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Hierarchical SLAM: Real-Time Accurate
Mapping of Large Environments

Carlos Estrada, José Neira, and Juan D. Tardós

Abstract—In this paper, we present a hierarchical mapping
method that allows us to obtain accurate metric maps of large en-
vironments in real time. The lower (or local) map level is composed
of a set of local maps that are guaranteed to be statistically inde-
pendent. The upper (or global) level is an adjacency graph whose
arcs are labeled with the relative location between local maps. An
estimation of these relative locations is maintained at this level
in a relative stochastic map. We propose a close to optimal loop
closing method that, while maintaining independence at the local
level, imposes consistency at the global level at a computational
cost that is linear with the size of the loop. Experimental results
demonstrate the efficiency and precision of the proposed method
by mapping the Ada Byron building at our campus. We also
analyze, using simulations, the precision and convergence of our
method for larger loops.

Index Terms—Large maps, local maps, loop closing, stochastic
mapping.

I. INTRODUCTION

OVER THE past few years, there has been an increasing
interest in reducing the computational time and memory

requirements when performing simultaneous localization and
mapping (SLAM) in large areas (see [1] and [2] and the refer-
ences therein). The method presented here, hierarchical SLAM,
addresses the complexity of mapping large areas by building a
set of independent local stochastic maps. By limiting the max-
imum local map size, this can be carried out in constant time per
step. The system is completed with an upper global level con-
taining a graph whose nodes correspond to the local maps and
whose arcs represent adjacency relations. The metric informa-
tion about the relative location between adjacent maps is also
stored at the global level using a stochastic map representation.
An additional advantage of this approach is its natural exten-
sion to multirobot map building: several robots can contribute
new local maps or refine previously built local maps.

Several current methods address the computational com-
plexity problem by working on a limited region of the map.
Postponement [3] and the compressed filter [4] significantly
reduce the computational cost without sacrificing precision,
although they require an step on the total number of
landmarks to obtain the full map. The split covariance intersec-
tion method [5] limits the computational burden but sacrifices
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precision: it obtains a conservative estimate. The sparse ex-
tended information filter [6] is able to obtain an approximate
map in constant time per step, except during loop closing. All
cited methods work on a single absolute map representation
and confront divergence due to nonlinearities as uncertainty
increases when mapping large areas [7].

In contrast, sequential map joining [8] and the constrained
local submap filter [9] propose to build stochastic maps rela-
tive to a local reference, guaranteed to be statistically indepen-
dent. By limiting the size of the local map, this operation is con-
stant time per step. Local maps are joined periodically into a
global absolute map, in an step. Given that most of the
updates are carried out on a local map, these techniques reduce
the harmful effects of linearization [7].

The constrained relative submap filter (CRSF) [10] proposes
to maintain the local map structure. Each map contains links to
other neighboring maps, forming a tree structure (where loops
cannot be represented). The method converges by revisiting the
local maps and updating the links through correlations. In the
Atlas system [1], the constant-time SLAM (CTS) algorithm
[11], and our approach, the links between local maps form
an adjacency graph. The main difference is that neither the
Atlas system nor CTS impose loop consistency in the graph,
sacrificing the optimality of the resulting global map. Instead,
the location of a local map relative to a given base is computed
by composing transformations along the most precise path
throughout the graph. Bailey [12] proposes a similar approach
called the network coupled feature maps (NCFM). The coupling
(relative location) between two adjacent local maps is estimated
using the constraints imposed by common features found by a
batch data association algorithm. However, the method ignores
the correlations appearing between the coupling estimates. The
author conjectures that this still produces consistent results, but
no proof or experimental validation is provided.

It is well known that, even in small environments, imposing
loop consistency increases the precision of the resulting map
[13]. However, closing large loops is an especially difficult task.
The first key problem is the reliable detection of loops. This
requires data association techniques that do not rely on a precise
estimation of the vehicle location. In this study, we use the RS
linear time relocation algorithm of [14]. The reader may consult
this paper for additional details and further references on the
subject.

The second key problem is that linearized methods like the
extended Kalman filter (EKF) fail to obtain accurate map esti-
mations due to the large uncertainties appearing in large loops.
Several researchers have addressed the problem of loop closing
while building metric maps. In [15], the authors make use of the
expectation-maximization (EM) algorithm to simultaneously
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estimate the map and the pose of the robot. This methodology
works with a global map and has a high computational cost.
The work in [16] proposes an incremental mapping method
that uses scan matching and global correlation to build a graph
of adjacent robot poses. For closing loops, they use consistent
pose estimation [17], whose time complexity is on
the number of robot poses, making the method unsuitable for
real-time execution in large environments. More recently, a
similar approach to build consistent maps with many cycles has
been proposed in [18]. This method obtains correspondences
between vehicle poses using the iterative closest-point algo-
rithm. Using a quadratic penalty function, correspondences are
incorporated into an optimization algorithm that recomputes
the whole trajectory. This process is iterated until convergence.
However, the method requires the estimated vehicle poses
before loop closing to be nearby, limiting the size of the loops
that can be successfully closed. Neither computing time not
theoretical computational complexity are reported.

In this paper, we present a new method to impose loop con-
sistency at the global map level that makes careful use of sto-
chastic map techniques. Due to the large uncertainties appearing
in big loops, nonlinearities become important, making the clas-
sical EKF technique obtain inaccurate estimations. Nonlineari-
ties have been successfully addressed using standard nonlinear
least-squares optimization techniques in the context of bearing-
only SLAM [19] and range-only SLAM [20]. We show that em-
ploying similar techniques with an appropriate representation
for the problem structure produces close to optimal results at the
global map level at a low computational cost. The relative rep-
resentation of the locations at this upper level introduces highly
sparse matrices that can be exploited in the calculation process
by means of specialized sparse methods. Moreover, this efficient
local parametrization contributes to make the method more ro-
bust and stable. We are able to obtain the optimal solution to
the loop-consistency problem in with being the loop
length (number of local maps in the loop). We also show that
our scheme can be derived from a general formulation of the
problem using the iterated EKF (IEKF) detailed in [21]. Exper-
imental results validate our method: we obtain a close to op-
timal global map of a building with several big loops (in the
200–350 m range) in less than 1 s. We have also carried out
simulations that assert the accuracy of hierarchical SLAM for
loops up to 3.6 km long.

This paper is organized as follows. After the introduction in
Section I, the fundamental aspects of the hierarchical SLAM
model are discussed in Section II. The process to impose loop
consistency at the global level is presented in Section III.
Section IV describes the experiments conducted to validate our
approach. In Section V, we discuss the advantages and limi-
tations of hierarchical SLAM with respect to other methods.
Finally, in Section VI, we draw the main conclusions of this
study and outline future research directions.

II. HIERARCHICAL SLAM

The hierarchical map proposed in this paper is an environ-
ment representation at two levels. In the following, each level
in the hierarchy, as well as the process of map maintenance that
assures consistency, are described in detail.

Fig. 1. Two-level hierarchical SLAM model.

A. Local Level

The fundamental building blocks of our map representation
at the local level are feature-based local stochastic maps of dif-
ferent regions of the environment (Fig. 1, bottom), guaranteed
to be of limited size and mutually independent in the statistical
sense at all times. A local map contains infor-
mation related to a set of elements in the environment, where

...
...

. . .
... (1)

The state vector contains the estimated pose of the vehicle ,
, and the location of the environment features
, all with respect to a base reference . The

parameters that represent this location depend on the feature
type [8]. The base reference may be the initial current vehicle
location when the map is initialized or it may be associated with
a set of local features, such as a corner or a pair of points.

Furthermore, each local map may contain the position and
orientation of the base reference of neighboring maps, relative
to the local base. For simplicity of notation, we will denote
the relative transformation between two consecutive maps as

and its corresponding covariance matrix as .
For example, in Fig. 1, bottom, local map contains the es-
timation of and its corresponding covariance.

Local maps are required to be mutually independent at all
times for this representation to be consistent. This condition
is guaranteed during the different stages of the map building
process described in the following subsections.

B. Global Level

At the upper (or global) level, the topology of the environ-
ment is represented by a graph in which each node corre-
sponds to a local map of the local level. An arc in the
graph represents a known topological relation between local
maps and detected during the mapping process. The
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properties of these topological relations are the relative transfor-
mations between the base reference of both maps,

. At this global level, these relative transforma-
tions are maintained in a relative stochastic map
(the subscript stands for unconstrained, since no loop closing
constraints are imposed in this map), where

...

...

(2)

Every time a local map is created or modified, the new values
are included in this relative stochastic map. Since all local maps
are independent, matrix is block diagonal by construction.
More accurate estimates are calculated at the global level when
imposing loop constraints (Section III). These new estimates are
maintained at the global level in a separate relative stochastic
map . Every time a loop is detected, the constrained
stochastic map is recomputed by minimizing the difference
with respect to the unconstrained map , using
the last value of as seed for the optimization process. As will
be proved in Section III-A, this allows us to maintain the com-
putational cost of loop closing linear with the size of the loop.

C. Building Local Maps

During continuous SLAM, local maps are sequentially built
in the following way (see [8] for a more detailed explanation
of the process): at a given instant , a new map is initialized
using the current vehicle location as base reference . Then,
the vehicle continues moving and acquiring sensor information
about the environment features . At each step, data associ-
ation is robustly solved using the joint compatibility test [22],
and the local map is updated with standard stochastic mapping
techniques [23].

The resulting local map is independent of any prior map
because it is built relative to the initial vehicle location

at and depends only on the sequence of odometry readings
and sensor data obtained during the involved steps. Under the
common assumption that process and measurement noise are
white random sequences, two local maps built with the same
robot from disjoint sequences of steps are functions of indepen-
dent stochastic variables. Therefore, the two maps will be sta-
tistically independent and uncorrelated.

The very important consequence is that, during local map
building, we do not need to compute the correlations between
features in the current local map and features in any other local
map, because they are known to be zero by construction. Thus, if
the size of local maps is bounded, the cost of local map building
is constant at each step, independent of the size of the global
map.

The decision to close map and start a new local map
is made once the number of features in the current local map
reaches a maximum, or the uncertainty of the vehicle location
with respect to the base reference of the current map reaches
a limit, or no matchings were found by the data association
process for the last sensor measurements (a separate region
of the environment is observed). Note that the new local map

Fig. 2. (a) Map building before closing a loop on mapsM andM . (b) Map
building after closing a loop by joining and fusing mapM intoM .

will have the current vehicle position as a base refer-
ence, which corresponds to the last vehicle position in map

. This provides the relative transformation ,
corresponding to the topological relation between the adjacent
maps and . This relation can be safely copied to
the global relative stochastic map because it is independent
from any other relative location already present at this level.

D. Loop Closing

The sequential mapping process allows us to have an estima-
tion of the current vehicle position with respect to any previous
local map base reference. This allows to hypothesize that a pre-
viously mapped region of the environment, say corresponding
to map , is being revisited, and thus a loop is being closed. To
confirm this hypothesis and discard alternative ones with neigh-
boring maps, we use the RS relocation algorithm proposed in
[14]. It has a very low false positive rate, except for environ-
ments with a high degree of symmetries. If considerable overlap
is found with more than one local map, loop closing should
be delayed until enough information is gathered to resolve the
ambiguity.

Once a loop-closing hypothesis has been confirmed, a
common reference corresponding to a feature (for example, a
corner) observed in both maps is selected [Fig. 2(a)]. Given that
by construction both maps are independent, local map joining
[8] is used to join and fuse them [Fig. 2(b)]. Map will still
have as the base reference and will include an estimation of
reference with respect to , . Map also

contains an estimation of reference , . This gives
us a new topological relation between maps and that
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allows us to add a new link at the global level of the hierarchical
map. This provides the information necessary to close the loop.

It may, of course, be the case that map already has topo-
logical relations with other maps, in particular with map .
In this case, the stochastic map in the global level before closing
the loop would be

...

...

As a result of joining and fusing map into map ,
the estimated relative location will be updated in map

, and its correlation with will also be computed. This

allows us to update the estimation of in the sto-
chastic map at the global level, and simultaneously copy the new
link and its correlation , with ,

(and any other relative location already in both levels
for that matter). The result will be

...

...

Note that map remains independent from any other local
map, guaranteeing mutual independence at the local level.

Once the map fusion is performed at the local level, a loop
is obtained at the global level. However, due to the large uncer-
tainties appearing in big loops, the composition of the succes-
sive relative transformations between maps may be inconsistent.
In Section III, a method for imposing consistency at the global
level will be detailed.

E. Revisiting a Previous Local Map

Sometimes the vehicle arrives at a previous local map through
an existing topological relation. This happens either when the
vehicle is turning back, or when traversing a loop for the second
time. In this case, the relocation algorithm is used to confirm the
revisiting of the map, and to determine the current location for
the vehicle in that map. The vehicle can then proceed to update
the map as it is being traversed.

During this process, the local estimation of the relative trans-
formation between the map and its neighbors is also improved
through correlations [10]. In our system, when possible, the base
reference of a local map is associated to an observable feature
instead of the initial vehicle location when the map was created.
This allows to further improve the link estimate through direct
observation. The procedure for changing the base reference of
the map to a feature shared with the previous map is described
in [8]. Once the vehicle leaves the map, the relative transforma-
tions are updated in map . If the update is important, loop
closing constraints can be applied again (Section III) to obtain
a more accurate estimation of .

Fig. 3. Loop of relative transformations in the global level.

III. IMPOSING LOOP CONSTRAINTS

Suppose that a sequence of local maps have been built,
and thus we have obtained where is block
diagonal. Suppose an overlap has been detected between the first
and the last maps. To obtain a consistent estimation at the global
level , we impose the condition that the composition
of transformations along the loop be zero (Fig. 3) as

(3)

where is the state vector of the relative transformations be-
tween the local maps that form the loop

...
(4)

Given that is a composition of transformations, it is
nonlinear due to the angular terms. When the loop is big, lin-
earization errors become important, and the linear techniques
employed at the local map level are no longer valid to compute
an accurate estimation of .

A. Nonlinear Constrained Least-Squares Optimization for
One Loop

In order to confront these nonlinearities, a different approach
is necessary. For this purpose, we formulate the problem as the
obtention of the maximum a posteriori likelihood estimation of
the relative locations at the global level, given the loop con-
straint. This can be expressed by means of the following con-
strained optimization problem:

(5)

Several methodologies can be used to find a solution to this
problem. Early methods, considered now relatively inefficient,
translate the constrained problem to a basic unconstrained
problem by using penalty functions. These methods have now
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been replaced by methods that focus on the solution of the
Kuhn–Tucker equations. Sequential quadratic programming
(SQP), derived from the Kuhn–Tucker equations, is one of
the most employed (the general SQP expression for a new
estimation can be found in Triggs et al. [24]). Adapting it for
the particular case of the optimization problem (5), the SQP
estimation for and its associated covariance matrix can be
obtained by iterating these two equations until convergence

(6)

(7)

As seed for these iterations, we use the best values com-
puted for each link so far. For links that have already been in-
volved in a previous loop constraint, the corresponding values
are taken from the constrained map transformations ; other-
wise, from the unconstrained transformations .

Vector is the estimated value of

(8)

and matrix is the Jacobian of evaluated in

(9)

As is a composition of transformations, is a ma-
trix that must be recomputed for every iteration. The Jacobian
terms are calculated using the expression

(10)

where and represent the Jacobians of the composition
of transformations [25], and , used in the last expression to
simplify the notation, is defined as

(11)

It should be noticed that is a full matrix, singular due to the
loop constraint. A more efficient implementation of the method
can be deduced after the substitution of (6) into (7). Rearranging
the terms, we obtain a new expression for calculating

(12)
Note that there is no need to compute the full matrix in

each iteration. Instead, the block diagonal matrix is em-
ployed. As is a matrix, each iteration is linear with ,
the number of local maps in the loop. Since we are using relative
transformations between maps, local maps that do not belong to
the loop do not take part in the optimization, making its com-
plexity independent of the total map size.

Should you need to determine the uncertainty of each base
reference in a global frame, the full covariance may be com-
puted at the end of the iterations using (6). However, this in-
volves an computation.

In complex environments with a high degree of symmetry,
it is possible that the map-matching algorithm gives a spurious
loop closing. In this case, the loop constraint of (3) would force
the optimization to converge to a solution far from its true value.
In order to detect this event, and thus add robustness to the
system, a hypothesis test based on the squared Mahalanobis dis-
tance is performed

(13)

where is a threshold value obtained from the distribution
with rank , and such that is the probability of rejecting
a good loop closing.

B. Nonlinear Constrained Least-Squares Optimization for
Several Loops

The method explained above can be easily generalized to deal
with the simultaneous closing of loops by adding as many con-
straints as loops to be closed. The loop constraint for the th loop
is then expressed as

(14)

where is the number of relative transformations that con-
stitute loop . The vector of composition of transformations
along the loops is formed by all the terms from to as

...
(15)

The state vector of relative transformations maintains the
expression of (4) where is now the total number of relative
transformations belonging to the whole of the loops. Any rela-
tive transformation that does not form part of a loop in the upper
level takes no part in the optimization process.

The solution is obtained by iterating (12), where in this case
matrix is the Jacobian of evaluated in as

...
...

. . .
...

(16)

It must be noticed that this matrix becomes sparse as in-
creases because all the terms where does not be-
long to the loop are null. When implementing (12), the sparsity
of both and will be considered to optimize the algorithm.

C. Iterated Extended Kalman Filter

Equation (7), and therefore (12), can also be derived from the
IEKF algorithm found in Bar-Shalom et al. [21]. For adapting
this algorithm to our problem, we can represent the detection of
a new loop as an imprecise measurement affected by a
small Gaussian noise

(17)
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Fig. 4. Map before closing the first loop.

The new estimation for at iteration and its associated
covariance matrix at iteration obtained from this algorithm
is given by

(18)

(19)

Equation (19) can be rearranged, using (18), to produce the
following expression, which avoids inverting :

(20)

Substituting the imprecise measurement for the exact loop
constraints ( and ) in (18) and (20) will lead to
(6) and (7). Thus, using the IEKF with an exact measurement
function is equivalent to solving the nonlinear constrained least
squares optimization problem (5) using SQP.

IV. EXPERIMENTAL RESULTS

To validate the hierarchical SLAM method, we have con-
ducted an experiment in the Ada Byron building at our campus
using a robotized wheelchair equipped with a SICK laser
scanner. The vehicle was handdriven along a mixed indoor/out-
door path of 735 m with three loops of about 250, 160, and
325 m, at a mean speed of 0.45 m/s.

First, the scans were processed to obtain line features using a
robust segmentation algorithm, and a classical EKF SLAM pro-
cedure was used to build each local map. For this demonstration,
new local maps are initialized at fixed intervals of about 10 m.
This results in a large amount of local maps (84), which allows
us to better analyze the performance of the techniques used at
the global map level. Fig. 4 shows the map obtained along the
first 250 m. Ellipses represent the accumulated uncertainty in
the position of the base reference of each local map, computed
by composing the relative transformations stored in the global
map level.

At this point the vehicle closes a loop for the first time. The
loop consistency constraint explained in the previous section
was applied at the global map level, obtaining a much more

Fig. 5. Map after closing the first loop.

Fig. 6. Map after closing the second loop.

precise map, shown in Fig. 5. The error is distributed among all
relative transformations, and the uncertainty of each location is
clearly reduced.

The same procedure was applied after closing the second and
third loops, obtaining the maps shown in Figs. 6 and 7. The first
two loops have little overlap, and thus the angle between the
corresponding two wings in the building is somewhat loosely
estimated. The third loop constraint involves submaps already
present in the first two, and therefore it enforces rigidity in the
map and corrects the deformation. As the third loop involves
an outdoor experiment, small inaccuracies are introduced when
segmenting vegetation and slopes that can be appreciated as su-
perposing lines in the left part of the map. In the three cases,
the method converged in four iterations with computing times
of 0.21, 0.46, and 1.12 s using (6) and (7) and 0.15, 0.32, and
0.68 s using (6) and (12) on a Pentium IV 1.7-GHz processor.

To provide a deeper insight into the accuracy and robustness
of the hierarchical SLAM for larger loops, we have performed
a set of simulations. In each run, the vehicle traverses a square
loop, ranging from 40 up to 3.5 km long, and revisits the loop
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Fig. 7. Map after closing the third loop.

twice. Each local map is generated by assuming a 10-m dis-
placement of the robot, with an associated covariance matrix
obtained from the experimental results with the real robot. The
relative map at the global level is obtained by
adding Gaussian noise to the ground true solution. We run 100
simulations for every loop of a given size. The loop constraint is
imposed at the end of each of the three completions of the loop.
In all cases, the optimization converged to a local minimum, im-
proving the precision of the initial estimation.

Fig. 8(a) and (b) shows the mean and maximum error (dis-
tance from the ground truth) of the position of the corner op-
posite to the start point for different loop sizes. The four curves
represent, from top to bottom, the initial error, the error after the
first closing of the loop, the error after the second pass and the
error after the third pass. We can see that the accuracy of the esti-
mation is roughly doubled by imposing the first loop constraint.
The same effect can be observed in the real world experiments
(Fig. 5). For the following passes, the error decreases in propor-
tion to , where is the number of passes. Error increase
is worse than linear with the length of the loop: .

V. DISCUSSION

In hierarchical SLAM, as local maps are being revisited, their
estimates are improved using the standard EKF algorithm. This
is known to provide a suboptimal solution, due to linearization
errors. Given that the local maps are of limited size, linearization
errors have a small effect [7]. At this local level, hierarchical
SLAM is equivalent to all other methods based on local maps in
the sense that local maps and their relative transformations will
converge to the true solution. Roughly, the error will be reduced
at a rate of , where is the number of times a local map
has been traversed.

The main difference appears when a loop has been detected
at the global level. CRSF [10] simply discards this informa-
tion. The absolute location of a local map is computed by com-
posing relative transformations along a fixed tree. In Atlas [1]
and NCFM [12], the loop is used to decide the shortest path from

the absolute reference to each local map. This only improves
the accuracy of local maps whose distance to the absolute refer-
ence becomes shorter thanks to the loop detection: roughly the
second half of the maps in a single loop. In CTS [11], in order to
preserve constant time operation, only the local map currently
visited gets its global position improved. In hierarchical SLAM,
imposing loop consistency improves the accuracy in the abso-
lute location of all local maps in the loop. Furthermore, as seen
in the experiments, the accuracy of the map farther from the
origin is doubled. All other methods would require at least four
passes along the loop to attain this precision.

In hierarchical SLAM, as in other two level mapping sys-
tems, the separation between the local and global levels intro-
duces suboptimality in the solution. In order to maintain inde-
pendence between the local maps, corrections performed at the
global level as a result of loop closing are not propagated back
to the local level. However, these corrections are very small and
would have little incidence in local map precision. The absolute
location of a local map can be consistently computed, but if this
information is composed with the location of a feature within
the local map, the correlations between the local level and the
global level are ignored. However, this inconsistency is likely to
be small. If necessary, this inconsistency can be avoided by in-
cluding this feature at the global level and recomputing the loop
constraint.

Another cause of suboptimality appears at the frontier be-
tween local maps. If the same feature is observed in two neigh-
boring maps, the consistency in its absolute location is not im-
posed. Imposing this constraint would increase the precision of
the local maps and the link between them, but the maps will
become correlated. Bailey [12] conjectures that ignoring these
correlations still produces consistent results, but gives no proof.

The method used to impose the loop closing in hierarchical
SLAM makes optimal use of the information available at the
global level. Nonetheless, SQP is a local optimization technique
that assures convergence to a local minimum, but does not guar-
antee obtaining the best local minimum, i.e., the global solution
[26]. In our system, the use of a local parametrization facili-
tates convergence to the global optimum. Linearization errors
are not introduced in the optimization objective function .
The nonlinear aspect of the problem is represented by the con-
straint function , which is relinearized in each iteration. As
long as the initial solution is close enough to the true solution
(in particular, if angular errors in the closing of the loop are
small), the linearization errors will also be small and the process
will converge as shown by our simulations. Using an absolute
parametrization leads to introducing linearizations in the objec-
tive function. When dealing with big loops, absolute estimation
errors due to nonlinearities become important, and convergence
is less likely to be attained.

In [18], an absolute parametrization is employed to build con-
sistent maps with many cycles. In order to compute consistent
poses in closed form, the relative pose information is trans-
formed into quadratic constraints using a first order approxima-
tion. The loop closing matchings are also incorporated with an
ad hoc quadratic penalty function. The convergence of the op-
timization is likely to be very sensitive to the initial absolute
errors. The success of the experiments presented seems to rely
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(a) (b)

Fig. 8. (a) Mean errors and (b) max errors obtained at the global level in 100 runs for each loop size.

on the accuracy of the scan matching technique that gives accu-
mulated heading errors of less than 1 .

VI. CONCLUSION

In this paper, we propose a hierarchical mapping method
for large-scale SLAM. Its main advantage over previous pro-
posals is the efficient maintenance of loop consistency when
calculating the optimal estimation at the global level, which
allows us to improve map precision. A robust, stable and local
parametrization is established by the use of relative locations,
giving the method a good numerical performance near the
current state estimate. The algorithm developed is based on
a nonlinear constrained least-squares optimization using the
SQP method. This problem formulation gives the maximum
a posteriori likelihood estimation of the relative locations in
the global level given the loop constraints. Convergence to the
accurate solution will be achieved as association errors remain
small. Experimental results show that environments of around
100 m 100 m, including large loops, can be mapped in real
time. Simulations also verify the robustness and accuracy of the
method for larger loops, and gives insight into its proprieties. In
future work, we will investigate the applicability of this method
to larger environments and its extension by adding higher levels
to the hierarchy.
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