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The SPmap: A Probabilistic Framework for
Simultaneous Localization and Map Building

Jose A. Castellanos, J. M. M. Montiel, J. Neira, and J. D. Tardós

Abstract—This article describes a rigorous and complete framework
for the simultaneous localization and map building problem for mobile
robots: the symmetries and perturbations map (SPmap), which is based
on a general probabilistic representation of uncertain geometric informa-
tion. We present a complete experiment with a LabMateTM mobile robot
navigating in a human-made indoor environment and equipped with a
rotating two-dimensional (2-D) laser rangefinder. Experiments validate
the appropriateness of our approach and provide a real measurement of
the precision of the algorithms.

Index Terms—Correlations, probabilistic model, simultaneous localiza-
tion and map building.

I. INTRODUCTION

Successful path planning and navigation of a mobile robot in a
human-made indoor environment requires the availability of both a
sufficiently reliable estimation of the current vehicle location, and a
sufficiently precise map of the navigation area.A priori model maps
are rarely available, costly to obtain, and when they are available, they
usually introduce inaccuracies in the planning tasks. An automatic
construction of the map of the environment in which the robot
navigates would be desirable, and it has become an important research
direction in today’s robotics community.

The precision of the constructed map is highly influenced by the
accuracy of the dead-reckoning system of the mobile robot, whose
location estimations drift with time. An improved solution would
require the relocation of the mobile robot along its trajectory to
avoid biases introduced by odometry, hence, an approach based on
the simultaneous localization and map building would be neces-
sary (Fig. 1). Exact mathematical approaches to the simultaneous
localization and map building problem were originally addressed
by Smith et al. [1], [2] who introduced the concept ofstochastic
map, a representation of spatial relationships, their uncertainties, and
their interdependencies with respect to a base reference. Later, this
concept was used in the works of Moutarlieret al. [3], Leonardet
al. [4]–[6], and Hébertet al. [7]. Recently, Uhlmannet al. [8] have
reported interesting work related to the problem of correlations in the
simultaneous localization and map building problem.

This article proposes a new probabilistic framework adapted to
the problem of simultaneous localization and map building: the
symmetries and perturbations map (SPmap) [9] which is based on a
general representation of uncertain geometric information. Our main
contributions are as follows.

1) SPmap represents a rigorous and complete solution to the
simultaneous localization and map building problem for mobile
robots.

2) SPmap consistently formulates the representation and integra-
tion of sensorial information gathered by different sensors.
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Fig. 1. Simultaneous localization and map building.

3) SPmap overcomes the difficulties reported in previous works
dealing with singularities in the representation of geometric
features.

4) SPmap has been experimentally validated by a complete exper-
iment which profited from ground-truth to accurately validate
the precision and the appropriateness of the approach.

This article also extends our preliminary results reported in [10] to
demonstrate the importance of maintaining the correlations between
the estimation of the entities involved in the simultaneous localiza-
tion and map building problem, to avoid optimistic estimations of
uncertainty associated to the precision of the locations of features.

The rest of the article is structured as follows. Section II describes
the probabilistic representation of uncertain geometric information.
Sections III and IV present our probabilistic framework for the
simultaneous localization and map building problem. Experimental
results are described in Section V while some conclusions and further
work are shown in Section VI.

II. SYMMETRIES AND PERTURBATIONS MODEL

In our feature-based approach, uncertain geometric information
is represented using a probabilistic model: the symmetries and
perturbation model (SPmodel) [11], [12] which combines the use
of probability theory to represent the imprecision in the location of
a geometric element, and the theory of symmetries to represent the
partiality due to characteristics of each type of geometric element.

In the SPmodel, the location of a geometric elementE with
respect to a base referenceW is given by alocation vectorxWE =
(x; y; �)T . The estimation of the location of an element is denoted by
x̂WE , and the estimation error is represented locally by adifferential
location vectordE relative to the reference attached to the element.
Thus, the true location of the element is

xWE = x̂WE � dE (1)

where� represents the composition of location vectors. To account
for the symmetries of the geometric element, we assign indE a
null value to the degrees of freedom corresponding to them, because
they do not represent an effective location error. We callperturbation
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Fig. 2. Representation of the SPmap with generic features and the mobile
robot expressed with respect to a base referenceW . The location vector of
each entity is obtained by the composition of its estimated location vector and
its differential location vector.

vector the vectorpE formed by the non null elements ofdE . Both
vectors can be related by a row selection matrixBE that we call
self-binding matrixof the geometric element

dE = B
T

EpE ; pE = BEdE : (2)

Then, theuncertain locationof every geometric entity is represented
in the SPmodel by a quadrupleLWE = (x̂WE ; p̂E ; CE ; BE),
where the transformation̂xWE is an estimation taken as base for
perturbations,̂pE is the estimated value of the perturbation vector,
andCE its covariance.

III. SYMMETRIES AND PERTURBATIONS MAP

The symmetries and perturbations map (SPmap) is a complete
representation of the environment of the robot which includes the
uncertain location of the mobile robotLWR, the uncertain loca-
tions of the features obtained from sensor observationsLWF ; i 2
f1 � � �NF g and their interdependencies (Fig. 2).

The SPmap can be defined as a quadruple

SPmap = x̂
W
; p̂

W
; C

W
; B

W (3)

wherex̂W is theestimated location vectorof the SPmap andpW is
the perturbation vectorof the SPmap

x̂
W =

x̂WR

x̂WF
...

x̂WF

; p
W =

dR

pF
...

pF

: (4)

The true location of the robot and the map features is

x
W = x̂

W � (BW )TpW (5)

where the composition operator� applies in this case to each of
the components of the vectors, andBW is thebinding matrixof the
SPmap, a diagonal matrix formed by the self-binding matrix of the
robot and the self-binding matrices of the map features

B
W = diag BR; BF ; � � � ; BF : (6)

The covariance matrix of the SPmap represents the covariance of
the estimation of the robot and the map feature locations, the cross-
covariances between the robot and the map features, and finally, the
cross-covariances between the map features themselves

C
W =

CR CRF � � � CRF

CTRF CF � � � CF F

...
...

. . .
...

CTRF CTF F � � � CF

: (7)

Note that we may represent any type of geometric entity within
this general framework. The proposed approach can include different
types of features obtained by different types of sensors, and thus it
is suitable to deal with a multisensor system.

IV. I NCREMENTAL CONSTRUCTION OF THESPMAP

This section describes the incremental construction of the SPmap
using suboptimal estimation techniques based on the extended
Kalman filter [13].

A. Uncertain Displacement of the Mobile Robot

An estimation of the displacement of the mobile robot between
two intermediate points along its trajectory can be obtained by dead-
reckoning

xR R = x̂R R � dR R (8)

where x̂R R represents the estimated displacement of the robot
anddR R � N (0; CR R ) represents the imprecision in its
estimation (i.e., dead-reckoning errors). Other nonrandom sistematic
errors are not considered because they can be corrected by an
appropriate calibration procedure.

Thus, the predicted locationxWR of the mobile robot at timek
can be calculated by the composition

xWR =xWR � xR R

= x̂WR � dR � x̂R R � dR R

= x̂WR � JR R dR � dR R (9)

where JR R is the Jacobian of the transformation̂xR R

between the location vectors of the robot at timek and that at time
k � 1.

After the displacement of the vehicle, only the location of the
mobile robot changes as estimated by dead-reckoning, while the
location of map features, being static entities, remain the same
as the estimated in the previous time instantk � 1. Nevertheless,
the displacement of the mobile robot produces changes in the
dependencies existing between the location of the robot and those
of the map features. The complexity of this phase grows linearly
with the number of features,O(NF ).

B. Matching Local and Global Maps

The predicted mobile robot location is improved by matching local
observations expressed with respect to the robot referenceR, with
map features represented with respect to the base referenceW . At
each point of the robot’s trajectory it is desirable to obtain as much
pairings as possible because they represent the links between new
observations and previous stored knowledge of the navigation area.

Fig. 3 exemplifies the pairing between a local observationE

obtained at timek and represented with respect to the robot by
LRE = (x̂RE ; p̂E ; CE ; BE), and a global map featureF available
at timek � 1 and represented with respect to the base referenceW
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Fig. 3. Matching local observationE with global featureF .

by LWF = (x̂WF ; p̂F ; CF ; BF ). From their relative location we
formulate a nonlinear measurement equation [11]

fk;m(dR; pF ; pE)

= BFExFE

= BFE(	xWF � xWR � xRE)

= BFE(	B
T
FpF � x̂FE � JERdR �B

T
EpE)

= 0 (10)

whereBFE is the binding matrix of the pairing[11], a row selection
matrix which selects the components ofxFE which must be zero. Due
to uncertainty, a hypothesis test based on the squared Mahalanobis
distanceD2, validates the compatibility betweenE andF

D
2 = (BFE x̂FE)

T [BFEC(xFE)B
T
FE ]

�1(BFE x̂FE) (11)

where matrixC(xFE) is computed from the linearization of (10)
taking into account the correlations between the map featureF and
the robot:1

C(xFE) = J2�fx̂FE ; 0gC(dFE)J
T
2�fx̂FE ; 0g (12)

where

C(dFE) =JERCRJ
T
ER + JEFB

T
FCFBFJ

T
EF

� JEFB
T
FC

T
RFJ

T
ER � JERCRFBFJ

T
EF

+B
T
ECEBE : (13)

Under the Gaussianity hypothesis,D2 follows a�2 distribution. For
a given significance level�, the local featureE is compatible with
the global featureF if D2 � �2r;�, with r = rank(BFE) degrees of
freedom, otherwise the matching between theE andF is discarded.
In general, when there exist multiple possible pairings for a particular
local feature, the pairing with the smallest Mahalanobis distance is
chosen.

C. Estimating the SPmap at Timek

The matching betweenE and F is used both to relocalize the
robot at the current trajectory point and, simultaneously, to update the
estimated location of the map features. The perturbation vector of the
local observationpE � N (0; CE) constitutes the measurement used
to improve the estimation ofpWk through the relation established by

1MatricesJ1� andJ2� are the Jacobians of the composition of location
vectors [1]

J1�fx1; x2g =
@(y�z)
@y y=x ; z=x

J2�fx1; x2g =
@(y�z)
@z y=x ; z=x :

(10). Linearization of (10) is done by considering a first order Taylor
expansion

hm = fk;m(p̂
W
k ; P̂E) = BFE x̂FE

Hm =
@fk;m

@pWk (p̂ ; P̂ )

= H
R
m 0 � � �0H

F
m 0 � � �0

H
R
m =

@fk;m

@dR (p̂ ; P̂ )

= BFEJ2�fx̂FE ; 0gJER

H
F
m =

@fk;m

@pF (p̂ ; P̂ )

= �BFEJ1�f0; x̂FEgB
T
F

Gm =
@fk;m

@pE (p̂ ; P̂ )

= BFEJ2�fx̂FE ; 0gB
T
E : (14)

Integration of local observationsLMk (i.e., new knowledge of the
navigation area) into the SPmap known up to the previous time instant
GMk�1 by using the EKF equations, produces a reestimation of its
whole perturbation vectorpWk and the uncertainties represented by its
covariance matrixCW

k . Location estimations of the complete set of
entities included in the SPmap are reestimated after the integration of
new information. Furthermore, correlations between their estimations
are also updated. The complexity of this phase grows polynomially
with the number of featuresO(N2

FM), whereM is the number of
matched observations.

D. Adding Nonmatched Features to the Global Map

Local observations obtained at timek which cannot be paired with
any of the global features ofGMk�1 are interpreted as knowledge
about the environment which has not yet been learned. These local
observations are added to the SPmap by considering the composition

xWE =xWR � xRE

= x̂WE � JERdR �BT
EpE : (15)

The covariance matrix of the SPmap is extended to represent the
correlation between the mobile robot and the nonpaired featureE,
the cross-correlation between the previous map features and the non-
paired featureE, and the covariance of the nonpaired feature. When
the whole local map is composed only of nonpaired observations, the
robot’s location estimation obtained by odometry cannot be improved.

V. EXPERIMENTING WITH THE SPMAP

This section presents the experimental verification of the previous
ideas by considering a LabMateTM mobile robot navigating indoors,
and equipped with a two-dimensional (2-D) rotating laser scanner.
We also analyze the effects of neglecting correlations between the
location estimation of the features. The vehicle was programmed to
follow a trajectory (53 m approximately), stopping at regular intervals
to take measurements. Complementary information was taken, by
hand, with a pair of theodolites which provided real locations of the
robot with respect to a base reference.

From the laser readings gathered at each point along the trajectory,
a straight-line segment-based local mapLMk was constructed. A
segmentation algorithm [14] was used. The resultant 2-D segments
(Fig. 4) were expressed with respect to the mobile robot reference
frameR by using the SPmodel formulation; also, estimations of their
lengths were computed from their endpoints. Typically the number
of straight-line segments was kept small for each local map (below
ten segments per local map) by considering only meaningful (i.e.,
long) segments.

Pairings between local observations and previously stored knowl-
edge of the navigation area were obtained by using a 5% significance
level. In the following figures, precision of the results has been
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Fig. 4. Straight-line segment representation of a local environment of the
vehicle R at the first point of its trajectory. Lateral uncertainty for each
detected 2-D segment has been represented (magnified three times).

represented by 95% error ellipses (i.e.,�2� bounds). This proba-
bilistic matching technique has proven to be simple and effective for
laser segments. However, other sensor systems, such as monocular
or stereo vision, require more robust matching strategies to properly
solve the data association problem.

A. Neglecting Correlations Between Entities

When neglecting correlations, the EKF estimation phase is de-
composed into the estimation of the mobile robot location and
subsequently the estimation of the map features [10] from a common
set of observations. Fig. 5(a) shows the result of this process. It can
be seen that this two-step process produces optimistic estimations
of uncertainty because the same observations are used twice in the
estimation algorithms.

Table I presents the maximum errors and the error growing-rate
along the vehicle trajectory when neglecting correlations between
features. An increasing discrepancy of the estimated robot location
with respect to ground truth was observed (only 5.6% of the esti-
mations were compatible with the real solution). This discrepancy
became larger as the vehicle moved to previously learned places
in the navigation area, and was due to optimistic estimations of
the uncertainty associated to the location of environment features,
producing a high rejection rate in the matching process. Thus, when
the robot revisited places already learned, very few pairings were
obtained and neither the mobile robot was effectively relocalized nor
the global map was accurately built. Most of the local map features
were directly added to the representation, creating multiple location
hypotheses for the same map feature. Later, matchings involving
those false hypotheses (i.e., data association errors) induce the final
solution to diverge from ground truth.

B. Maintaining Correlations within the SPmap

Fig. 5(b) shows the result of the robot localization and map
building process considering the SPmap approach. Even though we
simultaneously were building the map and relocating the mobile
robot, whenever the vehicle navigated in previously unknown ar-
eas, uncertainty continually increased, that is, integration of new
observations only reduced the uncertainty growing rate downtown
the measurement error of the sensor used, but not further. On the
contrary, whenever the vehicle revisited places in the environment
already learned, uncertainty decreased, converging to the values of
the location uncertainty of the reobserved global map features. Also,
the “indirect estimation” effect appeared, that is, location uncertainty
decreased for all the features of the SPmap, even for those not visible
from the current robot location but statistically correlated to current
observations through the off-diagonal elements of the covariance
matrix of the SPmap.

(a)

(b)

Fig. 5. Estimated robot trajectory and built map (a) neglecting correlations
between entities, where the estimated solution diverges from ground-truth, and
(b) using the SPmap approach. Ana priori model map is drawn for reference
purposes.

TABLE I
SUMMARY OF THE SOLUTIONS OBTAINED BY THE DIFFERENT APPROACHES:

MAXIMUM ERRORS (xmax; ymax, AND tmax), DISTANCE drel AND

ANGULAR trel ERROR GROWING-RATES, AND �2 TEST RESULTS

Table I compares the largest errors obtained by the SPmap ap-
proach with the approach neglecting correlations. Clearly, the SPmap
approach obtained estimations for the mobile robot localization
with an upper bound of around 5.9 mm/m of the total trajectory
length for the distance error and 0.04�/m for the orientation error,
which represented an order of magnitude below dead-reckoning
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(a)

(b)

Fig. 6. Comparison of errors along the robot trajectory: (a) distance error
and (b) angular error.

errors. Also, the location uncertainty of the map features was not
underestimated, with a compatibility of�2test ' 98%, therefore,
pairings between local observations at timek and previously stored
knowledge up to timek � 1 were found at each point along the
robot trajectory even when the vehicle returned to previously learned
places of the navigation area. An average of 74% of the number of
available observations were matched with previous known features.
Fig. 6 compares the real errors along the robot path, obtained by
each approach. The highest errors correspond to odometry-based
navigation, while the smallest correspond to the SPmap approach.
From the Fig. 6 note how the location uncertainty of the robot
decreases when the vehicle revisits previously learned places (i.e.,
from trajectory point 40 onwards).

VI. CONCLUSION

This article has presented the symmetries and perturbations map
(SPmap), a probabilistic framework for the simultaneous localization
and map building problem for mobile robots. We have presented a
complete experiment, where a LabMate mobile robot equipped with
a rotating 2-D laser rangefinder navigated indoors. Experimentation
showed the importance of maintaining correlations between entities.
Satisfactory results have been obtained concerning the problem of
revisiting previously learned places of the navigation area.

Our recent work has motivated us with further extensions of
the concept of SPmap, both to extent its applicability to real-life
environments and to increase its robustness:

1) sensor cooperation to obtain more robust and reliable observa-
tions from the navigation area [15];

2) increase in the structuration and the semantical contents of the
representation toward a topological description where human-
language-like instructions could be commanded to the vehicle;

3) search for optimal representations of the navigation area to
reduce the complexityO(N2) of the current approach, when
larger environments are considered;

4) design of strategies to maintain the constructed map, such as
those required to remove features not visible for a long time.

Also, we believe that when the vehicle revisited places of the
navigation area already learned after travelling for a long time
in unknown areas, the Mahalanobis distance would be insufficient
to match local observations with previously stored features in the
SPmap. In those cases, new data association mechanisms would be
required.
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