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Abstract

One of the most challenging aspects of concurrent mapping
and localization (CML) is the problem of data association.
Because of uncertainty in the origins of sensor measure-
ments, it is difficult to determine the correspondence be-
tween measured data and features of the scene or object be-
ing observed, while rejecting spurious measurements. How-
ever, there are many important applications of mobile robots
where maps need to be built of complex environments, con-
sisting of composite features, from noisy sensor data. This
paper reviews several new approaches to data association
and feature modeling for CML that share the common theme
of combining information from multiple uncertain vantage
points while rejecting spurious data. Our results include: (1)
feature-based mapping from laser data using robust segmen-
tation, (2) map-building with sonar data using a novel ap-
plication of the Hough transform for perception grouping,
and (3) a new stochastic framework for making delayed de-
cisions for combination of data from multiple uncertain van-
tage points. Experimental results are shown for CML using
laser and sonar data from a B21 mobile robot.

1 Introduction

The problem of concurrent mapping and localization
(CML) for an autonomous mobile robot is stated as
follows: starting from a initial position, a mobile robot
travels through a sequence of positions and obtains a
set of sensor measurements at each position. The goal
is for the mobile robot to process the sensor data to
produce an estimate of its position while concurrently
building a map of the environment. While the problem
of CML is deceptively easy to state, it presents many
theoretical challenges. The problem is also of great
practical importance; if a robust, general-purpose solu-

tion to CML can be found, then many new applications
of mobile robotics will become possible.

CML, also referred to as SLAM (simultaneous lo-
calization and map building), has been a recurring
theme at the series of ISRR Symposia over the years [1,
2, 3, 4]. For example, in his paper for the second ISRR
symposium, Brooks [2] was among the first to suggest
that a probabilistic approach was necessary to develop
robust algorithms for mapping and navigation:

“Mobile robots sense their environment and
receive error laden readings. They try to
move a certain distance and direction, only
to do so approximately. Rather than try to
engineer these problems away it may be pos-
sible, and may be necessary, to develop map
mapping and navigation algorithms which
explicitly represent these uncertainties, but
still provide robust information. [2]”

The key technical difficulty in performing CML is cop-
ing with uncertainty. Three distinct forms of uncer-
tainty – data association uncertainty, navigation error,
and sensor noise – work together to present a chal-
lenging data interpretation problem. For example, Fig-
ures 1 and 2 show the laser and sonar data, respec-
tively, collected by a B21 mobile robot during several
back-and-forth traverses of a corridor a few tens of me-
ters long. Figure 3 shows the accumulation of dead-
reckoning error during a longer duration traverse of
about 500 meters in the MIT “infinite corridor” (shown
in Figure 22).

Most successful recent implementations of CML
have either been performed with SICK laser scanner
data [5, 6] or in environments that consist of isolated
“point” objects [7, 8]. However, there are many impor-
tant applications of mobile robots where maps need to
be built of complex environments, consisting of com-



Figure 1: Laser data for a short corridor experiment, refer-
enced to the dead-reckoning position estimate

Figure 2: Sonar data for a short corridor experiment, refer-
enced to the dead-reckoning position estimate
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Figure 3: Accumulation of position error relying only on
dead-reckoning for a long distance traverse of the B21 mo-
bile robot. The actual vehicle path went down approximately
40 meters, to the left approximately 225 meters, and then
back to the origin.

posite features, from noisy sensor data. The goal of our
work is to enable autonomous underwater vehicles to
navigate autonomously using sonar. Current methods
for data association in feature-based CML are unable
to cope with sonar because of its sparse and ambiguous
nature.

Thrun et al. [5] and Gutmann et al. [6] have devel-
oped implementations of CML using laser data that are
capable of closing moderately sized loops in real-time.
In their work, the representation consists of “raw” sen-
sor data referenced back to a complete trajectory of
the vehicle. With this representation, they are able to
greatly simplify the data association problem. CML al-
gorithms that use a feature-based representation must
explicitly solve the data association problem for each
sensor measurement. Given a new sensor measure-
ment, does it correspond to a previously mapped fea-
ture, a new feature that should be mapped, or is it spu-
rious and should be ignored?

A key benefit of the SICK laser scanner is that the
data from one position can be directly correlated with
data taken from a nearby position, to compute the off-
set in robot position between the two positions. With
sonar, the raw data is usually too noisy and ambiguous
for this type of approach to work.

Recent work in feature-based CML has shown
the importance of maintaining spatial correlations to
achieve consistent error bounds [7, 8]. The representa-
tion of spatial correlations results in an����� growth
in computational cost [4], motivating techniques to
address the map scaling problem through spatial and
temporal partitioning [9, 10, 11]. Almost all imple-
mentations of feature-based CML to-date have used
fairly simple nearest-neighbor gating techniques. A
more powerful technique that tests the Joint Compat-
ibility testing of multiple sensor measurements, using
a branch and bound algorithm, has been developed by
Neira and Tard´os [12].

In this paper, we present results from several differ-
ent new implementations of CML using either sonar
or laser data. The results demonstrate feature clas-
sification and mapping from multiple uncertain van-
tage points. Section 2 presents results from a real-
time implementation of CML with laser data that uses
techniques from robust statistics for line segment ex-
traction. Section 3 presents map-building results with
sonar using a novel application of the Hough trans-
form for perception grouping. Experimental results
for sonar map-building and laser map-building of the
same scene are compared. Section 4 summarizes a new
stochastic framework for making delayed decisions to
enable combination of data from multiple uncertain
vantage points. Sonar data processing results are pre-



sented. Finally, Section 5 draws some conclusions and
discusses challenges for future research.

2 “Explore and return” using Laser

This section presents results from use of the CMLK-
ernel – a new, generic, real-time implementation of
feature-based CML. Novel characteristics of this im-
plementation include: (1) a hierarchical representation
of uncertain geometric relationships that extends the
SPMap framework [13], (2) use of robust statistics to
perform extraction of line segments from laser data
in real-time, and (3) the integration of CML with a
“roadmap” path planning method for autonomous tra-
jectory execution. These innovations are combined
to demonstrate the ability for a mobile robot to au-
tonomously return back to its starting position within
a few centimeters of precision, despite the presence of
numerous people walking through the environment.

The sensors used were a SICK laser scanner and
wheel encoders mounted on the B21 vehicle. The floor
surface was a combination of sandstone tiles and carpet
mats providing alternatively high and low wheel slip-
page. The exploration stage was manually controlled
although it should be emphasized that this was done
without visual contact with the vehicle. The output of
the CMLKernel was rendered in 3D and used as a real-
time visualization tool of the robots workspace. This
enabled the remote operator to “visit” previously un-
explored areas while simultaneously building an accu-
rate geometric representation of the environment. This
in itself is a useful application of CML; nevertheless,
future experiments will implement an autonomous ex-
plore function as well as the existing autonomous re-
turn.

To illustrate the accuracy of the CML algorithm the
starting position of the robot was marked with four ten-
cent coins; the robot then explored its environment and
when commanded used the resulting map to return to
its initial position and park itself on top of the coins
with less than 2cm of error. The duration of the ex-
periment was a little over 20 minutes long with just
over 6MB of data processed. The total distance trav-
eled was well in excess of 100m. Videos of various
stages of the experiment can be found in various for-
mats athttp://oe.mit.edu/˜pnewman.

Figure 6 shows the environment in which the exper-
iment occurred. The main entrance hall to the MIT
campus was undergoing renovation during which large
wood-clad pillars had been erected throughout the hall-
way yielding an interesting, landmark rich and densely
populated area.

Figure 4: Re-observing an existing feature

Figure 5: Creating a new feature in the foreground following
a rotation

Figure 6: The experiment scene

Figures 4 and 5 show rendered views of the esti-
mated map during the exploration phase of the experi-
ment. In Figure 4 the robot can be seen to be applying a
line segment observation of an existing feature. In con-
trast Figure 5 shows an observation initializing a new
feature just after the robot has turned a corner. The dot-
ted lines parallel to the walls are representations of the
uncertainty of lateral uncertainty in that wall feature.



The vehicle was started with an initial uncertainty of
0.35 m and as shown in [14] all features will inherit
this uncertainty as a limiting lower bound in their own
uncertainty. The�� uncertainty of the vehicle location
is shown as a dotted ellipse around the base of the ve-
hicle.

Figure 7: A plan view of the CML map at the end of the
experiment. The approximate size of the environment was a
20m by 15m rectangle.

Figure 7 shows an OpenGL view of the estimated
map towards the end of the experiment when the robot
is executing its homing algorithm. The circles on the
ground mark the free space markers that were dropped
during the exploration phase of the experiment. The
homing command was given when the robot was at
the far corner of the hallway. Using the output of the
CMLKernel, the robot set the goal marker to be the
closest way point. When the algorithm deduces that
the vehicle is within an acceptable tolerance� of the
present goal marker it sets the goal way-point to be
the closest marker that has score less than the present
goal marker. This then proceeds until the goal marker
is the origin or initial robot position. At this point the
goal seeking tolerance� is reduced to 1cm. The CM-
LKernel spent about thirty seconds commanding small
adjustments to the location and pose of the robot be-
fore declaring that the vehicle had indeed arrived back
at its starting location. Figure 8 and 9 show the starting
and finishing positions with respect to the coin mark-
ers. As can be seen in these figures the vehicle re-
turned to within an inch of the starting location. Read-
ers are invited to view videos of this experiment and
others including navigation in a populated museum at
http://oe.mit.edu/˜pnewman.

Figure 8: The starting posi-
tion

Figure 9: The robot posi-
tion after the completion of
the homing leg of the mis-
sion

3 Sonar Perceptual Grouping Using the
Hough Transform

The data from a standard ring of Polaroid sonar sen-
sors can be notoriously difficult to interpret. This leads
many researchers away from a geometric approach to
sonar mapping. However, using a physics-bases sensor
model, the geometric constraints provided by an indi-
vidual sonar return can be formulated [15]. Each return
could originate from various types of features (point,
plane, etc.) or could be spurious. For each type of fea-
ture, there is a limited range of locations for a potential
feature that are possible. Given these constraints, the
Hough transform [16] can be used as a voting scheme
identify point and planar features. More detail on this
technique will be published in a future report. A some-
what related technique called triangulation-based fu-
sion has been developed by Wijk and Christensen [17]
for point objects only. The Hough transform approach
is advantageous because it can directly identify spec-
ular planar reflectors from sonar data, which is vi-
tally important in typical man-made environments with
many smooth walls.

Figure 10 through 13 provide an illustrative result
for this approach. The Hough transform is applied to
small batches of sonar data (22 positions each) as a
pre-filter to look for potential new features in the sonar
data. These groupings are then fed into an implemen-
tation of CML that uses the SPMap as the state esti-
mation framework [13], Joint Compatibility for data
association[12], and a new technique called Map Join-
ing (to be desribed in a future report). Figure 14 shows
a map of the same environment built from laser data.
One can see that sonar map is almost as good as as well
as the laser map.

4 Delayed Stochastic Mapping

This section reviews stochastic mapping and its ex-
tension to account for temporal correlations [18].
Stochastic mapping is a feature-based concurrent map-
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Figure 10: Example of Hough processing to extract point
and line features. Sonar returns are processed in a group of
twenty-two positions. A voting scheme is performed to find
clusters of measurements that hypothesize the existence of
point and plane features. For this example, two planes and
two points have been found.

0

2

4

6

8

10

12

14

Ro (m)

T
he

ta
 (

de
g)

Hough Table for Points

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−150

−100

−50

0

50

100

150

Figure 11: Hough voting table for point features.
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Figure 12: Hough voting table for line features.
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Figure 13: Complete map for the MIT Compton Gallery built
from sonar using Hough grouping, Map Joining, and Joint
Compatibility.
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Figure 14: Complete map for the MIT Compton Gallery built
from laser data using Robust Statistics, Map Joining, and
Joint Compatibility.



ping and localization algorithm that was first published
by Smith, Self, and Cheeseman [19] and Moutarlier
and Chatila [20]. The method assumes that there
are� features in the environment, and that they are
static. The true state at time� is designated by���� �
������

� �� ���
� �� , where����� represents the location

of the robot, and�� ���
� � ���� ���

� � � � ��� ���
� ��

represent the locations of the environmental features.
Let ���� designate the sensor measurements obtained
at time �, and�� designate the set of all measure-
ments obtained from time� through time�. The ex-
tended Kalman filter to compute recursively a state
estimate������� � ���� �����

� ��� ���
� �� at each dis-

crete time step�, where ��������� and ��� ���� �
����� ���

� � � � ���� ���
� �� are the robot and feature state

estimates, respectively. The stochastic mapping equa-
tions are not repeated here, for more detail, see [19,
21].

Data association decisions must be made for each
new measurement to determine if (1) it originates from
one of the features currently in the map, (2) it orig-
inates from a new feature, or (3) it is spurious. In
general, the data association problem is exponentially
complex [22], and no general solution that can run in
real-time has been published. Most published imple-
mentations of CML have used variations of “nearest-
neighbor” gating techniques [22], however nearest-
neighbor gating can be shown to fail in many situa-
tions [23, 24]. Many implementations of stochastic
mapping will only consider a measurement as a can-
didate for new feature initialization if it does gate with
any existing features. However, such an approach will
fail in environments with composite features (extended
objects) or many features close to one another. The
motivation for delayed stochastic mapping is to be able
to consider various hypothesis for the origins of mea-
surements in a computationally efficient manner, in-
cluding the generation of a new feature with a mea-
surement, even if it gates with an existing feature.

An assumption commonly employed in previous
work is that the state of the new feature,������ ���
can be computed using the measurement data available
from a single vehicle position, using a feature initial-
ization function����:

������ ��� � ���������� �� ����� (1)

For example, for a sensor providing range and bearing
measurements,�� ��� � �� 	�, the feature initialization
function for a point���� takes the following form:

������ ��� � ���������� �� ���� �

�

� 	 � 
����	 	�
�� 	 � ����	 	�

�
�

(2)

The new feature is integrated into the map by expand-
ing the state vector������� and covariance������ as
shown below:

������� �

�
�������

������ ���

�
� (3)

�������

�
� �������� ��� ����� ������

�����

�������� ��� ����� ������
�����

����������� ������ ����� ���������
�����

�
� �

(4)

where

���������
����� � ���������

�
�
��������

�
�
� (5)

�
����������� ������ �����

�
�

�
�����������

������ �����

��
� ���������

(6)

�� is the Jacobian of� with respect to the state vector
and�� is the Jacobian of� with respect to the mea-
surement.

To be able to perform feature initialization from
multiple vantage points, we need to expand the state
vector and to account for temporal correlations. To
achieve this, the representation is expanded to add a
number of previous vehicle locations to the state vec-
tor. We refer to these states as trajectory states. Each
time the vehicle moves, the previous vehicle loca-
tion is added to the state vector. We use the nota-
tion ���� ��� to refer to the estimate of the state (posi-
tion) of the robot at time given all information up to
time �. The complete trajectory of the robot for time
step� through time step� � � is given by the vec-
tor ������ � ����� ���

� ���� ���
� ���� ���

� � � � ������
����� .

The complete state vector is:

������� �

�
���������������
��� ���

�
� �

�
���������������������

��������
���� ���
���� ���
���� ���

...
������

���
���� ���
���� ���
���� ���

...
������ ���
���� ���

�
���������������������

� (7)

The associated covariance matrix is:

������ �

�
��������� �������� ��� �����
�������� �������� ��� �����
�������� �������� ��� �����

�
� � (8)



New trajectory states are added to the state vec-
tor each time step by defining a new trajectory state
���� ��� � �������� and adding this to the state vector:

������� �

�
������������

��������
���� ���
���� ���
���� ���

...
������

���
���� ���
��� ���

�
������������

� (9)

The state covariance is expanded as follows:
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�

(10)

where����� � ���� , ���� � ��� , and����� � ���.
The growth of the state vector in this manner increases
the computational burden, however it is straightfor-
ward to delete old vehicle trajectory states and asso-
ciated terms in the covariance, once all the measure-
ments from a given time step have been either pro-
cessed or discarded.

This process of adding past states is similar to
a fixed-lag Kalman smoother [25]. In a fixed-lag
smoother, states exceeding a certain age are automati-
cally removed. In our approach, states are added and
removed based on the data processing requirements of
the stochastic mapping process. Unlike the fixed-lag
smoother, states are not necessarily removed in the or-
der in which they are added.

With the addition of prior vehicle states to the state
vector, it now becomes possible to initialize new fea-
tures using measurements from multiple time steps.
For example, consider the initialization of a new fea-
ture using two measurements,����� and�����, taken
at time steps�� and��. The state of the new feature
can be computed using a feature initialization function
involving data from multiple time steps:

������ � ������� ���� ����� ���� ������
� �����

� �� �� (11)

For example, in two-dimensions if each measurement
is a range-only sonar measurement, then the function
���� represents a solution for the intersection of two
circles. The covariance for the new feature is initial-
ized in a similar fashion as shown above in Equations 4
to 6, except that the Jacobian matrix�� will contain

Figure 15: Raw data for corridor experiment, referenced to
odometric position estimate.

additional non-zero terms corresponding to the trajec-
tory states and the Jacobian matrix��. The proce-
dure is the same if the feature initialization function
���� is a function of measurements from more than two
time steps. New feature initialization can also be per-
formed using non-linear least squares [26] performed
on many measurements, instead of using an explicit
function����.

To provide improved stability, the addition of new
features to the state vector can be delayed to occur only
when the initializing Jacobians indicate that the new
feature estimate is well-conditioned. By examining the
different possible initialization sets and choosing the
Jacobian with the smallest values, the most stable ini-
tialization can be determined. In addition, one can in-
corporate an adaptive motion control step to direct the
robot to move to a better vantage point that will yield
a more stable initialization. By considering second-
order derivatives, the robot can determine the optimal
direction to move in order to obtain data that will yield
the most stable initialization of a new feature.

Once a new feature is initialized, the map can be
updated using all other previously obtained measure-
ments that can be associated with the new feature. We
call this procedure a ”batch update”. It allows the max-
imum amount of information to be extracted from all
past measurements. It also provides a means to incre-
mentally build up composite models of more complex
objects [18].

Some illustrative results for delayed decision mak-
ing are presented in Figures 15 to 18, which show the
results for processing of data in an MIT corridor. Fur-
ther details can be found in a forthcoming paper.

We believe that this methodology provides a new



Figure 16: Raw data for corridor experiment, referenced to
CML position estimate.

Figure 17: Sonar measurements that were matched to fea-
tures for corridor experiment, displayed as points.

Figure 18: Sonar measurements that were matched to fea-
tures for corridor experiment, displayed as circular arcs.

generic framework for improved feature modeling and
classification using delayed decision making. The abil-
ity to perform a batch update using many previous
measurements provides a facility for making delayed
data association decisions. If there is ambiguity about
the correspondence between measurements and fea-
tures, decisions can be postponed until additional in-
formation becomes available. Feature extraction is also
simplified. The initialization of complex features in
situations with high ambiguity can be greatly simpli-
fied by considering a batch of data obtained at multiple
time steps. Efficient, non-stochastic perceptual group-
ing methods such as the Hough technique described
above in Section 3 can be used to screen the data and
make preliminary association decisions that can later
be confirmed with delayed stochastic gating, and then
applied via batch updating.

5 Conclusion

This paper has considered the development of im-
proved data association and feature modeling tech-
niques for CML, using delayed decision making. Ex-
perimental results have been shown for both Polaroid
sonar and SICK laser scanner data from a B21 robot,
operating in the corridors of MIT, using several new
data association and feature modeling techniques.

The ultimate goal of our research is to create a ro-
bust, consistent, convergent, and computationally effi-
cient real-time algorithm for CML for large-scale en-
vironments. As a challenge for our research, we have
set ourselves the show-term goal of autonomously per-
forming CML in the largest building of MIT campus
— the “infinite corridor” and its adjacent hallways —
using standard Polaroid sonar data and/or laser data.
Figures 21 shows a preliminary result that we have
achieved with sonar only, showing a map consisting
of about 800 features (walls, door moldings, etc.) built
from a single pass around a large loop (travel distance
of about 200 meters, duration of 26 minutes). Features
were initialized using the output of the Hough percep-
tual grouping technique described above in Section 3.
The processing time for this map is slightly greater
than real time on an 800 MHz machine. Much fur-
ther work is necessary to reach our goal of achieving
convergence, while operating in real-time and main-
taining consistent error bounds. We feel that the map
scaling problem can be addressed with spatial and tem-
poral partitioning techniques, and that the biggest re-
maining roadblocks are the problems of data associa-
tion and modeling of complex features. We believe that
the techniques presented in this paper offer significant
help towards reaching this goal.



Figure 19: Raw sonar data for the beginning of the experi-
ment.

Figure 20: Point and line features (with 3� error ellipses for
point targets) for the beginning of the experiment.

Figure 21: Map constructed for a complete loop. The robot
is approximately back at its starting position at the end of the
trajectory.

Figure 22: Schematic of the MIT campus, showing the “infi-
nite corridor” that connects buildings 7, 3, 10, 4, and 8. The
data for Figure 21 was taken in buildings 5, 7, 3, and 1.
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