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Abstract

In this paper we present a general procedure to com-
pute and validate geometric constraints between uncer-
tain geometric features. Uncertain geometric informa-
tion is represented using the Symmetries and Pertur-
bation model [8). The proposed procedure allows to
obtain the geometric relations belween any pair of ge-
ometric elements in a systematic way, with an explicit
consideration of the uncertainty due to the use of dif-
ferent sensors. This makes the representation model
and constraint validation mechanism well suited for
multisensor systems. We also show how to use infor-
mation regarding geometric relations, not only in the
validation of hypotheses during the recognition process,
but also for the selection of observations that allow the
determination of the object location.

1 Introduction

The object recognition process based on the match-
ing between model features and sensor observations is
of exponential complexity. One of the fundamental
ideas to reduce this complexity is the use of geomet-
ric constraints: the validation that geometric relations
between model features are satisfied in the observa-
tions we are trying to match. In multisensor systems,
the validation of geometric constraints is complicated
by the diverse nature of sensorial information and its
uncertainty.

Considerable work has been done on the use geo-
metric constraints for the validation of hypotheses in
object recognition [3, 5, 6]. In [3], the most extensive,
Grimson proposes a recognition process which relies on
simple constraints to validate the consistency between
a set of observations and an object model. These con-
straints are independent of the object location and
thus can be calculated with no estimation of this lo-
cation. Uncertainty is managed by considering error
bounds on constraints.

This approach has three fundamental drawbacks:

e It is not well suited for multisensor systems, where
it is not plausible to consider that all sensors will
give observations with the same estimation errors,

® Bounds on errors are in general very conservative
estimations (some work to tighten these bounds can
be found in [1]).
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o Location-independent constraints are less discrimi-
nant than location-dependent ones, and thus many
inconsistent interpretations survive up to object lo-
cation estimation.

In this paper we describe an alternative approach
based on the early estimation of object location in
order to allow the use of more discriminant location-
dependent constraints. We account for uncertainty
using the Symmetries and Perturbation Model (SP-
model) to represent the estimated location of obser-
vations [8]. The main advantage of this model is its
generality: it is valid for any object, geometric feature
or sensorial observation. The probabilistic represen-
tation of uncertainty adopted in the model allows to
reflect the different capabilities of sensors, and thus,
it is adequate for multisensor systems. Section 2 con-
tains a brief description of the SPmodel. In section
3 we show how to systematically deduce the geomet-
ric relations between any set of features and express
them using a uniform representation. This allows us
to define a general mechanism for the validation of
geometric constraints under uncertainty. In section 4
we show how the estimation of geometric constraints
is central to the recognition process, not only for con-
straint validation, but also for the selection of observa-
tions that allow the determination of the object loca-
tion. Finally, in section 5 we discuss the fundamental
conclusions of this work.

2 Representation of Geometric Infor-

mation

The most common approaches for the representa-
tion of geometric uncertainty use probabilistic models.
In them, the location of an element is represented by a
parameter vector, and the available knowledge about
it is characterized by the mean and covariance of an
associated probability distribution function (usually
Gaussian). Based on this model, the fusion of senso-
rial information can be done using optimal estimation
techniques, such as the extended Kalman filter.

The main drawback of these approaches is that they
use a different set of parameters to represent the lo-
cation of each type of geometric element. In [8] we
have presented a general method for the representa-
tion of the location of any geometric entity and its
uncertainty: the Symmetries and Perturbations model



(SPmodel). It is used to establish a general integra-
tion mechanism that allows to obtain a suboptimal es-
timation of location for objects or features from a set
of partial and uncertain sensorial observations. It is
based on the theory of the iterated extended Kalman
filter. Since this paper deals with the validation of ge-
ometric relations, we will not present the integration
mechanism here. A more complete presentation of the
Enod]el and the integration mechanism can be found in
8, 9].

2.1 The SPmodel

The SPmodel is a probabilistic model that asso-
ciates a reference to every geometric element E. Its
location is given by the transformation tw g relative
to a base reference W. To represent this transfor-
mation, we use a location vector Xwg, composed of
three cartesian coordinates and three Roll-Pitch-Yaw
angles:

XwE = (I, Y 2 d)’ 0! d’)T
where:

twe = Trans(z, y, z)-Rot(z, ¢)-Rot(y, 6)-Rot(z, ¥)

The estimation of the location of an element is de-
noted by Xw g, and the estimation error is represented
locally by a differential location vector dg relative to
the reference attached to the element. Thus, the true
location of the element is :

Xwg =Xweg ®dg

where @ represents the composition of location vectors
(the inversion is represented with ©).

Our model also exploits the concept of symmetries
of a geometric element, defined as the set Sg of trans-
formations that preserve the element [8]. It has been
shown that the symmetries of any geometric element
are a subgroup of the group of transformation (7, -).
Figure 1 shows some fundamental subgroups of trans-
formations and examples of the geometric elements
they represent. For example, the symmetries of an in-
finite edge are the set of continuous translations (T)
and rotations (R,) along the edge. There is also a
cyclic symmetry of 180 degrees around any axis per-
pendicular to the edge, corresponding to the two op-
posite edge orientations. In this paper we will con-
centrate on the symmetries of continuous motion of
features, because they play a fundamental role in the
determination of the geometric relations between fea-
tures. Cyclic symmetries must be taken into account
as alternate hypotheses when matching two features
in the recognition process.

To account for the continuous motion symmetries,
we assign in dg a null value to the degrees of freedom
corresponding to them, because they do not represent
an effective location error. We call perturbation vector
the vector pg formed by the non null elements of dg.
Both vectors can be related by a row selection matrix
Bg that we call self-binding matriz of the geometric
element:

dg = Blpr ; pe=Bgpdg
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Figure 1: Representation of some geometric elements

For example, in the case of an edge, we have:

dg = (0, dy, dz, 0, db, d¢)T
PE = (dyx dz7 dev d¢)T

T
Be=10 0001 0
00000 1

Based on these ideas, the SPmodel represents the
information about the location of a geometric element
by a triplet (Xw g, Pg,Cg) where:

xwe = Xwe ® BEpe
Pe=E[pg] ; Cg=Cov(pg)

Transformation Xwg is an estimation taken as
base for perturbations, pg the estimated value of the
perturbation vector, and Cg its covariance. When
Pe = 0, we say that the estimation is centered.

The main advantage of this model is its general-
ity: it is valid for any object, geometric feature or
sensorial observation. Moreover, the representation of
uncertainty using a perturbation vector does not de-
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Figure 2: Reference alignment for two edges

pend on the base reference used, has a clear interpreta-
tion, and is not overparameterized. Problems related
to singularities found in other representations are also
avoided.

3 Geometric Relations and Constraint
Validation

Geometric relations between features are a set of
parameters that derive from the geometry of each fea-
ture (dimensions), and from their relative location
(distances and angles). They constitute one of the
most important sources of information to establish
the validity of an interpretation of a set of observa-
tions with respect to an object model. In systems that
rely on one sensor and only consider a specific type of
feature (stereo vision and edges, for example), these
parameters are easily derived. However, in multisen-
sor systems, where different sensors or combinations
of sensors can give geometric information of diverse
type, such as dihedrals, corners or circles, we have the
problem of deriving them for each pair of geometric
elements.

We are interested in the geometric relations that
determine the relative location of the involved geo-
metric elements, because they can be represented in
a uniform way. Also, we only consider parameters
that are invariant under partial occlusion. The next
subsections will be devoted to the estimation of such
geometric relations between uncertain observations of
features, and their validation against the nominal re-
lations computed in the model.

3.1 Geometric Relations

In general, geometric relations are non-linear func-
tions of the relative location of the involved geometric
features. As an example consider a pair of model edges
whose location is represented by references A and B
respectively (fig. 2). Intuitively, we can see that their
relative location is defined by two parameters: their
perpendicular distance and the angle between them.
As it can be seen in the figure, the distance d and
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the angle o are non-linear functions of x4p5. Thus, to
compute the uncertainty of parameters d and « due to
the uncertainty of x 45, we would need to use a first-
order approximation of d and . An alternative is to
find two aligned references A and B which equivalently
describe the location of the edges, such that d and o
are linear functions of x55. Note that the aligning
transformations ¢4 ; and tg5 belong to the symme-
tries of their respective geometric elements, that we
denote by S4 and Sg.

Let tw4 and twp express the location of two geo-
metric elements A and B with respect to a base ref-
erence W, and let t4p be the transformation that ex-
presses the relative location between both elements.
The sets of transformations that equivalently describe
the locations of A and B are:

La=twa-Sa ; Lp=twp -SB

The set of all possible transformations between the
references associated to the two geometric elements is
given by:

Lag Lzl -Lp

Sa-tap-Sp

Each transformation that belongs to the set Lap
equivalently describes the relative location of the fea-
tures. The most simple transformation belonging to
Lap (the one that contains the minimum possible
number of translations and rotations) has one trans-
lation or rotation corresponding to each of the pa-
rameters defining the geometric relations between the
elements. This means that there exist references A
and B where the geometric relations between the two
elements are linear functions of x ;5. In the above ex-
ample X ;5 contains one translation and one rotation
corresponding with the distance and angle between
the edges. This transformation is then, the simplest
transformation that satisfies:

Sa-tijs-Sa

Las

For all the combinations of features considered, t 55
can be uniquely determined (table 2). Let us study an
example.

Geometric Relations between Semidihedrals.
Let A and B represent the location of two semidi-

hedrals and let x4 = (x, v, 2, ¥, 6, ¢;T. The

symmetries of semidihedrals are T, (figure 1), and so
8,4 = SB = Tz. Thus:

Xq4 = (4, 0,0,0,0, 07T

xgp = (24, 0,0, 0,0, 0)T



Case for xaB | XA4 | Xpp | Xip I
9=9¢=0 (x+z, 0, 0,0, 0, 0)T (x5, 0, 0, 0, 0, 0)T ©, y, z, ¥, 0, T

9=0 (2tindoyeced g, 0, 0,0, 07 | (-7, 0,00, 0 07 (0,0, 2, 9,0, ¢)7
otherwise (:linOo:;ﬁ-Q—zcouO’ 0, 0’ 0’ 0’ O)T (ﬁ?’ 0’ 0’ 0, 0,. O)T (0, 1-3n0+.zi’:infco-0, 0, ¢, 9, ¢)T

Table 1: Solutions for two semidihedrals

Our purpose is to find the values of z, and z,, such
that xz5 = (%, 9, % ¥, 8, )T contains the min-
imum number of translations and rotations. This is
given by:

OX,5OXaBDXpp
(x — x4 + zpcosBcos @, y + xp cosfsin ¢,

z—zpsiné, ¢, 0, ¢)T

The solutions in this case are resumed in table 1.
Note that in the general case the geometric relations
between the dihedrals are one distance and three an-
gles. In this case the solution is unique. In the case
where § = 0, the set of parameters is reduced to a dis-
tance and two angles, but this solution is also unique.
On the other hand, when 6 = ¢ = 0, which corre-
sponds to the case when the edges of the dihedrals are
parallel, z; remains a free variable, and thus we cannot
uniquely determine the values of x4 ; and xg 5. Later
we will see that this information is useful in deter-
mining whether a set of observations can completely
determine the location of the object.

The solutions for all the combinations of symme-
tries are obtained in the same way and are summa-
rized in table 2. Thus, given two geometric features A
and B, whose subgroups of symmetries are S4 and Sg,
the location vector corresponding to the geometric re-
lations between the two elements is computed by first
calculating the values of x4z and xgp using the re-
sults shown in the table ang then computing x55. In
the next subsection we will use this result to estimate
the geometric relations between uncertain geometric
features and validate them.

XAB

i

3.2 Geometric Relations under Uncer-
tainty

Let us consider now the estimation of geometric
relations between uncertain observations of features.
Given two geometric features with associated refer-
ences A and B, whose uncertain locations are ex-
pressed by (Xw 4, Pa,Ca) and (Xw B, Ps, Cs) respec-
tively, the geometric relations between them can be
estimated from the relative transformation x 45, using
the results obtained in subsection 3.1. The procedure
follows these steps:

First, calculate the location vectors x45 and xgg
using table 2. The uncertain location of A,
(Xw 1, P,Cj) can be calculated as follows:

Xwi = Xwa®Bipa®x,;
(Rwa @ X45)® JiaBipa
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*w4 ® Bipa

P4 BaJzaBj Pa
Cj BaJzaB% Ca BaJ%, B}
where Jz, is the Jacobian [4] of the transforma-

tion represented by x 4. The uncertain location of
B, (%wp,P5,Cg), is calculated in the same way.
Second, the location vector x ;5 and its covariance are
calculated as follows:

XiB OXwaiDXwp
= O(xw4® B4ipa)® (xws ® BEpp)
= ©d;0R;p0dp
Cov(xzp) = J19{0,%45}BACaBaJI{0, %45}

+ Jap{X4p,0}BECsBpJig{% 45,0}

where Jig and J2g are the Jacobians of the com-
position of location vectors [7]:

Jle{x11x2} = %'

Y=Xi, 2=X3
Jog{x1,X2} = 8—‘%?—’4

¥Y=X;, Z=X;

The location vector x 55 and its covariance consti-
tute an estimation of the geometric relations between
A and B, to which we can apply a general constraint
validation mechanism as follows: some components of
this location vector correspond to the geometric rela-
tions r between the features and the rest are zero, so
we use a row selection matrix S to extract them in the
following way:

r=Sxzp ; r=5X4p
Cou(r) = S Cou(xz5) ST

Given a vector r,,, which contains the value of the
geometric relations in the model, we can measure the
discrepancy between r,, and r using the Mahalanobis
distance:

D? = (f — rpn)TCou(r) " (f — 1pn)

Under the gaussianity hypothesis, D? follows a chi-
square distribution x2, with n = dim(r) degrees of
freedom. For a given significance level o, r can be
considered compatible with r,, if:

D*< D?

where D2 is a threshold value, obtained from the x2



[ S I Sa I Case of tan General Form of t 55 l
R, R y=0=¢=0 |1tz -1z
8= ¢ =0 iz - t,—,
otherwise tz-tg-lz-7g
R R/.:yz y=z= 0 £
otherwise tz Lz
Tz Tz 0=¢=0 t,’, ti-'l‘,ﬁ
=0 FTE T
otherwise lg 75 -Tg 7§
T-" RI tg ti 7‘5 ~Ta
Tz Tsz 9=¢=0 tg ti
6=20 tz T;
otherwise ly-r5-7g
T:: R::yz tﬁ tz
T: R, R, 0=0¢=m/2 ty -tz 15(0 = 7/2)
otherwise ty-tz-1g
TeR: | T: Rz |0=¢=0 123
otherwise tz-7g
T: R: Rey: tz
T::y Rz R lz Tg
sz R, Rzyz tz
Tzy R: T: 6=0 tz: 1y
otherwise Tg Ty
TeyR. | TxR: |6=0 ts
otherwise Ty
T::y R: sz Rz 8= '!/1 =0 tz
otherwise T
Rey: R.y- 5

: = Trans(Z,0,0); rg= Rot(z,y?)
ty = Trans(0,3,0); 75 = ROt(y,G_)
t: = Trans(0,0,2); rg= Rot(z, ¢)

Table 2: Geometric relations for all combinations of
symmetries of geometric elements

distribution, such that the probability of rejecting a
good matching is a.

4 Constraint-based Recognition

There are two fundamental approaches to the recog-
nition of objects by the validation of geometric con-
straints between observations and model features:

e An interpretation tree is generated with all possi-
ble interpretations of the observations which satisfy
unary and binary constraints. For the surviving hy-
potheses, object location is calculated and global
consistency verified. This approach is called rec-
ognizing before locating. The most extensive work
based on this approach can be found in (3].

¢ Object location hypotheses are generated with the
minimum number of observations needed to esti-
mate object location. A hypothesis is then verified
by a process in which the location of new features
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Figure 3: Constraint Tightness of Compound Features

is predicted, and its presence is verified among the
available data or by a sensor [2]. This approach is
called recognizing while locating.

The recognizing before locating approach is based
on the idea of using very simple geometric relations
that are fast to validate, and then estimating once the
location of the object to validate global consistency.
However, in comparison to the recognizing while lo-
cating approach it has several disadvantages that we
analyze next.

The number of constraints to verify is larger.
Given a hypothesis with n observation-model pairings,
the inclusion of another pairing implies the valida-
tion of it with each of the n existing pairings in the
hypothesis. This means that n(n —1)/2 constraint
validations have been performed for this hypothesis.
On the other hand, in the recognizing while locating
approach the number of constraints that would have
been validated for the hypothesis is n—1, because hav-
ing located the object, the only constraint that must
be validated for a new pairing is that the observation
and predicted model feature locations coincide. Let
us study as an example the case of three edges (Fig.
3). We have three observed edges {D,E,F} and we
must verify if they can be paired with edges {A, B,
C} of a model. Using the first approach we would
need to verify constraints for each pair of observations
{(D, E), (E, F), (D, F)}. On the other hand, with
the validation of one constraint, D and F can be used
to determine the location of the object, represented



by H, and then we can predict the location of B and
validate it against the location of E.

Binary constraints are not tight. A set of pair-
ings may satisfy all binary constraints, and yet the
interpretation may not be globally consistent. This
implies that many inconsistent hypotheses survive un-
til the object location is estimated. Studying the same
example of figure 3 we can see that the pairings {(A,
D), (B, E), (C, F)} satisfy all constraints even though
the interpretation is not globally consistent. The sec-
ond approach has the advantage that it allows to vali-
date the tightest possible geometric constraint, which
is feature location. In the example we would see that
when the location of B in the scene is predicted, it
does not coincide with the location of E, and thus the
interpretation would be discarded.

Goal-directed perception is not possible. The
first approach has a limited use due to the fact that
the provided information must be sufficient to recog-
nize the object. If all the necessary information is not
available, there is no way of predicting where more in-
formation should be acquired, and it is not possible to
direct any sensor to obtain it.

4.1 Recognizing while Locating

For the above reasons, we use the recognizing while
locating approach in which unary and binary con-
straints are used to validate the minimum number
of observations that allow to generate object-location
hypotheses. Their further verification is based on a
prediction-verification scheme, in which a feature is
predicted and its location in the scene is searched for
in the data or obtained by a sensor. This approach
confronts us with two fundamental problems:

e How can we choose an initial set of observations
such that they completely determine the location of
the object? According to the observations, where
is the object located? How good is the estimation
of the location?

e Once the object is located, how can we decide the
order in which features should be predicted and ver-
ified so as to either accept or reject the hypothesis
as soon as possible?

We will answer the first question next. The sec-
ond one, closely related to sensor models and goal
directed perception strategies, will be the subject of
future work.

Selection of an initial set of Observations As
we have said, this selection is fundamentally based
on the possibility of the set to completely determine
the location of the object. Each feature determines
some degrees of freedom in the location of the object,
depending on the symmetries of the feature. To com-
pletely determine the location of the object, the set of
features must not have common symmetries of contin-
uous motion (i.e. the intersection of the symmetries
of the features must be equal to the identity transfor-
mation ). The determination of the set of common
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symmetries depends on the values of the geometric re-
lations between the features. This work is related to
that of [10], in which the common symmetries of a
set of geometric elements is used to determine assem-
bly plans satisfying the constraints imposed by each
geometric element. Here we will obtain the intersec-
tions of symmetries in an appropriate way to take into
account the uncertainty related to the location of the
geometric elements, and to obtain an estimation of the
object location.

Let {F1,Fs,...,F,} represent the location of
a set of n geometric elements with symmetries
{Sr,,8r,,...,SF,}, respectively. The symmetries of
each feature are expressed with respect to the refer-
ence associated to the feature. In order to calculate
the intersection, we must express each set of symme-
tries with respect to a common reference F. Thus, the
common symmetries of the set of features with respect
to F can be calculated as:

n
n tpr, - Sk, - tl_?;‘;

i=1

FSF

1)

Let us for the moment concentrate on the case when
n = 2. In section 3 we have seen that given two fea-
tures whose location is represented by F; and F,, we
can find references F; and F; such that ¢ £, F, contains
the minimum number of translations and rotations.
Taking advantage of this, we will choose to calculate
the set of common symmetries with respect to F. In
case the resulting set of symmetries is equal to 1,
can be used to calculate the location of the object, as

1’v;/e will see later. Thus, according to equation (1) we
ave:

ASp=8p N (trpy - S - tr,F,)

The solution of this equation for all combinations
of symmetries are shown in table 3. Let us study an
example.

Example: Common Symmetries of a circular
arc and a planar surface: Let F; and F5 represent
the location of a planar surface and a circular arc,
respectively (fig. 4). In this case we have:

Sk, =sz'Rz i Sm =R
tp F, = Trans(0,0, 2) - Rot(y, 9)

The set of common symmetries of the features with
respect to Fj is:

A Sr = (Tzv ) Rz)
N (Trans(0, 0, 2) - Rot(y, ) - R,
' R'Ot(yv —é) : Tra.ns(O, 0, _E)) (2)

The only transformation that satisfies this condi-
tion is the identity 1, except when the circle and
the plane are parallel (fig. 4 (b)). That is, when
6 = +n/2. In this case, equation 2 becomes:



[ s | Sm [Caseoftss [k sk
R R. |y=2=¢=0|R,
otherwise 1
Rz }?ayz z=0 Rz
otherwise 1
T: T: |6=¢=0 T:
otherwise 1
T: R: 1
T, T.R. |6=¢=0 T,
otherwise 1
T: Rayy: 1
T: R: R, y=z= $ =0 R;
T: R; T:Rc g=2=$=0 Tsz
¢ = 0 T::
otherwise 1
T:R: | Ry | 2=0 R
otherwise 1
T:y R: R; 8=mn/2 R,
otherwise 1
Try R: | Razy: R,
Tzy Rs T: =0 T:
otherwise 1
TeyR: | TeR: | 6=0 T
otherwise 1
TeyR. | TeyR: | =0 Ty
otherwise T:y R:
R:yz R::yz zZ=0 Rzyz
Otherwise R,

Table 3: Intersection of the symmetries of two geo-
metric elements, expressed in F;.

A SF (Tzv N R,)

N (Trans(0, 0, 2) - Rot(y, 7/2) - R,
- Rot(y, —w/2) - Trans(0, 0, —z))
(Txy - R.) N (Trans(0,0,2) - R,

- Trans(0, 0, —%))

(Tzy - R.)NR,

Rz

Thus, a planar surface and a circular arc can be
used to establish the location of the object when
@ # +x/2. The solutions of all the combinations of
subgroups of symmetries can be derived in a similar
way, and they are shown in table 3.

The calculation of the set of common symmetries
of more than two features can be easily done in an
iterative way: a pair of features is selected and the in-
tersection of their symmetries is calculated. If it is not
equal to1l, the pair is grouped into a compound feature
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(») Common symmetries equalto 1
L]
S

-
-—----

(b) Common synm;elris equalto Rz

Figure 4: Symmetries for a circle and a planar surface

and another feature is selected to calculate its common
symmetries with the compound feature. At the end of
the process, a reference that expresses the location of
the set of features has been obtained, and the set of
common symmetries of the features expressed in that
reference is 1L

Once we have established in which cases the com-
mon symmetries of a set of observations is I, we must
investigate how sensible this solution is to the relative
location of the observations and their location uncer-
tainty. We have seen that the set of common symme-
tries of a pair of observations depends on the parame-
ters of the relative location between both. Continuing
with our example above, the value of the variable & de-
termines the final set of common symmetries. Thus,
we prefer using pairs of observations where the value
of this component of the location vector is far from to
/2 and its uncertainty is small.

Generation of object-location hypotheses. In
summary, given a set of observations, the hypothesis
generation process follows these steps:

1. Select a pair of observations O = {O,,0,}, whose
uncertain location in the scene are represented by
(iwol ) f)ol ) Col) and iWOg ’ f’oz 3 CO;) with re-
spect to reference W. This selection is based on
criteria such as size, relative scarceness and low lo-
cation uncertainty.

2. Using the relative location vector xo,0,, estimate

the geometric relations between O; and Os, as ex-



plained in subsection 3.2. This gives us X, 4,,
X0,0, 80d X5, 6,

3. Decide whether O; and O3 can be used to deter-
mine the location of the object, by verifying that
the values of x5, 5, are far from the singular cases
of the intersection for their symmetries. If not, the
observations are discarded and another pair is se-
lected.

4. Search in the model a pair of features F = {F1, F2},
which belong to the same object, and satisfy unary
constraints with O; and O;. The feature location
is represented by xpr s and xpp, with respect to
the location of the object, represented by M.

5. Using the relative location vector xp, r,, calculate
(if not available) the geometric relations between
Fy and F3, as explained in subsection 3.1. This
gives us Xp, g, X, 1y, a0d X, -

6. Validate that x5, 5, is compatible with xz 5, using
the chi-square test. If not, the hypothesis is aban-
doned and another pair of model features {F;, Fy}
is selected.

7. Choose O; and F to represent the location of the
set of observations and features respectively (that

is, 0 =0, and F = F).

8. Since the pairings of observations to model features
implies O = F, the location of the model in the
scene can be calculated as:

XwM = Xwo © XmMF

Given that the set of common symmetries of O is
equal to 1, the location of the object in the scene is
uniquely determined.

9. From the object location xw s and the relative fea-
ture locations Xy and Xpm g, the location of the
features in the scene is predicted, and it is verified
that the observations O; and O; actually are lo-
cated within the area occupied by F; and Fy. This
verification step applies the denominated extension
constraint [9).

5 Conclusions

In this paper we have presented a method to es-
timate the geometric relations between a pair of un-
certain observations of geometric features, using the
Symmetries and Perturbations model. We have shown
how to derive the geometric relations that depend on
the relative location and symmetries of the involved
geometric elements, and how they can be expressed in
the form of an uncertain location vector. This allows
to define a general constraint validation mechanism,
which is based of statistical tests on the components
of the location vector. This representation model and
constraint validation mechanism allows the use of di-
verse geometric information in the recognition process,
which makes it suitable for multisensor systems.

We have shown the advantages of having an early
estimation of object location in speeding up the recog-
nition process. Essentially it allows to validate a
smaller set of more discriminant geometric constraints.

We have also shown how the estimation of the geomet-
ric relations is also useful in determining whether a set
of the observations completely determine the location
of the object, and how this location can be determined.

Once the location of the object has been obtained, a
hypothesis verification step must take place, in which
the locations of features in the scene is predicted and
their presence is verified among the available data or
by a sensor. The choice of the feature to predict at
each moment and the sensor that should be used, as
well as its optimal location, will be the subject of fu-
ture work.
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