖2 sin2 α

‖p× o‖2 = ‖p‖2 sin2 β

‖p× a‖2 = ‖p‖2 sin2 γ

we have:

sin2 α + sin2 β + sin2 γ = 2 (A.8)

6. Given that (see fig. A.1):

p · n = ‖p‖ cosα

p · o = ‖p‖ cosβ

p · a = ‖p‖ cos γ

we have:

cos2 α + cos2 β + cos2 γ = 1 (A.9)
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A.2 Jacobians of the Composition

The Jacobians of the composition of location vectors, with respect to the
first and second operand are given by: [Smith 88]:

J1⊕{x1,x2} = ∂(y⊕z)
∂y

∣∣∣
y=x1, z=x2

J2⊕{x1,x2} = ∂(y⊕z)
∂z

∣∣∣
y=x1, z=x2

Their value can be calculated using the following formulas, extracted
from [Smith 88] 1

J1⊕{x1,x2} =

[
I3×3 M
03×3 K

]
J2⊕{x1,x2} =

[
R1 03×3

03×3 K ′

]

where, taking x3 = x1 ⊕ x2 :

M =




y2ax1 − z2ox1 (z3 − z1) cos φ1 y1 − y3

y2ay1 − z2oy1 (z3 − z1) sin φ1 x3 − x1

y2az1 − z2oz1 −x2 cos θ1 − y2 sin θ1 sinψ1 − z2 sin θ1 cosψ1 0




K =




cos θ1 cos(φ3 − φ1)/ cos θ3 sin(φ3 − φ1)/ cos θ3 0
− cos θ1 sin(φ3 − φ1) cos(φ3 − φ1) 0

(ox2 sinψ3 + ax2 cosψ3)/ cos θ3 sin θ3 sin(φ3 − φ1)/ cos θ3 1




K ′ =




1 sin θ3 sin(ψ3 − ψ2)/ cos θ3 (ax1 cosφ3 + ay1 sinφ3)/ cos θ3

0 cos(ψ3 − ψ2) − cos θ2 sin(ψ3 − ψ2)
0 sin(ψ3 − ψ2)/ cos θ3 cos θ2 cos(ψ3 − ψ2)/ cos θ3




R1 = Mrot(x1)

It can be seen that the expression of the formulas given above has been
simplified using terms of x3 = x1 ⊕ x2 and terms of the rotation matrix
corresponding to x1 y x2. In the case where the value of θ3 be −π/2 or
π/2, the Jacobians would be undefined. These values correspond to singular
configurations of Roll-Pitch-Yaw angles.

1Smith’s formulas have rows 4 and 6 permuted, due to the fact that the location vectors
used in such work are of the form x = (x, y, z, φ, θ, ψ)T , with terms 4 and 6 permuted
with respect to our representation.
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In the case where the term with respect to which it is being derived
equals zero (identity transformation), the expressions of the Jacobians are
greatly simplified:

J1⊕{0,x} =

[
I3×3 M
03×3 K

]
J2⊕{x, 0} =

[
R 03×3

03×3 K ′

]

where:

M =




0 z −y
−z 0 x

y −x 0




K =




cosφ/ cos θ sinφ/ cos θ 0
− sinφ cosφ 0

sin θ cosφ/ cos θ sin θ sinφ/ cos θ 1




K ′ =




1 sin θ sinψ/ cos θ sin θ cosψ/ cos θ
0 cosψ − sinψ
0 sinψ/ cos θ cosψ/ cos θ




R = Mrot(x)

The calculation of the inverse of the Jacobians of the composition can
also be carried out in a simple way, without the need of inverting matrices,
making use of the following equalities:

J−1
1⊕{x1,x2} =

[
∂(y⊕z)

∂y

∣∣∣
y=x1, z=x2

]−1

= ∂y
∂(y⊕z)

∣∣∣
y=x1, z=x2

= ∂[(y⊕z)⊕(ªz)]
∂(y⊕z)

∣∣∣
y⊕z=x1⊕x2, ªz=ªx2

= J1⊕{x1 ⊕ x2, ªx2}

J−1
2⊕{x1,x2} = ∂z

∂(y⊕z)

∣∣∣
y=x1, z=x2

= ∂[(ªy)⊕(y⊕z)]
∂(y⊕z)

∣∣∣ªy=ªx1, y⊕z=x1⊕x2

= J2⊕{ªx1, x1 ⊕ x2}
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In some expressions, the inverse of J2⊕{x, 0} appears. This inverse can
be calculated using the previous equality, or in a much simpler way, by:

J−1
2⊕{x, 0} =

(
RT 03×3

03×3 K ′−1

)

where:

K ′−1 =




1 0 − sin θ
0 cosψ cos θ sinψ
0 − sinψ cos θ cosψ




R = Mrot(x)

A.3 Jacobian of the Inversion

The Jacobian of the inverse of a location vector is given by:

Jª{x} = ∂(ªy)
∂y

∣∣∣
y=x

Its value can be obtained using the following formulas, taken from [Smith 88]:

Jª{x} =

(
−RT N
O3×3 Q

)

where:

R = Mrot(x) =
(

n o a
)

N =




0 −nzx cosφ− nzy sinφ + z cos θ nyx− nxy
z′ −ozx cosφ− ozy sinφ + z sin θ sinψ oyx− oxy
−y′ −azx cosφ− azy sinφ + z sin θ cosψ ayx− axy




Q =



−nx/(1− a2

x) −ox cosψ/(1− a2
x) azax/(1− a2

x)
ox/(1− a2

x)1/2 −az cosφ/(1− a2
x)1/2 ay/(1− a2

x)1/2

nxax/(1− a2
x) −ay cosφ/(1− a2

x) −az/(1− a2
x)




where y′ and z′ are the corresponding components of ªx.
In the particular case where x equals zero, the Jacobian is equal to:

Jª{0} = −I6
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A.4 Differential Transformations and Jacobian of
a Transformation

Let A and B be two references, whose relative location is given by the
location vector xAB. A differential change in the location of reference B
which takes it to B′ (close to B) can be represented by means of a differential
transformation2, that is, a transformation formed by a translation and a
rotation of differential values:

t = Trasl(dx, dy, dz) Rot(z, dφz) Rot(y, dθy) Rot(x, dψx)

in two alternative ways: taking reference A as base reference, or taking
reference B. If we represent transformations by means of location vectors,
the two alternative expressions are:

xAB′ = xAB ⊕ dB

xAB′ = dA ⊕ xAB

where dA y dB are two differential location vectors (vectors of differential
movement of the form d = (dx, dy, dz, dψx, dθy, dφz)T , in the terminology of
[Paul 81]).

Their representation by means of a homogeneous matrix can be obtained
from the general expression of Hom(x), taking into account that cos(dα) ' 1
y sin(dα) ' dα:

Hom(d) =




1 −dφz dθy dx
dφz 1 −dψx dy
−dθy dψx 1 dz

0 0 0 1




The differential location vectors expressed in references A and B are
related by the Jacobian of the relative transformation [Paul 81]:

dA = J{xAB}dB

dB = J{xBA}dA = J−1{xAB}dA

The direct and inverse Jacobians can be calculated as:
2Note that [Paul 81] uses the term “differential transformation” is a different sense, to

mean a homogeneous matrix dT such that TAB′ = TAB + dT , where TAB and TAB′ are
homogeneous matrices representing the relative transformation between A and B, and A
and B′, respectively.
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JAB = J{xAB} =

(
R S
03×3 R

)

JBA = J{xBA} = J−1{xAB} =

(
RT ST

03×3 RT

)

where:

S = (p× n p× o p× a)

Hom(xAB) =

(
R p
0 1

)
=

(
n o a p
0 0 0 1

)

The relationship between JAB and the Jacobians of the composition of
transformations is given by:

xAB′ = xAB ⊕ dB = xAB + J2⊕{xAB, 0} dB

xAB′ = dA ⊕ xAB = xAB + J1⊕{0,xAB} dA

so:

dA = J−1
1⊕{0,xAB} J2⊕{xAB, 0} dB = JAB dB

and thus:

JAB = J−1
1⊕{0,xAB} J2⊕{xAB, 0}

JBA = J−1
2⊕{xAB, 0} J1⊕{0,xAB}
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Appendix B

Aligning Transformations

In this appendix we give the aligning transformations for all combinations
of geometric elements, that is, all combinations of subgroups of symmetries.
For each case, we describe a solution for the general case. The solution may
appear in terms of the components of the relative location vector between
the features, or of the elements of the homogeneous matrix corresponding to
their relative transformation. The values of the location vector for particular
cases where the given solution is not valid are also given.
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B.1 SA = Rx, SB = Rx

Given two features A and B with symmetries SA = Rx and SB = Rx, such
as two circles, their aligning references have the following form:

xAĀ = (0, 0, 0, ψa, 0, 0)T

xBB̄ = (0, 0, 0, ψb, 0, 0)T

In the general case, three distances and one angle can be measured be-
tween them, using the following values for the aligning transformations:

ψa = − tan−1
(

sin θ
sin φ cos θ

)
= tan−1

(
nz
ny

)

ψb = tan−1
(

cos φ sin θ cos ψ+sin φ sin ψ
cos φ sin θ sin ψ−sin φ cos ψ

)
= tan−1

(
ax
ox

)

xĀB̄ = (x̄, ȳ, z̄, 0, 0, φ̄)T

x̄ = x = px

ȳ = y cos θ sin φ−z sin θ√
1−cos2 θ cos2 φ

= py ny+pz nz√
1−n2

x

z̄ = z cos θ sin φ+y sin θ√
1−cos2 θ cos2 φ

= pz ny−py nz√
1−n2

x

φ̄ = tan−1

(√
1−cos2 θ cos2 φ
cos θ cos φ

)
= tan−1

(√
1−n2

x

nx

)

This solution cannot be applied when θ = φ = 0. In this case, which
corresponds to a situation where the x axes of both references are parallel,
we can measure two distances. The solution is:

ψa = tan−1
(

z
y

)
= tan−1

(
pz

py

)

ψb = tan−1
(

z cos ψ−y sin ψ
z sin ψ+y cos ψ

)
= tan−1

(
pz az−py oz

pz oz+py az

)

xĀB̄ = (x̄, ȳ, 0, 0, 0, 0)T

x̄ = x

ȳ =
√

y2 + z2

Again, this solution cannot be applied when y = z = θ = φ = 0. This
case corresponds to a situation where the two x axes of the references are
aligned. In this case, there is no unique solution.
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B.2 SA = Rx, SB = Rxyz

Given two features A and B with symmetries SA = Rx and SB = Rxyz, such
as a circle and a vertex, their aligning references have the following form:

xAĀ = (0, 0, 0, ψa, 0, 0)T

xBB̄ = (0, 0, 0, ψb, θb, φb)T

In the general case, two distances can be measured, using the following
values for the aligning transformations:

ψa = − tan−1
(y

z

)

ψb = − tan−1
(

y cos θ cos ψ−z(sin φ sin θ cos ψ+cos φ sin ψ
y(cos ψ sin φ sin θ−cos φ sin ψ)+z cos θ cos ψ

)
= − tan−1

(
yaz−zay

yay+zaz

)

θb = tan−1

(
− cos φ sin θ cos ψ+sin φ sin ψ√
1−(cos φ sin θ cos ψ+sin φ sin ψ)2

)
= tan−1

(
−ax√
1−a2

x

)

φb = tan−1
(

cos φ sin θ sin ψ−sin φ cos ψ
cos φ cos θ

)
= tan−1

(
ox
nx

)

xĀB̄ = (x̄, 0, z̄, 0, 0, 0)T

x̄ = x

z̄ =
√

y2 + z2

This solution cannot be applied when y = z = 0. In this case, which
corresponds to a situation where the vertex belongs to the x axis of the
circle, the solution is not unique, and thus, the two features cannot be used
to determine the location of an object.
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B.3 SA = Tx, SB = Tx

Given two features A and B with symmetries SA = Tx and SB = Tx, such
as two dihedrals, their aligning references have the following form:

xAĀ = (xa, 0, 0, 0, 0, 0)T

xBB̄ = (xb, 0, 0, 0, 0, 0)T

In the general case, one distance and three angles can be measured, using
the following values for the aligning transformations:

xa = x sin θ cos φ+z cos θ
sin φ

xb = z
sin θ

xĀB̄ = (0, ȳ, 0, ψ̄, θ̄, φ̄)T

ȳ = y + sin φ cos θ
sin θ z

ψ̄ = ψ
θ̄ = θ
φ̄ = φ

This solution cannot be applied when θ = 0. In this case, we can measure
one distance and two angles. The solution is:

xa = x− cos φ
sin φ y

xb = − y
sin φ

xĀB̄ = (0, 0, z̄, ψ̄, 0, φ̄)T

z̄ = z
ψ̄ = ψ
φ̄ = φ

Again, this solution cannot be applied when θ = φ = 0. This case
corresponds to a situation where the two x axes of the references are aligned.
In this case, there is no unique solution.
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B.4 SA = Tx, SB = Rx

Given two features A and B with symmetries SA = Tx and SB = Rx, such
as a dihedral and a circle, their aligning references have the following form:

xAĀ = (xa, 0, 0, 0, 0, 0)T

xBB̄ = (0, 0, 0, ψb, 0, 0)T

In the general case, two distances and two angles can be measured, using
the following values for the aligning transformations:

xa = x
ψb = −ψ

xĀB̄ = (0, ȳ, z̄, 0, θ̄, φ̄)T

ȳ = y
z̄ = z
θ̄ = θ
φ̄ = φ

This solution is always valid.
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B.5 SA = Tx Rx, SB = Tx

Given two features A and B with symmetries SA = Tx Rx and SB = Tx,
such as an edge and a dihedral, their aligning references have the following
form:

xAĀ = (xa, 0, 0, ψa, 0, 0)T

xBB̄ = (xb, 0, 0, 0, 0, 0)T

In the general case, one distance and two angles can be measured, using
the following values for the aligning transformations:

xa = xb cos θ cosφ + x = xb nx + px

ψa = tan−1
(

− sin θ
sin φ cos θ

)
= tan−1

(
nz
ny

)

xb = y sin φ cos θ−z sin θ
cos θ2 cos φ2−1

= py ny+pz nz

n2
x−1

xĀB̄ = (0, 0, z̄, ψ̄, 0, φ̄)T

z̄ = y sin θ+z sin φ cos θ√
1−cos θ2 cos φ2

= (pz ny−py nz)√
1−n2

x

ψ̄ = − tan−1
(

cos φ sin θ cos ψ+sin φ sin ψ
cos φ sin θ sin ψ−sin φ cos ψ

)
= tan−1

(
ax
−ox

)

φ̄ = tan−1

(√
1−cos θ2 cos φ2

cos θ cos φ

)
= tan−1

(√
1−n2

x

nx

)

This solution is not valid when θ = φ = 0. In this case, which corre-
sponds to the situation where the edge and the dihedral are parallel, there
is no unique solution.
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B.6 SA = Rxyz, SB = Tx

Given two features A and B with symmetries SA = Rxyz and SB = Tx, such
as a vertex and a dihedral, their aligning references have the following form:

xAĀ = (0, 0, 0, ψa, θa, φa)T

xBB̄ = (xb, 0, 0, 0, 0, 0)T

In the general case, two distances can be measured, using the following
values for the aligning transformations:

ψa = ψ
θa = θ
φa = φ
xb = −x cos θ cosφ− y cos θ sinφ + z sin θ = −p · n

xĀB̄ = (0, ȳ, z̄, 0, 0, 0)T

ȳ = x (sinψ sin θ cosφ− cosψ sinφ)
+y (sinψ sin θ sinφ + cos ψ cosφ)
+z sinψ cos θ = p · o

z̄ = x (cosψ sin θ cosφ + sin ψ sinφ)
+y (cosψ sin θ sinφ− sinψ cosφ)
+z cosψ cos θ = p · a

This solution is always valid.
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B.7 SA = Tx Rx, SB = Rx

Given two features A and B with symmetries SA = Tx Rx and SB = Rx,
such as an edge and a circle, their aligning references have the following
form:

xAĀ = (xa, 0, 0, ψa, 0, 0)T

xBB̄ = (0, 0, 0, ψb, 0, 0)T

In the general case, two distances and one angle can be measured, using
the following values for the aligning transformations:

xa = x

ψa = tan−1
(

− sin θ
sin φ cos θ

)
= tan−1

(
nz
ny

)

ψb = tan−1
(

cos φ sin θ cos ψ+sin φ sin ψ
cos φ sin θ sin ψ−sin φ cos ψ

)
= tan−1

(
ax
ox

)

xĀB̄ = (0, ȳ, z̄, 0, 0, φ̄)T

ȳ = y sin φ cos θ−z sin θ√
1−cos θ2 cos2 φ

= py ny+pz nz√
1−n2

x

z̄ = y sin θ+z sin φ cos θ√
1−cos θ2 cos φ2

= pz ny−py nz√
1−n2

x

φ̄ = tan−1

(√
1−cos θ2 cos2 φ
cos θ cos φ

)
= tan−1

(√
1−n2

x

nx

)

This solution not valid when θ = φ = 0. In this case, which corresponds
to a situation where the edge is parallel to the normal of the circle, there is
no unique solution.
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B.8 SA = Tx Rx, SB = Tx Rx

Given two features A and B with symmetries SA = Tx Rx and SB = Tx Rx,
such as two edges, their aligning references have the following form:

xAĀ = (xa, 0, 0, ψa, 0, 0)T

xBB̄ = (xb, 0, 0, ψb, 0, 0)T

In the general case, one distance and one angle can be measured, using
the following values for the aligning transformations:

xa = x− cos φ cos θ(y sin φ cos θ−z sin θ)
1−cos φ2 cos θ2 = x− nx(yny+znz)

1−n2
x

ψa = − tan−1
(

sin θ
sin φ cos θ

)
= tan−1

(
nz
ny

)

xb = −y sin φ cos θ−z sin θ
1−cos φ2 cos θ2 = −yny+znz

1−n2
x

ψb = tan−1
(

cos φ sin θ cos ψ+sin φ sin ψ
cos φ sin θ sin ψ−sin φ cos ψ

)
= tan−1

(
ax
ox

)

xĀB̄ = (0, 0, z̄, 0, 0, φ̄)T

z̄ = z sin φ cos θ+y sin θ√
1−cos φ2 cos θ2

= zny−ynz√
1−n2

x

φ̄ = tan−1

(√
1−cos φ2 cos θ2

cos φ cos θ

)
= tan−1

(√
1−n2

x

nx

)

This solution not valid when θ = φ = 0. In this case, which corresponds
to a situation where the edges are parallel, there is no unique solution.
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B.9 SA = Tx Rx, SB = Rxyz

Given two features A and B with symmetries SA = Tx Rx and SB = Rxyz,
such as an edge and a vertex, their aligning references have the following
form:

xAĀ = (xa, 0, 0, ψa, 0, 0)T

xBB̄ = (0, 0, 0, ψb, θb, φb)T

In the general case, one distance can be measured, using the following
values for the aligning transformations:

xa = x
ψa = − tan−1

(y
z

)

ψb = − tan−1
(

y cos θ cos ψ−z(sin φ sin θ cos ψ+cos φ sin ψ
y(cos ψ sin φ sin θ−cos φ sin ψ)+z cos θ cos ψ

)
= − tan−1

(
yaz−zay

yay+zaz

)

θb = tan−1

(
− cos φ sin θ cos ψ+sin φ sin ψ√
1−(cos φ sin θ cos ψ+sin φ sin ψ)2

)
= tan−1

(
−ax√
1−a2

x

)

φb = tan−1
(

cos φ sin θ sin ψ−sin φ cos ψ
cos φ cos θ

)
= tan−1

(
ox
nx

)

xĀB̄ = (0, 0, z̄, 0, 0, 0)T

z̄ =
√

y2 + z2

This solution cannot be applied when y = z = 0. In this case, which
corresponds to a situation where the vertex belongs to the edge, the solution
is not unique, and thus, the two features cannot be used to determine the
location of an object.
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B.10 SA = Txy Rz, SB = Rx

Given two features A and B with symmetries SA = Txy Rz and SB = Rx,
such as a plane and a circle, their aligning references have the following
form:

xAĀ = (xa, ya, 0, 0, 0, φa)T

xBB̄ = (0, 0, 0, ψb, 0, 0)T

In the general case, one distance and one angle can be measured, using
the following values for the aligning transformations:

xa = x
ya = y
φa = φ
ψb = −ψ

xĀB̄ = (0, 0, z̄, 0, θ̄, 0)T

z̄ = z
θ̄ = θ

This solution is always valid.



216 APPENDIX B. ALIGNING TRANSFORMATIONS

B.11 SA = Txy Rz, SB = Rxyz

Given two features A and B with symmetries SA = Txy Rz and SB = Rxyz,
such as a plane and a vertex, their aligning references have the following
form:

xAĀ = (xa, ya, 0, 0, 0, φa)T

xBB̄ = (0, 0, 0, ψb, θb, φb)T

In the general case, one distance can be measured, using the following
values for the aligning transformations:

xa = x
ya = y
φa = free
ψb = tan−1

(
sin φ sin θ cos ψ−cos φ sin ψ

cos θ cos ψ

)
= tan−1

(
ay

az

)

θb = − tan−1

(
cos φ sin θ cos ψ+sin φ sin ψ√

cos2 φ cos2 θ−(cos φ sin θ sin ψ−sin φ cos ψ)2

)

= − tan−1

(
ax√

n2
x+o2

x

)

φb = tan−1
(

cos φ sin θ sin ψ−sin φ cos ψ
cos φ cos θ

)
= tan−1

(
ox
nx

)

xĀB̄ = (0, 0, z̄, 0, 0, 0)T

z̄ = z

Note that φa remains free. This means that there is no unique solu-
tion, and thus, two features of these types are not sufficient to completely
determine the location of an object. This solution is always valid.
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B.12 SA = Txy Rz, SB = Tx

Given two features A and B with symmetries SA = Txy Rz and SB = Tx,
such as a plane and a dihedral, their aligning references have the following
form:

xAĀ = (xa, ya, 0, 0, 0, φa)T

xBB̄ = (xb, 0, 0, 0, 0, 0)T

In the general case, two angles can be measured, using the following
values for the aligning transformations:

xa = x + z cos φ cos θ
sin θ

ya = y + z sin φ cos θ
sin θ

φa = φ
xb = z

sin θ

xĀB̄ = (0, 0, 0, ψ̄, θ̄, 0)T

ψ̄ = ψ
θ̄ = θ

This solution is not valid when θ = 0. In this case there is no unique
solution.
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B.13 SA = Txy Rz, SB = Tx Rx

Given two features A and B with symmetries SA = Txy Rz and SB = Tx Rx,
such as a plane and an edge, their aligning references have the following
form:

xAĀ = (xa, ya, 0, 0, 0, φa)T

xBB̄ = (xb, 0, 0, ψb, 0, 0)T

In the general case, one angle can be measured, using the following values
for the aligning transformations:

xa = x + z cos φ cos θ
sin θ

ya = y + z sin φ cos θ
sin θ

φa = φ
xb = z

sin θ
ψb = −ψ

xĀB̄ = (0, 0, 0, 0, θ̄, 0)T

θ̄ = θ

This solution is not valid when θ = 0. In this case, which corresponds
to a situation where the plane and the edge are parallel, there is no unique
solution.
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B.14 SA = Txy Rz, SB = Txy Rz

Given two features A and B with symmetries SA = Txy Rz and SB = Txy Rz,
such as two planes, their aligning references have the following form:

xAĀ = (xa, ya, 0, 0, 0, φa)T

xBB̄ = (xb, yb, 0, 0, 0, φb)T

In the general case, one angle can be measured, using the following values
for the aligning transformations:

xa = x + (y−ya)(sin θ sin φ cos ψ−sin ψ cos φ)+z cos θ cos ψ
sin θ cos φ cos ψ+sin ψ sin φ = x + (y−ya)ay+zaz

ax

ya free
φa = tan−1

(
sin θ sin φ cos ψ−sin ψ cos φ
sin θ cos φ cos ψ+sin ψ sin φ

)
= tan−1

(
ay

ax

)

xb = − (y−ya) cos θ sin ψ+z(− cos φ cos ψ−sin θ sin ψ sin φ)
sin θ cos φ cos ψ+sin ψ sin φ = − (y−ya)oz+zoy

ax

yb = − z sin φ cos θ+(y−ya) sin θ
sin θ cos φ cos ψ+sin ψ sin φ = − zny−(y−ya)nz

ax

φb = − tan−1
(

cos θ sin ψ
sin θ

)
= tan−1

(
ny

nz

)

xĀB̄ = (0, 0, 0, 0, θ̄, 0)T

θ̄ = − tan−1

(√
1−cos2 θ cos2 ψ
cos θ cos ψ

)
= − tan−1

(√
1−n2

x

n2
x

)

No the that variable ya remains free. This means that this solution is
not unique, because, two planes are not sufficient to completely determine
the location of an object. This solution is not valid when θ = ψ = 0. This
corresponds to a situation where the two panes are parallel.
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B.15 SA = Rxyz, SB = Rxyz

Given two features A and B with symmetries SA = Rxyz and SB = Rxyz,
such as two vertices, their aligning references have the following form:

xAĀ = (0, 0, 0, ψa, θa, φa)T

xBB̄ = (0, 0, 0, ψb, θb, φb)T

In the general case, one distance can be measured, using the following
values for the aligning transformations:

ψa = 0
θa = tan−1

(
x
z

)

φa = − tan−1
(

y√
x2+z2

)

ψb = tan−1

(
(x2+z2)ay+y(xax−zaz)√

x2+z2(xax+yay+zaz)

)

θb = − tan−1
(

zax−xaz
(x2+z2)−(xax+zaz)2

)

φb = − tan−1
(

xoz+zox
xnz+znx

)

xĀB̄ = (x̄, 0, 0, 0, 0, 0)T

x̄ =
√

x2 + y2 + z2

Variable ψa remains free. (We have chosen ψa = 0 for simplicity). This
means that this solution is not unique, because two vertices are not sufficient
to completely determine the location of an object. This solution is not valid
when x = y = z = 0. This corresponds to a situation where the two vertices
coincide.
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