
FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 335 — #5

9 Map Building and
SLAM Algorithms
José A. Castellanos, José Neira, and
Juan D. Tardós

CONTENTS

9.1 Introduction . 335
9.2 SLAM Using the Extended Kalman Filter . 339

9.2.1 Initialization . 340
9.2.2 Vehicle Motion: The EKF Prediction Step 341
9.2.3 Data Association . 342
9.2.4 Map Update: The EKF Estimation Step. 344
9.2.5 Adding Newly Observed Features . 344
9.2.6 Consistency of EKF–SLAM .. 345

9.3 Data Association in SLAM.. 346
9.3.1 Individual Compatibility Nearest Neighbor. 346
9.3.2 Joint Compatibility . 347
9.3.3 Relocation . 350
9.3.4 Locality . 354

9.4 Mapping Large Environments . 358
9.4.1 Building Independent Local Maps . 359
9.4.2 Local Map Joining . 359
9.4.3 Matching and Fusion After Map Joining. 361
9.4.4 Closing a Large Loop . 361
9.4.5 Multi-robot SLAM .. 365

9.5 Conclusions . 366
Appendix: Transformations in 2D . 367
Acknowledgment . 368
References . 368
Biographies . 371

9.1 INTRODUCTION

The concept of autonomy of mobile robots encompasses many areas of
knowledge, methods, and ultimately algorithms designed for trajectory control,

335

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 336 — #6

336 Autonomous Mobile Robots

obstacle avoidance, localization, map building, and so forth. Practically,
the success of a path planning and navigation mission of an autonomous
vehicle depends on the availability of both a sufficiently reliable estimation
of the vehicle location and an accurate representation of the navigation area.

Schematically, the problem of map building consists of the following steps:
(1) Sensing the environment of the vehicle at time k using onboard sensors
(e.g., laser scanner, vision, or sonar); (2) Representation of sensor data (e.g.,
feature-based or raw-data-based approaches); (3) Integration of the recently
perceived observations at time k with the previously learned structure of the
environment estimated at time k − 1.

The simplest approach to map building relies on the vehicle location estim-
ates provided by dead-reckoning. However, as reported in the literature [1], this
approach is unreliable for long-term missions due to the time-increasing drift of
those estimates (Figure 9.1a). Consequently, a coupling arises between the map
building problem and the improvement of dead-reckoning location estimates
arises (Figure 9.1b). Different approaches to the so-called simultaneous local-
ization and mapping (SLAM) problem have populated the robotics literature
during the last decade.

The most popular approach to SLAM dates back to the seminal work of
Smith et al. [2] where the idea of representing the structure of the navigation
area in a discrete-time state-space framework was originally presented. They
introduced the concept of stochastic map and developed a rigorous solution to
the SLAM problem using the extended Kalman filter (EKF) perspective. Many
successful implementations of this approach have been reported in indoor [1],
outdoor [3], underwater [4], and air-borne [5] applications.

The EKF-based approach to SLAM is characterized by the existence of a
discrete-time augmented state vector, composed of the location of the vehicle
and the location of the map elements, recursively estimated from the avail-
able sensor observations gathered at time k, and a model of the vehicle motion,
between time steps k−1 and k. Within, this framework, uncertainty in represen-
ted by probability density functions (pdfs) associated with the state vector, the
motion model, and the sensor observations. It is assumed that recursive propaga-
tion of the mean and the covariance of those pdfs conveniently approximates
the optimal solution of this estimation problem.

The time and memory requirements of the basic EKF–SLAM approach
result from the cost of maintaining the full covariance matrix, which is O(n2)

where n is the number of features in the map. Many recent efforts have
concentrated on reducing the computational complexity of SLAM in large
environments. Several current methods address the computational complex-
ity problem by working on a limited region of the map. Postponement [6]
and the Compressed Filter [3] significantly reduce the computational cost
without sacrificing precision, although they require an O(n2) step on the total
number of landmarks to obtain the full map. The Split Covariance Intersection

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 337 — #7

Map Building and SLAM Algorithms 337

–20 –10 0 10 20 30 40
–25

–20

–15

–10

–5

0

5

10

15(a)

(b)

xy

xyxy

–20 –10 0 10 20 30 40
25

20

15

10

5

0

5

10

15

xy

xyxy

FIGURE 9.1 The need for SLAM: (a) odometric readings and segmented laser walls for
40 m of the trajectory of a vehicle at the Ada Byron building of our campus; (b) map and
trajectory resulting from the SLAM algorithm using the same data (95% error ellipses
are drawn)

method [7] limits the computational burden but sacrifices precision: it obtains
a conservative estimate. The Sparse Extended Information Filter [8] is able
to obtain an approximate map in constant time per step, except during loop
closing. All cited methods work on a single absolute map representation, and
confront divergence due to nonlinearities as uncertainty increases when map-
ping large areas [9]. In contrast, Local Map Joining [10] and the Constrained
Local Submap Filter [11], propose to build stochastic maps relative to a local
reference, guaranteed to be statistically independent. By limiting the size of
the local map, this operation is constant time per step. Local maps are joined

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 338 — #8

338 Autonomous Mobile Robots

periodically into a global absolute map, in a O(n2) step. Given that most
of the updates are carried out on a local map, these techniques also reduce
the harmful effects of linearization. To avoid the O(n2) step, the Constrained
Relative Submap Filter [12] proposes to maintain the independent local map
structure. Each map contains links to other neighboring maps, forming a tree
structure (where loops cannot be represented). In Atlas [13], Network Coupled
Feature Maps [14], and Constant Time SLAM [15] the links between local
maps form an adjacency graph. These techniques do not impose loop con-
sistency in the graph, sacrificing the optimality of the resulting global map.
Hierarchical SLAM [16] proposes a linear time technique to impose loop con-
sistency, obtaining a close to optimal global map. The FastSLAM technique
[17] uses particle filters to estimate the vehicle trajectory and each one has an
associated set of independent EKF to estimate the location of each feature in the
map. This partition of SLAM into a localization and a mapping problem, allows
to obtain a computational complexity O(log(n)) with the number of features
in the map. However, its complexity is linear with the number of particles used.
The scaling of the number of particles needed with the size and complexity of
the environment remains unclear. In particular, closing loops causes dramatic
particle extinctions that map result in optimistic (i.e., inconsistent) uncertainty
estimations.

Another class of SLAM techniques is based on estimating sequences of
robot poses by minimizing the discrepancy between overlapping laser scans.
The map representation is the set of robot poses and the corresponding set
of laser scans. The work in Reference 18 uses scan matching between close
robot poses and global correlation to detect loops. The poses along the loop
are estimated using Consistent Pose Estimation [19], whose time complexity
is O(n3) on the number of robot poses, making the method unsuitable for real
time execution in large environments. More recently, a similar approach to
build consistent maps with many cycles has been proposed in Reference 20.
This method obtains correspondences between vehicle poses using the Iterative
Closest Point algorithm: Using a quadratic penalty function, correspondences
are incorporated into an optimization algorithm that recomputes the whole tra-
jectory. This process is iterated until convergence. Neither computing time nor
computational complexity are reported. There are two fundamental limitations
in this class of techniques, compared to EKF-based SLAM. First, there is no
explicit representation of the uncertainty in the estimated robot poses and the
resulting map. As a consequence, their convergence and consistency properties
remain unknown. Second, they largely rely on the high precision and density
of data provided by laser scanners. They seem hard to extend to sensors that
give more imprecise, sparse, or partial information such as sonar of monocular
vision.

This chapter describes the basic algorithm to deal with the SLAM problem
from the above mentioned EKF-based perspective. We describe techniques that

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 339 — #9

Map Building and SLAM Algorithms 339

successful SLAM schemes must incorporate (1) Data association techniques,
to relate sensor measurements with features already in the map, as well as
to decide those that are spurious or correspond to environment features not
previously observed, and (2) Loop closing and relocation techniques, that allow
determination of the vehicle location and correct the map when the vehicle
uncertainty increases significantly during exploration, or when there is no prior
information on the vehicle location. Finally, we point out the main open prob-
lem of the current state-of-art SLAM approaches: mapping large-scale areas.
Relevant shortcomings of this problem are, on the one hand, the computational
burden, which limits the applicability of the EKF-based SLAM in large-scale
real time applications and, on the other hand, the use of linearized solutions
which jeopardizes the consistency of the estimation process. We point out prom-
ising directions of research using nonlinear estimation techniques, and mapping
schemes for multivehicle SLAM.

9.2 SLAM USING THE EXTENDED KALMAN FILTER

In feature-based approaches to SLAM, the environment is modeled as a set
of geometric features, such as straight line segments corresponding to doors or
window frames, planes corresponding to walls, or distinguishable points in out-
door environments. The process of segmentation of raw sensor data to obtain
feature parameters depends on the sensor and the feature type. In indoor environ-
ments, laser readings can be used to obtain straight wall segments [21, 22], or in
outdoor environments to obtain two-dimensional (2D) points corresponding to
trees and street lamps [3]. Sonar measurement environments can be segmented
into corners and walls [10]. Monocular images can provide information about
vertical lines [23] or interest points [24]. Even measurements from different
sensors can be fused to obtain feature information [25].

In the standard EKF-based approach, the environment information related
to a set of elements {B, R, F1, . . . , Fn} is represented by a map MB = (x̂B, PB),
where xB is a stochastic state vector with estimated mean x̂B and estimated error
covariance PB:

x̂B = E[xB] =
⎡
⎢⎣

x̂B
R
...

x̂B
Fn

⎤
⎥⎦

(9.1)

PB = E[(xB − x̂B)(xB − x̂B)T] =
⎡
⎢⎣

PB
R . . . PB

RFn
...

. . .
...

PB
FnR . . . PB

Fn

⎤
⎥⎦

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 340 — #10

340 Autonomous Mobile Robots

ALGORITHM 9.1
EKF–SLAM

xB
0 = 0; PB

0 = 0 {Map initialization}
[z0, R0] = get_measurements
[xB

0 , PB
0] = add_new_features(xB

0 , PB
0 , z0, R0)

for k = 1 to steps do
[xRk−1

Rk
, Qk] = get_odometry

[xB
k|k−1,PB

k|k−1]= compute_motion(xB
k−1, PB

k−1,xRk−1
Rk

,Qk) {EKF predict.}
[zk , Rk] = get_measurements
Hk = data_association(xB

k|k−1, PB
k|k−1, zk , Rk)

[xB
k , PB

k] = update_map(xB
k|k−1, PB

k|k−1, zk , Rk , Hk) {EKF update}

[xB
k , PB

k] = add_new_features(xB
k , PB

k , zk , Rk , Hk)
end for

Vector x̂B contains the estimated location of the vehicle R and the environment
features F1 . . . Fn, all with respect to a base reference B. In the case of
the vehicle, its location vector x̂B

R = (x, y, φ)T describes the transformation
from B to R. In the case of an environment feature j, the parameters that
compose its location vector x̂B

Fj
depend on the feature type, for example,

x̂B
Fj

= (xj, yj)
T for point features. The diagonal elements of the matrix PB

represent the estimated error covariance of the different features of the state
vector and that of the vehicle location; its off-diagonal elements represent the
cross-covariance matrices between the estimated locations of the corresponding
features.

Recursive estimation of the first two moments of the probability density
function of xB is performed following Algorithm 9.1. There, the map is ini-
tialized using the current vehicle location as base reference, and thus with
perfect knowledge of the vehicle location. Sensing and feature initialization
is also performed before the first vehicle motion, to maximize the precision
of the resulting map. Prediction of the vehicle motion using odometry and
update of the map using onboard sensor measurements are then iteratively
carried out.

9.2.1 Initialization

In the creation of a new stochastic map at step 0, a base reference B must
be selected. It is common practice to build a map relative to a fixed base
reference different from the initial vehicle location. This normally requires the

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 341 — #11

Map Building and SLAM Algorithms 341

assignment of an initial level of uncertainty to the estimated vehicle location.
In the theoretical linear case [26], the vehicle uncertainty should always remain
above this initial level. In practice, due to linearizations, when a nonzero initial
uncertainty is used, the estimated vehicle uncertainty rapidly drops below its
initial value, making the estimation inconsistent after very few EKF update
steps [9].

A good alternative is to use, as base reference, the current vehicle location,
that is. B = R0, and thus we initialize the map with perfect knowledge of the
vehicle location:

x̂B
0 = x̂B

R0
= 0; PB

0 = PB
R0

= 0 (9.2)

If at any moment there is a need to compute the location of the vehicle or
the map features with respect to any other reference, the appropriate trans-
formations can be applied (see Appendix). At any time, the map can also be
transformed to use a feature as base reference, again using the appropriate
transformations [10].

9.2.2 Vehicle Motion: The EKF Prediction Step

When the vehicle moves from position k−1 to position k, its motion is estimated
by odometry:

xRk−1
Rk

= x̂Rk−1
Rk

+ vk (9.3)

where x̂Rk−1
Rk

is the estimated relative transformation between positions k − 1
and k, and vk (process noise [27]) is assumed to be additive, zero-mean, and
white, with covariance Qk .

Thus, given a map MB
k−1 = (x̂B

k−1, PB
k−1) at step k − 1, the predicted map

MB
k|k−1 at step k after the vehicle motion is obtained as follows:

x̂B
k|k−1 =

⎡
⎢⎢⎢⎢⎢⎣

x̂B
Rk−1

⊕ x̂Rk−1
Rk

x̂B
F1,k−1

...
x̂B

Fm,k−1

⎤
⎥⎥⎥⎥⎥⎦

PB
k|k−1 � FkPB

k−1FT
k + GkQkGT

k

(9.4)

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 342 — #12

342 Autonomous Mobile Robots

where ⊕ represents the composition of transformations (see Appendix), and:

Fk = ∂xB
k|k−1

∂xB
k−1

∣∣∣∣∣
(x̂B

k−1, x̂
Rk−1
Rk

)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

J1⊕
{

x̂B
Rk−1

, x̂Rk−1
Rk

}
0 · · · 0

0 I
...

...
. . .

0 · · · I

⎤
⎥⎥⎥⎥⎥⎥⎦

Gk = ∂xB
k|k−1

∂xRk−1
Rk

∣∣∣∣∣∣
(x̂B

k−1, x̂
Rk−1
Rk

)

=

⎡
⎢⎢⎢⎢⎣

J2⊕
{

x̂B
Rk−1

, x̂Rk−1
Rk

}
0
...
0

⎤
⎥⎥⎥⎥⎦

where J1⊕ and J2⊕ are the Jacobians of transformation composition (see
Appendix).

9.2.3 Data Association

At step k, an onboard sensor obtains a set of measurements zk,i of m environment
features Ei (i = 1, . . . , m). Data association consists in determining the origin
of each measurement, in terms of the map features Fj, j = 1, . . . , n. The result
is a hypothesis:

Hk = [j1j2 · · ·jm]

associating each measurement zk,i with its corresponding map feature
Fji(ji = 0) indicates that zk,i does not come from any feature in the map).
The core tools of data association are a prediction of the measurement that each
feature would generate, and a measure of the discrepancy between a predicted
measurement and an actual sensor measurement.

The measurement of feature Fj can be predicted using a nonlinear meas-
urement function hk, j of the vehicle and feature location, both contained in the
map state vector xB

k|k−1. If observation zk,i comes from feature Fj, the following
relation must hold:

zk,i = hk, j(xB
k|k−1) + wk,i (9.5)

where the measurement noise wk,i, with covariance Rk,i, is assumed to be addit-
ive, zero-mean, white, and independent of the process noise vk . Linearization
of Equation 9.5 around the current estimate yields:

hk, j(xB
k|k−1) � hk, j(x̂B

k|k−1) + Hk, j(xB
k − x̂B

k|k−1) (9.6)

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 343 — #13

Map Building and SLAM Algorithms 343

with

Hk, j = ∂hk, j

∂xB
k|k−1

∣∣∣∣∣
(x̂B

k|k−1)

(9.7)

The discrepancy between the observation i and the predicted observation of
map feature j is measured by the innovation term νk,ij, whose value and
covariance are:

νk,ij = zk,i − hk, j(x̂B
k|k−1)

Sk,ij = Hk, jPB
k HT

k, j + Rk,i

(9.8)

The measurement can be considered corresponding to the feature if the
Mahalanobis distance D2

k,ij [28] satisfies:

D2
k,ij = νT

k,ijS
−1
k,ijνk,ij < χ2

d,1−α (9.9)

where d = dim(hk, j) and 1 − α is the desired confidence level, usually 95%.
This test, denominated individual compatibility (IC), applied to the predicted
state, can be used to determine the subset of map features that are compat-
ible with a measurement, and is the basis for some of the most popular data
association algorithms discussed later in this chapter.

An often overlooked fact, that will be discussed in more detail in Section 9.3,
is that all measurements should be jointly compatible with their corres-
ponding features. In order to establish the consistency of a hypothesis Hk ,
measurements can be jointly predicted using function hHk :

hHk (x
B
k|k−1) =

⎡
⎢⎣

hj1(x
B
k|k−1)

...
hjm(xB

k|k−1)

⎤
⎥⎦ (9.10)

which can also be linearized around the current estimate to yield:

hHk (x
B
k|k−1) � hHk (x̂

B
k|k−1) + HHk (x

B
k − x̂B

k|k−1); HHk =
⎡
⎢⎣

Hj1
...

Hjm

⎤
⎥⎦

(9.11)

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 344 — #14

344 Autonomous Mobile Robots

The joint innovation and its covariance are:

νHk = zk − hHk (x̂
B
k|k−1)

SHk = HHk PB
k HT

Hk
+ RHk (9.12)

Measurements zk can be considered compatible with their corresponding
features according to Hk if the Mahalanobis distance satisfies:

D2
Hk

= νT
Hk

S−1
Hk

νHk < χ2
d,1−α (9.13)

where now d = dim(hHk). This consistency test is denominated joint
compatibility (JC).

9.2.4 Map Update: The EKF Estimation Step

Once correspondences for measurements zk have been decided, they are used
to improve the estimation of the stochastic state vector by using the standard
EKF update equations as follows:

x̂B
k = x̂B

k|k−1 + KHk νHk (9.14)

where the filter gain KHk is obtained from:

KHk = PB
k|k−1HT

Hk
S−1

Hk
(9.15)

Finally, the estimated error covariance of the state vector is:

PB
k = (I − KHk HHk)P

B
k|k−1

= (I − KHk HHk)P
B
k|k−1(I − KHk HHk)

T + KHk RHk KT
Hk

(9.16)

9.2.5 Adding Newly Observed Features

Measurements for which correspondences in the map cannot be found by data
association can be directly added to the current stochastic state vector as new
features by using the relative transformation between the vehicle Rk and the

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 345 — #15

Map Building and SLAM Algorithms 345

observed feature E. Therefore, updating of xB
k takes place as follows:

xB
k =

⎡
⎢⎢⎣

xB
Rk
...

xB
Fn,k

⎤
⎥⎥⎦ ⇒ xB

k+ =

⎡
⎢⎢⎢⎢⎢⎣

xB
Rk
...

xB
Fn,k

xB
Ek

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

xB
Rk
...

xB
Fn,k

xB
Rk

⊕ xRk
E

⎤
⎥⎥⎥⎥⎥⎦ (9.17)

Additionally, the updated covariance matrix PB
k+ is computed using the

linearization of Equation 9.17.

9.2.6 Consistency of EKF–SLAM

A state estimator is called consistent if its state estimation error xB
k − x̂B

k
satisfies [29]:

E[xB
k − x̂B

k] = 0

E[(xB
k − x̂B

k) (xB
k − x̂B

k)T] ≤ PB
k (9.18)

This means that the estimator is unbiased and that the actual mean square error
matches the filter-calculated covariances. Given that SLAM is a nonlinear prob-
lem, consistency checking is of paramount importance. When the ground truth
solution for the state variables is available, a statistical test for filter consist-
ency can be carried out on the normalized estimation error squared (NEES),
defined as:

NEES = (xB
k − x̂B

k)T (PB
k)−1 (xB

k − x̂B
k) (9.19)

Consistency is checked using a chi-squared test:

NEES ≤ χ2
d,1−α (9.20)

where d = dim(xB
k) and 1 − α is the desired confidence level. Since in

most cases ground truth is not available, the consistency of the estimation
is maintained by using only measurements that satisfy the innovation test of
Equation 9.13. Because the innovation term depends on the data association
hypothesis, this process becomes critical in maintaining a consistent estimation
[9] of the environment map.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 346 — #16

346 Autonomous Mobile Robots

F1

F1

F1

F2

F2

F2

Fn

Fn
Fm

∗

Fn ∗

∗

E1

E2

FIGURE 9.2 Interpretation tree of measurements E1, . . . , Em in terms of map features
F1, . . . , Fn

9.3 DATA ASSOCIATION IN SLAM

Assume that a new set of m measurements z = {z1, . . . , zm} of the environ-
ment features {E1, . . . , Em} have been obtained by a sensor mounted on the
vehicle. As mentioned in Section 9.2, the goal of data association is to gener-
ate a hypothesis H = [j1j2 · · ·jm] associating each measurement Ei with its
corresponding map feature Fji(ji = 0) indicating that zi does not correspond
to any map feature). The space of measurement-feature correspondences can
be represented as an interpretation tree of m levels [30] (see Figure 9.2); each
node at level i, called an i-interpretation, provides an interpretation for the first
i measurements. Each node has n + 1 branches, corresponding to each of the
alternative interpretations for measurement Ei, including the possibility that
the measurement be spurious and allowing map feature repetitions in the same
hypothesis. Data association algorithms must select in some way one of the
(n+1)m m-interpretations as the correct hypothesis, carrying out validations to
determine the compatibility between sensor measurements and map features.

9.3.1 Individual Compatibility Nearest Neighbor

The simplest criterion to decide a pairing for a given measurement is the nearest
neighbor (NN), which consists in choosing among the features that satisfy
Individual Compatibility of Equation 9.9, the one with the smallest Mahalanobis
distance. A popular data association algorithm, the Individual Compatibility
Nearest Neighbor (ICNN, Algorithm 9.2), is based on this idea. It is frequently
used given its conceptual simplicity and computational efficiency: it performs
m · n compatibility tests, making it linear with the size of the map.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 347 — #17

Map Building and SLAM Algorithms 347

ALGORITHM 9.2
ICNN

ICNN (E1···m, F1···n)
for i = 1 to m do {measurement Ei}

D2
min ← mahalanobis2 (Ei, F1)

nearest ← 1
for j = 2 to n do {feature Fj}

D2
ij ← mahalanobis2 (Ei, Fj)

if D2
ij < D2

min then
nearest ← j
D2
min ← D2

ij
end if

end for
if D2

min ≤ χ2
di ,1−α

then
Hi ← nearest

else
Hi ← 0

end if
end for
return H

Individual compatibility considers individual compatibility between a
measurement and a feature. However, individually compatible pairings are not
guaranteed to be jointly compatible to form a consistent hypothesis. Thus, with
ICNN there is a high risk of obtaining an inconsistent hypothesis and thus
updating the state vector with a set of incompatible measurements, which will
cause EKF to diverge. As vehicle error grows with respect to sensor error, the
discriminant power of IC decreases: the probability that a feature may be com-
patible with an unrelated (or spurious) sensor measurement increases. ICNN is
a greedy algorithm, and thus the decision to pair a measurement with its most
compatible feature is never reconsidered. As a result, spurious pairings may be
included in the hypothesis and integrated in the state estimation. This will lead
to a reduction in the uncertainty computed by the EKF with no reduction in the
actual error, that is, inconsistency.

9.3.2 Joint Compatibility

In order to limit the possibility of accepting a spurious pairing, reconsidera-
tion of the established pairings is necessary. The probability that a spurious

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 348 — #18

348 Autonomous Mobile Robots

ALGORITHM 9.3
JCBB

Continuous_JCBB (E1···m, F1···n)
Best = []
JCBB ([], 1)
return Best

procedure JCBB (H, i): {find pairings for observationEi}
if i > m then {leaf node?}

if pairings(H) > pairings(Best) then
Best ← H

end if
else

for j = 1 to n do
if individual_compatibility(i, j) and then joint_compatibility(H, i, j)
then

JCBB([H j], i + 1) {pairing (Ei, Fj) accepted}
end if

end for
if pairings(H) + m − i > pairings(Best) then {can do better?}

JCBB([H 0], i + 1) {star node, Ei not paired}
end if

end if

pairing is jointly compatible with all the other pairings of a given hypothesis
decreases as the number of pairings in the hypothesis increases. The JC test can
be used to establish the consistency of a hypothesis Hm, using Equation 9.13.
The JC test is the core of the joint compatibility branch and bound data
association algorithm (JCBB, Algorithm 9.3), that traverses the interpreta-
tion tree in search for the hypothesis that includes the largest number of
jointly compatible pairings. The quality of a node at level i, corresponding
to a hypothesis Hi, is defined as the number of non-null pairings that can
be established from the node. In this way, nodes with quality lower than
the best available hypothesis are not explored, bounding the search [30]. The
NN rule using the Mahalanobis distance D2

Hi
is used as heuristic for branch-

ing, so that the nodes corresponding to hypotheses with a higher degree
of JC are explored first. The size of both hHi and SHi increase with the
size of hypothesis Hi. This makes this test potentially expensive to apply
(see References 31 and 32 for techniques for the efficient computation of
the Mahalanobis distance).

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 349 — #19

Map Building and SLAM Algorithms 349

–0.5 0 0.5 1 1.5 2 2.5 3 3.5
–1.5

–1

–0.5

0

0.5

1(a)

(b)

A

B

–0.5 0 0.5 1 1.5 2 2.5 3 3.5
–1.5

–1

–0.5

0

0.5

1

A

B

FIGURE 9.3 Predicted feature locations relative to vehicle (large ellipses), measure-
ments (small ellipses), and associations (bold arrows). According to the ICNN algorithm
observation B is incorrectly matched with the upper map point (a) and according to the
JCBB algorithm (b) all the matches are correct

During continuous SLAM, data association problems may arise even in
very simple scenarios. Consider an environment constituted by 2D points. If
at a certain point the vehicle uncertainty is larger than the separation between
the features, the predicted feature locations relative to the robot are cluttered,
and the NN algorithm is prone to make an incorrect association as illustrated
in Figure 9.3a where two measurements are erroneously paired with the same
map feature. In these situations, the JCBB algorithm can determine the correct
associations (Figure 9.3b), because through correlations it considers the relative
location between the features, independent of vehicle error.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 350 — #20

350 Autonomous Mobile Robots

The robustness of JCBB is especially important in loop-closing operations
(Figure 9.4). Due to the big odometry errors accumulated, simple data associ-
ation algorithms would incorrectly match the signaled point with a point feature
previously observed in the pillar. Accepting an incorrect matching will cause
the EKF to diverge, obtaining an inconsistent map. The JC algorithm takes into
account the relative location between the point and the segment and has no
problem in finding the right associations. The result is a consistent and more
precise global map.

Joint Compatibility is a highly restrictive criterion, that limits the combin-
atorial explosion of the search. The computational complexity does not suffer
with the increase in vehicle error because the JC of a certain number of measure-
ments fundamentally depends on their relative error (which depends on sensor
and map precision), more than on their absolute error (which depends on robot
error). The JC test is based on the linearization of the relation between the
measurements and the state (Equation 9.6). JCBB will remain robust to robot
error as long as the linear approximation is reasonable. Thus, the adequacy of
using JCBB is determined by the robot orientation error (in practice, we have
found the limit to be around 30◦). Even if the vehicle motion is unknown (no
odometry is available), as long as it is bounded by within this limit, JCBB can
perform robustly. In these cases, the predicted vehicle motion can be set to
zero (x̂Rk−1

Rk
= 0, Figure 9.5a), with Qk sufficiently large to include the largest

possible displacement. The algorithm will obtain the associations, and during
the estimation stage of the EKF the vehicle motion will be determined and the
environment structure can be recovered (Figure 9.5b).

9.3.3 Relocation

Consider now the data association problem known as vehicle relocation, first-
location, global localization, or “kidnapped” robot problem, which can be stated
as follows: given a vehicle in an unknown location, and a map of the envir-
onment, use a set of measurements taken by onboard sensors to determine the
vehicle location within the map. In SLAM, solving this problem is essential to
be able to restart the robot in a previously learned environment, to recover from
localization errors, or to safely close big loops.

When there is no vehicle location estimation, simple location independent
geometric constraints can be used to limit the complexity of searching the cor-
respondence space [30]. Given a pairing pij = (Ei, Fj), the unary geometric
constraints that may be used to validate the pairing include length for seg-
ments, angle for corners, or radius for circular features. Given two pairings
pij = (Ei, Fj) and pkl = (Ek , Fl), a binary geometric constraint is a geometric
relation between measurements Ei and Ek that must also be satisfied between
their corresponding map features Fj and Fl (e.g., distance between two points,

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 351 — #21

Map Building and SLAM Algorithms 351

0 1 2 3 4 5 6

–2

–1

0

1

2

3

4(a)

(b)

x y
y

x

y

x

P

B

A

R

S

0 1 2 3 4 5 6

–2

–1

0

1

2

3

4

x

y

x

y

FIGURE 9.4 A loop-closing situation. (a) Before loop closing, potential matches have
been found for measurements signaled with an arrow: measurement R is compatible only
with feature S, but measurement P is compatible with both features A and B. The NN
rule would incorrectly match P with A. (b) The JCBB algorithm has correctly matched
both observations with the corner (P with A) and the lower wall (R with B), and the map
has been updated

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 352 — #22

352 Autonomous Mobile Robots

6 4 2 0 2 4 6 8 10

–6

–4

–2

0

2

4

6

(a)

x
y

–6 –4 –2 0 2 4 6 8 10

–6

–4

–2

0

2

4

6

(b)

FIGURE 9.5 Data association using JCBB without odometry: (a) laser data in the abso-
lute reference with null vehicle motion; (b) map and vehicle trajectory resulting from
the SLAM algorithm

angle between two segments). For stochastic geometric constraint validation in
SLAM, see Reference 33.

Grimson [30] proposed a branch and bound algorithm for model-based
geometric object recognition that uses unary and binary geometric constraints.
A closely related technique also used in object recognition consists in building

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 353 — #23

Map Building and SLAM Algorithms 353

a compatibility graph whose nodes are unary compatible matchings and whose
arcs represent pairs of binary compatible matchings. Finding the largest hypo-
thesis consistent with unary and binary constraints is equivalent to finding the
maximum clique in the compatibility graph (see Reference 30 for a discussion
and references). This idea has been applied recently by Bailey et al. [34] to the
problem of robot relocation with an a priori map.

Branch and bound algorithms are forced to traverse the whole correspond-
ence space until a good bound is found. In the SLAM relocation problem,
when the vehicle is not within the mapped area, a good bound is never found.
Since the correspondence space is exponential with the number of measure-
ments, in this worst case the execution times of branch and bound algorithms
are very long. To overcome this limitation, the data association process can be
done using random sampling (RS) instead of by a full traversal of the interpret-
ation tree. The RS algorithm that we use (Algorithm 9.4) is an adaptation of
the RANSAC Algorithm [35] for the relocation problem. The fundamental idea
is to randomly select p out of the m measurements to try to generate vehicle
localization hypotheses using geometric constraints, and verify them with all m
measurements using joint compatibility. If Pg is the probability that a randomly
selected measurement corresponds to a mapped feature (not spurious) and Pfail
is the acceptable probability of not finding a good solution when it exists, the
required number of tries is:

t =
⌈

log Pfail

log(1 − Pg
p)

⌉
(9.21)

Hypothesis generation-verification schemes such as this one perform better
because feature location is a tighter consistency criterion than geometric con-
straints, and thus branch pruning is more effective. The potential drawback of
this approach is that hypothesis verification is location dependent, and thus the
constraints to be used for validation cannot be precomputed. To limit the amount
of location dependent constraints to apply, verification can take place when a
hypothesis contains at least three consistent pairings. Choosing Pfail = 0.05
and considering a priori that only half of the measurements are present in the
map Pg = 0.5, the maximum number of tries is t = 23. If you can con-
sider that at least 90% of the measurements correspond to a map feature, the
number of required tries is only three. The RS algorithm randomly permutes
the measurements and performs hypothesis generation considering the first
three measurements not spurious (without star branch). The number of tries is
recalculated to adapt to the current best hypothesis, so that no unnecessary tries
are carried out [36].

Notice that the maximum number of tries does not depend on the number
of measurements. Experiments show that this fact is crucial in reducing the
computational complexity of the RS algorithm.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 354 — #24

354 Autonomous Mobile Robots

ALGORITHM 9.4
Relocation using RANSAC

Relocation_RS (H)
Pfail = 0.05, p = 3, Pg = 0.5
Best = []
i = 0
repeat

ẑ = random_permutation(ẑ)
RS([], 1)
Pg = max(Pg, pairings(Best) / m)
t = log Pfail/ log

(
1 − Pg

p
)

i = i + 1
until i ≥ t
return Best

procedure RS (H):
{H : current hypothesis}
{i : observation to be matched}
if i > m then

if pairings(H) > pairings(Best) then
Best = H

end if
else if pairings(H) == 3 then

xB
R = estimate_location_(H)

if joint_compatibility(H) then
JCBB(H, i) { hypothesis verification}

end if
else {branch and bound without star node}

for j = 1 to n do
if unary(i, j) ∧ binary(i, j, H) then

RS([H j], i + 1)
end if

end for
end if

9.3.4 Locality

As explained in Section 9.3.3, the main problem of the interpretation tree
approach is the exponential number of possible hypotheses (tree leaves):
Nh = (n + 1)m. The use of geometric constraints and branch and bound search

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 355 — #25

Map Building and SLAM Algorithms 355

dramatically reduce the number of nodes explored, by cutting down entire
branches of the tree. However, Grimson [30] has shown that in the general case
where spurious measurements can arise, the amount of search needed to find
the best interpretation is still exponential. In these conditions, the interpretation
tree approach seems impracticable except for very small maps.

To overcome this difficulty we introduce the concept of locality: given that
the set of measurements has been obtained from a unique vehicle location (or
from a set of nearby locations), it is sufficient to try to find matchings with local
sets of features in the map. Given a map feature Fj, we define its locality L(Fj)

as the set of map features that are in the vicinity to it, such that they can be seen
from the same vehicle location. For a given mapping problem, the maximum
cardinality of the locality sets will be a constant c that depends on the sensor
range and the maximum density of features in the environment.

During the interpretation tree search, once a matching has been established
with a map feature, the search can be restricted to its locality set. For the first
measurement, there are n possible feature matchings. Since there are at most c
features covisible with the first one, for the remaining m−1 measurements there
are only c possible matches, giving a maximum of n(c + 1)m−1 hypotheses.
If the first measurement is not matched, a similar analysis can be done for the
second tree level. Thus, the total number of hypotheses Nh will be:

Nh ≤ n(c + 1)m−1 + · · · + n + 1 = n
(c + 1)m − 1

c
+ 1 (9.22)

This implies that, using locality, the complexity of searching the interpretation
tree will be linear with the size of the map.

There are several ways of implementing locality:

1. SLAM can be implemented by building sequences of independent
local maps [10]. If the local maps are stored, the search for matchings
can be performed in time linear with the number of local maps. In
this case, the locality of a feature is the set of features belonging
to the same local map. A drawback of this technique is that global
localization may fail around the borders between two local maps.

2. Alternatively, the locality of a feature can be computed as the set of
map features within a distance less than the maximum sensor range.
There are two drawbacks in this approach: first, this will require
O(n2) distance computations, and second, in some cases features
that are close cannot be seen simultaneously (e.g., because they are
in different rooms), and thus should not be considered local.

3. The locality of a feature can be defined as the set of features that have
been seen simultaneously with it at least once. We choose this last
alternative, because it does not suffer from the limitations of the first

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 356 — #26

356 Autonomous Mobile Robots

0 10 20 30 40 50 60 70 80 90 100

0(a)

(b)

10

20

30

40

50

60

70

80

90

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

FIGURE 9.6 Covisibility matrix (a) and normalized information matrix (b)

two, and additionally it can be done during map building without
extra cost.

Figure 9.6a shows the covisibility matrix obtained during map building
for the first 1000 steps of the dataset obtained by Guivant and Nebot [3],
gathered with a vehicle equipped with a SICK laser scanner in Victoria Park,
Sydney. Wheel encoders give an odometric measure of the vehicle location. The
laser scans are processed using Guivant’s algorithm to detect tree trunks and
estimate their radii (Figure 9.7). As features are added incrementally during map

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 357 — #27

Map Building and SLAM Algorithms 357

–80 –60 –40 –20 0 20 40 60 80
0

10

20

30

40

50

60

70

80

FIGURE 9.7 Segmentation of scan 120, with m = 13 tree trunks detected. Radii are
magnified ×5

building, the typical form of the covisibility matrix is band-diagonal. Elements
far from the diagonal appear when a loop is closed, because recently added
features become covisible with previously mapped features. In any case, the
number of elements per row or column only depends on the density of fea-
tures and the sensor reach. Using a sparse matrix representation, the amount of
memory needed to store the covisibility matrix (or any other locality matrix)
is O(n).

An important property of the covisibility matrix is its close relation to the
information matrix of the map (the inverse of the map covariance matrix).
Figure 9.6b shows the normalized information matrix, where each row and
column has been divided by the square root of the corresponding diagonal
element. It is clear that the information matrix allows the determination of
those features that are seen from the vehicle location during map building. The
intuitive explanation is that as the uncertainty in the absolute vehicle location
grows, the information about the features that are seen from the same location
becomes highly coupled.

This gives further insight on the structure of the SLAM problem: while the
map covariance matrix is a full matrix with O(n2) elements, the normalized
information matrix tends to be sparse, with O(n) elements. This fact can be
used to obtain more efficient SLAM Algorithms [37].

Running continuous SLAM for the first 1000 steps, we obtain a map of
n = 99 point features (see Figure 9.8). To verify the vehicle locations obtained
by our algorithm, we obtained a reference solution running continuous SLAM
until step 2500. Figure 9.8 shows the reference vehicle location for steps 1001
to 2500. The RS relocation algorithm was executed on scans 1001 to 2500. This
guarantees that we use scans statistically independent from the stochastic map.
The radii of the trunks are used as unary constraints, and the distance between
the centers as binary constraints.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 358 — #28

358 Autonomous Mobile Robots

–50 0 50 100 150

–80

–60

–40

–20

0

20

40

60

80

FIGURE 9.8 Stochastic map of 2D points (tree trunks) built until step 1000. There are
n = 99 features. Reference vehicle trajectory for steps 1001 to 2500. Trunk radii are
magnified ×5

In this experiment, when six or more measurements are paired, the algorithm
finds the solution with no false positives. Otherwise, the solution must be dis-
carded as being unreliable. In case that less than six points are segmented from
the scan, more sensor information is necessary to reliably determine the vehicle
location. When the vehicle is in the map, the RS algorithm finds the solution
with a mean execution time of less than 1 sec (in MATLAB, and executed on a
Pentium IV, at 1.7 GHz). When the vehicle is not in the mapped area, for up to
30 measurements, RS runs in less than 2 sec (see Reference 33 for full details).

9.4 MAPPING LARGE ENVIRONMENTS

The EKF–SLAM techniques presented in previous sections have two important
limitations when trying to map large environments. First, the computational cost
of updating the map grows with O(n2), where n is the number of features in the
map. Second, as the map grows, the estimates obtained by the EKF equations
quickly become inconsistent due to linearization errors [9].

An alternative technique that reduces the computational cost and improves
consistency is local map joining [10]. Instead of building one global map, this
technique builds a set of independent local maps of limited size. Local maps
can be joined together into a global map that is equivalent to the map obtained
by the standard EKF–SLAM approach, except for linearization errors. As most
of the mapping process consists in updating local maps, where errors remain
small, the consistency of the global map obtained is greatly improved. In the
following sections we present the basics of local map joining.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 359 — #29

Map Building and SLAM Algorithms 359

9.4.1 Building Independent Local Maps

Each local map can be built as follows: at a given instant tj, a new map is initial-
ized using the current vehicle location as base reference Bj. Then, the vehicle
performs a limited motion (say kj steps) acquiring sensor information about
the neighboring environment features Fj. The standard EKF-based techniques

presented in previous sections are used to obtain a local map MBj

Fj
= (x̂

Bj

Fj
, P

Bj
Fj

).

This local map is independent of any prior estimation of the vehicle location
because it is built relative to the initial vehicle location Bj. The local map
depends only on the odometry and sensor data obtained during the kj steps.
This implies that, under the common assumption that process and measure-
ment noise are white random sequences, two local maps built with the same
robot from disjoint sequences of steps are functions of independent stochastic
variables. Therefore, the two maps will be statistically independent and uncor-
related. As there is no need to compute the correlations between features in
different local maps and the size of local maps is bounded, the cost of local
map building is constant per step, independent from the size of the global map.

The decision to close map Mj and start a new local map is made once
the number of features in the current local map reaches a maximum, or the
uncertainly of the vehicle location with respect to the base reference of the cur-
rent map reaches a limit, or no matchings were found by the data association
process for the last sensor measurements (a separate region of the environment
is observed). Note that the new local map Mj+1 will have the current vehicle
position as base reference, which corresponds to the last vehicle position in
map Mj. Thus, the relative transformation between the two consecutive maps
xj+1 = x

Bj
Bj+1

is part of the state vector of map Mj.

9.4.2 Local Map Joining

Given two uncorrelated local maps:

MB
F = (x̂B

F , PB
F); F = {B, F0, F1, . . . , Fn}

MB′
ε = (x̂B′

ε , PB′
ε); ε = {B′, E0, E1, . . . , Em}

where a common reference has been identified Fi = Ej, the goal of map joining
is to obtain one full stochastic map:

MB
F+ε = (x̂B

F+ε, PB
F+ε)

containing the estimates of the features from both maps, relative to a common
base reference B, and to compute the correlations appearing in the process.
Given that the features from the first map are expressed relative to reference B,

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 360 — #30

360 Autonomous Mobile Robots

to form the joint state vector xB
F+ε

we only need to transform the features of
the second map to reference B using the fact that Fi = Ej:

x̂B
F+ε =

[
x̂B
F

x̂B
ε

]
=

⎡
⎢⎢⎢⎢⎣

x̂B
F

x̂B
Fi

⊕ x̂
Ej
E0

...

x̂B
Fi

⊕ x̂
Ej
Em

⎤
⎥⎥⎥⎥⎦ (9.23)

The covariance PB
F+ε

of the joined map is obtained from the linearization of
Equation 9.23, and is given by:

PB
F+ε = JF PB

F JF
T + JεP

Ej
ε Jε

T

=
[

PB
F PB

F JT
1

J1PB
F J1PB

F JT
1

]
+

[
0 0

0 J2P
Ej
ε JT

2

]
(9.24)

where

JF = ∂xB
F+ε

∂xB
F

∣∣∣∣(x̂B
F ,x̂

Ej
ε)

=
[

I
J1

]

Jε = ∂xB
F+ε

∂x
Ej
ε

∣∣∣∣(x̂B
F ,x̂

Ej
ε)

=
[

0
J2

]

J1 =

⎡
⎢⎢⎢⎣

0 . . . J1⊕
{

x̂B
Fi

, x̂
Ej
E0

}
. . . 0

...
...

...

0 · · · J1⊕
{

x̂B
Fi

, x̂
Ej
Em

}
. . . 0

⎤
⎥⎥⎥⎦

J2 =

⎡
⎢⎢⎢⎣

J2⊕
{

x̂B
Fi

, x̂
Ej
E0

}
· · · 0

...
. . .

...

0 · · · J2⊕
{

x̂B
Fi

, x̂
Ej
Em

}
⎤
⎥⎥⎥⎦

Obtaining vector x̂B
F+ε

with Equation 9.23 is an O(m) operation. Given
that the number of nonzero elements in J1 and J2 is O(m), obtaining matrix
PB

F+ε
with Equation 9.24 is an O(nm+m2) operation. Thus when n
 m, map

joining is linear with n.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 361 — #31

Map Building and SLAM Algorithms 361

9.4.3 Matching and Fusion After Map Joining

The map resulting from map joining may contain features that, coming from
different local maps, correspond to the same environment feature. To eliminate
such duplications and obtain a more precise map we need a data association
algorithm to determine correspondences, and a feature fusion mechanism to
update the global map. For determining correspondences we use the JCBB
algorithm described in Section 9.3.2

Feature fusion is performed by a modified version of the EKF update
equations, which consider a nonlinear measurement equation:

zij = hij(x) = 0 (9.25)

with null noise covariance matrix, which constraints the relative location
between the duplicates Fi and Fj of an environment feature. Once the matching
constraints have been applied, the corresponding matching features become
fully correlated, with the same estimation and covariance. Thus, one of them
can be eliminated.

The whole process of local map joining, matching, and fusion can be seen
in the example of Figure 9.9.

9.4.4 Closing a Large Loop

To compare map joining with full EKF–SLAM we have performed a map
building experiment, using a robotized wheelchair equipped with a SICK laser
scanner. The vehicle was hand-driven along a loop of about 250 m in a pop-
ulated indoor/outdoor environment in the Ada Byron building of our campus.
The laser scans were segmented to obtain lines using the RANSAC technique.
The global map obtained using the classical EKF–SLAM algorithm is shown
in Figure 9.10a. At this point, the vehicle was very close to the initial starting
position, closing the loop. The figure shows that the vehicle estimated location
has some 10 m error and the corresponding 95% uncertainty ellipses are ridicu-
lously small, giving an inconsistent estimation. Due to these small ellipsoids, the
JCBB data association algorithm was unable to properly detect the loop closure.
This corroborates the results obtained with simulations in Reference 9: in large
environments the map obtained by EKF–SLAM quickly becomes inconsistent,
due to linearization errors.

The same dataset was processed to obtain independent local maps at fixed
intervals of about 10 m. The local maps were joined and fused obtaining the
global map shown in Figure 9.10b. In this case the loop was correctly detec-
ted by JCBB and the map obtained seems to be consistent. Furthermore, the
computational time was about 50 times shorter that the standard EKF approach.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 362 — #32

362 Autonomous Mobile Robots

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 3.5
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3
t = 33.700s(a)

(b)

x

y

x

y

x

x y

P1

x
y

P2

x

y

S3

x

y

S4

B1
R1

2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 3 3.5
2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

3
t = 48.492s

x
y

x

y
x

y

x

y

S1

x

y

S2

B2
R2

FIGURE 9.9 Example of local map joining. (a) Local mapMB1
F1

with four point features,
P1, P2, S3, and a segment S4, with respect to reference B1; (b) local map MB2

F2
with

two features, S1 and S2, with respect to reference B2; (c) both maps are joined to
obtain MB1

F1+F2
; (d) map MB1

F1:2
after updating by fusing S3 with S5, and S4 with S6.

Reprinted with permission [10]

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 363 — #33

Map Building and SLAM Algorithms 363

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 3.5
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3
t = 48.492s(c)

–1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 3.5
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

3
t = 48.492s(d)

x y

P1

x

x y

xy
P2x xy

x

y

S5

x

y

S6

x x
y

x

y

S3

x

y

S4

B1 R2

x
y

x

y

x
y

x y

P1

x
y

P2

x

y

S3

x

y

S4

B1 R2

FIGURE 9.9 Continued

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 364 — #34

364 Autonomous Mobile Robots

–60 –40 –20 0 20 40 60 80

–100

–80

–60

–40

–20

0

20(a)

–60 –40 –20 0 20 40 60 80

–100

–80

–60

–40

–20

0

20(b)

xyxy

xy

xyxy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy
xy

xy

FIGURE 9.10 Global maps obtained using the standard EKF–SLAM algorithm (a) and
local map joining (b)

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 365 — #35

Map Building and SLAM Algorithms 365

x
y

x
yRobot 1

R
ob

ot
 2

–10 0 10 20 30

–10

–5

0

5

10

15

20

25

30(c)

(a) (b)

x

y

x yRobot 1 R
ob

ot
 2

FIGURE 9.11 Maps build by two independent robots (a, b) and global map obtained
joining them (c)

9.4.5 Multi-robot SLAM

The techniques explained above can be applied to obtain global maps of large
environments using several mobile robots. In Figure 9.11a and b, we can see
the maps built by two independent robots that have traversed a common area.
In this case, the relative location between the robots is unknown. The process
for obtaining a common global map is as follows:

• Choose at random one feature on the first map, pick its set of covisible
features and search for matchings in the second map using the RS
relocation algorithm. Repeat the process until a good matching is
found, for a fixed maximum number of tries.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 366 — #36

366 Autonomous Mobile Robots

• When a match is found, choose a common reference in both maps. In
this case the reference is built in the intersection of two nonparallel
walls that have been matched by RS. This gives the relative location
between both maps. Change the base of the second map to be the
common reference using the technique detailed in Reference 10.

• Join both maps (Section 9.4.2), search for more matchings using
JCBB, and fuse both maps in a global map (Section 9.4.3) that con-
tains the location of all features and both robots, relative to the base
of the first map.

The global map obtained is shown in Figure 9.11c. The bold lines axe the
covisibility set used to match both maps. After that point, both robots can
continue exploring the environment, building new independent local maps that
can be joined and fused with the global map.

9.5 CONCLUSIONS

The EKF approach to SLAM dates back to the seminal work reported in
Reference 2 where the idea of representing the structure of the navigation area
in a discrete-time state-space framework was originally presented. Nowadays
the basic properties and limitations of this approach are quite well understood.
Three important convergence properties were proven in Reference 26: (1) the
determinant of any submatrix of the map covariance matrix decreases mono-
tonically as observations are successively made, (2) in the limit, as the number
of observations increases, the landmark estimates become fully correlated, and
(3) in the limit, the covariance associated with any single landmark location
estimate reaches a lower bound determined only by the initial covariance in the
vehicle location estimate at the time of the first sighting of the first landmark.

It is important to note that these theoretical results only refer to the evolu-
tion of the covariance matrices computed by the EKF in the ideal linear case.
They overlook the fact that, given that SLAM is a nonlinear problem, there
is no guarantee that the computed covariances will match the actual estim-
ation errors, which is the true SLAM consistency issue first pointed out in
Reference 38. In a recent paper [9], we showed with simulations that lin-
earization errors lead to inconsistent estimates well before the computational
problems arise. In Section 9.4 we have presented experimental evidence that
methods like map joining, based on building independent local maps, effectively
reduce linearization errors, improving the estimator consistency.

The main open challenges in SLAM include efficient mapping of large
environments, modeling complex and dynamic environments, multi-vehicle
SLAM, and full 3D SLAM. Most of these challenges will require scal-
able representations, robust data association algorithms, consistent estimation

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 367 — #37

Map Building and SLAM Algorithms 367

techniques, and different sensor modalities. In particular, solving SLAM with
monocular or stereo vision is a crucial research goal for addressing many real life
applications.

APPENDIX: TRANSFORMATIONS IN 2D

Two basic operations used in stochastic mapping are transformation inversion
and composition, which were represented by Reference 2 using operators �
and ⊕:

x̂B
A = �x̂A

B

x̂A
C = x̂A

B ⊕ x̂B
C

In this chapter, we generalize the ⊕ operator to also represent the compos-
ition of transformations with feature location vectors, which results in the
change of base reference of the feature. The Jacobians of these operations are
defined as:

J�{x̂A
B} = ∂(�xA

B)

∂xA
B

∣∣∣∣∣
(x̂A

B)

J1⊕{x̂A
B, x̂B

C} = ∂(xA
B ⊕ xB

C)

∂xA
B

∣∣∣∣∣
(x̂A

B , x̂B
C)

J2⊕{x̂A
B, x̂B

C} = ∂(xA
B ⊕ xB

C)

∂xB
C

∣∣∣∣∣
(x̂A

B , x̂B
C)

In 2D, the location of a reference B relative to a reference A (or trans-
formation from A to B) can be expressed using a vector with three d.o.f.:
xA

B = [x1, y1, φ1]T. The location of A relative to B is computed using the
inversion operation:

xB
A = �xA

B =
⎡
⎣−x1 cos φ1 − y1 sin φ1

x1 sin φ1 − y1 cos φ1
−φ1

⎤
⎦

The Jacobian of transformation inversion is:

J�{xA
B} =

⎡
⎣− cos φ1 − sin φ1 −x1 sin φ1 − y1 cos φ1

sin φ1 − cos φ1 x1 cos φ1 + y1 sin φ1
0 0 −1

⎤
⎦

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 368 — #38

368 Autonomous Mobile Robots

Let xB
C = [x2, y2, φ2]T be a second transformation. The location of

reference C relative to A is obtained by the composition of transformations
xA

B and xB
C :

xA
C = xA

B ⊕ xB
C =

⎡
⎣x1 + x2 cos φ1 − y2 sin φ1

y1 + x2 sin φ1 + y2 cos φ1
φ1 + φ2

⎤
⎦

The Jacobians of transformation composition are:

J1⊕{xA
B, xB

C} =
⎡
⎣1 0 −x2 sin φ1 − y2 cos φ1

0 1 x2 cos φ1 − y2 sin φ1
0 0 1

⎤
⎦

J2⊕{xA
B, xB

C} =
⎡
⎣cos φ1 − sin φ1 0

sin φ1 cos φ1 0
0 0 1

⎤
⎦

ACKNOWLEDGMENT

This research has been funded in part by the Dirección General de Investigación
of Spain under project DPI2003-07986.

REFERENCES

1. J. A. Castellanos, J. M. M. Montiel, J. Neira, and J. D. Tardós. THE SPmap:
a probabilistic framework for simultaneous localization and map building. IEEE
Transactions on Robotics Automation, 15: 948–953, 1999.

2. R. Smith, M. Self, and P. Cheeseman. A stochastic map for uncertain spatial
relationships. In Faugeras O. and Giralt G., editors, Robotics Research, The
Fourth International Symposium, pp. 467–474. The MIT Press, Cambridge,
MA, 1988.

3. J. E. Guivant and E. M. Nebot. Optimization of the simultaneous localization
and map-building algorithm for real-time implementation. IEEE Transactions
on Robotics and Automation, 17: 242–257, 2001.

4. J. J. Leonard, R. Carpenter and H. J. S. Feder. Stochatic mapping using forward
look sonar. Robotica, 19, 467–480

5. J. H. Kim and S. Sukkarieh. Airborne simultaneous localisation and map build-
ing. In IEEE International Conference on Robotics and Automation, Taipei,
Taiwan, September 2003.

6. J. Knight, A. Davison, and I. Reid. Towards constant time SLAM using post-
ponement. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 406–412, Maui, Hawaii, 2001.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 369 — #39

Map Building and SLAM Algorithms 369

7. S. J. Julier and J. K. Uhlmann. Building a million beacon map. In Paul S.
Schenker, and Gerard T. McKee (eds), SPIE Int. Soc. Opt. Eng., vol. 4571,
pp. 10-21, Washington DC, 2001.

AQ: Please
provide
publisher name
for reference
[7].

8. Y. Liu and S. Thrun. Results for outdoor-SLAM using sparse extended inform-
ation filters. In IEEE International Conference on Robotics and Automation,
pp.1227–1233, Taipei, Taiwan, 2003.

9. J. A. Castellanos, J. Neira, and J. D. Tardós. Limits to the consistency of EKF-
based SLAM. In 5th IFAC Symposium on Intelligent Autonomous Vehicles,
Lisbon, Portugal, 2004.

10. J. D. Tardós, J. Neira, P. Newman, and J. Leonard. Robust mapping and localiza-
tion in indoor environments using sonar data. International Journal of Robotics
Research, 21: 311–330, 2002.

11. S. B. Williams, G. Dissanayake, and H. Durrant-Whyte. An efficient approach
to the simultaneous localisation and mapping problem. In IEEE Interna-
tional Conference on Robotics and Automation, ICRA, vol. 1, pp. 406–411,
Washington DC, 2002.

12. S. B. Williams. Efficient Solutions to Autonomous Mapping and Naviga-
tion Problems. Australian Centre for Field Robotics, University of Sydney,
September 2001. http://www.acfr.usyd.edu.au/

13. M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller. An atlas
framework for scalable mapping. In IEEE International Conference on Robotics
and Automation, pp. 1899–1906, Taipei, Taiwan, 2003.

14. T. Bailey Mobile Robot Localisation and Mapping in Extensive Outdoor Envir-
onments, Australian Centre for Field Robotics, University of Sydney, August
2002, http://www.acfr.usyd.edu.au/

15. J. J. Leonard and P. M. Newman. Consistent, Convergent and Constant-Time
SLAM. In International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 2003.

16. C. Estrada, J. Neira, and J. D. Tardós. Hierarchical SLAM: real-time accur-
ate mapping of large environments. IEEE Transactions on Robotics and
Automation, 2005 (to appear).

AQ: Please
update reference
[16].

17. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In Proceedings
of the AAAI National Conference on Artificial Intelligence, Edmonton, Canada,
2002, AAAI.

18. J. S. Gutmann and K. Konolige. Incremental Mapping of Large Cyclic Envir-
onments. In IEEE International Symposium on Computational Intelligence in
Robotics and Automation CIRA, pp. 318–325, 1999.

AQ: Please
provide place of
publisher for
reference [18].19. F. Lu and E. Milios. Globally consistent range scan alignment for environment

mapping. Autonomous Robots, 4: 333–349, 1997.
20. S. Thrun, D. Hähnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard,

C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker. A system for volumetric
robotic mapping of abandoned mines. In IEEE International Conference on
Robotics and Automation, pp. 4270–4275, Taipei, Taiwan, 2003.

21. J. A. Castellanos and J. D. Tardós Mobile Robot Localization and Map Building:
A Multisensor Fusion Approach. Kluwer Academic Publishers, Boston, MA,
1999.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 370 — #40

370 Autonomous Mobile Robots

22. P. Newman, J. Leonard, J. D. Tardós, and J. Neira. Explore and return: Exper-
imental validation of real-time concurrent mapping and localization. In IEEE
International Conference on Robotics and Automation, pp. 1802–1809. IEEE,
2002.

23. J.A. Castellanos, J. M. M. Montiel, J. Neira, and J. D. Tardós Sensor influence
in the performance of simultaneous mobile robot localization and map building.
In Corke Peter and Trevelyan James (eds), Experimental Robotics VI. Lecture
Notes in Control and Information Sciences, vol. 250, pp. 287–296. Springer-
Verlag, Heidelberg, 2000.

24. A.J. Davison. Real-time simultaneous localisation and mapping with a single
camera. In Proceedings of International Conference on Computer Vision, Nice,
October 2003.

AQ: Please
provide place of
publisher for
references
[11,17] 25. J. A. Castellanos, J. Neira, and J. D. Tardós. Multisensor fusion for simultaneous

localization and map building. IEEE Transactions on Robotics and Automation,
17: 908–914, 2001.

26. M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba. A solution to the simultaneous localization and map build-
ing (SLAM) problem. IEEE Transactions on Robotics and Automation, 17:
229–241, 2001.

27. A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press,
New York, 1970.

28. T. Bar-Shalom and T. E. Fortmann. Tracking and Data Association. Academic
Press, New York, 1988.

29. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications to
Tracking and Navigation. John Wiley & Sons, New York, 2001.

30. W. E. L. Grimson. Object Recognition by Computer: The Role of Geometric
Constraints. The MIT Press, Cambridge, MA, 1990.

31. J. M. M Montiel and L. Montano. Efficient validation of matching hypotheses
using mahalanobis distance. Engineering Applications of Artificial Ingelligence,
11: 439–448, 1998.

32. J. Neira and J. D. Tardós. Data association in stochastic mapping using the
joint compatibility test. IEEE Transactions on Robotics and Automation, 17:
890–897, 2001.

33. J. Neira, J. D. Tardós, and J. A. Castellanos. Linear time vehicle relocation
in SLAM. In IEEE International Conference on Robotics and Automation,
pp. 427–433, Taipei, Taiwan, September 2003.

34. T. Bailey, E. M. Nebot, J. K. Rosenblatt, and H. F. Durrant-Whyte. Data
association for mobile robot navigation: a graph theoretic approach. In IEEE
International Conference Robotics and Automation, pp. 2512–2517, San
Francisco, California, 2000.

35. M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Comm. Assoc. Comp. Mach., 24: 381–395, 1981.

36. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, Cambridge, U.K., 2000.

37. Thrun Sebastian, Liu Yufeng, Koller Daphne, Y. Ng Andrew,
Ghahramani Zoubin, and Durrant-Whyte Hugh. Simultaneous Localization and

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 371 — #41

Map Building and SLAM Algorithms 371

Mapping with Sparse Extended Information Filters. The International Journal
of Robotics Research, 23: 693–716, 2004.

38. S. J. Julier and J. K. Uhlmann A counter example to the theory of simultan-
eous localization and map building. In 2001 IEEE International Conference on
Robotics and Automation, pp. 4238–4243, Seoul, Korea, 2001.

BIOGRAPHIES

José A. Castellanos was born in Zaragoza, Spain, in 1969. He received the
M.S. and Ph.D. degrees in Industrial-Electrical Engineering from the University
of Zaragoza, Spain, in 1994 and 1998, respectively. He is an Associate Professor
with the Departamento de Informática e Ingeniería de Sistemas, University
of Zaragoza, where he is in charge of courses in SLAM, Automatic Control
Systems and Computer Modelling and Simulation. His current research interest
include multisensor fusion and integration, Bayesian estimation in nonlinear
systems and simultaneous localization and mapping.

José Neira was born in Bogotá, Colombia, in 1963. He received the
M.S. degree in Computer Science from the Universidad de los Andes, Colombia,
in 1986, and the Ph.D. degree in Computer Science from the University of
Zaragoza, Spain, in 1993. He is an Associate Professor with the Departamento
de Informática e Ingeniería de Sistemas, University of Zaragoza, where he is in
charge of courses in Compiler Theory, Computer Vision and Mobile Robotics.
His current research interests include autonomous robots, data association, and
environment modeling.

Juan D. Tardós was born in Huesca, Spain, in 1961. He received the M.S.
and Ph.D. degrees in Industrial-Electrical Engineering from the University
of Zaragoza, Spain, in 1985 and 1991, respectively. He is an Associate Professor
with the Departamento de Informática e Ingeniería de Sistemas, University of
Zaragoza, where he is in charge of courses in Real Time Systems, Computer Vis-
ion and Artificial Intelligence. His current research interests include perception
and mobile robotics.

FRANKL: “dk6033_c009” — 2005/12/23 — 18:18 — page 372 — #42

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

