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Abstract. Mobile Robot Localization is a fundamental
problem to solve when navigating in an indoor structured
environment. This problem might be stated as a match-
ing problem between sensor observations and model fea-
tures of an a priori map of the environment. Geometric
constraints may be used to reduce the complexity of the
matching process. Appropiate modelling of the geomet-
ric information is required to deal with such constraints.
In this paper we estimate the mobile robot localization
by means of a matching between segments obtained by a
laser rangefinder mounted on the robot and model seg-
ments of an a priori map of the environment. A prob-
abilistic method is used to represent the uncertainty and
partiallity of the geometric information involved. We
give some experimental results in which we compare two
alternative matching schemes.

Keywords: Mobile Robot Localization, Geometric Con-
straints, Matching Algorithms, Probabilistic Methods

1 Introduction

Mobile robot localization is an important problem for
navigation in an indoor structured environment. It has
given rise to a great number of solutions using different
types of external sensors mounted on the mobile robot.
We focus on feature-based methods, in which a set of
features are extracted from the sensed data (such as line
segments, corners, etc.) and then matched with the cor-
responding features in a model. In general, matching
problems are of exponential complexity. In this case,
reduction of this complexity can be achieved by applica-
tion of two fundamental ideas [6]: the use of validation
mechanisms that allow the system to discard entire sub-
spaces of the solution space from further consideration,
and the use of strategies for the generation and verifica-
tion of hypothesis, that can help the system in searching
the solution space more efficiently to obtain more plau-
sible hypothesis promptly. The mobile robot localiza-
tion problem implies carrying out two tasks: determining
the observation-model pairings (i.e. identification), and
computing its location in the environment. Identifica-
tion is a search problem, while computing robot location
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is an estimation problem. This twofold goal has given
rise to two fundamental matching schemes: The Identi-
fying Before Locating scheme [5], based on separating the
processes of pairings identification, and of determining
the robot location in the environment, and the Identi-
fying While Locating scheme [4], in which identification
and localization are carried out simultaneously.

Most of the previous works have considered the
use of the identifying before locating scheme. Thus,
Drumbheller, [3] estimates the localization of a mobile
robot by application of this scheme to match the obser-
vations obtained by a sonar rangefinder and the model
features of an priori map of the room. To reduce the
complexity of the process he uses local constraints. In
[9] Talluri et al. present a technique for estimating the
location of a mobile robot in an structured outdoor envi-
ronment, consisting in polyhedral buildings. They estab-
lish a correspondence between the lines that constitute
the rooftops of the buildings and their images obtained
by a CCD camera.

In this paper we compare the two alternative matching
schemes, in order to decide which is the most appropi-
ate for the problem of mobile robot localization. We use
a segment-based method combined with a probabilistic
model to represent the uncertainty and partiallity of the
geometric information involved. We use geometric con-
straints to reduce the exponential complexity of the mo-
bile robot localization, that is, the validation that geo-
metric relations between model features are satisfied in
the observations we are trying to match with them.

In section 2.1 we briefly describe the uncertainty rep-
resentation model we use. Section 2.2 describes the geo-
metric constraints used througout the work. Complete
algorithms of the two matching schemes are also pro-
vided in section 3.1 and 3.2. Finally, we present some
experimental results comparing the performance of both
algorithms.

2 Uncertain Geometric Constraints
Geometric constraints are greatly influenced by the
uncertainty model used. In this section we present a
probabilistic model to represent uncertain geometric in-
formation, which is based both on the theory of symme-



tries and probability theory. We also describe the geo-
metric constraints used to prune the interpretation tree
in the search-for-pairings process.

2.1 Symmetries and Perturbations Model

Sensors obtain uncertain geometric information from
the environment of the mobile robot. There are two fun-
damental aspects of geometric uncertainty:

e Partiallity, which refers to the degrees of freedom as-
sociated to different geometric entities, and how they
determine the location of other entities related to
them.

e Imprecision, which refers to the accuracy in the esti-
mation of the location of geometric entities.

The Symmetries and Perturbations Model (SPmodel)
[10] combines the use of probability theory to represent
the imprecision in the location of a geometric element,
and the theory of symmetries to represent the partial-
lity due to characteristics of each type of geometric el-
ement. A reference E is associated to every geomet-
ric element £. Its location is given by a location vector
xwr = (z, y, )T, respect to a base reference, W, com-
posed of two Cartesian coordinates and an angle (consid-
ering 2D). The estimation of the location of an element is
denoted by Xw g, and the estimation error is represented
locally by a differential location vector dg relative to the
reference attached to the element. Thus, the true loca-
tion of the element is:

Xwg =Xweg ®dg

where @ represents the composition of location vectors
(the inversion is represented with ©).

To account for the symmetries of the geometric ele-
ment, we assign in dg a null value to the degrees of free-
dom corresponding to them, because they do not rep-
resent an effective location error. We call perturbation
vector the vector pg formed by the non null elements of
dg. Both vectors can be related by a row selection ma-
trix Bg that we call self-binding matriz of the geometric
element:

dg =Bipr ; pr=DBpdg
Based on these ideas, the SPmodel represents the infor-
mation about the location of a geometric element £ by
a quadruple Lwgp = Xwg,Pr, Cr, Bg), where:

xwr =Xwr ®BEpr ; Pr = Elpr] ; Cr = Cov(pr)

Transformation Xy g is an estimation taken as base
for perturbations, pg is the estimated value of the per-
turbation vector, and Cg its covariance. When pg = 0,
we say that the estimation is centered.

2.1.1 TUncertain Location of a Laser Point

The most elementary geometric feature we deal with in
this work is a laser point which is obtained directly by a
laser rangefinder. A reference P, is attached to each laser
point with the X-axis aligned with the laser beam (figure
1). Thus, a laser point is represented by an uncertain
location, Lyp, = (Xzp,,Ppr,, Cp., Bp,), with respect to
the laser rangefinder, L, where:

XL P, (pr. cosdr, pi singy, dx)”
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Figure 1: Uncertain Location of a Laser Point.

2.1.2 Uncertain Location of a Laser Segment

Laser segments are obtained by application of the seg-
mentation method presented in [2] where segmentation is
achieved by dividing the laser data in regions formed by
a unique polygonal line, which are subsequently divided
into segments by an iterative method.

Figure 2: Uncertain Location of the edge associated with
a Laser Segment.

We attach a reference E to each of the supporting
edges of the segments, placed in the middle point of the
segment and with the X-axis aligned with the edge (fig-
ure 2). Thus, a laser segment is represented by an un-
certain location:

Lir = (X.E,PE,CE, BE)



and its observed length:

g = {ip, 07, }

where:
. .. AT
XLE (ZLE,0LE, PLE)
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2.2 Geometric Constraints

One of the fundamental ideas to reduce the exponen-
tial complexity of the mobile robot localization, stated as
a matching problem, is the use of geometric constraints:
the validation that geometric relations between model
features are satisfied in the observations we are trying to
match with them. Geometric constraints are a set of pa-
rameters that derive from the geometry of each feature,
and from the relative location between features [6]. We
can classify geometric constraints into two categories:

e Location Independent Constraints, which can be vali-
dated without having an estimation of the location of
the robot. They include unary constraints, and binary
constraints.

e Location Dependent Constraints, based on the avail-
ability of the robot location. The fundamental con-
straint of this type is rigidity: the estimation of the
robot location in the environment determines the lo-
cation of the model features with respect to the robot.
We also present the eztension constraint which con-
siders the real dimensions of the involved geometric
entities.

2.2.1 Location Independent Constraints

In this section we study unary geometric relations: which
depend on a single geometric feature, such as lenght; and
binary geometric relations: which depend on the relative
location (distances and angles) between geometric enti-
ties.

Unary Constraints. Unary Constraints refer to those
that apply to a single pairing of a data feature and a
model feature. Such constraints involve geometric mea-
surements such as the length of an edge, or the angle of
a corner, or the area of a surface patch, etc. Unary con-
straints could also involve other sensory measurements,
for example, the color associated with a feature, or the
texture of a feature, or surface reflectance properties of
a feature. Clearly, each such constraint can reduce the
size of the search space.

Let a given segment E, be represented by an uncertain
location Lgg = (XrE,Pr,CE, Br), respect to the robot
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Figure 3: Validating Unary Constraint between an ob-
served laser segment, E, and a model segment, M.

R, and by its observed length, L = {iE, JfE}. Let M be
the model segment paired with E, which length is given
by lar. The length constraint is satisfied when I < Iy,
because usually we obtain only partial observations of
the model features. Otherwise, a hypothesis test based
on the 2 distribution is applied to decide if they are
compatible using the Mahalanobis distance [1] calculated
as: (A .

N lg — v

D® = UZQE

Under the gaussianity hypothesis, D? follows a chi-
square distribution. For a given significance level, «,
the unary constraint is satisfied if:

2 2
D* <Dy, »

where D2, , is a threshold value, obtained from the x2,
distribution, such that the probability of rejecting a good

matching is a with m = 1 degree of freedom.

Binary Constraints. Binary Constraints refer to
those that apply to two pairings of data features and
model features. In general, binary geometric relations
are nonlinear functions of the relative location of the
involved geometric features. For this reason, aligning
transformations, which belong to the set of symmetries
of the geometric entities involved, are applied to the orig-
inal uncertain locations of the features to obtained new
uncertain locations which allow to estimate binary rela-
tions as linear functions of their relative location vector
[8].

Let A and B represent attached references to two ob-
served edges, which estimated location vectors are given
by Xgra and Xgp with respect to the robot. Then, ref-
erences A and B (figure 4)are characterized by the esti-
mated location vectors:

Xpi =XpADXp4 3 Xgpp = XRB D Xpp
where the aligning transformations are:

Xa4 = (24, 0, O)T i Xgp = (wp, 0, O)T



Figure 4: Reference alignment for two edges.

with z, and z, depending on the relatiAve orientation of
the features. Let Xap = (£4B, Y4B, ¢aB)T represents
the estimated relative location between features A and
B, and let X553 = (#15, Ui5, ¢45)7 represents the
estimated relative location between features A and B,
then there are two different cases:

1. When the observed features are parallel, that is bip =~
0 or ¢ 55 ~ m, we have:

To =0 ; Ty = —%aB
%15 = (0,945, 0)"
Then we calculate the Mahalanobis distance by:

p2 - Wis = ymamp)’

2
Oyis
2. Otherwise, we have:

R YaB . Uam
Lo =TAB — — = s b= ——/—=—
tangap sindap

%15 = (0, 0, ¢p55)7

and the Mahalanobis distance is calculated as:

For a given significance level, a, the binary constraint is
satisfied if:
D> <D,

with m = 1 degree of freedom.

2.2.2 Location Dependent Constraints

The availability of an estimation of the location of the
object gives us the possibility of applying other valida-
tion mechanisms on the observations. In this section
we present the rigidity constraint and the extension con-
straint.

Figure 5: Validating Rigidity Constraint between an ob-
served laser segment, E, and a model segment, M.

Rigidity Constraint. The fundamental location de-
pendent constraint is denominated rigidity. Intuitively,
rigidity states that the location of the robot in the en-
vironment, determines the location of the model features
respect to the robot.

Given an estimation LWR = ()A(WR,(AiR,CR,BR) of
the location of the robot, and given the location of the
feature in the model, xy 57, we can estimate the location
of the feature with respect to the robot as follows:

Lrv = OLwr @ xwm

XpyM = OdRr © Xwr ® Xwum

thus !,
XrM = OXwR P XwuM
pY, = -BuJurdr
Ccl = (BuJur)Cr(ByuJur)T

An observed edge E can be considered compatible
with a model edge M if their relative angle qASEM and
their perpendicular distance ggps are equal to zero.
These conditions are expressed by:

BEXEM =0

where xg)s is the relative location between the edges.
We can measure the discrepancy between the model edge
and the observed edge using the Mahalanobis distance:

D? = (BE)A(EM)T(BECO’U(XEM)B%;)71 (BE)A(EM)

For a given significance level, a, the rigidity constraint
is satisfied if:
D*<D; ,

with m = dim(pg) = rank(Bg) degrees of freedom. The
estimated value of xgas and its covariance (figure 5) can

IThe expressions for transforming differential locations between
references are: dg ® x4 = xaB ® dp, with dg = J;édA =
JBA dA .



be obtained by:

XEM = OXRE @ XRM
COU(XEM) = Jl@{o, )A(EM}B%;CEBEJ;@{O, )A(EM}
+Joe {Xp, 0} B Cff Bu Jog {Xp, 0}
where J1g and Jag are the Jacobians of the composition
of location vectors:

o(yPz

Jie{x1,%x2} = (3y )
Y=X1, Z=X2

oNyPz

Jog{x1,x2} = (Bz )
Y=X1, Z2=X2

Figure 6: Validating Extension Constraint between an
observed laser segment, E, and a model segment, M.

Extension Constraint. The rigidity constraint does
not validate whether the observed feature is actually lo-
cated within the region occupied by the model feature.
The validation that the observed feature is actually
contained in the region occupied by the corresponding
model feature is denominated the extension constraint.
Unlike the other constraint validation methods, the ex-
tension constraint is particular for each type of geometric
element. Considering laser segments the extension con-
straint consists in determining whether the most extreme
points of the observed segment are contained within the
extension occupied by its corresponding model segment.
Let Xve = (EmE, JmE, dvE)T represent the estimated
relative location between the model segment, M, and the
observed segment, E. Let 1p = {fE,afE} represents the
estimated length of the segment E, and let Ij; be the
length of the model segment. Then, E and M can be
considered compatible if the endpoints of the segments
are located, respect to the reference M, at a distance
lower than the semilength of the model edge, that is:

R lg Iy
TymE + 5 < 9

and
g lu

Otherwise, we apply a hypothesis test:

le l 2
o (@ve+F ) >
Da = <Dma
o2+ o? -
TME le
and X
A 1553 l 2
o (v —F ) >
Db 2 + 2 S Dm,oz
O-xME UIE

with m = 1 degree of freedom.

3 Mobile Robot Self-Localization as a
Matching Problem

Determining the location of a robot is an important
problem for an autonomous vehicle navigating in a struc-
tured indoor environment. Mobile robot localization can
be stated as a matching problem in which sensed fea-
tures are obtained by the mobile robot sensors from its
surrounding environment, and matched with model fea-
tures stored in a database which represents the structure
of this environment. Two different matching schemes can
be used to match the set of observations with the set of
model features: the Identifying Before Locating scheme
[5], and the Identifying While Locating scheme [4]. Both
schemes use the geometric constraints to reduce the com-
plexity of the matching process. There are some basic
aspects of the matching problem that are common to
both schemes, and some others are substantially differ-
ent. The goal of the matching process is to generate an
interpretation which relates each observation e; with a
model feature my by means of a pairing p; = (ej, my).
An interpretation is a set of robot-location hypotheses
H = {h1, ..., hp} where each hypothesis has the form:

hi = {LRhi 7Shi}

where Lg,  is the hypothesized robot location, and the
set Sp,; is the set of pairings which support the hypoth-
esis.

3.1 Identifying Before Locating

The identifying before locating scheme [5] is based on
separating the processes of pairing identification, and of
determining the robot location in the environment. In
algorithm 3.1, we give a basic and simple implementation
of this approach.

3.1.1 Searching for Pairings

This scheme uses very simple and fast validation mecha-
nism to determine whether a given hypothesis is consis-
tent with the set of observations. Such validations can
be made by the geometric constraints given previously.
The hypothesis generation process is based on traversing
the interpretation tree in search for consistent interpre-
tations. In algorithm 3.1, this process is written as a
recursive procedure in which, at each step of the recur-
sion, all consistent pairings between an observation e and
the model features in M are obtained. It is important to



highlight that the number of binary constraints to verify
for a given hypothesis grows polinomially (O(n?))with
the number of paired observations, what may lead to a
great amount of computation. The select_observation
function selects the most suitable observation because it
is the one that generates as few pairings as possible.

3.1.2 Locating and Validating

Applying location independent constraints we only as-
sure local consistency. Therefore, to assure global con-
sistency it is necessary to estimate the robot location in
order to determine whether the location of each observa-
tion and that of its corresponding model feature coincide,
taking into account the imprecision in the localization of
the observations. Robot localization is usually carried
out using some estimation method that finds a trans-
formation such that the error between each transformed
model feature and its corresponding observed feature is
minimal in some sense [7]. Once we know the robot lo-
cation we apply location dependent constraints, that is,
rigidity and extension constraints.

3.2 Identifying While Locating

The fundamental idea behind the identifying while lo-
cating scheme [4] is that an estimation of the location of
the robot is a very important source of information for
the identification process. Thus, the complexity of the
recognition process can be reduced if identification and
localization are performed simultaneously. In algorithm
3.2, we give a basic and simple implementation of this
approach.

3.2.1 Hypothesis Generation

This process deals with the selection of the smallest set
of observations that allow to estimate the location of the
robot. As presented in algorithm 3.2 we choose two inde-
pendent observations with the lowest number of possible
pairings, so that the number of alternative hypothesis be
small.

3.2.2 Hypothesis Verification

Verification of hypothesis is carried out in a data-driven
fashion (algorithm 3.2). An observation is selected, and
it is determined whether it can be paired with one of the
model features. If an acceptable pairing is found, the
function recurs with a robot location estimation refined
by the new pairing. Note that only one validation of the
rigidity and extension constraints is necessary for each
potential pairing. Thus, the number of validations for
a given hypothesis grows linearly with the number of
pairings.

4 Experimental Results
Considering the localization of a mobile robot in an
indoor structured environment, we present an example

Unsorted | Sorted
Unary False | Computed 41 48
Table 2256 169
True | Computed 89 90
Table 2036 1091
Binary False | Computed 144 167
Table 1777 970
True | Computed 97 71
Table 1111 224
Rigidity False | Computed 50 1
True | Computed 191 52
Ezxtension | False | Computed 48 22
True | Computed 143 30

Table 1: Geometric Constraints Validated by the Iden-
tifying Before Locating scheme. The example considers
sixteen model features and nine observed features.

of the application of the previously described matching
schemes. Laser segments are obtained by application of
the segmentation algorithm presented in [2].

4.1 Implementation Details

We have considered two alternative strategies to se-
lect the observations: first we have selected observations
in the order given by the sensor then we have sorted out
the observations using segment length as the sorting cri-
teria, thus, choosing in first place the larger segments.
To reduce computation time we have adopted two solu-
tions:

1. Results from the validation of location independent
constraints are stored in a table, thus we only go once
through the computation of the constraints. When
a value previously calculated is required we obtain it
from the table. In tables 1 and 2 we show the number
of constraints which have been calculated and those
which have been obtained from the tables.

2. Recursion is stopped when at least 60 percent of
the available observations have been paired with
model features. Thus, a complete traversing of the
interpretation-tree is not required.

4.2 Algorithms Performance

Tables 1 and 2 present the number of geometric con-
straints validated by each scheme. Note that, in this
case, sorting observations in the identifying while locat-
ing scheme does not improve performance; this is due to
the fact that using the first two observations provided by
the sensor, the system is able to estimate a robot location
and then it applies location dependent constraints, which



Unsorted | Sorted

Unary False | Computed 30 48
Table 0 50

True | Computed 56 90
Table 0 234

Binary False | Computed 2 81
Table 0 153

True | Computed 1 27

Table 0 29

Rigidity False | Computed 48 54
True | Computed 6 48

Extension | False | Computed 1 22
True | Computed 5 26

Table 2: Geometric Constraints Validated by the Iden-
tifying While Locating scheme. The example considers
sixteen model features and nine observed features.

are tighter. Previous works have dealt with the applica-
tion of location independent constraints (i.e. unary and
binary) to the reduction of the complexity of the match-
ing problem. We have observed that using only location
independent constraints, the identifying before locating
algoritm obtains false hypotheses, that is, they satisfy
local consistency but do not satisfy global consistency.
In figure 7 we show an example of false hypothesis. The
number of different supporting sets, for the example con-
sidered, which satisfy local consistency are 98 in the case
of unsorted observations and 23 in the sorted case. Note
that their correspondent localization might coincide in
some cases. Applying local dependent constraints (i.e.
rigidity and extension) the number of supporting sets is
reduced to 1 and 5 respectively. Global consistent hy-
potheses might have an incorrect estimation of the robot
location due to the fact that we stop the recursive process
when at least 60 percent of the observations have been
paired. These hypotheses can be eliminated by explor-
ing further the interpretation tree, in order to validated
consistency by pairing the observations which have not
yet been used. The real robot location obtained is given
in figure 8 where we explicitly present the supporting set
of the hypothesized location. As tables 1 and 2 show, an
estimation of the robot location constitutes a very im-
portant source of information for the following reasons:

1. There is a reduction in the number of constraints to
verify.

2. Location dependent constraints are tighter, they as-
sure global consistency and not just local consistency.

5 Conclusions

The problem of mobile robot localization has been
stated as a matching problem, in which observations have
been obtained by an exteroceptive sensor mounted on
the mobile robot and model features had been stored in
a database. In a general sense, matching problems have
exponential complexity, therefore a mechanism to reduce
this handicap is necessary. We have used geometric con-
straints, both location independent and location depen-
dent, to prune the solution-space. We have compared
two different matching schemes using the number of geo-
metric constraints validated by them. As experimental
results show, an estimation of the robot location con-
stitutes a very important source of information during
the matching process. Future work will consider larger
indoor structured environment, which require new con-
straints, such as the visibility constraint, that only con-
siders matching of the model features which are visible
from the estimated robot location. This estimated loca-
tion might be obtained by the dead-reckoning system of
the mobile robot.
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FUNCTION identify_before_locating (£, M)
; €: set of sensorial observations
; M: set of model features

Hg := search_for_pairings (0, £, M);
Hy := locate_and_validate (Hg);
RETURN H,;
END;

FUNCTION search_for_pairings (Sp, £, M)
; Sp: current set of pairings

; £: remaining observations to be paired

; M: set of candidate model features

H = 0;

IF £ = ) THEN
H:=HU {Sh};

ELSE

e := select_observation (£);
FOR m € M DO
p:= (e, m);
IF satisfy_unary_constraints (p) THEN
binary := TRUE;
FOR pp = (ep, mp) € S, WHILE binary DO
binary := satisfy_binary_constraints (pp, p);
OD;
IF binary THEN

H :=H U search_for_pairings (S, U {p},&\ {e}, M);

FI;
FI;
OD;
‘H := H U search_for_pairings (S, £\ {e}, M);
FI;
RETURN %;
END;

FUNCTION locate_and_validate (%)
; H: set of hypotheses h whose robot location has not been
; estimated and contain only the support pairings Sj

Hy :=0;

FOR S, € H DO
L), := estimate__robot_location (S3);
valid := TRUE;
FOR p € S;, WHILE valid DO

valid := satisfy_rigidity_and_extension_constraints (Ly, p)

OD;
IF valid THEN
Hoy := Hy Uh;
FI;
OD;
RETURN H,;
END;

FUNCTION identify while_locating (£, M)
; €: set of available observations
; M: set of model features

REPEAT
ef := select_first observation (£);
es := select_second_observation (8 \ {ef} s ef);
Hg := search_for_pairings (@, {ef, es} » M);
Hoy = 0;
FOR h € #4 DO
L) := estimate_robot_location (Sp);
Hy := Hoy U verify_ hypothesis (h, £, M);
OD;
£i= £\ {e, ek
UNTIL H, # 0;

RETURN H,;
END;

FUNCTION verify hypothesis (h,&, M)
; h : robot-location hypothesis to verify

; €: set of available observations

; M: set of model features

H = (;
IF £ = (¢ THEN
H:=HU{h};
ELSE
e := select_observation (£);
FOR m € M DO
p = (e, m);
IF satisfy rigidity_and_extension (Lj, p) THEN
Ly, := refine_robot_location (Lp, p);
Sh, = Sn U {p};
H := H U verify_hypothesis (hp, £\ {e}, M);
FI;
OD;
H := H U verify _hypothesis (h, £\ {e}, M);
FI;
RETURN #%;
END;

Algorithm 3.2: Identifying while Locating

M6
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M8
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M2
EO
robot M9 ES
. M1 v ,
) E1
Ezl
M10
M11| M12 -
E7
M13 [ Es
M14 E4
Mo ; . ) }
M15 E6 E5

Algorithm 3.1: Identifying before Locating

Figure 7: False Location obtained by the Identifying Be-
fore Locating matching scheme. Left figure shows the
robot location in the model map. Right figures shows
the set of observations available after segmentation of
the laser data. The support set of the hypothesis is S, =
{E0—M9, E4—M11, E5—M15, E6—M15, E8—M1}.
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Figure 8: Mobile Robot Localization obtained by both
matching schemes. Left figure shows the robot location
in the model map. Right figures shows the set of observa-
tions available after segmentation of the laser data. The
support set of the hypothesis is S, = {E0 — M1, E2 —
M3, E4— M5, E5 — M6, E7T— M8, E8 — M9}




