
908 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER 2001

Fig. 7. Initial and final control graph for Example 2.

Fig. 8. Formation change for six robots in the presence of sensory noise.

V. CONCLUSION

In this paper, we have studied strategies for controlling formations of
mobile robots using methods from nonlinear control theory and graph
theory. We have focused on decomposing the problem of controlling a
formation of nonholonomic mobile robots into: 1) controlling a single
lead robot and 2) controlling other follower robots in the team. We used
the termsl �  andl � l control to reflect whether the control laws
are based on tracking the position and orientation of the robot relative
to a leader, or the position relative to two leaders, respectively. We also
defined the concept of a transition matrix, which governs the addition
and deletion of edges in the control graph and hence the change in the
communication protocol. Based on this, we presented an exhaustive
list of all possible transitions that can occur within the robots in the
formation and the corresponding transition matrix column.

There are several important issues that need to be addressed in future
research in this area, including: 1) how to choose a control graph and
the desired shape based on the constraints in the environment; 2) how
to plan changes in(g; r; H) depending on sensor constraints; 3) how
to allow formations to be split into sub-formations, leading to multiple
lead robots; and 4d) though the transition matrix gives us the informa-
tion needed to change formations, it is not clear if there is an optimal way
for carrying out these changes, rather than the sequential algorithm pre-
sented here. Some of these topics are the focus of our present research.
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Multisensor Fusion for Simultaneous Localization and
Map Building

J. A. Castellanos, J. Neira, and J. D. Tardós

Abstract—This paper describes how multisensor fusion increases both
reliability and precision of the environmental observations used for the si-
multaneous localization and map-building problem for mobile robots. Mul-
tisensor fusion is performed at the level of landmarks, which represent sets
of related and possibly correlated sensor observations. The work empha-
sizes the idea of partial redundancy due to the different nature of the infor-
mation provided by different sensors. Experimentation with a mobile robot
equipped with a multisensor system composed of a 2-D laser rangefinder
and a charge coupled device camera is reported.

Index Terms—Correlation, landmark, mobile robot, multisensor fusion,
simultaneous localization and map building.

I. INTRODUCTION

Reliable and accurate sensing of the environment of a mobile robot
is an important task both in localizing the robot and in building a de-
tailed map of such an environment. One of the fundamental ideas to
achieve this reliability is the use of redundancy, that is, to combine en-
vironmental information obtained by several sensors [1]–[3]. Dealing
with redundancy requires both the availability of a systematic descrip-
tion of uncertain geometric information and a consistent multisensor
fusion mechanism [4].

Different approaches to the simultaneous localization and
map-building (SLAM) problem for mobile robots have been reported
in the literature after the seminal paper of Smithet al.[5] and the early

Manuscript received October 12, 2000; revised June 6, 2001. This paper
was recommended for publication by Associate Editor N. Xi and Editor
S. Hutchinson upon evaluation of the reviewers’ comments. This work
was supported by the Spanish Dirección General de Investigación Projects
DPI2000-1265 and DPI2000-1272.

The authors are with the Departamento de Informática e Ingeniería de
Sistemas, Universidad de Zaragoza, E-50015 Zaragoza, Spain (e-mail:
jacaste@posta.unizar.es; jneira@posta.unizar.es; tardos@posta.unizar.es).

Publisher Item Identifier S 1042-296X(01)10904-3.

1042–296X/01$10.00 © 2001 IEEE



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER 2001 909

experiments of Moutarlieret al. [6] and Leonardet al. [7]. Active
research work is being developed in different groups worldwide,
typically considering point features gathered by ultrasonic sensors
[8] or laser rangefinders [9] which are directly input to the SLAM
algorithm. Those approaches present high performance in sparse
environments, however, they present low reliability and low robustness
of data association in dense environments due to the high ambiguity
of the observations used. Alternative approaches are reported in the
literature to avoid those limitations: the use of raw sensor data and
correlation techniques for data association [10], [11] or the reduction
of sensor data ambiguity by detecting more meaningful features, such
as 2-D segments from laser data [12], [13].

The work reported in this paper represents, to our knowledge, the
first application of multisensor fusion to SLAM for mobile robots and
extends the work of [12]. Our main contributions are as follows:

• Perceptual grouping, based on topologic and/or geometric rela-
tions between sensor observations, which provides a semantically
upgraded landmark-based representation of the navigation area.

• Multisensor fusion at the level of landmarks provides redundancy,
usually only partial due to the different nature of the sensors,
about the features used for both localizing the robot and map-
ping the navigation area. Therefore, reliability and precision are
increased from early stages of the processing.

• Data association for SLAM benefits from the landmark-based
representation due to the low ambiguity of the features involved.
Thus, even simple strategies such as nearest-neighbor demon-
strate very reliable and robust.

The rest of the paper is structured as follows. We present in Sec-
tion II the landmark-based description of the environment of a mobile
robot based on the probabilistic representation of uncertain geometric
information. In Section III, we present the multisensor fusion scheme,
where the idea ofpartial redundancyis emphasized. The problem of
data association is considered by taking into account both individual
compatibility between features and also joint compatibility due to the
presence of correlations between the estimated locations of some fea-
tures. A case study is described in Section IV where experimentation
with a mobile robot equipped with a 2-D laser rangefinder and a charge
coupled device (CCD) camera is reported. To conclude, Section V con-
tains a discussion of the proposed approach and further research direc-
tions.

II. L ANDMARK -BASED REPRESENTATION OF THEENVIRONMENT

A. Representing Uncertain Geometric Information

The location of a 2-D uncertain geometric elementF , with respect
to a base referenceW , can be represented [14] by a location vector
xWF = (x; y; �)T computed as the composition “�” of an estimated
location vector̂xWF taken as the base for perturbations, and a differ-
ential location vectordF

xWF = x̂WF � dF : (1)

In general, due to the symmetries of the geometric element, some of
the components ofdF do not represent an effective location error, thus
a perturbation vectorpF is formed by the meaningful components of
dF

dF = B
T

FpF ; pF = BFdF (2)

where the row-selection matrixBF is named theself-binding matrix
of the geometric element. The perturbation vectorpF is normally dis-
tributedpF � N (p̂F ; CF ) with meanp̂F and covariance matrixCF .

Fig. 1. LandmarkF = fS ; E ; C; E ; S g formed by a set of correlated
features of the local environment of the mobile robot.

Whenp̂F = 0, we say that the estimation iscentered.Our approach
to the SLAM problem for mobile robots [12] considers a state vector
x̂W which represents the estimated location of the vehicle and the map
features with respect to a base referenceW , and a Gaussian perturba-
tion vectorpW � N (p̂W ; CW ) which takes into account estimation
of effective errors.

B. Features and Landmarks

Similar to other work in this area, we follow a feature-based ap-
proach to map building. Then, raw sensor data are first processed to
obtain a set of low-level features such as segments obtained from laser
scans or vertical edges obtained from gray-level images. In this work,
we go a step further and explore the use of more distinct and mean-
ingful observations composed of several related features.

We define alandmarkF as a set of nearby featuresFi; i 2
f1 . . . ng derived from sensor data that verify some topologic and/or
geometric properties. It should be noted that perceptual grouping is in
general a complex problem, and the reliable detection of landmarks
usually require the use of sensor-specific properties. For example,
Fig. 1 illustrates a landmarkF defined by the nearby segmentsE1

and E2 and other derived features like the cornerC found at the
intersection of the segments and the semiplanesS1 andS2 found at
their free endpoints. Other examples of more complex landmarks, not
used in this paper, can be doors detected in images or laser scans,
corridor intersections, etc.

From the above example, it can be deduced that the features com-
posing a landmark are not required to be independent. Therefore, gen-
eralizing (1) and (2), an estimated location vector and a perturbation
vector can be associated to a landmarkF

x̂RF =

x̂RF

...

x̂RF

: pF =

pF

...

pF

� N (p̂F ; CF): (3)

The diagonal elements of the covariance matrixCF consider the loca-
tion uncertainty for each feature of the landmarkF whilst the off-diag-
onal elements represent the cross covariances between the estimations
of the different features of the landmarkF . When independence be-
tween the estimation of the features holds,CF is reduced to a block-di-
agonal matrix.

The set of landmarks obtained from the information provided by a
sensorF when the vehicle is at a particular locationk along its trajec-
tory is subsequently referred to aslocal mapLMF

k .
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Fig. 2. A case study: fusion of laser and monocular vision for simultaneous
localization and map building.

III. M ULTISENSORFUSION

For ease of explanation, suppose that the mobile robot is equipped
with a sensorF , considered as the fundamental sensing device, which
provides the landmark-based local mapLMF

k , and a sensorE, con-
sidered as a secondary sensor, which obtains partially redundant infor-
mationLME

k from the environment of the robot at locationk. Fig. 2
depicts the particular case of a laser rangefinder as the primary sensor
and monocular vision as the secondary sensor of a multisensor system.
Then, the multisensor fusion algorithm processes, sequentially, the set
of landmarks ofLMF

k and searches for redundancy using the features
of LME

k . Thus, for each landmark ofLMF
k , we have:

1) Data association, using a nearest neighbor approach and an in-
novation test based on the Mahalanobis distance [15] decides
which features of the local mapLME

k are compatible with those
of the local mapLMF

k . Due to the existence of correlated fea-
tures within a given landmark, not only individual compatibility
but also joint compatibility of the different matchings must be
validated. This step benefits from the availability of an accurate
sensor–sensor calibration.

2) Suboptimal estimation based on the EKF integrates the set of
matchings found by data association to improve the estimation of
LMF

k by the partially redundant information provided byLME
k .

As result, the multisensor-based local mapLMF+E
k is obtained,

which is subsequently used as input to the SLAM algorithm [12].

A. Validation of Individual Compatibility

Let (Ei; Fj ) be a candidate pairing between a featureEi of land-
markE of LME

k and a featureFj of a landmarkF of LMF
k which

must be validated. The matching imposes a constraint (Fig. 3) on their
relative transformation [14] that can be expressed by means of an im-
plicit measurement equation

fi(pF ; pE ) =BE F xE F

=BE F (	BT
E pE � x̂E F �BT

F pF )

=0: (4)

The nature of the featuresFj andEi depends on the characteristics
of the sensors used. In general,Fj andEi are of different nature, thus

Fig. 3. Improving the estimation ofF by the redundant information provided
by E .

only partial redundancycan be obtained. This fact is represented by
the row-selection matrixBE F , which selects the meaningful com-
ponents of the relative transformation which must be equal to zero. Due
to orientation terms, (4) is generally nonlinear, therefore, we consider
its first-order Taylor approximation around the best available centered
estimation (̂pF = 0, p̂E = 0) with1

hi = fi(p̂F ; p̂E ) = BE F x̂E F

Hi =
@fi

@pF (p̂ ; p̂ )

= 0 . . . 0H
F

i 00 . . . 0

H
F

i =
@fj

@pF
(p̂ ; p̂ )

= BE F J2�fx̂E F ; 0gBT
E

Gi =
@fi

@pE (p̂ ; p̂ )

= �BE F J1�f0; x̂E F gBT
F (5)

whereJ1� andJ2� are the Jacobians of the composition of location
vectors [16]. Due to uncertainty, (4) only holds approximately, thus, for
a given significance level�, featuresFj andEi are considered to be
compatible if

D
2 = h

T
i HiCFH

T
i +GiCE G

T
i

�1

hi � �
2
r; � (6)

with r = rank(hi) degrees of freedom and�2r;� a threshold obtained
from the�2 probability distribution. Otherwise, the matching is dis-
carded. Whenever multiple candidates pairings exist for a given feature
Ei, a nearest-neighbor strategy is applied.

B. Validation of Joint Compatibility

Mutual compatibility of the matchings satisfying (6) must be verified
due to the possible existence of correlations between the estimation of
the features of a given landmark. The complete set of constraints, of
the form described by (4), can be written as

f(pF ; pE) =

f1(pF ; pE )

...

fm(pF ; pE )

= 0 (7)

1The column occupied byH in matrixH corresponds to the position of
the featureF in the state vector of landmarkF .
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which can be linearized around the best available centered estimation
(p̂F = 0, p̂E = 0) with coefficients given by

h = f(p̂F ; p̂E) =

h1

...

hm

H =
@f

@pF (p̂ ; p̂ )

=

0 H
F

1 0 . . . 0

...
...

...
...

...

0 0 H
F
m . . . 0

G =
@f

@pE (p̂ ; p̂ )

= diag (G1; . . . ; Gm) : (8)

Finally, joint compatibility of the whole set of candidate matchings is
satisfied, for a significance level�, if

D
2 = h

T
HCFH

T +GCEG
T

�1

h � �
2
r; � (9)

with r = rank(h) degrees of freedom. Otherwise we search, among
the matches which satisfy individual compatibility, for the largest
subset (i.e., the one with greatest value ofr) that satisfies joint
compatibility. In the case of a tie, the one with a lower value ofD2

is chosen.

C. Formulation of the Multisensor Fusion Equations

An improved perturbation vectorpF+E � N (p̂F+E ; CF+E) for
landmarkF is obtained by fusing its previously available information
pF � N (p̂F , CF) and the partially redundant informationpE �

N (p̂E , CE) provided by landmarkE . Using the classical EKF equa-
tions, we have

K =CFH
T (HCFH

T +GCEG
T )�1

p̂F+E = p̂F +K(�h)

CF+E =(I�KH)CF : (10)

Finally, after sequentially processing the set of landmarks ofLMF
k ,

the algorithm comes up with a landmark-based local mapLMF+E
k

composed of more accurate features. Reliability and robustness of the
features are increased due to the partial redundancy provided by the
secondary sensor.

IV. A CASE STUDY: 2-D LASER+ MONOCULAR VISION

A supervised exploration of a human-made indoor environment
was conducted by using a mobile robot equipped with a 2-D laser
rangefinder and a CCD camera. Environmental information was regu-
larly obtained from static robot locations. Ground-truth, obtained by a
pair of theodolites, was available to validate the results. An overview
of the case study was described in Fig. 2 which is subsequently
detailed.

A. Laser-Based Local Map,LMF
k

First, the 2-D laser data [Fig. 4(b)] are processed by a segmentation
algorithm [14]. Different uncertain geometric features are obtained: 1)
segments, which are considered as low-level features, and 2) corners
and semiplanes which semantically upgrade the representation of the
environment. Corners are found at the intersection of two consecutive
segments whilst semiplanes are found at the free endpoints of segments,
and might correspond to door frames or convex obstacles. In the de-
tection of semiplanes, robustness has been enhanced by avoiding false

Fig. 4. Sensor data. (a) Vertical edges (white arrow-headed lines) detected in
a gray-level image. (b) Two-dimensional laser readings and vision edges.

semiplanes derived from occlusions. Finally, a landmark is formed by
each set of consecutive segments and their derived corners and semi-
planes [Fig. 5(a)].

B. Vision-Based Local Map,LME
k

Redundant information about the location of laser corners and
semiplanes can be obtained by processing the gray-level images taken
by a CCD camera. The camera has been calibrated using the Tsai
method [17] which includes compensation of the lens distorsion.
Vertical edges, longer than 150 pixels, are extracted from the image,
which might correspond to corners and door frames [Fig. 4(a)]. Each
vertical edge detected on the gray-level image is represented by a
vision edge[Fig. 4(b)], that is, a 2-D line defined by the optical
centerO of the camera and the projection of the middle point of the
undistorted vertical edge on an horizontal plane containingO. A
standard deviation of 0.1 deg is assigned to the angular uncertainty of
each vision edge, which corresponds to a detection error of the vertical
segment on the image of around 4 pixels. Vision edges are considered
as statistically independent features.
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Fig. 5. (a) Laser-based local map with landmarks represented by dashed lines. (b) Vision edges matched with corners and semiplanes. (c) Local map after fusion.
Location uncertainty is described by the 95% error bounds magnified�3.

C. Calibration of the Multisensor System

Multisensor fusion requires sensor–sensor calibration to represent
features in a common reference frame. The calibration method con-
sisted of matching observations of a pattern gathered by both sensors.
The calibration pattern [14] was composed of two zones: a white-like
zone and a black-like zone. The border line between those two zones
was easily detected by the CCD camera. Additionally, the angle be-
tween the two pattern planes ensured the detection of two nonparallel
segments by the laser rangefinder. A system ofn nonlinear constraints
obtained from the observations of the pattern fromn different locations
was solved by applying the Levenberg–Marquadt algorithm.

D. Fusion of Laser and Vision Local Maps,LMF+E
k

Data association between sensor observations benefits from an ac-
curate sensor-sensor calibration and allows the use of simple algo-
rithms, such as nearest neighbor. Fusion of laser and vision exploits
the partially redundant information provided by the vision edgesEi

about the location of corners and semiplanesFj detected by the laser
rangefinder. Individual compatibility between corners and vision edges
on the one hand and semiplanes and vision edges on the other hand is
validated using (5) and (6), with the self-binding matrices

BF = I3; BE = (0 0 1 )

and with the binding matrix of the pairing

BE F = (0 1 0 )

which indicates that only partial redundancy is achieved because
monocular vision provides directional but not depth information.
Due to correlations between the estimated locations of corners and
semiplanes, joint compatibility must be also validated using (8) and
(9). Fig. 5(b) describes the set of vision edges detected from the
gray-level image which have been matched with features previously
detected by the laser rangefinder. Fig. 5(c) presents the results of
multisensor fusion for the considered local map. Due to the higher

Fig. 6. Evolution of the solution of SLAM using multisensor features.
(a) Navigation in unknown areas. (b) Returning to previously visited areas.
Dashed-lines correspond to a reference model map.
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(a)

(b)

(c)

Fig. 7. Estimation errors and2� error bounds for the location of the vehicle.
(a) Frontal. (b) Lateral. (c) Orientation error.

angular resolution of the CCD camera as compared to the 2-D
laser rangefinder, precision of the estimated location of geometric
features increases. Only reliable features are kept after fusion. Thus,
semiplanes observed by the laser rangefinder but not confirmed by the
CCD camera are removed from the representation of the local map. In
Fig. 5(a), the semiplaneS4 was detected and interpreted as a possible
door-frame; however, redundancy about its location was not provided
by the vision sensor [Fig. 5(b)], thus, the semiplane was removed

Fig. 8. Multisensor observations: landmarksL , L , andL . Observe that
landmarksL andL are formed by a segment and a semiplane.

from further processing [Fig. 5(c)]. Therefore, the multisensor fusion
approach increases the reliability and robustness of the local map
features.

E. Simultaneous Localization and Map Building

As described in Fig. 2, at a given time instantk, the location of the
mobile robot along its trajectory and the structure of the environment
are estimated by matching the multisensor-based featuresLM

F+E

k

and the available features of the environment up to timek�1,GMk�1.
The robustness and efficiency of data association is improved for two
reasons. First, the validation of joint compatibility reduces the number
of spurious matches which satisfy the innovation test. Second, the use
of more distinct and meaningful features reduces the computational
complexity by reducing the number of possible candidate features for
each feature of the local map.

Fig. 6 describes the solution to the SLAM problem by considering,
at each point of the robot trajectory, the information provided by the
multisensor system. In the figure,�2� position uncertainty regions
have been drawn for the mobile robot and the corners and semiplanes
contained in the map. In the case of segments, only lateral uncertainty
is represented. Initially, the mobile robot explores previously unknown
regions of the environment [Fig. 6(a)], therefore its uncertainty keeps
growing at a rate related to sensor imprecision. When the robot returns
to previously visited regions [Fig. 6(b)], its uncertainty reduces to the
level of uncertainty of the reobserved features. Along the trajectory, a
maximum frontal error of 27 cm, a maximum lateral error of 12 cm,
and a maximum orientation error of 2 deg was obtained.

Consistency of the estimated location of the mobile robot is a cru-
cial aspect of SLAM. In our experimentation, a nondivergent solution
was obtained, that is, the location uncertainty was not optimistically
computed along the robot trajectory. Fig. 7 shows frontal, lateral, and
orientation errors for the estimated location of the mobile robot along
its trajectory, together with the�2� bounds. Compatibility between the
estimated robot trajectory and ground-truth reached 96.2% (i.e., only
3.8% of the estimated errors were outside the computed error bounds)
where the significance level was set to 5%.

F. Robustness of Landmarks

The robustness of the landmark-based approach is demonstrated by
an experiment that simulates the revisiting of a previously mapped area
[upper part of Fig. 6(b)], which is one of the most critical data associ-
ation issues in the SLAM problem. In the experiment, we used the ob-
servations obtained by the multisensor system (Fig. 8) to try to relocate
the robot within the map. To analyze robustness, we generated a set of
100 simulated robot locations with a random Gaussian perturbation of
�1 m in position and�10 deg in orientation, around the true robot lo-
cation [Fig. 9(a)].
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Fig. 9. Robustness of the landmark-based approach. (a) Simulated robot locations. (b) Segment-based robot locations. (c) Landmark-based robot locations.
Observe that only the top-right part of the map is shown. The small rectangle represents the real location of the vehicle.

The nearest-neighbor approach discussed in Section III was used to
match the observations of the multisensor system with the features of
the map. The constraints imposed by the matchings were used, within
the EKF framework, to improve the location of the vehicle. The results
of the experiment demonstrate the low reliability of the solutions ob-
tained by a segment-based approach [Fig. 9(b)] due to spurious match-
ings. However, the landmark-based approach always found the correct
matching, given a consistent estimation of the robot location [Fig. 9(c)].

V. CONCLUSION

This paper describes the benefits of using multisensor fusion for the
simultaneous localization and map building problem for mobile robots.
Some of the key points described are: 1) the landmark-based represen-
tation of the environment based on topologic and/or geometric relations
between sensor data; 2) multisensor fusion at the level of landmarks,
which provides partial redundancy between sensor observations, and
which increases both reliability and precision from early stages of the
processing; and 3) data association for SLAM, which benefits from the
landmark-based representation due to the low ambiguity of the features
involved.

Further work concentrates on: 1) increasing the structuration and se-
mantical meaning of the mapped area by identifying corridors, rooms,
intersections, etc.; 2) reducing the computational complexity of the
SLAM algorithm to achieve a real-time implementation; and 3) im-
proving data association for mobile robot localization in previously
mapped areas.
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