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Abstract: Mobile robot navigation in unknown environments requires the
concurrent estimation of the mobile robot localization with respect to a base
reference and the construction of a global map of the navigation area. In this
paper we present a comparative study of the performance of the localization
and map building processes using two distinct sensorial systems: a rotating
2D laser rangefinder, and a trinocular stereo vision system.

1. Introduction

Simultaneous localization and map building is one of the key problems in au-
tonomous mobile robot navigation. Different approaches have been reported in
the literature after the initial theoretical contributions of Smith et al. [1] and
the early experiments of Chatila et al. [2] and Leonard et al. [3]. An impor-
tant application in which we are interested is the development of the sensorial
system for autonomous wheel-chairs for handicapped people. Information gath-
ered by the sensorial system would be used for navigation purposes. Both the
localization of the vehicle and the construction of a map of its surroundings
are required. The main goal of this paper is to discuss the issues concerning
the type of sensor used by the system. We present a comparative study of the
performance of the localization and map building processes using two distinct
sensorial systems: a 2D laser rangefinder, and a trinocular vision system.

In our approach we use a probabilistic model, the Symmetries and Pertur-
bation Model (SPmodel) [4, 5], to represent uncertain geometric information
given by any sensor in a general and systematic way. As reported in the lit-
erature, the solution to the simultaneous robot localization and map building
problem requires maintaining a representation of the relationships between the
location estimations of the robot and the features included in the map [6, 7],
which in our work are represented by the cross-correlations between their esti-
mations. In this paper we briefly present the formulation of the Symmetries and
Perturbations Map (SPmap), a probabilistic framework for the simultaneous
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localization and map building problem whose main advantage is its generality,
i.e. sensor and feature independence.

The rest of the paper is structured as follows. In section 2 we describe our
approach to the simultaneous localization and map building problem. Section
3 presents the experiment performed and the sensor data processing algorithms
used. Experimental results obtained with a 2D laser rangefinder and a trinocu-
lar vision system are discussed in section 4, whilst the main conclusions of our
work are drawn in the last section.

2. Simultaneous Localization and Map Building
2.1. The Symmetries and Perturbation Model

In our feature-based approach, uncertain geometric information is represented
using a probabilistic model: the Symmetries and Perturbation Model (SP-
model) [4, 5] which combines the use of probability theory to represent the
imprecision in the location of a geometric element, and the theory of symme-
tries to represent the partiallity due to characteristics of each type of geometric
element.

In the SPmodel, the location of a geometric element E with respect to
a base reference W is given by a location vector xwgr = (z, y, ¢)T. The
estimation of the location of an element is denoted by X g, and the estimation
error is represented locally by a differential location vector dg relative to the
reference attached to the element. Thus, the true location of the element is:

Xwr =Xwg ®dg (1)

where @ represents the composition of location vectors. To account for the
symmetries of the geometric element, we assign in dg a null value to the degrees
of freedom corresponding to them, because they do not represent an effective
location error. We call perturbation vector the vector pg formed by the non
null elements of dg. Both vectors can be related by a row selection matrix Bg
that we call self-binding matriz of the geometric element:

dg =BLpr ; pr=Bgdp (2)

Then, the uncertain location of every geometric entity is represented in the
SPmodel by a quadruple Lwg = (Xwg, Pr, Cg, Bg), where the transforma-
tion Xw g is an estimation taken as base for perturbations, pg is the estimated
value of the perturbation vector, and Cg its covariance.

2.2. The Symmetries and Perturbation Map

The Symmetries and Perturbation Map (SPmap) is a complete representation
of the environment of the robot which includes the uncertain location of the
mobile robot Ly g, the uncertain locations of the features obtained from sensor
observations Ly, ,7 € {1... Nr} and their interdependencies. The SPmap can
be defined as a quadruple:

SPmap = (X, p", cV, BY) (3)
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Figure 1. Simultaneous mobile robot localization and map building.

where x% is the estimated location vector of the SPmap and p" is the pertur-
bation vector of the SPmap:

XWR dr
XWr Pr
LW wo_
- . pW= . (4)
XW Py, PFx,

The true location of the robot and the map features is:
x" =x" e B") p" (5)

where the composition operator & applies in this case to each of the components
of the vectors, and B is the binding matriz of the SPmap, a diagonal matrix
formed by the self-binding matrix of the robot and the self-binding matrices of
the map features:

BW :dlag (BR7 BF17 ey BFNF) (6)

The covariance matrix of the SPmap represents the covariance of the estimation
of the robot and the map feature locations, the cross-covariances between the
robot and the map features, and finally, the cross-covariances between the map
features themselves:

CR CRF1 CRFNF

cL. Cr ... Cpr
cW = : 1 :1 . 1: " (7)
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Figure 2. Robot trajectory according to odometry (left) and true trajectory measured
with the theodolites (right).

Note that we may represent any type of geometric entity within this general
framework. The proposed approach can include different types of features
obtained by different types of sensors, and thus it is suitable to deal with a
multisensor system. In our experiment, either 2D laser segments or trinocular
vertical edges are fused in the estimation of both the robot and the feature
locations using an EKF-based algorithm. Figure 1 describes the incremental
construction of the SPmap. More details can be found in [7].

3. Experiment Design
3.1. Measurement of the Vehicle Trajectory

The experiment was carried out using a Labmate”™ mobile robot, a 2D laser
rangefinder and a trinocular vision system, both mounted on the mobile robot,
and a pair of theodolites, used as a precise and independent location measure-
ment equipment. At each step of the programmed robot trajectory, the robot
location according both to odometry, and measured with the theodolites, were
obtained (figure 2). The environment model was a set of vertical edges, corre-
sponding to wall corners and door frames, whose location was measured with
the theodolites. The location of vertical walls was calculated using this infor-
mation. This model is used as ground-truth to evaluate the precision of the map
building processes. Also at each step of the robot trajectory, the environment
was sensed using both sensors as explained below.

3.2. Processing of 2D Laser Readings

A set of 2D points, expressed in polar coordinates with respect to the sensor,
were gathered from the surroundings of the vehicle. A maximum range of 6.5
m. and an angular resolution of 0.5 deg. were used during experimentation.
Measurement error for each 2D laser reading was modelled by white-gaussian
noise mainly characterized by the variances in range and azimuth angle [8].
A two-step segmentation algorithm was applied [9]. First, by application of a
tracking-like algorithm, the set of 2D laser readings was divided into groups
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Figure 3. Laser scan and 2D segments obtained at step 38 of the robot trajectory.
Lateral uncertainty has been represented for each detected segment.

of points to which a polygonal line without gaps could be fitted. Then, an
iterative line fitting technique was considered to detect the endpoints of each
2D segment included in one of those groups. Finally, suboptimal estimation
was used to obtain the final representation associated to each laser segment.
Also, an estimation of the segment length was computed from the endpoints.
Segments shorter than 30 cm. were discarded from further processing. Figure
3 describes an example of segmentation of 2D laser readings gathered during
our experimentation.

3.3. Processing of Trinocular Vision

In the case of trinocular vision, large vertical edges were extracted from the
three images and matched to obtain the location of trinocular vertical edges
corresponding to corners and door frames. The trinocular vision system was
composed of three B&W CCD cameras, with a lens focal of f = 6 mm., image
resolution of 512 x 512, and camera baselines of 113.7 mm., 110.8 mm. and
186.4 mm. In this work only vertical image segments were considered, allowing
deviations from verticallity up to 22.5 deg.

Trinocular stereo processing followed these steps: 1) image segment detec-
tion: The three images were processed using Burns’ algorithm [10]. Three con-
ditions were considered to filter out segments: segments shorter than 100 pixels,
non-vertical segments, and segments whose grey-level gradient was smaller than
8 grey levels per pixel; 2) image segment matching: using the computed im-
age segments and the calibration information of the cameras (calibration was
performed using Tsai’s algorithm [11]), images were sequentially processed in
a EKF-based predict-match-update loop [12] (matching was performed in 3D
to profit from segment overlapping in the image); 3) image segment projection
to 2D: from the vertical projection of the midpoint projecting ray of each of
the matched 3D image segments, the projection ray in 2D was obtained (the
standard deviation of the orientation for each projection ray was modelled as
0.1 deg.); 4) 2D wvertical edge location: the 2D location of the vertical segment
was computed by fusing the three 2D projection rays. Figure 4 shows the ver-
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Figure 4. Trinocular image set and vertical edge locations computed at step 38 of
the trajectory (only the projection rays for two edges are shown). Elipses show the
uncertainty (95% bounds) for the edge absolute location in 2D.



tical edges obtained at step 38 of the robot trajectory, and the 2D local map
obtained from the edges matched in the three images.

4. Experimental Results

In the first place, our experiment has shown that the SPmap approach to the
simultaneous localization and map building problem is appropriate and gen-
eral (figure 5). A statistical test based on the squared Mahalanobis distance
was performed to validate the uncertainty model of the robot location for both
the 2D laser range finder and the trinocular system solutions. Results showed
that the laser-based solution passed the test in more than 95% of the cases,
whilst the trinocular-based solution attained 87%. The trinocular-based solu-
tion was slightly optimistic due to the fact that the data association problem
is more complex and some spurious matchings were accepted. Thus, this ap-
proach requires a more ellaborate solution than the closest neighbour used in
our experiment. Nevertheless, with both sensors the robot adequately solved
the revisiting problem, i.e. it recognized previously learned features of the en-
vironment.

With respect to precision, in our experiments we profited from ground-
truth to obtain a precise estimation of the error in the vehicle location computed
by each approach. Figure 6 presents the errors obtained at each point of the
vehicle trajectory. The laser-based solution was bounded by a 20 cm. error
in position and 1.5 deg. in orientation for the location of the vehicle. On the
other hand, the trinocular-based approach obtained a maximum error of 35
cm. for the vehicle position and 2.5 deg. in orientation. Thus, the sensorial
system based on laser rangefinder increased the accuracy of the solution. The
environment map (figure 5) constructed in both cases proved to be adequate
for navigation, although the map obtained by the laser-based approach may
also be used for path planning purposes, which is not the case for the map
obtained with trinocular vision.

The complexity of the approach based on trinocular vision is high, because
this system requires an ellaborate calibration process, and there is much more
computational effort involved. However, laser has been used to its maximum
potential. On the contrary, only vertical edges, a minimum potential of the
trinocular vision system have been considered. There are many more possibil-
ities with the use of trinocular vision, such as extracting horizontal edges and
planar surfaces, to be explored in the future.

5. Conclusions

In this paper we have compared the performance of two distinct sensorial sys-
tems on the simultaneous localization and map building problem for a mobile
robot navigating indoors: on one hand, a 2D laser range finder, and on the
other hand, a trinocular stereo system. The main conclusions derived from our
experimentation can be summarized as follows: 1) The simultaneous localiza-
tion and map building problem, using a non separable state-vector approach is
a tractable problem for a reduced number of features. More structured repre-
sentations are required for large-scale environments; 2) Using a 2D laser range
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Figure 5. Solutions for the simultaneous localization and map building problem ob-
tained by laser (top) and trinocular (bottom). A hand-measured model map has been
drawn for reference purposes.
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Figure 6. Errors in the robot location estimation and 95% uncertainty bounds obtained
by laser (left) and trinocular (right) along the trajectory of the vehicle.

finder we obtained a more precise estimated localization for the vehicle than
using trinocular vertical edges. One of the reasons was the higher semantical
content of laser data as compared with the trinocular data. Also, data associ-
ation by using the nearest-neighbour technique produced a degradation of the
solution obtained by trinocular stereo as compared to the laser-based solution;
3) The laser-based approach allows the structuration of the navigation area
towards the topological representation of the environment. However, such an
structuration is difficult from the global map obtained by the trinocular-based



approach.

Further work within our group is planned towards increasing the struc-

turation of the navigation area and to profit from multisensor fusion using our
general framework for the simultaneous localization and map building problem.
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