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Universidad de Zaragoza
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Abstract—In this paper we propose an algorithm to deter-
mine the location of a vehicle in an environment represented
by a stochastic map, given a set of environment measure-
ments obtained by a sensor mounted on the vehicle. We
show that the combined use of (1) geometric constraints
considering feature correlation, (2) joint compatibility, (3)
random sampling and (4) locality, make this algorithm lin-
ear with both the size of the stochastic map and the number
of measurements. We demonstrate the practicality and ro-
bustness of our approach with experiments in an outdoor
environment.

I. Introduction

The objective of simultaneous localization and mapping
(SLAM) is to use the information obtained by sensors
mounted on a vehicle to build and update a map of the
environment and compute the vehicle location in that map.
The most critical point in obtaining a robust SLAM solu-
tion is data association, i.e. relating sensor measurements
with the elements included in the map. There are two basic
approaches to address the data association problem:
• Search in pose space: where a set of candidate vehicle
locations is generated and analyzed looking for consistency
between sensor measurements and the previous map. This
idea, that can be used with raw sensor data, is the base of
the Monte Carlo localization approach to SLAM [16].
• Search in correspondence space: where sensor measure-
ments are processed to obtain discrete features (points,
lines, etc.) that are matched against the features stored
in the map. This is the approach used in all feature based
approaches to SLAM [4], [6], [8].

During continuous SLAM, the uncertainty in the loca-
tion of the map elements relative to the vehicle is usually
small, and both techniques have proven able to solve the
problem. In this work, we concentrate on the more difficult
vehicle relocation problem, also known as first-location,
global localization, or “kidnapped” robot problem. It can
be stated as follows:
given a vehicle in an unknown location, and a map of the
environment, use a set of measurements taken by onboard
sensors to determine the vehicle location within the map.

Several works have addressed the problem using an a pri-
ori map of the environment (see [5] for a review). In SLAM,
solving this problem is essential to be able to re-start the
robot in a previously learned environment, to recover from
localization errors, or to safely close big loops.

Monte Carlo localization addresses the problem by sim-
ply generating vehicle pose hypotheses covering all possi-
ble locations and computing the likelihood of each pose

by looking for consistency with the map. However, re-
sults about the computing time required and the speed of
convergence of such an extensive technique have not been
reported.

On the other hand, feature based approaches to SLAM
usually rely on the gated nearest neighbor (NN) algorithm,
that can only solve data association when a good vehicle
estimation exists. Our Joint Compatibility technique [14] is
much more robust, but it is still restricted to some meters
and less than 30 degrees of vehicle error. When there is
no vehicle estimation, previous work on object recognition
suggests that simple geometric constraints can be used to
limit the complexity of searching the correspondence space
[10]. Recent implementations of this idea include the work
of Bailey et al. [1] using graph theory, the work of Lim and
Leonard [13] using a hypothesize and test technique, and
our own work [5] using Grimson’s interpretation tree [10].

In this paper we further elaborate on the interpreta-
tion tree approach, presenting in section II alternative al-
gorithms able to solve the relocation problem. We intro-
duce in section III the idea of locality that allows to obtain
search algorithms linear in time with the size of the map.
Finally, we provide experimental results comparing the dif-
ferent algorithms, using the datasets obtained by Guivant
and Nebot [11] with an outdoor vehicle. The winner is
a novel algorithm that, combining random sampling and
hypothesis verification, solves the relocation problem in a
very robust and efficient way.

II. Relocation in SLAM

In classical stochastic mapping, the environment
information related to a set of elements F =
{B, F0, F1, . . . , Fn} is represented by a global map MB

F =
(x̂B
F ,PB

F ), where:

x̂B
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...

x̂B
Fn

 ; PB
F =
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...
. . .
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 (1)

The state vector x̂B
F contains the estimated location of the

vehicle F0 and of n environment features F1 . . . Fn, all with
respect to a base reference B. Matrix PB

F is the estimated
error covariance of x̂B

F . In the case of the vehicle, its loca-
tion vector x̂B

F0
describes the transformation from B to F0.

In the case of an environment feature Fj , the parameters
that compose its location vector x̂B

Fj
depend on the feature

type.
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Fig. 1. Interpretation tree of measurements E1 · · ·Em in terms of
map features F1 · · ·Fn.

Given a new set of m measurements ẑ = {ẑ1, . . . , ẑm} of
the environment features E = {E1 . . . Em} obtained by a
sensor mounted on the vehicle, with R being the estimated
error covariance of z, the purpose of data association is to
produce a hypothesis:

H = [j1 j2 · · · jm]

associating each measurement Ei with its corresponding
map feature Fji (ji = 0 indicates that ẑi is considered
spurious). This hypothesis can be used to determine or
refine the vehicle and environment feature locations.

The space of measurement-feature correspondences can
be represented by an interpretation tree of m levels [10] (see
fig. 1). Each node of the tree at level i has n+1 branches,
corresponding to the n alternative feature pairings for the
measurement Ei, and an extra branch (star-branch) to ac-
count for the measurement being spurious. The size of this
correspondence space, (i.e. the number of alternative hy-
potheses) is exponential with the number of measurements,
Nh = (n + 1)m.

Next we describe several algorithms to perform data as-
sociation by searching in the interpretation tree for the
most plausible hypothesis in a depth-first branch and
bound manner. Each algorithm implements a different
technique to validate the set of pairings in a hypothesis.

A. Geometric Constraints

Given no estimation of the vehicle location, location in-
dependent constraints must be used to efficiently traverse
the interpretation tree in search for the best hypothesis.
Grimson [10] proposed a branch and bound algorithm for
model based geometric object recognition that uses unary
and binary geometric constraints.

Given a pairing pij = (Ei, Fj), let ui = (ûi,Pi) and
uj = (ûj ,Pj) be d-dimensional stochastic parameter vec-
tors (e.g. length for segments, angle for corners, or radius
for circular features) related to the measurement Ei and
the feature Fj respectively. Assuming independence be-
tween measurements and the stochastic map, the unary
constraint is satisfied when:

D2
ij = (ûi − ûj)T (Pi + Pj)−1(ûi − ûj)

< χ2
d,α (2)

Given two pairings pij = (Ei, Fj) and pkl = (Ek, Fl),
a binary geometric constraint is a geometric relation be-
tween measurements Ei and Ek that must also be satisfied
between their corresponding map features Fj and Fl (e.g.,
distance between two points, angle between two segments).
In the case of map features, let fjl be a d-dimensional func-
tion to compute a geometric relation between features Fj

and Fl:

bjl = fjl

(
xB
F

)
(3)

with estimated mean and covariance:

b̂jl = fjl

(
x̂B
F

)
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The influence of the correlations between the features in the
computation of the geometric relation is important in the
case where the features are distant from the map base refer-
ence. Their estimated location may be very imprecise, but
their correlation will allow to estimate their geometric re-
lations with sensor precision. Similar equations correspond
to measurements Ei and Ek. Assuming measurements in-
dependent from map features, the binary constraint is sat-
isfied when:

D2
ikjl = (b̂ik − b̂jl)T (Pik + Pjl)−1(b̂ik − b̂jl) < χ2

d,α

Figure 2 describes the recursive branch and bound al-
gorithm (GCBB) which computes the best hypothesis from
the available measurements and the features of the stochas-
tic map using unary and binary location independent ge-
ometric constraints. Starting with an empty hypothesis,
the algorithm proceeds in a depth-first branch and bound
manner. At the leaf-level of the interpretation tree, the
algorithm checks whether it has come up with a hypothe-
sis having more consistent pairings than the current best.
Given that satisfying binary geometric constraints does not
guarantee that a hypothesis is globally consistent [10], the
vehicle location is estimated and the joint compatibility
test [14] is used to verify global consistency of the matching
hypothesis. Note that the algorithm performs a bounded
search, it evaluates the potential benefit of considering the
star-branch before it recurs. Branching can be done by
pre-ordering the measurements so that, for example, the
most precise (usually closer to the sensor) are considered
first. Both unary and binary constraints, being location
independent, can be pre-computed before recursion starts.
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procedure relocation GCBB:
Best = []
GCBB([], 1)
return Best

procedure GCBB (H, i):
-- H : current hypothesis
-- i : observation to be matched
if i > m -- leaf node?

if pairings(H) > pairings(Best) -- did better?
estimate location (H)
if joint compatibility(H)

Best = H
fi

fi
else

for j in {1 . . . n}
if unary(i, j) ∧ binary(i, j, H)

GCBB([H j], i + 1) -- (Ei, Fj) accepted
fi

rof
if pairings(H) + m - i > pairings(Best)

GCBB([H 0], i + 1) -- try star node
fi

fi

Fig. 2. Geometric Constraints Branch and Bound

B. Maximum clique

A closely related technique also used in object recogni-
tion consists in building a compatibility graph whose nodes
are unary compatible matchings and whose arcs represent
pairs of binary compatible matchings. Finding the largest
hypothesis consistent with unary and binary constraints is
equivalent to finding the maximum clique in the compati-
bility graph (see [10] for a discussion and references). This
idea has been applied recently by Bailey et al. [1] to the
problem of robot relocation with an a priori map.

To compare with GCBB, we have also implemented a
clique search algorithm, MAXCLI. Given that the compat-
ibility graph is very sparse, we have chosen to implement
the branch and bound clique algorithm of Carraghan and
Pardalos [3] considered one of the best for sparse graphs
(it is also three to four times faster than the clique al-
gorithm used in [1]). We have found that its pruning of
the correspondence space is more effective, and it can be
programmed very efficiently in MATLAB using sparse ma-
trices, giving as result a faster algorithm than GCBB.

C. Generation-verification

An alternative group of algorithms, originally developed
for geometric object recognition [2], [7], follow a hypothesis
generation-verification scheme. Based on this idea, we have
developed algorithm GV (fig. 3). The generation of candi-
date hypotheses is carried out using location independent
unary and binary geometric constraints, just as in GCBB.
But as soon as the number of pairings is adequate to de-

procedure relocation GV:
Best = []
GV([], 1)
return Best

procedure GV (H, i):
-- H : current hypothesis
-- i : observation to be matched
if i > m

if pairings(H) > pairings(Best)
Best = H

fi
elseif pairings(H) == 3

estimate location (H)
if joint compatibility(H)

JCBB(H, i) -- hypohtesis verification
fi

else
for j in {1 . . . n}

if unary(i, j) ∧ binary(i, j, H)
GV([H j], i + 1)

fi
rof
if pairings(H) + m - i > pairings(Best)

GV([H 0], i + 1)
fi

fi

Fig. 3. Generation-verification

termine vehicle location (i.e. two points, two non-parallel
segments), the hypothesis verification step takes place, pre-
dicting the location of map features and searching for pair-
ings with the remaining measurements. For this purpose,
we use the Joint Compatibility Branch and Bound (JCBB)
algorithm (see fig. 4), proven to be very robust when an
estimated vehicle location is available [14].

The justification of this approach lies in the fact that
joint compatibility is a tighter consistency criterion than
geometric constraints, and thus branch pruning is more ef-
fective. The potential drawback of this approach is that
hypothesis verification is location dependent, and thus,
the constraints to be used for validation cannot be pre-
computed. To limit the amount of location dependent con-
straints to apply, in our implementation verification takes
place when a hypothesis contains at least three consistent
pairings. The third pairing, being redundant, reduces the
amount of incorrect hypothesis that arrive at the verifica-
tion stage.

D. Random sampling

Branch and bound algorithms are forced to traverse the
whole correspondence space until a good bound is found.
In the SLAM relocation problem, when the vehicle is not
within the mapped area, a good bound is never found.
Since the correspondence space is exponential with the
number of measurements, in this worst case the execution
times of GCBB, MAXCLI and GV are very long.
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procedure JCBB (H, i):
-- H : current hypothesis
-- i : observation to be matched
if i > m

if pairings(H) > pairings(Best)
Best = H

fi
else

for j in {1 . . . n}
if unary(i, j)

∧ joint compatibility([H j])
JCBB([H j], i + 1)

fi
rof
if pairings(H) + m - i > pairings(Best)

JCBB([H 0], i + 1)
fi

fi

Fig. 4. Joint Compatibility Branch and Bound

procedure relocation RS:
Pfail = 0.05, p = 3, Pg = 0.5
Best = []
i = 0
repeat

ẑ = random permutation(ẑ)
RS([], 1)
Pg = max(Pg, pairings(Best) / m)
t = log Pfail/ log (1− Pg

p)
i = i + 1

until i >= t
return Best

procedure RS (H, i):
-- H : current hypothesis
-- i : observation to be matched
if i > m

if pairings(H) > pairings(Best)
Best = H

fi
elseif pairings(H) == 3

estimate location (H)
if joint compatibility(H)

JCBB(H, i) -- hypohtesis verification
fi

else -- branch and bound without star node
for j in {1 . . . n}

if unary(i, j) ∧ binary(i, j, H)
RS([H j], i + 1)

fi
rof

fi

Fig. 5. Random Sampling

This fact led us to consider a relocation algorithm where
the hypothesis generation process is done using random
sampling (RS) instead of by full traversal of the interpre-
tation tree. Our RS algorithm (fig. 5) is an adaptation of
the RANSAC algorithm [9] for the relocation problem. The
fundamental idea is to randomly select p of the m measure-
ments to try to generate vehicle localization hypotheses,
and verify them with all m measurements using joint com-
patibility. If Pg is the probability that a randomly selected
measurement corresponds to a mapped feature (not spuri-
ous) and Pfail is the acceptable probability of not finding
a good solution when it exists, the required number of tries
is:

t =
⌈

log Pfail

log (1− Pg
p)

⌉
(4)

For the reason explained above, we use p = 3. Choosing
Pfail = 0.05 and considering a priori that only half of
the measurements are present in the map Pg = 0.5, the
maximum number of tries is t = 23. If you can consider
that at least 90% of the measurements correspond to a
map feature, the number of required tries is only 3. The
RS algorithm randomly permutes the measurements and
performs hypothesis generation considering the first three
measurements not spurious (without star branch). The
number of tries is re-calculated to adapt to the current
best hypothesis, so that no unnecessary tries are carried
out [12].

Notice that the maximum number of tries does not de-
pend on the number of measurements. Experiments will
show that this fact is crucial in reducing the computational
complexity of the RS algorithm.

III. Locality

As it has been explained above, the main problem of the
interpretation tree approach is the exponential number of
possible hypotheses (tree leaves): Nh = (n + 1)m. The use
of geometric constraints and branch and bound search dra-
matically reduces the number of nodes explored, by cutting
down entire branches of the tree. However, Grimson [10]
has shown that in the general case, where spurious mea-
surements can arise, the amount of search needed to find
the best interpretation is still exponential. In these condi-
tions, the interpretation tree approach seems impracticable
except for very small maps.

To overcome this difficulty we introduce the concept of
locality: given that the set of measurements has been ob-
tained from a unique vehicle location (or from a set of
nearby locations), it is sufficient to try to find matchings
with local sets of features in the map. Given a map feature
Fj , we define its locality L(Fj) as the set of map features
that are close enough to it, such that they could be seen
from the same vehicle location. For a given mapping prob-
lem, the maximum cardinality of the locality sets will be a
constant c that depends on the sensor range and the max-
imum density of features in the environment.

During the interpretation tree search, once a matching
has been established with a map feature, the search can
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Fig. 7. Segmentation of scan 120, with m = 13 tree trunks detected.
Radiuses are magnified × 5.
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Fig. 8. Stochastic map of 2D points built until step 1000. There are
n = 99 features. Reference vehicle trajectory for steps 1001 to 2500.
Radiuses are magnified × 5.

map of n = 99 point features (see fig. 8). The relocation
algorithms GCBB, GV, MAXCLI and RS were executed
on scans 1001 to 2500. This guarantees that we use scans
statistically independent from the stochastic map. The ra-
diuses of the trunks are used as unary constraints, and the
distance between the centers as binary constraints. To ver-
ify the vehicle locations obtained by our algorithms, we
obtained a reference solution running continuous SLAM
until step 2500. Fig. 8 shows the reference vehicle location
for steps 1001 to 2500.

No significant difference was detected in the solutions
obtained by the four algorithms. They agree most of the
time because the techniques that they use to validate a
hypothesis are substantially equivalent. In this experiment,
when six or more measurements are paired, the algorithms
return the true vehicle location, with no false positives.
Otherwise, the solution must be discarded as being non
reliable.

In the experiment, of the 1500 steps of the trajectory con-
sidered, we have selected 737 steps where the vehicle was
within the map limits. In 604 (82%) cases, the algorithms
found six or more pairings, and the location obtained was
consistent with the reference solution (within 2σ bounds).
In the remaining cases, either less than six points were seg-
mented from the scan, (74 case, 10%), or the algorithms
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Fig. 9. Mean execution time .vs. m (number of measurements) for
steps 1001 to 2500 of the vehicle trajectory.

could not find six matchings (59 cases, 8%). In these cases,
more sensor information is necessary to reliably determine
the vehicle location.

We found a significant difference in efficiency. The algo-
rithms where implemented in MATLAB, and executed on a
Pentium IV, at 1.7GHz. Figure 9 shows the mean running
time of each algorithm versus the number of measurements
in cases where the relocation was successful. GV turns out
to be the less efficient. This is due to the fact that hypothe-
ses must be verified using location dependent constraints,
which cannot be pre-computed. The best algorithm is RS,
with mean execution time of less than 1s.

The worst case for all algorithms happens when the ve-
hicle is not in the mapped area. In this case a good bound
cannot be found, and the whole correspondence space must
be explored. To compare the worst case performance of
each algorithm, we generated random measurements for
m = 3 . . . 30, 100 times for each value of m, and executed
the algorithms. Only MAXCLI and RS are considered, be-
cause both GCBB and GV are highly exponential on m,
and their performance is extremely poor. Figure 10 shows
the mean time of both algorithms versus m. In this ex-
periment, the running time of MAXCLI appears to grow
quadratically with m. This is because the dominant cal-
culation is the determination of binary constraints, which
is O(cnm2). In the case of RS, time grows steeply until
m = 7. In these cases, all combinations of three measure-
ments selected from m are tried, which is less than the
maximum number of tries t = 23 given by eq. (4). Af-
ter that, RS appears to grow linearly with m, because the
dominant calculation is the individual innovation test of
the hypothesis verification step, which is O(cm). In both
algorithms the search part is an exponential component,
but it accounts for a very small part of the total running
time for these values of m. RS shows to be superior to
MAXCLI for more than 15 measurements.
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Fig. 10. Mean execution time .vs. m for random measurements

V. Conclusions

In this paper we have proposed an algorithm that deter-
mines the location of a vehicle in a stochastic map, given a
set of measurements obtained by an onboard sensor. This
algorithm follows a generation-verification scheme, whose
main novelties are: (1) hypothesis generation is carried out
using geometric constraint validation under feature corre-
lation, described here for the first time; (2) the correspon-
dence space is sampled instead of completely traversed,
which results in a great reduction of complexity at the rea-
sonable expense of a small probability of failure; and (3) the
concept of locality is introduced, which makes constant the
number of map features that the algorithm must consider
simultaneously. We have shown how these properties make
this algorithm linear with both the size of the stochastic
map, and the number of sensor measurements.

This algorithm is potentially useful also in multi-vehicle
SLAM. If a group of vehicles independently build maps
of regions of an environment, identifying the common
area mapped will allow to join the information in a sin-
gle stochastic map. This constitutes the subject of future
work.
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