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Abstract

Robust mobile robot localization requires the availabil-
ity of highly reliable features obtained by the external
sensors of the robot. Redundancy assures reliability and
precision of the observed features. In this work we use
two different sensors, namely, ¢ laser rangefinder and a
monocular vision system, whose complementary nature
allows to robustly identify high level features, i.e. cor-
ners and semiplanes, in the environment of the robot.
We present a general fusion mechanism, based on the
Extended Information Filter, supported by a robust mod-
elling of uncertain geometric information, to fuse in-
formation obtained by different sensors mounted on the
robot. Localization of the robot is achieved by matching
these observations with an a priori map of the environ-
ment. An a priori estimation of the robot location is not
required. FErperimental results are presented, showing the
increase in reliability of the observed features after fusing
information from both sensors.

1 Introduction

Robust sensing of the environment of a mobile robot
is an important task both in localizing the robot and in
building a complete and reliable map of such an envi-
ronment. One of the fundamental ideas to achieve this
robustness is the use of redundancy, that is, to combine
environmental information obtained by several sensors.
Such approach provides more reliable and accurate in-
formation about what the sensory system of the rohot
really observes. Credibility of the observed features is
therefore enhanced. Dealing with redundancy requires
both the availability of a robust modelling tool to repre-
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sent uncertain geometric information and a multisensor
fusion mechanism capable of handling information ob-
tained by different sensors.

Some works have addressed the problem of combining
information for both environment modelling and mobile
robot localization. In [8] Song et al. combine sensory
information from double ultrasonic sensors and a CCD
camera for mobile robot self-localization. They use an
EKF (Extended Kalman Filter) to fuse raw sensory data,
that is low level features. Grandjean et al. [5] perform
a segmentation of the raw laser information which is
then merged with photometric information obtained by
a stereovision system. They propose a fusion mechanism
based on the EKF to calculate the robot location. Fi-
nally, Neira et al. [6] find the mobile robot localization
by fusing two types of sensorial information obtained by
a 3D laser rangefinder, namely, distance measurements
and grey-level images. They use low level features, such
as laser points, to obtain the localization of the robot.
In their approach, robustness highly depends on the ac-
curacy of the a priori model map of the environment and
the initial estimation of the robot location.

By contrast, we address the problem of robust mod-
elling of the environment of a mobile robot from a higher
level perspective, considering the use of high level fea-
tures, obtained by both a laser rangefinder and a CCD
camera, thus, robustness is achieved at the level of ob-
servations. An overview of the process we perform might
be sketched as follows. Segmentation of laser rangefinder
readings (i.e. 2D points) provides a set of laser segments
representing the structure of the environment of the mo-
bile robot. Further processing of this set of segments
produce two different types of high level geometric infor-
mation, namely lager corners, which correspond to the in-
tersection of consecutive segments, and laser semiplanes,
which correspond to the free endpoints of laser segments
(section 2). Simultaneously, information obtained by the



vision subsystem is processed in order to find the verti-
cal edges present in the image (section 3). Next, a fusion
process is carried out to increase the credibility of the de-
tected features and to reduce their location uncertainty
(section 4). Finally, a matching between these reliable
observations and an a priori map of the environment of
the robot is performed to obtain the mobile robot lo-
calization (section 5). Two important contributions of
this approach are: an initial estimation of the robot lo-
cation is not required, and matching one of the high level
features is enough to find the robot location (although
more than one pairing is used to increase reliability). In
section 6 we present experimental results showing raw
sensory information and their corresponding high level
features. There is a great credibility in the detected fea-
tures because they have been observed by two different
sensors. Finally, the estimated localization of the mobile
robot is also presented for two different sample cases.
At each stage of the processing, a robust modelling
tool, the SPmodel [9, 6], is used to efficiently consider the
intrinsic properties of uncertain geometric information.
Fusion of multisensor information is achieved by appli-
cation of the Extended Information Filter (appendix A).

2 Processing of Laser Rangefinder Infor-
mation

A tipical indoor structured environment is composed
of walls, corners, doors, etc. which can be detected by a
2D laser rangefinder. Figure 1 shows a sample environ-
ment in which laser features have been drawn, namely,
points, segments, corners and semiplanes. In this section
we present the process to detect each of these features.
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Figure 1: Relative location of features respect to a ref-
erence attached to the laser sensor.
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2.1 Laser Rangefinder Data Segmentation

The most elementary geometric feature we deal with
in this work is a laser point, obtained directly by the
sensor as a pair of polar coordinates P, = (pg, o),
where p; represents the distance between the scanned
point and the sensor, and ¢; represents the azimuth
angle of the location of the point respects to the ref-
erence system attached to the sensor. In the SPmodel,
a reference Py is attached to each laser point with the
X-axis aligned with the laser beam (figure 1). Then,
a laser point is represented by an uncertain location
Lrp, = (XLp.,DpP,, Cpr., Bp,), with respect to the laser
rangefinder L, where X1 p, is the estimated location vec-
tor of the point with respect to the laser rangefinder; the
real location of the point is obtained as:

1)

where @ represents the composition of location vectors
(the inverse is represented by &); pp, ~ N(Pp,, Cp,)
is the perturbation vector of the point, which takes into
account sensor imprecision; and Bp, is the self-binding
matrix of the entity, which takes into account its symme-
tries. In the case of a point there is symmetry of rotation
around the Z-axis, therefore angular uncertainty is not
considered, thus:

_ 2 _ e T
xXLp, =Xpp, ®dp, = XLp, © Bp Pp,

de = (dz’ dy5 O)T (2)

and,
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Figure 2: Laser Points obtained by the laser rangefinder
and the segmentation result for a sample case.

Laser segments are obtained by application of the seg-
mentation method presented in [3] where segmentation
is achieved by dividing the laser data in regions formed
by a unique polygonal line, which are subsequently di-
vided into segments by an iterative method. We attach
a reference E to each of the supporting edges (i.e. infi-
nite lines) of the segments, placed in the middle point of



the segment and with the X-axis aligned with the edge
(figure 1). Thus, a laser segment is represented by an un-
certain location Lyg = (XLg,DE,CE, Bg) (obtained by
application of the information filter to the set of points
building the edge), where, taking into account the sym-
metry of traslation along the edge:

dp = (0, dy, dg)* (4)

and,

010
BE:[O 0 1J » PE = (dy, do)” (5)

and its observed length 1g = {f E, afE}, where the value
of g, is obtained from the covariance of the extreme
points of the segment. In figure 2 we show the segmen-
tation of a sample scan obtained by the laser rangefinder.
Segmentation of laser rangefinder allows to easilly
identify higher level features in the environment of the
mobile robot, such as laser corners, found by intersection
of two consecutive laser segments, and laser semiplanes,
found at one of the extreme points of a laser segment.

2.2 Detecting Laser Corners

The most robust feature we consider in our work is
a laser corner, which corresponds to the intersection of
two consecutive laser segments. A laser corner is an un-
certain geometric feature without symmetries, therefore
its self-binding matrix is the identity matrix I3. Lack
of symmetries means that identification of a simple laser
corner allows the robot to localize itself in an indoor
structured environment.

The uncertain location of a laser corner is obtained
from the edges which build up the corner (figure 1). We
attach a reference C to each corner such that its X-axis
is aligned with the bisector of the corner. Let Ly¢ =
(%rc,de, Cc, Is) represent the estimated location of the
corner C, respect to the sensor L, where:

(6)

arn

pc =d¢ = (dy, dy, (l¢)T

Let Ey be a reference frame associated to
edge, whose location is represented by Lpp,
(XLE,,PE,,CE,,BE,). We apply the information filter
to this problem by considering the perturbation vector
of the corner d¢ as the state to be estimated, and the
perturbation vector of each observed edge pg, the mea-
surements. The implicit non-linear function fi(d¢, pE,)
expresses the fact that the laser corner belongs to each
of the associated edges. Another important parameter
in the representation of a laser corner is'its observed an-
gle ¢o = {430,0'3,6} formed by an estimation of the real
angle, and its variance. Both values are obtained from
the angle between the references attached to the laser
segments building the laser corner, and their orientation
covariances.
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2.3 Detecting Laser Semiplanes

A laser semiplane is obtained from a free endpoint
of a laser segment (figure 1). These endpoints might
correspond to frames of open doors, convex corners, ob-
stacles, etc. , which cannot be differentiated at this stage
of the processing. Similarly to the case of a laser corner,
a laser semiplane is also an uncertain geometric feature
without symmetries with a self-binding matrix equal to
the identity matrix I3. Laser semiplanes are not as ro-
bust as laser corners because their estimated location is
greatly influenced by the angular resolution of the laser
rangefinder. Fusion with the monocular vision subsys-
tem will increase their robustness.

We attach a reference S to each laser semiplane such
that its X-axis is aligned with the associated laser seg-
ment. Let Lpg = (chS,aS,CS,Ig) represent the esti-
mated location of the laser semiplane S, respect to the
sensor L, where:

(7)

Let E be a reference frame associated to an edge,
whose uncertain location is represented by Lpg
(XLg,PE,Cr, BE) and whose observed length is given
by lg = {i E; afE }. The relative transformation between
the laser semiplane and the edge consists in a translation

given by: )
xgs = (Ig/2,0,0)T (8)

Then the uncertain location of the laser semiplane will
be given by the following composition:

ps =dg = (dg, dy, (l¢,)T

X1Ls =XLE BXES
=%Lp & BLDE ®Xgs (9)
=%.E ®xEes & JseBEPE
and;
Xrs = XLg®xgps (10)
ds = JsgBEbE (11)
Cs = JsgBE Cp BpJiz +Cr  (12)

where Jgp is the jacobian of the transformation xsg (7).
A second surnmand Cpg, has been added to the expres-
sion of Cy because, due to the symmetries of an edge, we
obtain a covariance matrix which do not consider uncer-
tainty along the X-axis of the reference attached to the
vertical edge V. Thus, we need’ an uncertainty value for
the X-axis, which is obtained from the angular resolution
of the laser rangefinder.

3 Processing of Monocular Vision Sen-
sor Information

In this section we obtain the angle of vertical edges
in the environment of the robot with respect to an off-



the-shelf CCD camera mounted on the robot. We are
mainly interested in long vertical edges, corresponding
to corners and doors of the robot’s environment.

To detect vertical edges in the image, we use the Burn-
s’s segment extractor [2]. Burns’s method to compute
image segments is based on geometrical operations in
a 3D space, where X and Y coordinates represent the
image plane and Z represents the gray level of the cor-
responding pixel.

Figure 3: Representation - a vision edge.

A wvision edge (figure 3) is represented, in 2D, by an
attached reference with its origin on the optical center of
the camera and its X-axis pointing to the middle point
of the segment detected on the image and projected on
the plane z = 0 of the reference attached to the camera.
Let Lcg = (Xck,PE,Cr, Be) represent the estimated
location of the vision edge F, respect to the sensor C,
where:

%cp = (0, 0, ¢cp)” (13)
01 0
BE = { 0 0 1 ] y PE= (07 d(b)T (14)

There is an angular error, represented by o4, associ-
ated to the uncertain location of each vision edge, which
is related to the detection error (about 2 pixels) of the
vertical edge in the image.

4 Fusing Laser and Monocular Vision In-
formation

In this section we use a general mechanism to fuse in-
formation coming from a laser rangefinder and a monoc-
ular vision system. Basic features have been extracted
in the previous sections of this work.

4.1 Matching Laser Rangefinder and Cam-
era Features

Fusion of uncertain information requires all geometric
features to be expressed in the same reference system. In
our work we have selected the reference attached to the
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laser rangefinder L, as the base reference for express-
ing all the available features. By calibration we have
obtained the relative transformation xz¢c = (z,¥,¢)T,
between the camera reference system C, and the laser
reference system L, thus, a given feature F, which es-
timated location respects to the camera C is expressed
by Xce = (0, 0, qAScE)T will be expressed respect to the

laser L, by the composition:

XL =%X1c ®%kcE = (2, y, ¢ +dce)’  (15)

Having the observed features expressed in the same
reference system we need to match them, that is, we
need to obtain pairings between laser corners and vision
edges on one hand, and laser semiplanes and vision edges
on the other. The criteria used to decide whether two
given features can be matched is a hypothesis test based
on the Mahalanobis Distance [1]. When a vision edge
can be paired with more than one feature, either a laser
corner or a laser semiplane, we apply an euclidean dis-
tance criterium, thus the closest feature to the reference
attached to the camera will be matched with the vision
edge.

4.2 Fusing Laser Corners and Vision Edges

The first set of pairings obtained by the matching pro-
cess is formed by pairings of a laser corner (section 2.2)
and a vision edge (section 3). Thus, by fusionating both
observations we have features with greater credibility,
that is, they are more likely to come from real features.
The position, orientation and angle of the corner was
obtained by the laser sensor, however, the integration of
the vision edge allows the reduction of the uncertainty
associated to the location of the corner relative to the
robot.

[ Mobile Robot :|

Figure 4: Fusion of a laser corner with a vision edge.

Fusion of both observations is achieved by application
of the information filter presented in appendix A. The
measurement, pg, corresponding to the perturbation of



the vision edge (figure 4), contributes to the estimation of
the perturbation vector of the corner d§§,. In this case,
the implicit measurement function f (df“’,, PE) expresses
the fact that the corner belongs to the vision edge.

Let Lpco, = (iLco,aco,CCO, I3) the uncertain loca-
tion of the corner estimated by the laser sensor, then
the contribution of the vision edge to the perturbation
vector of the corner will be given by:

d§9 = Py My (16)

Py =P '+ Fy ; Myy=M,—-Ny (17)

where: .
P, =Ccqo ; My =P;'de,

come from the integration of laser information in the
estimation of the corner and Fy and Ny come from the
use of the vision edge as redundant information in the
estimation of the corner.

4.3 Fusing Laser Semiplanes and Vision
Edges

A similar situation is found in the case of pairings
formed by a laser semiplane (section 2.3) and a vision
edge (section 3). The redundant information coming
from the observation of the vision edge is used to increase
the credibility on the detection of a real semiplane in the
environment of the robot and to reduce its location un-
certainty.

In this case, the information filter (figure 5) is applied
to the fusion of both observations by considering the per-
turbation vector of the semiplane df,, as the state to
be re-estimated, and the perturbation vector of the ob-
served vision edge pg, as the new measurement. The
implicit measurement function £(d3,,,pg) expresses the
fact that the semiplane belongs to the vision edge.

The updated estimation of the perturbation vector of
the semiplane is given by:

diy = PLy My (18)

Poy =P +Fy ; Myy=M,—Ny (19)

where Py and M come from the integration of laser
information in the estimation of the semiplane, similarly
as we presented for a laser corner, and Fy and Ny come
from the use of the vision edge as redundant information
in the estimation of the semiplane.

5 Mobile Robot Localization

Knowlegde of the mobile robot localization is one of
the fundamental tasks to be performed to succeed in nav-
igating the robot. We state the mobile robot localization
problem as a matching between high level features (i.e.
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Figure 5: Fusion of a laser semiplane with a vision edge.

corners and semiplanes) obtained by the external sensors
mounted on the robot and model features stored in a
database, representing the structure of the environment.
Note that an initial estimation of the robot location is
not, required for the following processing.

5.1 Mobile Robot Localizatibn Formulation

Mathematically, the mobile robot localization prob-
lem is stated using the notation proposed by the
SPmodel. Thus, an uncertain location Lwyp
(Xxwr,dr,Cr, I3) is assigned to the robot, with respect
to a global reference W attached to the model map. A
model feature m is represented by a reference frame M,
whose location respect to the global reference is repre-
sented by the transformation xpw ;. An observation e
(i.e. either a corner or a semiplane) is represented by a
reference frame E with an associated uncertain location
Lre = (XgE,dE,CE, I1).

Figure 6: References involved in the problem of mobile
robot localization.

Each of the pairings between a model feature and an
observation, contributes to the estimation of the mobile



robot localization. Using the information filter, we con-
sidered the perturbation vector of the robot dg as the
state to be estimated, and the perturbation vector of the
observed feature dg, as the measurement. The implicit
non-linear function fr(dg,dg) corresponds to the pair-
ing between the observation and the model feature and
is obtained from figure 6 considering the relationship be-
tween location vectors.

It is important to note that due to the lack of sym-
metries of both a corner and a semiplane, the identi-
fication of a simple feature allows the system to com-
pletely localize the robot. A potential problem is that
of a mismatch between an observation and a model fea-
ture, therefore, we prefer to use more than one pairing
to find the robot localization. In the following section
we present the mechanisms used to establish the set of
pairings between observations and model features.

5.2 Searching for Observation-Model Pair-
ings

We have identified three possible types of pairings be-
tween observations and model features (figure 7). Con-
sidering that our observations are corners and semiplanes
we have:

1. Pairing between an observed corner and a model
corner. Both the laser range finder and the CCD
camera have detected a corner in the environment
of the robot. This situation occurs in either the
observation of a concave corner or the complete ob-
servation of a convex corner.

Pairing between an observed semiplane and a model
semiplane. Both sensors have detected a semiplane
in the environment of the robot. It might corre-
spond to the observation of the frame of an open
door.

Pairing between an observed semiplane and a model
corner. In this case the laser rangefinder has ob-
served one of the semiplanes of a convex corner,
while the other semiplane remains hidden. The
CCD camera is able to detect the vertical edge pro-
vided that there is enough contrast in the image.

The mobile robot localization problem implies carry-
ing out two tasks: determining the observation-model
pairings (i.e. identification), and computing its loca-
tion in. the model map. Identification is a search prob-
lem, while computing the robot location is an estimation
problem. In [4] Castellanos et al. show that simultaneous
identification and localization greatly reduces the com-
plexity of the matching process, therefore, in this work
we use such an scheme.
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Mobile Robot

Figure 7 Differ vypes of observations and their cor-

responding model features.

6 Experimental Results

In this section we present the experimental results ob-
tained by application of the previously described tech-
niques to two different localizations of the mobile robot
in structured indoor environments. Each of the examples
shows the following results (figures 8 and 9):

e Gray-level image obtained by the CCD camera.
Long vertical segments have been extracted by ap-
plication of the Burns algorithm and have been
drawn on the image, as white arrows. We are just
interested in long vertical segments (longer than 150
pixels in the image) because they are more likely to
belong to corners and door frames in the environ-
ment, of the robot.

¢ Representation of the estimated uncertainty, ob-
tained by the laser rangefinder, of the high level fea-
tures matched with the vision edges. We represent
uncertainty by an ellipse obtained from the proba-
bility distribution (up to 95% limit) of the consid-
ered random variable, in this case, the perturbation
vector of the geometric entity. Note that, in the re-
sults presented, uncertainty has been magnified by
an scaling factor.

¢ Uncertainty reduction experimented by high level
features after fusing information obtained by the
vision sensor. Results show an important reduc-
tion in the location estimation of semiplanes due
to the higher angular resolution of the CCD camera
compared to the resolution of the laser rangefinder.
However, in the case of corners this reduction is not
so important due to the high accuracy obtained with
the laser rangefinder.

e Mobile robot localization obtained by the system.
We represent laser points superimposed to a hand-
drawn map of the room in which the robot has been




located. Note that even though the map in not
precise, the estimated localization of the robot is
greatly accurate. Existing objects in the environ-
ment do not prevent the robot from finding its lo-
calization.

Conclusions and Further Work

We have addressed the problem of mobile robot local-
ization from a multisensor fusion point of view. From
the raw laser rangefinder data we have obtained high
level features, namely, laser corners and laser semiplanes.
A second sensor, a CCD camera, has been used to in-
crease the credibility of observations and to improve the
location estimation of these features, due to its high an-
gular resolution. Fusion has been performed by appli-
cation of a general integration mechanism based on the
extended information filter. We have observed an impor-
tant reduction in the location uncertainty of semiplanes,
although in the case of corners it has not been so im-
portant due to the high accuracy obtained with the laser
rangefinder. Mobile robot localization has been achieved
by application of a matching scheme between the fused
features obtained by the system and an a priori map of
the environment, stored in a database. An a priori esti-
mation of the robot location was not required, although
in the case of more complex indoor environments, with a
great number of features, an estimation from the dead-
reckoning system of the robot will be helpful in reducing
the complexity of the matching process.

The method presented in this paper to detect reliable
high level features is not limited to the problem of mobile
robot localization but it might be extended to the prob-
lem of dynamic map building, obtaining a complete map
of the environment of the robot formed by those high
level features. This application is in one of our future
research directions.

A Extended Information Filter

Let x be a state vector whose value is to be esti-
mated, and let there be n observations y; of x, where
ke {1,...,n}, affected by white Gaussian noise:

Ve=Yr+ug ; w~ N(0,Sk)

Let each observation y; be related to x by an implicit
non-linear function of the form fi.(x,yx) = 0. Since £ is
nonlinear, we use a first order approximation:

fr (X, yi) = by + Hp(x — X) + Gr(yx — Ix)

where:

of;,

T oOx ..

(%,9%)

_ O

;Gk—-w

hy = fi(%,¥%) ; Hi
(i1yk)
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The estimation %,, of the state vector and its covariance
P, after integrating the n measurements are:

n n
X, =PaM, ; P7'=) F; My=-Y Ng
k=1 k=1
where:
Fy, = HY (G Sy GT) ! H,,

Ny = Hg(GkSsz‘)“lhk

Matrix P, 1, the inverse of the covariance matrix is
denominated information matriz of the estimation, while
matrix Fi is denominated information matriz of the ob-
servation.

(20)
(21)
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