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José A. Castellanos José Neira Juan D. Tardós
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Abstract: This paper analyzes the consistency of the classical extended Kalman
filter (EKF) solution to the simultaneous localization and map building (SLAM)
problem. Our results show that in large environments the map quickly becomes
inconsistent due to linearization errors. We propose a new EKF-based SLAM
algorithm, robocentric mapping, that greatly reduces linearization errors, improv-
ing map consistency. We also present results showing that large-scale mapping
methods based on building local maps with a local uncertainty representation
(Tardós et al., 2002) have better consistency than methods that work with global
uncertainties.
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1. INTRODUCTION

During the last five years, the robotics literature
has been populated with scientific work on the
problem of simultaneous localization and mapping
(SLAM), also referred to as concurrent mapping
and localization (CML). Basically, the problem
relates to the autonomous exploration of an un-
known environment using the relative observa-
tions obtained by onboard sensors mounted on a
computerized vehicle. The most popular approach
to SLAM dates back to the seminal work of Smith
et al. (1988) where the idea of representing the
structure of the navigation area in a discrete-
time state-space framework was originally pre-
sented. They introduced the concept of stochastic
map and they developed a rigorous solution to
the SLAM problem using an EKF perspective.

1 This research has been funded in part by the Dirección
General de Investigación of Spain under projects DPI2000-
1265 and DPI2003-07986.

Many successful implementations of this approach
have been reported in indoors (Castellanos et
al., 1999), outdoors (Guivant and Nebot, 2001),
subsea (Leonard et al., 2001) and air-borne (Kim
and Sukkarieh, 2003) applications.

Dissanayake et al. (2001) proved three impor-
tant convergency properties of the EKF solution
to SLAM, namely that: (1) the determinant of
any submatrix of the map covariance matrix de-
creases monotonically as observations are succes-
sively made; (2) in the limit as the number of
observations increases, the landmark estimates
become fully correlated; and (3) in the limit, the
covariance associated with any single landmark
location estimate reaches a lower bound deter-
mined only by the initial covariance in the vehicle
location estimate at the time of the first sighting
of the first landmark.

However, it is important to note that these the-
oretical results only refer to the evolution of the
covariance matrices computed by the EKF in the



ideal linear case. They overlook the fact that,
given that SLAM is a nonlinear problem, there
is no guarantee that the computed covariances
will match the actual estimation errors, which is
the true SLAM consistency issue. In fact, it is
well known that the inherent approximations due
to linearization of the system and measurement
equations can lead to divergence of the EKF (Bar-
Shalom et al., 2001). In the case of a stationary
vehicle equipped with a range-bearing sensor with
nonzero angular uncertainty, Julier and Uhlmann
(2001) showed that the EKF algorithm always
produces an inconsistent map, with a null covari-
ance matrix in steady-state. They also showed
through simulations that the same inconsistency
problem appears in SLAM with a moving vehicle,
although the problem seems to arise after several
hundred time steps.

Many recent efforts have concentrated on reducing
the computational complexity of SLAM in large
environments (Leonard and Feder, 2000; Guivant
and Nebot, 2001; Tardós et al., 2002; Leonard
and Newman, 2003). In this paper we show that
linearization errors lead to inconsistent estimates
well before the computational problems arise. We
present simulation results showing that methods
like local map joining (Tardós et al., 2002), based
on building independent local maps, effectively
reduce linearization errors. We also propose a new
method called robocentric mapping, that can be
used as a replacement for the standard EKF-
SLAM algorithm for building medium-size maps,
improving the map consistency.

The rest of the paper is structured as follows.
Section 2 summarizes the classical EKF solution
to SLAM and analyzes the importance of lin-
earization errors in medium-size maps through
a simulated example. The robocentric mapping
technique is introduced in section 4. Section 5
presents simulation results that confirm the im-
proved consistency properties of robocentric map-
ping and local map joining. Conclusions are drawn
is section 6.

2. SLAM USING THE EXTENDED KALMAN
FILTER

In this section we summarize the basic EKF
SLAM equations to point out the steps in which
linearized approximations are introduced. We sub-
sequently analyze their influence in the consis-
tency of the solution obtained.

In the standard EKF-based approach to SLAM,
the environment information related to a set
of elements {R, F1, . . . , Fn} is represented by a
stochastic state vector xW with estimated mean
x̂W and estimated error covariance PW :

x̂W =




x̂W
R
...

x̂W
Fn


 ; PW =




PW
R · · · PW

RFn

...
. . .

...
PW

FnR · · · PW
Fn


 (1)

Vector x̂W contains the estimated location of the
vehicle R and the environment features F1 . . . Fn,
all with respect to a base reference W .

If a reference external to the vehicle is used as base
reference, the vehicle location must be initialized
with the corresponding nonzero uncertainty. It is a
common misconception is that this nonzero initial
level of uncertainty in the vehicle location may
improve map consistency. In contrast, our results
will show that this quickly results in optimistic
covariance values due to linearization errors. For
this reason, we use the vehicle location before
the first motion (at step k = 0) as the base
reference (W = R0). Thus, the map can be
initialized with zero covariance for the vehicle
location: x̂W

0 = (0, 0, 0)T , PW
0 = 0. Our results

show that this improves the consistency of the
EKF SLAM algorithm.

2.1 The prediction step

When the vehicle moves from position at step k−1
to position at step k, its motion is estimated by
odometry:

xRk−1
Rk

= x̂Rk−1
Rk

+ vk (2)

where vk (process noise) is assumed to be addi-
tive, zero-mean and white. After this motion, the
robot location is predicted as follows:

xW
Rk|k−1

= xW
Rk−1

⊕ xRk−1
Rk

(3)

where ⊕ represents the composition of transfor-
mations. Note that through the composition op-
eration ⊕, the prediction step introduces the first
linearization of the problem: the covariance of the
predicted value xW

Rk|k−1
is obtained by linearizing

the composition operation around the estimated
values x̂W

Rk−1
and x̂Rk−1

Rk
using the appropriate

Jacobians (see appendix in (Tardós et al., 2002)).

2.2 The estimation step

At step k an onboard sensor obtains a partial
measurement zk of feature F , related to the state
by a nonlinear function hk:

zk = hk(xW
k ) + wk (4)

where wk (measurement noise) is assumed to be
additive, zero-mean, white and independent of the
process noise, with covariance Rk.



A second linearization, this time around the cur-
rent map prediction, yields:

zk ' hk(x̂W
k|k−1) + Hk(xW

k − x̂W
k|k−1)

Hk =
∂hk

∂xW
k

∣∣∣∣
(x̂W

k|k−1)

=
(
HRk

0 · · · HFk
· · · 0

)

HRk
=

∂hk

∂xW
Rk

∣∣∣∣∣
(x̂W

k|k−1)

; HFk
=

∂hk

∂xW
Fk

∣∣∣∣∣
(x̂W

k|k−1)

(5)

Measurement zk is used to obtain a new estima-
tion of the state using the standard EKF update
equations:

x̂W
k = x̂W

k|k−1 + Kk(zk − hk(x̂W
k|k−1))

PW
k = (I−KkHk)PW

k|k−1

Kk = PW
k|k−1H

T
k (HkPW

k|k−1H
T
k + Rk)−1 (6)

3. THE INCONSISTENCY OF EKF SLAM

A state estimator is called consistent if its state
estimation error xW

k − x̂W
k satisfies (Bar-Shalom

et al., 2001):

E
[
xW

k − x̂W
k

]
= 0

E
[(

xW
k − x̂W

k

) (
xW

k − x̂W
k

)T
]

= PW
k (7)

This means that the estimator is unbiased and
that the actual Mean Square Error matches the
filter calculated covariances. Given that SLAM
is a nonlinear problem, consistency checking is
of paramount importance. When the ground true
solution for the state variables is available, a
statistical test for filter consistency can be carried
out on the Normalized Estimation Error Squared
(NEES), defined as:

D2 =
(
xW

k − x̂W
k

)T (
PW

k

)−1 (
xW

k − x̂W
k

)
(8)

Consistency is checked using a chi-squared test:

D2 ≤ χ2
r,1−α (9)

where r = dim(xW
k ) and α is the desired signifi-

cance level (usually 0.05).

To isolate the effects of linearization errors on the
consistency of the EKF-based approach to SLAM,
we have designed a simulated experiment where
a vehicle travels along a rectangular-shaped tra-
jectory of 100 × 20 meters, i.e. a 240-meter loop
trajectory, moving 1m per step. The map of the
navigation environment is composed of 2-D point
features, with a feature density of 0.5 feature/m.

The vehicle is equipped with a range-bearing sen-
sor with a maximum range of 15 meters and a 180
degrees frontal field-of-view. Gaussian-distributed
synthetic errors were generated for both the sensor
measurements (standard deviation of 5 cm/m in
range and 0.5deg in direction) and for the odom-
etry model of the vehicle (displacement standard
deviations of 0.2 m/m in position and 0.5deg in
orientation). Additionally, known data association
is considered.

Figure 1, left, shows the evolution of angular
error and uncertainty (2σ bounds) in the vehi-
cle location along the trajectory. For this SLAM
simulation, the initial vehicle location is used as
base reference, allowing to set the initial vehicle
uncertainty to zero. The theoretical uncertainty
level was obtained by simulating the same tra-
jectory linearizing around the ground truth solu-
tion, so that there are no linearization errors. We
can see that, while the theoretical angular uncer-
tainty increases until loop closing, the uncertainty
computed by the EKF reaches a maximum level
(around 0.5deg in this case). This results in the
vehicle location estimation failing the consistency
check of eq. (9) after only 100 steps.

It is common practice to build a map relative to
a fixed base reference, different from the initial
vehicle location. This normally requires to assign
an initial level of uncertainty to the vehicle es-
timated location. As it is argued in Dissanayake
et al. (2001), the vehicle uncertainty should al-
ways be above this initial level. Surprisingly, our
simulation shows that when a non-zero initial
uncertainty is used (fig. 1, right), the estimated
vehicle uncertainty rapidly drops below its initial
value (1deg) making the estimation inconsistent
after only 50 EKF update steps. This corroborates
the results of Julier and Uhlmann (2001), but also
shows that the problem arises in practice earlier
than they suggested.

An alternative to maintain consistency by reduc-
ing the harmful effects of linearization errors (and
also to reduce the computational cost of the pro-
cess) is Local Map Joining (Tardós et al., 2002).
Instead of building one global map from the be-
ginning, a sequence of independent local maps of
limited size are built. Then, each local map is
joined with the global map. Matchings between
global and local features can then be found and
fused to update the global map. The result is
equivalent to building one global map from the
beginning, except precisely for linealization errors.
Most of the process consists in updating local
maps where errors remain small, and their effect is
local. In section 5 we show that Local Map Joining
allows to attain better consistency in the stochas-
tic map, for a fraction of the computational cost
of standard EKF-based SLAM.
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Fig. 1. Angular error and 2σ uncertainty bounds of the vehicle estimated location for the cases of zero
(left) and nonzero (right) initial uncertainty.

4. ROBOCENTRIC MAPPING

In this section we formulate the EKF-based ap-
proach to SLAM using the reference frame at-
tached to the vehicle R as base reference of the
stochastic map. Thus, the environmental informa-
tion {R, F1, . . . , Fn} is represented by a stochastic
state vector xR with estimated mean x̂R and
estimated error covariance PR:

x̂R =




x̂R
W

x̂R
F1
...

x̂R
Fn


 ; PR =




PR
W · · · PR

WFn

...
. . .

...
PR

FnW · · · PR
Fn


 (10)

where the world reference frame W has been in-
cluded as a non-observable feature in the stochas-
tic state vector.

Again we take the initial vehicle location as base
reference W = R0, and thus the map is initialized
with perfect knowledge of the world location:
x̂R

W = (0, 0, 0)T and PR
W = 0.

4.1 The prediction step

After the vehicle changes its location from step
k − 1 to step k, the complete structure of the
stochastic map should be affected by the process
noise Qk associated with the displacement xRk−1

Rk

as estimated by odometry. Thus, the estimated
location of a given map feature F should be
updated as:

xRk

Fk|k−1
= ªxRk−1

Rk
⊕ xRk−1

Fk−1
(11)

and therefore, its estimated covariance would be
computed from the corresponding linearization
around the estimated values x̂Rk−1

Rk
and x̂Rk−1

Fk−1
.

To reduce the effects of this linearization on the
quality of the stochastic map, we first improve the

estimated relative displacement in the estimation
step of the EKF algorithm. Therefore, in the
prediction step the vehicle motion is included, as
an independent feature, in the previously available
stochastic map xRk−1

k−1 :

x̂Rk−1

k|k−1 =

[
x̂Rk−1

k−1

x̂Rk−1
Rk

]
; PRk−1

k|k−1 =
[
PRk−1

k−1 0
0 Qk

]
(12)

4.2 The estimation step

Now, linearization of the measurement equation
around the estimated values of both the stochas-
tic state vector and the partial measurement zk

yields:

zk ' hk(x̂Rk−1

k|k−1) + Hk(xRk−1
k − x̂Rk−1

k|k−1)

Hk =
∂hk

∂xRk−1
k

∣∣∣∣∣
(x̂

Rk−1
k|k−1)

= (0 · · · 0 HFk
0 · · · 0 HRk

) (13)

where:

HFk
=

∂hk

∂xRk−1
Fk

∣∣∣∣∣
(x̂

Rk−1
k|k−1)

; HRk
=

∂hk

∂xRk−1
Rk

∣∣∣∣∣
(x̂

Rk−1
k|k−1)

Equations which are subsequently used to obtain
a new estimation of the stochastic state vector
x̂Rk−1

k|k and its covariance matrix PRk−1

k|k , using
the previously described EKF update equations.
Note that, because the relative displacement of
the vehicle from time k−1 to time k was included
as a feature of the stochastic state vector it is also
improved during the application of the update
equations.



4.3 The composition step

Finally, the stochastic state vector of the robocen-
tric map is obtained by affecting each estimated
location by the improved vehicle motion:

x̂Rk

k =




ªx̂Rk−1
Rk

⊕ x̂Rk−1
R0

ªx̂Rk−1
Rk

⊕ x̂Rk−1
F1

...
ªx̂Rk−1

Rk
⊕ x̂Rk−1

Fn




(14)

with corresponding covariance matrix:

PRk

k =
[
J2 J1

]
PRk−1

k|k

[
JT

2

JT
1

]
(15)

with,

J1 =




J1⊕{ªx̂Rk−1
Rk

, x̂Rk−1
R0

}Jª{x̂Rk−1
Rk

}
...

J1⊕{ªx̂Rk−1
Rk

, x̂Rk−1
Fn

}Jª{x̂Rk−1
Rk

}




and,

J2 =


J2⊕{ªx̂Rk−1
Rk

, x̂Rk−1
R0

} · · · 0
...

. . .
...

0 · · · J2⊕{ªx̂Rk−1
Rk

, x̂Rk−1
Fn

}




where J1⊕ and J2⊕ are the Jacobians of transfor-
mation composition (see appendix in (Tardós et
al., 2002)).

5. EXPERIMENTAL RESULTS

In our controlled simulation environment we have
compared the performance of the map joining
and the robocentric mapping algorithms. Figure
2 shows that the robocentric mapping algorithm
always obtains a non-optimistic estimation for the
vehicle location uncertainty and that the map
joining algorithm is slightly optimistic in the
second-half of the trajectory.

The consistency of the solutions is determined
using equations (8) and (9). We conclude that
both algorithms perform similarly, for the consis-
tency of the estimated vehicle locations along the
trajectory (figure 3) and also for the consistency of
the map feature locations (figure 4). Finally, figure
5 shows the estimated errors and their respective
2σ bounds for both approaches. The solutions
are mostly consistent with ground truth. Only
some discrepancies are observed for the trajectory
points furthest from the initial location of the
vehicle.
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Fig. 2. Angular uncertainty of the vehicle esti-
mated location for the robocentric and the
map joining approaches.
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Fig. 3. Consistency of the estimated vehicle loca-
tion along its trajectory.
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Fig. 4. Consistency of the estimated map feature
locations.

6. CONCLUSIONS

In this work we have shown that in the standard
extended Kalman Filter for SLAM, linearization
errors produce inconsistency problems that show
up long before computational problems arise. We
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Fig. 5. Comparison of position and orientation
errors along the vehicle trajectory for the
approaches discussed in the text: Robocentric
(left) and Map Joining (right).

follow a precise definition of filter consistency that
considers both the accuracy of the estimation and
of its covariances. We show that methods based on
local maps, such as local map joining, are effective
in reducing linearization errors and thus attain
better consistency. We also propose robocentric
mapping as an alternative for the standard EKF-
SLAM algorithm to improve map consistency. The
combination of local map joining and robocentric
mapping is likely to further improve map consis-
tency and is the subject of immediate future work.

These techniques allow to apply the EKF-based
solution to SLAM at a larger scale. It is however
likely that nonlinearity problems will arise again
as larger environments are tackled. We feel that
to overcome these limitations it is important to
investigate the use of alternative formulations
to SLAM, nonlinear and non Gaussian methods.
Making these methods computationally efficient
to be used in real time is the next important
challenge in SLAM.
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