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a b s t r a c t

In this paper1 we describe the Combined Kalman-Information Filter SLAM algorithm (CF SLAM), a
judicious combination of Extended Kalman (EKF) and Extended Information Filters (EIF) that can be
used to execute highly efficient SLAM in large environments. CF SLAM is always more efficient than any
other EKF or EIF algorithm: filter updates can be executed in as low as O(log n) as compared with O(n2)
for Map Joining SLAM, O(n) for Divide and Conquer (D&C) SLAM, and the Sparse Local Submap Joining
Filter (SLSJF). In the worst cases, updates are executed in O(n) for CF SLAM as compared with O(n2) for
all others. We also study an often overlooked problem in computationally efficient SLAM algorithms:
data association. In situations in which only uncertain geometrical information is available for data
association, CF SLAM is as efficient as D&C SLAM, and much more efficient than Map Joining SLAM or
SLSJF. If alternative information is available for data association, such as texture in visual SLAM, CF SLAM
outperforms all other algorithms. In large scale situations, both algorithmsbased on Extended Information
filters, CF SLAM and SLSJF, avoid computing the full covariance matrix and thus require less memory, but
still CF SLAM is the most computationally efficient. Both simulations and experiments with the Victoria
Park dataset, the DLR dataset, and an experiment using visual stereo are used to illustrate the algorithms’
advantages, also with respect to non filtering alternatives such as iSAM, the Treemap and Tectonic SAM.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, researches have devotedmuch effort to develop
computational efficient algorithms for SLAM. The goal is being
able to map large scale environments in real time [1]. Given a
map of n features, the classical EKF SLAM algorithm is known to
have a cost of O(n2) per update step. One important contribution
has been the idea of splitting the full map into local maps and
then putting the pieces back together in some way. Decoupled
Stochastic Mapping [2], Constant Time SLAM [3] and the ATLAS
system [4] are local mapping solutions close to constant time,
although through approximations that reduce precision. Map
Joining [5] and the Constrained Local Submap Filter [6] are exact
solutions (except for linearizations) that require periodical O(n2)
updates. Exact solutions also include Treemap [7], incremental
Smoothing and Mapping (iSAM) [8], Divide and Conquer (D&C)
SLAM [9], Tectonic SAM [10] and Sparse Local Submap Joining
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(SLSJF) SLAM [11]. Two recent algorithms have provided important
reductions in computational cost: D&C SLAMhas an amortized cost
O(n) per step, and SLSJF SLAM reports a cost O(n1.5) per step in
the worst cases. The Treemap has a cost O(log n), although with
topological restrictions on the environment, and a rather complex
implementation.

The SLAMproblemhas also been addressed using particle filters
[12]. The particle filter keeps a number k of possible locations of the
robot, and computes an alternativemap for each. Themost efficient
SLAM algorithms based on particle filters factorize the problem
so that only the vehicle location is represented with a set of
particles, and have a cost O(nk) per step [13–16]. The consistency
and robustness of these algorithms depends on the number k of
particles in the filter. In order not to underestimate the uncertainty,
this number must grow with the size of the environment that is
expected to map.

When the application requires mainly to have a very accurate
localization of the robot, and a detailed map is of secondary
importance, the use of Pose based SLAM [17–19], or Topological
Maps [20], can be interesting. These algorithms keep a state vector
containing all or some of the poses of the robot, the map must be
calculated a posteriori.

In this paper we describe the Combined Filter SLAM (CF SLAM)
algorithm, a highly efficient filtering algorithm; in the best cases
it can reduce the computational cost from O(n) down to O(log n)
per step; the total computational cost can be reduced from O(n2)
down to O(n log n); in the worst cases the cost is reduced from
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Table 1
Formulations of the computational cost of each of the operations carried out using the Extended Kalman Filter (left) and the Extended Information Filter (right) in the SLAM
problem. Variable n is the size of the final state µt or information vector ξt , and r is the size of the measurement vector zt , constant in EKF-SLAM and EIF-SLAM. The test χ2

is only required for data association.

EKF-SLAM EIF-SLAM

Jacobians Ft =
∂g(ut ,µt−1)

∂µt−1


µ̂t−1

O(1) Gt =
∂g(ut ,µt−1)

∂ut


ût

O(1) Ht =
∂h(µt|t−1)

∂µt|t−1


µ̂t|t−1

O(r)

µt−1 = �t−1 \ ξt−1 O(nr2)–O(n2r)
Prediction µt|t−1 = g(ut , µt−1) O(1) Φ = F−Tt �t−1F−1t O(1)

6t|t−1 = Ft6t−1F T
t + GtRt−1GT

t O(n) �t|t−1 = Φ − ΦGt (Rt−1 + GT
t ΦGt )

−1GT
t Φ O(n)

ξt|t−1 = �t|t−1g(ut , µt−1) O(nr)

Innovation νt = zt − h(µt|t−1) O(r) νt = zt − h(µt|t−1) O(r)
St = Ht6t|t−1HT

t + Qt O(r3) St = Ht (�t|t−1 \ HT
t )+ Qt O(nr2)

Test χ2 D2
= νT

t S
−1
t νt O(r3) D2

= νT
t S
−1
t νt O(r3)

Kt = 6t|t−1HT
t /St O(nr2)

Update 6t = (I − KtHt )6t|t−1 O(n2r) �t = �t|t−1 + HT
t Q
−1
t Ht O(r)

µt = µt|t−1 + Ktνt O(n) ξt = ξt|t−1 + HT
t Q
−1
t (νt + Htµt|t−1) O(r)

Cost per step O(n2) O(n)–O(n2)
O(n2) down to O(n) per step; and in the total computational
cost from O(n3) down to O(n2) [21]. The CF SLAM algorithm
is a judicious combination of Extended Kalman and Extended
Information Filters, combined with a divide and conquer local
mapping strategy and using the sparse Cholesky decomposition
with a minimum degree preordering. Being a local mapping
algorithm, it provides more consistent results, compared with
Treemap, reported to have the same O(log n) cost but computing
an absolute map [22]. CF SLAM is also conceptually simple and
rather easy to implement.We also show that CF SLAMcan compute
the data association and remain much more efficient than any
other EKF and EIF based SLAM algorithms [23]. In this paper we
study in detail the computational complexity of methods based
on filtering to show the advantages of CF SLAM. We also compare
our results using benchmark datasets, like the Victoria Park and
DLR datasets, with other state of the art algorithms such as the
Treemap, iSAM and Tectonic SAM.

This paper is organized as follows: the next section contains a
detailed description of the improvements that have been reported
on the use of Kalman and Information filters for SLAM, leading to
the algorithm that we propose. Section 3 contains a description
of our algorithm and a study of its computational cost and
consistency properties. We discuss the main factors that may
influence the computational cost in Section 4. In Section 5 we
describe the process to solve the data association problem for both
geometrical information only and appearance-only information in
the CF SLAM algorithm. In Section 6 we test the algorithm using
four experiments: one simulated environment, the Victoria Park
dataset, the DLR dataset and an experiment done with a stereo
camera-in-hand. In the final section we summarize the results and
draw the fundamental conclusions of this work.

2. The Extended Kalman Filter, the Extended Information Filter
and map joining filters

In this sectionwe summarize the basic concepts about the basic
Kalman Filter and the basic Information Filter, aswell as aboutMap
Joining techniques and the state of art SLAM algorithms that use
them.

2.1. The Extended Kalman Filter

The Extended Kalman Filter (EKF) is one of the main paradigms
in SLAM [24,25]. In EKF SLAM, a map (µ, 6) includes the state µ
to be estimated, which contains the current vehicle location and
the location of a set of environment features. The covariance of µ,
represented by 6, gives an idea of the precision in the estimation,
0 meaning total precision. EKF SLAM is an iterative prediction-
sense-update process whose formulation we believe is widely
known and is thus summarized in Table 1(left). During exploratory
trajectories, and using a sensor of limited range thus providing a
constant number of r features per observation, the size of the map
(n) grows linearly. Given that each EKF update step is O(n2), the
total cost of carrying out EKF SLAM is known to be O(n3).

2.2. The Extended Information Filter

In Extended Information Filter (EIF) SLAM, amap (ξ , �) consists
of the information state ξ to be estimated and the information
matrix �, which gives an idea of the information known about
the estimation (0 meaning no information). EIF SLAM is also an
iterative prediction-sense-update process, its formulation is also
summarized in Table 1, right. The Information filter is an algebraic
equivalent to the Kalman filter, because the following equivalences
hold [24]:

� = 6−1 and ξ = 6−1µ. (1)
For this reason, KF and IF are considered dual filters [26].

Unfortunately, in the nonlinear case the filters are not completely
dual, since both the transition function g and the measurement
function h require the state as input [24]. For this reason, the
initial required computation during the prediction step is to derive
the state variables µt−1. In the general case, the EIF is considered
computationally more expensive than the EKF: computing the
state µt−1 is O(n3) because of the inversion of the the information
matrix �t−1. In the SLAM context, the information matrix has
special structural properties, thus state vector recovery can be
carried out by solving an equation system of size n very efficiently
through the Cholesky decomposition (we shall discuss thismore in
Section 4). An important insight into reducing the computational
cost of EIF SLAM was to observe that the information matrix � is
approximately sparse [24], and can be easily sparsified. This Sparse
Extended Information Filter (SEIF) allows a computational cost of
O(n) (pure exploration) up toO(n2) (repeated traversal), although
because of sparsification SEIF SLAM is not an exact algorithm.

Another important observation regarding EIF SLAM is that if
all vehicle locations are incorporated into the information vector,
instead of the current one only, the information matrix becomes
exactly sparse [17]. In this Exactly Sparse Delayed-State Filter
(ESDF) SLAM, the reduction in the computational cost is the
same as in SEIF. Additionally, since no approximations due to
sparsification take place, the results are more precise [27]. When
the state or the information vector contain only the current vehicle
location, we have an online SLAM problem; if it contains all vehicle
locations along the trajectory, we have full SLAM.

The total cost of ESDF is known to be range from O(n2) (pure
exploration) to O(n3) (repeated traversal), as compared with the
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Table 2
Formulations of the computational cost of each of the operations carried out for Map Joining using the Extended Kalman Filter (left) and using the Extended Information
Filter (right) in the best case. Variables n1 , n2 and n are the size of the first, second and final state or information vector respectively, s is the size of the overlap between both
submaps, and p is the size of the local map, constantwith respect to the size of the map.

Join with EKF Join with EIF

Jacobians G = ∂g(µ)

∂µ


µ̂

O(n2) H = ∂h(µ−)

∂µ−


µ̂−

O(n2)

µ− = g([µ1;µ2]) O(n2)

Initialization µ− =

[
µ1
µ2

]
O(n) ξ− =

[
ξ1
0

]
O(n)

6− =

[
61 0
0 62

]
O(n2) �− =

[
�1 0
0 0

]
O(np)

Innovation ν = −h(µ−) O(s) ν = µ2 − h(µ−) O(s)
S = H6−HT O(s2) Q−1 = �2 Given

K = 6−HT /S O(n2)

6+ = (I − KH)6− O(n2s) � = �− + HT�2H O(n2p)
Update µ+ = µ− + Kν O(ns) ξ = ξ− + HT�2(ν + Hµ−) O(n2p)

µ = g(µ+) O(n2) µ = � \ ξ O(np2)–O(n2p)
6 = G6+GT O(n2

2)

Cost per join O(n2s) O(n) to O(n2)
always cubic cost of EKF SLAM. Note however that the information
vector is ever increasing. Even during revisiting, every new vehicle
location is incorporated in the state vector, thus increasing n. The
term r refers to the field of view of the sensor, we note again that
in these cases is constant with respect to n.

2.3. Map joining SLAM with EKF

Local mapping (or submapping) algorithms were the next
contribution to the reduction of the computational cost of SLAM.
In these algorithms, sequences of local maps of constant size p are
sequentially built (in constant time because of the size limitation)
and then put together into a global map in different ways.

One of such solutions, Map Joining SLAM [5], works in the
following way: given two consecutive local maps (µ1, 61) and
(µ2, 62), the map (µ, 6) resulting from joining their information
together is computed in three initialization–innovation–update
steps, summarized in Table 2, left. A specialized version of the
Extended Kalman Filter is used, where the full state vectors
and covariance matrices are simply stacked in the predicted
map; correspondences can then be established between features
from both maps through a prediction function h, equivalent to
considering a perfect measurement z = 0,Q = 0. Notice that this
is possible because EKF allows the consideration of 0 covariance
measurements. In this case, h computes the discrepancy of features
from both maps in the same reference. The update step includes a
computation using the function g to first delete duplicate features
appearing in both maps, and then transform all map features and
vehicle locations to a common base reference, usually the starting
vehicle location in the first map.

Map Joining SLAM is constant most of the time, when working
with localmaps. However,map joining operations areO(n2) on the
final size of themap, and although it results in great computational
savings (it may slash the cost by a large constant), Map Joining
SLAM is still O(n2) per step, just as EKF SLAM is.

2.4. Map joining SLAM with EIF

The Extended Information filter can also be used to carry
out the map joining operations, as reported in the Sparse Local
Submap Joining Filter (SLSJF) SLAM [11]. Its application is not
as straightforward as the Map Joining with EKF for two reasons.
First, in Map Joining with EKF, correspondences are established
by considering a perfect measurement z = 0,Q = 0. In the
information form, 0 covariance measurements are not allowed
since Q−1 is required in the formulation. For this reason, in SLSJF
SLAM, having two consecutive local maps (µ1, 61) and (µ2, 62)
to join, the resulting map (ξ , �) is predicted in the information
form with the information of the first map, and an initial 0 (no
information) from the second map. The innovation is computed
considering the second map as a set of measurements for the full
map (zt = µ2, Qt = �−12 ), and the final update step computes the
information state ξ and information matrix � using the standard
EIF equations. Note in Table 2 that g has the same functionality
as in the previous section, and function h transforms the features
revisited from the first map to the reference of the second map.

An important observation made in [11] is that the information
matrix resulting from the map joining operation using EIF is
exactly sparse if the vehicle locations coming from each local
map are maintained in the final information state. This is a
situation very similar to the full SLAM problem, except that not
all vehicle locations remain, only a fraction corresponding to the
final vehicle locations in each localmap. There is an additional final
computation of the final state µ, to make it available for potential
futuremap joining operations. This state recovery can be donewith
a preordering of minimum degree of the information matrix and
the sparse Cholesky factorization to solve the linear system, such as
was pointed out by [11]. In the Section 4.1we shall see that the cost
of this computation can be proportional to n during exploration,
and up to O(n2) in the worst case.

2.5. Divide and conquer with EKF

In the Divide and Conquer (D&C) SLAM algorithm [9] it was
pointed out that SLAM can be carried out in linear time per step
if map joining operations are carried out in a hierarchical binary
tree fashion, instead of a sequential fashion. The leaves of the
binary tree represent the sequence of l local maps of constant
size p, computed with standard EKF SLAM. These maps are joined
pairwise to compute l/2 localmaps of double their size (2p), which
will in turn be joined pairwise into l/4 local maps of size 4p, until
finally two local maps of size n/2 will be joined into one full map
of size n, the final map. The O(n2) updates are not carried out
sequentially, but becomemore distant as themap grows. AnO(n2)
computation can then be amortized in the next n steps, making the
amortized version of the algorithm linear with the size of the map.
It can also be shown that the total cost of D&C SLAM is O(n2), as
compared to the total cost of EKF SLAM, O(n3).
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Fig. 1. Computational time in the simulated execution for D&C SLAM (blue), SLSJF SLAM (red) and our algorithm, CF SLAM (green): Time per step (a); Total time of execution
(b); Time per step for SLSJF vs. amortized time per step for D&C SLAM and our algorithm, CF SLAM (c). The final map contains 1093 features from 64 local maps. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
3. Our proposal: Combined Filter SLAM

The algorithm proposed here, Combined Filter SLAM, has three
main highlights (see Algorithm 1):
1. Local mapping is carried out using standard online EKF SLAM

to build a sequence of maps of constant size p. Each local map
(µi, 6i) is also stored in information form (ξi, �i); both the
information vector and the information matrix are computed
in O(p3), constant with respect to the total map size n. Each
local map only keeps the final pose of the robot. EKF SLAM in
local maps allows robust data association, e.g. with JCBB [28],
and small local maps remain consistent.

2. Map joining is carried out using EIF, keeping vehicle locations from
each local map in the final map. This allows to exploit the exact
sparse structure of the resulting informationmatrix and the join
can be carried out in as low as linear time with the final size of
the map. The covariance matrix is not computed after joins at
the lower level.

3. In contrast with the sequential map joining strategy followed
by SLSJF, the D&C strategy is followed to decide when map
joining takes place. We will see that this will result in a total
computation cost as low as O(n log n), as compared with the
total cost of SLSJF, O(n2). Additionally, the computation per
step can be amortized to O(log n), as compared with O(n) for
SLSJF. This makes CF SLAM, the most efficient SLAM filtering
algorithm.

Algorithm 1 The CF SLAM Algorithm
maps← {}
while data from sensor do

map← ekf _slam
if isempty(maps) then
maps← {map}

else
while size(map) ≥ size(maps{last})
or global map is needed do
map← eif _map_join(maps{last},map)
maps{last} ← {}

end while
maps← {maps,map}

end if
end while

3.1. Computational complexity

We study initially the case of pure exploration, in which the
robot is always observing new territory, and thus the sensor
measurements have a constant overlapwith themap already built.
This case is very interesting because it is the first situation that any
SLAM algorithm will face, and it is also the case where the size
of the map increases, and thus also the size of the problem. We
discuss several other cases in Section 4.

In exploratory trajectories, the process of building a map of
size n using the proposed CF SLAM follows the divide and conquer
strategy: l = n/p maps of size p are produced (not considering
overlap), at cost O(p3) each, which are joined into l/2 maps of size
2p, at cost O(2p) each. These in turn are joined into l/4 maps of
size 4p, at cost O(4p) each. This process continues until two local
maps of size n/2 are joined into one local map of size n, at a cost
of O(n) (other types of trajectories are considered in Section 4.1).
SLSJF SLAM and our algorithm carry out the same number of map
joining operations. The fundamental difference is that in our case
the size of the maps involved in map joining increases at a slower
rate than in SLSJF SLAM.

The total computational complexity of CF SLAM in this case is:

C = O


p3l+

log2 l−
i=1

l
2i

(2i p)


= O


p3n/p+

log2 n/p−
i=1

n/p
2i

(2i p)



= O


p2n+

log2 n/p−
i=1

n


= O (n+ n log n/p)
= O (n+ n log n)
= O (n log n) .

Therefore, CF SLAMoffers a reduction in the total computational
cost to O (n log n), as compared with the total cost O


n3

for EKF

SLAM, and O

n2

for D&C SLAM and SLSJF SLAM. Furthermore, as

in D&C SLAM, themap to be generated at step t will not be required
for joining until step 2 t . This allows us to amortize the costO(t) at
this step by dividing it up between steps t + 1 to 2 t in equal O(1)
computations for each step. In this way, our amortized algorithm
becomes O(log n) per step. In the worst cases the cost can grow up
to O(n), but the cost of D&C SLAM and SLSJF SLAM will grow too
(see Section 4).

3.2. CF SLAM vs. other filtering algorithms

To illustrate the computational efficiency of the algorithm
proposed in this paper, a simulated experiment was conducted
using a simple MATLAB implementation of CF SLAM, D&C SLAM
[9], and SLSJF [11] (with reordering using symmmd instead of
the heuristic criteria proposed there). The simulated environment
contains equally spaced point features 1.33 m apart, a robot
equipped with a range and bearing sensor with a field of view of
180 degrees and a range of 2 m. Local maps are built containing
p = 30 features each. All tests are done over 100 MonteCarlo runs.
Fig. 1 shows the resulting execution costs of the three algorithms.
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We can see that the total costs of D&C SLAM and the SLSJF tend to
be equal (Fig. 1b). This is expected, since both have a total cost of
O(n2).We can also see that the total cost of our algorithm increases
more slowly, it is expected to be O(n log n). We can finally see that
the amortized cost of our algorithm exhibits an O(log n) behavior,
always smaller than the cost of the other two algorithms (Fig. 1c).

3.3. Consistency

When the ground truth is available as in this simulated
experiment, we can carry out a statistical test on the estimation
(µ, 6) for filter consistency. We define the consistency index, CI ,
as:

CI =
D2

χ2
n,1−α

(2)

where D2 is the Mahalanobis distance or Normalized Estimation
Error Squared (NEES) [29], n = dim(µ) and (1 − α) is the confi-
dence level (95% typically). When CI < 1, the estimation is consis-
tent with the ground truth, otherwise the estimation is optimistic,
or inconsistent.

It is known that local map-based strategies, (e.g. SLSJF and
D&C SLAM) improve the consistency of SLAM by including less
linearization errors than strategies based on one global map,
(e.g. Treemap) [22]. We tested consistency of SLSJF, D&C SLAM
and CF SLAM on the simulated experiments with 100 MonteCarlo
runs. Fig. 2 shows the evolution of the mean consistency index of
the vehicle position in x (top) and y (middle), and orientation φ
(bottom), during the steps of the trajectory. We can see that the
performance of the index for D&C SLAMand for our proposal a very
similar and clearly better than for SLSJF. This is due to that both
D&C SLAM and our proposal follow a tree structure to carry out the
map joining process. In contrast, in SLSJFmap joining is sequential,
thus errors increase faster in the global map. Recently, a more
consistent filter based on SLSJF, I-SLSJF, has been proposed [30].
This filter, in addition to being more computationally expensive
than the original SLSJF, requires setting a threshold empirically to
decide when it is necessary to solve the least squares problem and
recompute the state vector from all the local maps stored.

4. Factors that have influence in the computational cost

4.1. Vehicle trajectory

Given that local mapping is a constant time operation, we
concentrate on the computational cost of map joining in CF
SLAM. The state recovery is the most computationally expensive
operation in this case. State recovery is carried out using the
Cholesky factorization, with a previous minimum degree ordering
of the informationmatrix. The cost of this operationdepends on the
sparsity pattern of the information matrix and the density of non-
zero elements [31,11]. This in turn depends on the environment,
on the sensor used and more importantly, on the trajectory of the
robot.

We have used the simulated experiments to study the effect
of the trajectory of the vehicle in the computational cost of the
map joining operation. Fig. 3 shows the trajectory studied (left), the
sparsificacion pattern of the information matrix of the final map
(middle), and themean cost (for the 100Monte Carlo runs) of state
recovery and joining between maps versus the dimension of the
state vector after joining (right).

To determine the order of the computational cost, we compute
a fit to equation y = axb for the state recovery and for map joining
costs. The independent variable is the dimension of the state vector
resulting from each map joining. The dependent variable is the
cost of the operation: sr for the state recovery µ = � \ ξ , and
jEIF is the cost of all operations involved in map joining with EIF,
including sr. The results of the fit can be seen in Table 3. The sum
Fig. 2. Mean consistency index CI in x, y, and φ for SLSJF, D&C SLAM and our
proposal.

of squared errors (SSE), the coefficient of correlation squared (R2)
and root mean squared errors (RMSE) are reported.

The most important results are:
• In pure exploratory trajectories, Fig. 3(top), the fit suggests that

the exponent b can be considered equal to 1 in both state
recovery and map joining operations, see Table 3(top). Thus, as
we said in the previous section, in the case of exploration, the
cost of map joining has a linear behavior with respect to the
dimension of the state vector, and can be amortized in CF SLAM
to attain O(log n).
• We have also studied lawn mowing, Fig. 3(upper middle).

This type of trajectory is frequent in underwater mosaicing
applications [17]. In this case, the cost can increase to O(n1.3)
(see the exponent from the fit, Table 3).
• In another type of trajectory, outward spiral, Fig. 3(lower

middle), the cost can increase to O(n2). Outward spirals are
frequent in airborne mapping applications [32].
• In the worst case, repeated traversal (in this case a loop),

Fig. 3(bottom), the cost ofmap joining is linearmost of the time,
except in the full overlap, when the operation is quadratic with
the dimension of the state vector.

Three things are important to note:
1. Whatever the cost of the map joining operation, it can be

amortized in CF SLAM. This means that in the worst case, when
map joining is O(n2), CF SLAM is O(n) per step.

2. In these cases, the computational cost of D&C SLAM and SLSJF
also increase in the same manner: in the worst case, both will
be O(n2) per step, so CF SLAM will always be better.

3. The worst case situation will probably not be very frequent,
once amap of the environment of interest is available, the robot
can switch to localization using an a priori map, a much less
expensive task computationally.

Table 4 summarizes the computational costs of all algorithms
in the best and worst cases.

4.2. Local map size

The selection of the local map size p can also influence the
computational cost of CF SLAM. Local maps of a large size p (for
example p = 350) cannot be computed in real time, and also
increase the density on non-zero elements in the information
matrix (see Fig. 4, top left). If on the contrary the local map size
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Fig. 3. Computational cost of state recovery in four cases: exploration with 27,651 features (top), lawn mowing with 9056 features (upper middle), out-ward spiral with
7423 features (lower middle), several loops with 3456 features (bottom), all from 1024 local maps. From left to right: ground truth environment and trajectory, sparse
information matrix obtained by our algorithm and execution time for to do joining and recovery state versus the state vector’s dimension with their fit functions. In order
to concentrate in studying computational costs these simulations were carried out with noise equal to zero.
is too small (p = 4), a large number of robot poses will appear in
the state vector (Fig. 4, top right). Both situations may result in the
cost of map joining not being linear anymore (Fig. 4, bottom).

In the first case, the density of non-zero elements in � is 1 in
every 12, and thus map joining in the lower levels of the tree (the
most frequent) are very expensive, more than 4 s in the simulation.
In the case of small local maps, the exponent from the fit increases
to 1.14 (see Table 3). The density is much lower, 1 in 1070, but
the state vector is much larger because we have many more poses.
In Fig. 4 the number of features is different because the memory
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Table 3
Results of the fit to y = axb , both the cost of state recovery (sr) and the joining with EIF (jEIF). We can see the value of the exponent b with 95% confidence bounds, the
sum of squared errors (SSE), the coefficient of correlation squared (R2) and root mean squared errors (RMSE) for the simulations of Figs. 3 and 4(right).

Trajectory b (95%) SSE R2 RMSE

Exploration sr 1.01 (0.956, 1.058) 0.1385 0.9976 0.1316
jEIF 0.97 (0.955, 0.977) 0.0094 0.9999 0.0342

Lawn mowing sr 1.30 (1.21, 1.) 0.6849 0.9976 0.2926
jEIF 1.18 (1.13, 1.237) 0.2900 0.9991 0.1904

Out-ward spiral sr 1.99 (1.816, 2.157) 0.9726 0.9993 0.3497
jEIF 1.81 (1.695, 1.92) 0.6629 0.9995 0.28797

Inside the loops sr 1.06 (0.982, 1.139) 0.0072 0.9985 0.0379
jEIF 0.96 (0.884, 1.03) 0.0119 0.9976 0.0487

Exploration with smallest local maps sr 1.14 (1.097, 1.174) 0.1151 0.9990 0.1023
jEIF 1.08 (1.032, 1.123) 0.1958 0.9980 0.1334
Fig. 4. Results of different sizes of local maps. (Top) The sparse matrix information and (bottom) execution time of state recovery and map joining, both in exploration
trajectory. On the left the local map size is 350 features, note the time needed for a final map of 5564 features from 16 local maps. On the right the local map size is 4 features
(field of view of the sensor) and the final map has 18,431 features from 8192 local maps.
requirements of the scenario on the left overflowing the capacity of
MATLAB. In our experience, a good rule of thumb is that we should
select p to keep the feature variable vs. pose variable ratio between
5 and 20.

5. The data association problem

The problem of data association is often ignored when
evaluating the efficiency and effectiveness of a SLAM algorithm.
Here we show that the CF SLAM algorithm remains in the worst
of case as computationally effective as D&C SLAM, the fastest to
our knowledge that maintains the full covariance matrix and thus
allows data association based on stochastic geometry. In the order
of thousands of features, CF SLAM will outperform D&C SLAM
because of reduced memory requirements.

Data association can be usually solved in two ways. If a
covariance matrix is available, we can carry out statistical tests to
Table 4
Computational costs for all filtering algorithms in the best case (pure exploration)
and in the worst case (repeated traversal). Note that the CF SLAM is the most
efficient always.

Cost per step Total cost
Best Worst Best Worst

SLSJF O(n) O(n2) O(n2) O(n3)

D&C SLAM O(n) amort. O(n2) amort. O(n2) O(n3)

CF SLAM O(log n) amort. O(n) amort. O(n log n) O(n2)

find possible matches based on stochastic geometry. If additional
information is available, such as texture or appearance in vision
sensors, we can obtain matchings based not on location but on
appearance.

In the following we describe two data association algorithms,
one belonging to each category, that can be used in CF SLAM.
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5.1. Data association using geometrical information

In some situations, only geometrical information, the uncertain
location of features relative to the sensor location, is available
for data association. Such is the case of 2 points or straight walls
obtained with a laser sensor.

In CF SLAM, data association inside a local map is carried out
using JCBB [28] because the corresponding covariance matrix is
available. The data association that remains to be solved is the
identification of features that appear in two consecutive maps, lets
call them M1 = {µ1, ξ1, �1} and M2 = {µ2, ξ2, �2}, either local
maps at the lower level, or maps resulting from previous joins in
the D&C map joining process. When the two maps to be joined
are local maps, their corresponding covariances are available and
data association can be done with the JCBB also. If not, we first
determine the overlap between the two maps, features that can
potentially have pairings, and then we recover the covariance
matrix for those features only. We proceed as follows:
1. Identify the overlap, a set of potential matches

This is denominated individual compatibility, IC . Individu-
ally compatible features are obtained by tessellating the en-
vironment space, as was proposed in [9], but in our case we
represent the grid in polar coordinates, see Fig. 5. For each fea-
ture in the second local map M2, we assign an angular window
of constant width in angle and height proportional to its dis-
tance from the origin, so that more distant features will have a
larger region of uncertainty. The features in the first local map
M1 are referenced on M2 through the last vehicle pose in M1,
µx1, which is the origin of map M2. The uncertainty of µx1 is
recovered using Eq. (3) (below) and propagated on the these
features, transformed to polar coordinates and embedded to an-
gular windows. Features that intersect are considered individ-
ually compatible, giving IC .

2. Partial recovery of covariances
For intermediate maps that are not at the lower local level CF
SLAM does not compute covariances. As shown in [11], we can
recover some columns of the covariance matrix by solving the
sparse linear equation (3). The columns that we require are
given by IC . We form a column selection matrix EIC to obtain
the columns that are given by IC. If column i of the covariance
matrix is required, we include this column vector in EIC :

ei = [

i  
0, . . . , 0, 1, 0, . . . , 0]T .

The sparse linear system to be solved is as follows:

�6IC = EIC . (3)

This partial recovery of the covariance matrix allows to
use robust joint compatibility tests for data association. The
efficiency of solving Eq. (3) is the same as for the recovery of
the state vector: in the best case, in exploration trajectories,
the order is O(n), amortized O(log n). In the worst case,
repeated traversal, the overlapwill be the full map, and the cost
will be O(n3), amortized O(n2). Here we reuse the Cholesky
decomposition used for the state vector recovery.

3. Prediction and observation
At this point the features of M1 that have potential matches
according to IC , and their covariances, are transformed to be
referenced onM2.

4. Randomized joint compatibility
We use the RJC algorithm of [9], a combination of JCBB and
RANSAC that allows to carry out robust data association very
efficiently, without traversing the whole solution space.

In the experimental section we will show that using this
algorithm, CF SLAM is computationally as efficient as D&C SLAM
but requires less memory because the full covariance matrix is not
computed.
Fig. 5. Computing the individual compatibility matrix for two local maps using
polar coordinates. The angular windows for the features in the M2 have constant
width in angle and height proportional to the distance to the origin. Blue ellipses
represent the uncertainties of the predicted features of the first local map with
respect to the base reference of the second. The ellipses are approximated by
bounding windows.

Algorithm 2 Data association for the Combined Filter using
geometrical information only
Require: Two maps: ⟨M1 = {µ1, ξ1,���1},M2 = {µ2, ξ2,���2}⟩

Ensure: Hypothesis H
Find the set of potential matches IC ← (µ1, µ2)
if covariance matrices are available then
extract covariances
(6661i,6662j)← select(6661,6662, IC)

else
recover partial covariances
(6661i,6662j)← recoveryP(���1,���2, IC) eq: 3

end if
predictions = (h,H666H)← predict_map(µ1i,6661i)
observations = (z, R)← (µ2j,6662j)
H ← RJC(predictions, observations, IC)

5.2. Data association using appearance information

In some cases, features in local maps can have associated
appearance information, such as texture coming from vision. In
these cases, appearance can be coded using a descriptor vector d,
thenM = {µ, ξ, �, d}, for example SIFT [33] or SURF [34]. In these
cases, we proceed as follows in CF SLAM:

1. Obtain a set of potential matches
We find the best possible matches between the descriptors
in M1 and M2 by searching for the nearest neighbor in
the descriptor space. In this way we obtain the individual
compatibility matrix, IC .

2. Obtain a pairwise hypothesis using RANSAC
For each pair of minimum local maps, map i belonging to M1
and map j belonging to M2, that have a minimum number of
matches (5 in our case) in IC , we use RANSAC [35] to find
the subset Hij of matches that corresponds to the best rigid-
body transform between the two local maps. In Fig. 6, the
transformations between the pairs (i = 1, j = 3), (i = 2, j = 3)
and (i = 3, j = 2) are not evaluated because they do not have
sufficient matches.

3. Obtain the final hypothesis
In most cases, the final hypothesis H is simply the result of
joining allHij.When there is ambiguity (one localmapmatched
with two or more other local maps), we prefer the hypothesis
for pairs of maps that have a smallest relative distance, because
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they have smaller relative errors. In Fig. 6 there is ambiguity
between H41 and H42. In this case we accept hypothesis H41.

Algorithm 3 Data association using appearance information
Require: Two maps: ⟨M1 = {µ1, ξ1,���1, d1},M2 = {µ2, ξ2,���2, d2}⟩
Ensure: Hypothesis H

Find set of potential matches IC ← (d1, d2)
for each pair minimum local maps i, j in IC do

Hij ← RANSAC(µ1i, µ2j)
end for
H ← select(Hij)

6. Simulations and experiments

To compare the performance of the Combined Filter with other
popular EKF and EIF based algorithms we use simulations, publicly
available datasets, and our own stereo visual SLAM experiment.2
All algorithms were implemented in MATLAB and executed on a
2.4 GHz Intel Core 2 CPU 6600 with 3 GB of RAM.

6.1. Simulated experiment

We simulated a robot moving in a 4-leaf clover trajectory,
Fig. 7(a). The robot is equipped with a range and bearing sensor.
The features are uniformly distributed with a separation between
them of 6 m. Data association was determined based only on
geometric information using Algorithm 2. Fig. 7(b)(left) shows the
computation cost per step of Map Joining SLAM and SLSJF vs.
the amortized cost for the D&C SLAM and CF SLAM: top, cost of
map updates, center: cost of data association, bottom: total cost
including local map building. We can see the sublinear cost of CF
SLAM in the map updates as expected. Fig. 7(b)(right) shows the
cumulative costs of map updates (top), data association (center)
and total cost (bottom). The algorithms based on EKFs did not
solve the problem completely because they exceeded the available
memory before the end of the experiment.

6.2. The Victoria park dataset

The Fig. 8 shows the resulting map obtained by CF SLAM on the
Victoria Park dataset. All algorithms solve this dataset correctly.
The trajectory of the vehicle explores and revisits frequently, so
the uncertainty does not growmuch and errors are kept small. The
data association was determined with Algorithm 2. This dataset
is interesting to compare CF SLAM and SLSJF. Both algorithms
require the recovery of the covariance submatrix for the overlap
between the maps to be joined. There are some areas where the
overlap is almost complete, thus requiring the recovery of almost
the full covariance matrix. The cumulative computational costs
are in Fig. 8. We can see that CF SLAM is the most efficient for
map updates, but Map Joining SLAM is most efficient for data
association. In total, both algorithms that use theD&C strategy tend
to be most efficient.

Different setups of Victoria Park are used in the literature,
considering a different number of odometry steps and also
different noise models for the sensor data. We sample one in every
twoodometry steps, processing a total of 3615. The iSAMalgorithm
has also used this dataset for its tests, sampling at every odometry
step. In [8], it is implemented in OCaml on a 2 GHz Pentium M
laptop computer. The authors report a cumulative time of 270 s for
the iSAM including the cost of data association, 159 s with known
data association. Comparatively, CF SLAM takes 38 s for solving
all the dataset: 3 s for building local maps, 2.98 s for map joins,
and 32 s for data association. Although our sampling frequency is

2 Videos are available at http://webdiis.unizar.es/~ccadena/research.html.
Fig. 6. Computing the data association hypothesis from two local maps. The
rectangles and circles show theminimum local maps ofM1 andM2 respectively. All
lines are potential matches, and form IC . The lines that are not dotted belong to a
hypothesis between a pair of theminimum localmaps,Hij . The solid lines represent
the final hypothesis H .

one half, this only affects the speed of computation of the local
maps, potentially doubling 3 s of the 38 s for a total of 41 s, still
much lower. The work in [36] recently reports results of Tectonic
SAM (TSAM 2), a batch algorithm of smoothing and mapping with
submapping, using also Victoria Park. They report a total time of
4.5 s on an Macbook Pro with 2.8 GHz CPU, without computing
data association, or suggesting how this can be done in batch
algorithms.

6.3. The DLR dataset

In the DLR dataset, the robot is equipped with a camera, and
carries out a trajectory almost all indoors. Features are white
cardboard circles placed on the ground. This dataset has 560
features and 3297 odometry steps. The path consists of a large
loop with several smaller loops in the way. Position errors grow
enough so that sequential algorithms (Map Joining SLAM and
SLSJF) become weak and fail in the data association to close the
loop (see Fig. 9, bottom right). The D&C algorithms, D&C SLAM and
CF SLAM have better consistency properties, and both solve the
data association for the loop closing in this dataset (see Fig. 9, left).
The cumulative computational costs are show in Fig. 9, right. In this
mostly exploratory dataset, both D&C SLAM algorithms are clearly
superior than both sequential algorithms. During loop closing, the
cost of data association for both D&C algorithms is higher than
that of both sequential algorithms, for the good reason that data
association is computed correctly and the loop can be closed.

In [7] a total execution time of 2.95 s was reported with the
Treemap for this dataset, without computing data association,
implemented in C++ on an Intel Xeon, 2.67 GHz. Our algorithm
implemented in MATLAB spent 4.84 s, not counting the time
devoted to data association.Webelieve that the CF SLAMalgorithm
ismuchmore simple to implement and use. Furthermore, Treemap
is expected to be less consistent in general, it being an absolutemap
algorithm [22].

6.4. The visual stereo SLAM experiment

Finally, the CF SLAM was tested in a 3D environment with a
high density of features. The sensor is a Triclops camera carried in
hand. The path consists of a loop inside the Rose Building at the
University of Sydney. We obtain the 3D position of points from

http://webdiis.unizar.es/~ccadena/research.html
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Fig. 7. Simulated experiment of a 4-leaf clover trajectory (a). In (b) the computational costs. Left: map update time per step (top), data association time per step (center),
total time per step (bottom). Right: cumulative times for all algorithms.
the computation of the dense stereo point cloud that corresponds
to each SIFT feature. The experiment consists of 132 shoots, with
a total of 6064 features. Fig. 10(left) shows the map obtained
with the CF SLAM. The SLSJF obtains an incorrect map, Fig. 10,
bottom right. SLSJF is a sequential map joining algorithm, thus it
is expected to provide less consistent results than D&C algorithms.
In this experiment, this results in incorrect loop closure.

Both Map Joining SLAM and the D&C SLAM exceeded available
memory in MATLAB. The data association is obtained with
Algorithm 3. Cumulative computational costs are shown in Fig. 10:
for map updates (top center), for data association (top right),
and total cumulative cost (bottom center). CF SLAM clearly
outperforms all the other algorithms.

7. Discussion and conclusions

In this paper we have proposed the Combined Filter, an
algorithm that is always more efficient than any other filtering
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Fig. 8. Results using the Victoria Park dataset. Top: cumulative cost for map updates (left) and data association (right). Bottom left, cumulative total cost including local
map building, map joining and data association. Bottom right, the final map with CF SLAM.
Fig. 9. Results using the DLR-Spatial-Cognition dataset with D&C SLAM and CF SLAM (left), and with Map Joining SLAM and SLSJF (bottom right). Cumulative cost per map
joining (center top), data association (top right) and total cost including local map building (center bottom).
algorithm for SLAM. It can execute in as low as O(log n) per step.
CF SLAM brings together the advantages of different methods that
have been proposed to optimize EKF and EIF SLAM. There is no
loss of information, because the solution is computed without
approximations, except for linearizations. It is conceptually simple
and easy to implement. There are no restrictions on the topology of
the environment and trajectory, although, as it is the case in many
SLAMalgorithms, the computational efficiencywill depend on this.

An important property of a SLAM algorithm is whether it is
on-line, or provides the full vehicle and map estimation in every
step, delayed, or providing a suboptimal estimation of the map and
vehicle states at every step, but requiring additional computation
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Fig. 10. Final 3 map using 132 shoots of dense stereo data from a Triclops Pointgrey camera with the CF SLAM (left). We show the cumulative cost per map joining (center
top), data association (top right) and total cost including build local maps, map joining and data association (center bottom). Map Joining SLAM and D&C SLAM exceed
available memory capacity in shoots 24 and 32, respectively. The incorrect final map with SLSJF (bottom right).
in case themission requires to have the best estimation, and finally
off-line, or batch, carrying out the full computation only in case
the vehicle and map states are required at a certain step. EKF
and EIF SLAM, Map Joining, SLSJF, Treemap, and iSAM are on-
line; D&C SLAM and CF SLAM, the algorithm that we present here,
are delayed, and finally algorithms like Tectonic SAM are off-line.
The selection of an appropriate algorithm for a specific mission
must take this into account, it can be an overkill to use an on-line
algorithm in applicationswhere themap is only required at the end
of the mission or very infrequently during the mission.

CF SLAM provides the robot with a local map with all the
information needed for local navigation tasks for a very low
computational cost. This allows using processor time for other
important tasks, such as image processing and data association.
This can be essential in situations of limited computational power
such as space exploratory rovers. If at a certain moment the robot
needs all the environment information with respect to a global
reference, for example to make decisions on global navigation like
returning home, CF SLAM can provide the full map carrying out
a single additional computation step for a cost as low as O(n).
In these situations, the robot will have a precise map to switch
from SLAM to navigation using an a priori map. We think that
such orders are usually less frequent during a mission in many
applications, specially in large scale. For applications requiring
global knowledge of the map and vehicle position at every step
CF SLAM may be less adequate than sequential algorithms like
Map Joining SLAM, SLSJF or iSAM, given the accumulated delay
in computing the global map that CF SLAM incurs in. Finally,
in applications where off-line processing is acceptable, we have
shown that CF SLAM provides a solution in less time than any
other algorithm discussed in this paper. Being a local mapping
algorithm, the solution provided will have good consistency
properties. Algorithms like Tectonic SAM that relinearize the full
problem might provide even more consistent solutions. This is an
interesting issue to be investigated.

The frequently overlooked problem of data association has
also been addressed in this paper. We have shown that we
can provide data association based on stochastic geometry that
makes the CF SLAM algorithm as efficient as the most efficient
algorithm that computes covariance matrices, with far less
memory requirements. If appearance information is available
for data association, then CF SLAM outperforms all algorithms
discussed in this paper.

Fromour experiments it is clear that the greatest computational
weight can lie in data association. Our future work includes the
development of more robust and more efficient data association
techniques to use in CF SLAM. Among the most promising
appearance-based techniques, we will consider the ‘bag-of-words’
methods [20] and Conditional Random Fields [37].
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