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In this paper we present the 2D version of the Symmetries and Perturbation model
(SPmodel), a probabilistic representation model and an EKF integration mecha-
nism for uncertain geometric information that is suitable for sensor fusion and inte-
gration in multisensor systems. We apply the SPmodel to the problem of location
estimation in mobile robotics, experimenting with the mobile robot MACROBE.
We have chosen two types of sensorial information whose complementary nature
allows a mobile robot to localize itself precisely in a known environment: range
images and intensity images obtained from a laser sensor. By measuring distance
to objects, range basically provides position information. On the other hand, the
intensity image provided by the laser sensor (equivalent to a monocular vision sys-
tem) can be used to detect vertical edges, corresponding to corners, frames, etc.,
which mainly provide angular information. Results of these experiments show that
fusing simple and computationally inexpensive sensorial information can allow a
mobile robot to precisely locate itself. They also demonstrate the generality of the
proposed fusion and integration mechanism.

1 Introduction

Mobile robots cannot rely solely on dead-reckoning to determine their location
because dead-reckoning errors are cumulative. For this reason, mobile robots
must be equipped with external sensors that obtain information from the en-
vironment to help the robot determine its location more accurately. There has
been considerable work in this direction!?:3*®. Most mobile robots rely on us-
ing one type of sensor or on sensing one type of feature from the environment.
This may be sufficient in many cases, and yet there are situations in which
relying on one sensor or one type of feature may be insufficient to precisely
locate the robot. For example, the MACROBE robot is equipped with a range
sensor capable of obtaining information of the scene in front of the robot that
in® is used to determine the location of walls in its field of view. The detection
of a wall allows the robot to reduce uncertainty in the direction normal to the
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wall. This has proven to be quite effective in most cases. However, when the
sensor only detects walls in front of him, uncertainty is only reduced in the
direcion of motion. In this situation, being able to obtain sensor information
from a different sensor, or of different nature, would help the robot to locate
itself more precisely.

This work has been motivated by these ideas. We show that multisensor
fusion in mobile robotics allows to use more simple and inexpensive sensor
processing, and at the same time makes the robotic system more robust. For
multisensor fusion to be possible, a model that allows to describe geometric
information of diverse nature and fuse it appropriately is necessary. Sections
2 and 3 of this paper describe an uncertainty representation and fusion model,
the SPmodel ¢, that has been developed for this purpose. We make use of it in
the experimental framework of the MACROBE project. Information provided
by a laser sensor is used both to determine the location of walls in front of
the robot, and by processing the intensity image, to determine the location
of vertical edges that can correspond to corners, as well as door and window
frames. The process of extracting environmental information and fusing it to
locate the MACROBE, as well as experimental results are described in section
4. Finally in section 5, the main conclusions derived from experimenting with
the SPmodel and the MACROBE are drawn.

2 Uncertain Geometry: the SPmodel

Most of the aspects in multisensor fusion in mobile robots are related to the
concept of location. One needs to determine whether a point belongs to an
edge, whether two edges are collinear, what is the distance between a point
and an edge, between two points, etc. Choosing an appropriate representation
for the location of geometric entities of diverse nature is fundamental to ad-
equately answer these questions. It must be taken into account that sensors
render uncertain geometric information. There are two fundamental aspects
of geometric uncertainty: partiallity and imprecision. Partiallity refers to the
degrees of freedom (d.o.f.) associated to different geometric entities, and how
they determine the location of other entities related to them. Imprecision refers
to the accuracy in the estimation of the location of geometric entities.
Usually, a different set of parameters is used to represent the location of
different geometric features. For example, one can represent the location of a
point in 2D by a vector (z,y), where z and y represent the cartesian coordi-
nates of the point with respect to a base reference. The location of an edge
can be represented by a pair (g,8), where g represents the perpendicular dis-
tance of the edge to the origin of the base reference, and € its orientation with
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respect to the z axis of this reference. Since the parameters used to represent
the location of diverse geometric entities differ, as we consider more geometric
entities the determination of geometric relations between them becomes com-
plex. In some representations the same set of parameters is used to express the
location of any geometric feature, for example using a triplet (z,y,¢). This
has the disadvantage that not all geometric features require the same amount
of parameters to completely determine their location. This representation, be-
ing overparameterized, causes problems to the fusion mechanism (covariance
matrices will be singular).

In this work, a new representation model, the SPmodel, is used. It is a
probabilistic model to represent uncertain geometric information that avoids
these inconveniences. In the following, the 2D version of the SPmodel is pre-
sented, and a description of how it deals with both aspects of geometric un-
certainty is given.

2.1 Partiallity

Different geometric features have different d.o.f. associated to their location.
For example, the location of a robot in 2D is determined by three d.o.f., while
the location of a point only by two. Normally, this leads to establishing a dif-
ferent set of parameters to describe the location of different geometric entities,
giving rise to the unnecessary complications described above. In the SPmodel,
a reference E is associated to the location of any type of geometric feature.
The location of this reference with respect to a base reference is given by a
transformation ty g composed by two cartesian coordinates and an angle:

xwp = (z, y, $)° where twp = Trans(z, y) - Rot(z, @)

The composition of two location vectors is denoted by @, and the inversion of
location vectors, as well as the composition with the inverse are denoted by ©.
Thus, given x45 = (21, y1, ¢1)7 and xgc = (22, s, ¢2)7, their composition
is calculated as follows:

XAC = XAB P Xpc
= (21 +T2c08¢P1 — Yo Sin gy, y1 + T28in Py + Yo cos Pr, P1 + ho)T

Similarly,
OXaABp = (—2171 COS ¢1 — Y1 sin ¢1,CU1 sin ¢1 — Y1 COS ¢1, —¢1)T

The d.o.f. that determine the location of a geometric entity are related to
its symmetries of continuous motion. The symmetries of a geometric entity
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Figure 1: Representation of a 2D edge.

E are defined as the set Sg of transformations that preserve the element.
For example, the symmetries of an infinite edge are the set of continuous
translations (7,) along the edge (fig. 1). We represent the set of symmetries
using a row selection matriz By, denominated binding matriz of the feature.

The binding matrix of a geometric entity allows us to express one of the
fundamental geometric concepts, coincidence. Given two geometric entities of
the same type, whose location is represented by A and B respectively, their
locations coincide if:

BAXAB = 0 (1)
where B4 denotes the binding matrix of both geometric entities.

Example 2.1: Determining whether two points coincide
Consider two points A and B, whose relative location is given by:

1 0 0
XABZ(m,y,¢)T;BA=BB:[0 1 0]

According to eq. (1) we have:

Baxap = (z,y)" =0

This result expresses the fact that the two points coincide if the relative position
of their associated references is zero, regardless of what their relative orientation is.
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To express coincidence between different types of geometric elements, we
use the binding matriz of a pairing. In the case of two geometric entities
of different type, whose location is represented by A and B respectively, one
of the following equations expresses whether their locations coincide (up to
symmetries):

Bapxap =0 Direct Constraint
Bpaxpa =0 Inverse Constraint (2)

where Bap and Bpy denote the binding matrix of the pairing.

Example 2.2: Determining whether a point belongs to an edge
Consider a point P and an edge E, whose relative location is given by:

1 0 O 0 1 0
XEP=($,y,¢)T;BP=[0 1 0:|;BE:|:0 0 1:|;BE‘P=|:0 1 0]

In this case eq. (2) gives:

Bepxgp =y =0
That is, the point belongs to the edge if its position in the direction of the y axis
of the edge reference equals zero. o

2.2 Imprecision

Sensors give imprecise information, thus one only obtains an estimate of the
location of a given geometric element. Most classical models of imprecision
belong to one of two categories: set-based models and probabilistic models. For
several reasons, we favor the use of probabilistic models”®. From the appropri-
ateness point of view, its seems less apparent that sensors give measurements
with uniform distributions of error, as set-based models suggest. From the
practicality point of view, in set-based models the correlation between position
and orientation errors is seldom considered and complex to consider. In the
SPmodel, the estimate of the location of a given entity E is denoted by Xw g,
and the error associated to this estimate is expressed using a differential loca-
tion vector dg, relative to the reference associated to the element, so that the
true location of E is given by (fig. 2):

Xwr =Xwg ®dg (3)

Since the d.o.f. of dg corresponding to the symmetries of continuous
motion contain no location information, we assign 0 to their corresponding

5



>

WE

WE

Figure 2: Uncertain location of E in the SPmodel.

values. We call perturbation vector a vector pg formed by the non-null elements
of dg. These two vectors are related by the binding matrix Bg:

dg =BLpr ; pr=DBpdp

The information associated to the estimated location of a geometric ele-
ment E is represented by a quadruple Lywg = (Xwg, Pr, Cr, Bg), where:

xwr =Xwe ® BLpr ; Pr = Elpr]; Cr = Cov(pp)

Note that the error associated to a location is expressed relative to the
feature reference E and not to the base reference W. In this way the value of the
covariance is not magnified by the distance of the feature to the base reference.
This guarantees that covariance values have a clear interpretation. The use of
the binding matrix also makes the representation non-overparameterized. In?2,
details on how fundamental operations with the SPmodel are performed can
be found.

3 Multisensor Fusion: the SPfilter

In 7, the SPmodel is used to establish a general integration mechanism that
allows to obtain a suboptimal estimation of location for objects or features

6



from a set of partial and uncertain sensorial observations. The estimation of
the location of an object or feature from a set of geometric observations is
nonlinear, due to the existence of orientation terms, and can be solved using
the extended Kalman filter or the extended information filter?'°. In this paper
we use the 2D version of the SPmodel along with the specialized version of
the EKF for the SPmodel, the SPfilter, to estimate the location of a mobile
robot from a set of partial and imprecise observations of features in the robot’s
environment,.

The extended information filter is formulated as follows: let x be the state
vector whose value is to be estimated, and let there be n independent and
possibly partial observations yj of x, where k € {1,...,n}, affected by white
Gaussian noise:

Ve =Yk +ug ; ug ~ N(0,Sg)
Let each observation yj, be related to x by an implicit nonlinear function
of the form f;(x,y;) = 0. We use a first order approximation of f}:

fr(x,yr) ~ hy + Hp(x — X) + Gr(yr — Y&)
where:
of, of,
= a_’“ = 8_’“ (4)
X lx30) Y l(=5x)

The estimate X,, of the state vector and its covariance P, after integrating the
n measurements are:

hy =fi.(X,¥¢) ; Hi i G

n n
Xp=P,My, 5 P,' =) Fp i My=—-Y N (5)
k=1 k=1
where:
F, = HI (GvSkGT)"'Hy ; Ny = HI (G SkGT)"'hy, (6)

This is the nonrecursive formulation of the information filter, which is
equivalent to a least squares estimation in batch mode: integrating a block of
n measurements at the same time. Formulations of the recursive information
filter and Kalman filter can be found in 7. This scheme is applicable to a
wide range of estimation problems; in this work we apply it to three different
estimation problems in mobile robotics: the estimation of the location of a
wall from laser points, the estimation of the location of the robot from wall
observations, and the estimation of the robot location from intensity image
edge observations. Next, the third problem is described.

7



Figure 3: References involved in the integration of a monocular edge to the estimation of
the robot location.

3.1 Estimating the location of a mobile robot from monocular 2D edges

Let Lwr = (Xwr,Pr,Cr,I3) be the estimated location of a mobile robot.
Let xwar represent the location of a vertical edge (a 2D point) according to
the map. Let Lrr = (XrEg,Pr,Cr, Br) be the estimated location of the
edge according to the monocular camera (fig. 3). Using only one image, our
observation of the point is a projection line between the point and the camera.
Thus, in this case we have:

100 010
BM_{O10]’BE_{001]’BEM_[010]

Assuming that edge E corresponds to model point M (fig. 3), we use
it to improve the estimation of the robot location by means of the inwverse
constraint:

fi(x,yx) = Bemxem = Bem(6dg ©xpp ©6dr ® Xwr) =0
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Figure 4: MACROBE path according to odometry. Uncertainty is magnified 100 times.

In this case the state to be estimated is represented by the perturbation vector
of R, and the measurement by the perturbation vector of E:

x=dg ; yr=dg ; fi(x,y&) = Bem(©yr ©Xpp ©x ®Xwg) =0

4 Experiments

We have used the mobile robot MACROBE to experiment with the SPmodel
and the SPfilter. In the experimental setup, MACROBE is programmed to
follow a path through a narrow corridor (fig. 4). At 24 different steps of the
robot path, the laser sensor takes an image, a 41 x 321 array of environmental
points. In®, this information is processed to segment walls out of these points.
The locations of the sensed walls are compared to those of a map, and using an
exact solution, the position of the robot is determined. Results of subsequent
single-image localization and dead-reckoning data are fused using an EKF. In
this work we fuse both the range information and the intensity information as
is detailed next.

4.1 Fusing range information

The range information given by the laser sensor is fused to estimate the robot

location in a numerically equivalent way as it is done in ®>. Each point is
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Figure 5: Range observations before and after integration.

associated to a map wall (if not considered spurious) and its contribution to
the robot location estimation is calculated using the SPfilter. Figure 5 shows
the observed points at a robot location (upper image), and their predicted
location after reestimating the robot location (lower image). Note the change
in robot position, orientation, as well as the reduction of uncertainty.

4.2 Fusing intensity information

The laser sensor provides not only the distance to each pixel of the array but
also gives intensity information of each point. In this work we also process the
intensity image of the laser sensor to extract a set of vertical edges that can
correspond to corners, and also to door or window frames. This information is
contrasted with the a priori map of the environment, composed of 2D segments
corresponding to walls and 2D points corresponding to vertical edges. The
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Figure 6: Vertical edges extrated from intensity image.

nearest model feature to each observation is chosen as candidate for pairing,
and in a first step, all observations having only one candidate whose location
can be considered compatible are fused in the estimation of the robot location
(we perform a hypothesis test on their relative location). This process limits
the possibilities of accepting an incorrect match, and it is repeated until none
of the remaining observations has a suitable candidate.

The quality of the intensity image is rather low (fig. 6). There is little
contrast and considerable distortion, especially on the lower part of the image.
We use the VISTA software for edge extraction'!. The contrast and brightness
of the laser image is adjusted, and the image is scaled to limit the effect of
distortion. The resulting image is processed using Canny’s edge extractor '2,
and vertical edges are selected.

Figure 7 shows the projection of the observed vertical edges at a robot
location (upper image), and their predicted location after reestimating the
robot location (lower image). In general, uncertainty reduction is less apparent
than in the case of integrating range points because in this case we integrate
less observations to estimate the robot location.

4.8 Fusing both range and intensity

Fig. 8 shows the results of this process in the last five steps of the path. The
image on the left hand side shows the path and uncertainty evolution relying
only on dead-reckoning. The image in the center, left, shows the results when
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Figure 7: Intensity observations before and after integration.

fusing only the laser wall observations. In this case, only the walls in front of
the robot are sensed. We can see that the uncertainty in the location of the
robot is only significantly reduced in the direction of motion because the front
wall cannot contribute information in the normal direction. The central image,
right, shows the path resulting from fusing only the vertical edge observations.
In this case, uncertainty reduction occurs in both directions, but since the
observation of an edge with a monocular camera only gives information on one
d.o.f. (the projection line), this reduction is less significant than in the case of
laser walls. Finally, the image on the right hand side shows the path resulting
from integrating both laser wall observations and the intensity image vertical
edges. It can be seen that the combination of both types of sensor observations
leads to a more precise estimation of the location of the robot in all directions.
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Figure 8: Robot path for four different fusion experiments: left, uncertainty evolution of

dead-reckoning; center, left, integrating 2D walls; center, right, integrating 2D vertical edges;
right, integrating both 2D walls and 2D vertical edges. Uncertainty is magnified 100 times.

1

5 Conclusions

In this work a model for the representation and fusion of uncertain geometric
information is described. It is suitable to be used for location estimation
problems in multisensor mobile robots. To prove this, we have applied it to
the problem of precisely locating the MACROBE robot by fusing observations
of vertical walls as well as vertical edges obtained from a laser sensor mounted
on the robot. The results show that this representation and fusion model allows
to precisely locate the robot through simple and inexpensive sensor processing.

At present, vision processing is carried out with general vision research
software. Our next step is to apply specialized vision processing techniques to
allow real-time localization. Furthermore, experiments have been limited to
the localization of the robot by comparing all obtained observations with an
a priori map. Observations that seem not to correspond to any features on
the map are simply discarded. For the mobile robot to be confronted to less
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structured environments, it is necessary that new information is not discarded
but confirmed over time and introduced in the map. This map building and
updating capability will be the subject of future work.
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