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Abstract— Loop closure detection systems for monocular
SLAM come in three broad categories: i) map–to–map, ii) image–
to–image and iii) image–to–map. In this paper, we have chosen
an implementation of each and performed experiments allowing
the three approaches to be compared. Using these insights we
go on to describe an extension to the image–to–map matching
approach which makes more use of the available information to
improve the algorithm.

I. I NTRODUCTION

Loop closure detection is an important problem for any
SLAM system and, since cameras have become a common
sensor in robotics applications, more people are turning to-
wards vision based methods to achieve it. In this paper,
we compare three quite different approaches to loop closure
detection for a monocular SLAM system. The approaches
essentially differ in where the data association for detecting
the loop closure is done – in the metric map space or in the
image space. The three approaches are as follows:

• Map–to–map – Correspondences are sought between
features in two submaps taking into account both their
appearance and their relative positions. In this paper we
look at the method of Clementeet al. [2], who applied
the variable scale geometric compatibility branch and
bound (GCBB) algorithm to loop closing in monocular
SLAM. The method looks for the largest compatible set
of features common to both maps, taking into account
both the appearance of the features and their relative
geometric location.

• Image–to–image– Correspondences are sought between
the latest image from the camera and the previously seen
images. Here, we discuss the method of Cumminset
al. [4] [3]. Their method uses the occurrences of image
features from a standard library to detect that two images
are of the same part of the world. Careful consideration
is given to the distinctiveness of the features – identical
but indistinctive observations receive a low probability of
having come from the same place. This minimises false
loop closures.

• Image–to–map – Correspondences are sought between
the latest frame from the camera and the features in the
map. We examine the method of Williamset al. [12]
who find potential correspondences to map features in the
current image and then use RANSAC with a three–point–
pose algorithm to determine the camera pose relative to
the map.

First, we briefly describe the underlying monocular SLAM
system used during the experiments. Then, we describe in
more detail the chosen implementation of each of the different
approaches to loop closure. Results are then given on the per-
formance of each algorithm at closing a loop and comparisons
are made between the methods. The bulk of this work on
comparing the methods is covered in [12] where the image–to–
map method is introduced. Finally, we describe an extension
to the image–to–map method which makes use of more of the
available image information.

II. T HE MONOCULAR SLAM SYSTEM

The monocular SLAM system used is derived from Davi-
son’s original system [5] where the pose of a handheld camera
is tracked, while simultaneously building a map of point
features in 3D using the EKF. The underlying system is
essentially the same as the system described in [2], but with
a relocalisation module [13] to recover from situations where
the system becomes lost.

The Hierarchical SLAM [6] submapping technique is used
to both reduce linearisation errors and to allow the system to
make larger maps in real time. The system creates a series
of submaps while determining the relative scale differences
between the maps which result from using a bearing only
sensor. For more details of this Hierarchical SLAM technique
in monocular SLAM see [2]. The scale correction can be seen
in Fig. 1(a) and (b).

When loop closure is detected, the global hierarchical map
can be updated by adjusting the transformations between
submaps in a non-linear constrained optimisation. The result
of the optimisation after the loop closure has been detectedis
shown in Fig. 1(c). This loop closure can be detected in many
ways though as will be discussed in the next section.

III. D ETECTING LOOPCLOSURE

In order to close loops in a map, the system must recognise
when it has returned to a previously mapped region of the
world. Essentially, at this point two regions in the map are
found to be the same region in the world even though their
position is incompatible given the uncertainty estimate inthe
map – the classic loop closure problem. The system must then
be able to calculate the transformation needed to align these
two regions to ‘close the loop’.

In the following sections, we describe three methods for de-
tecting loop closure based on three quite different approaches.
We will later test the performance of all three algorithms.
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Fig. 1. Map made of a university courtyard. Twelve submaps witha total of 848 features were made during the 70m trajectory. The loop closure was
detected using the image–to–map method [12].

A. Map–to–Map Matching: Clementeet al.

Clementeet al. [2] presented a method to close loops in
monocular SLAM maps based on finding correspondences
between common features in different submaps. The algorithm
used is a variable scale version of the original geometric
compatibility branch and bound algorithm (GCBB) [10].
The system uses both similarity in visual appearance (unary
constraints) and relative distances between features (binary
constraints) to find the largest compatible set of common
features between two submaps. Once a consistent set has been
found, the relative scale, rotation, and translation needed to
align the two submaps can easily be determined.

The system was shown to work in [2] where it found a set
of five common features between the first and last submaps in
a large loop.

B. Image–to–Image Matching: Cumminset al.

Cumminset al. [4] have developed a method to detect loop
closures based on recognising the visual appearance of previ-
ously seen places. The matching is performed by detecting in
each image the presence or absence of features from a visual
vocabulary [11] based on SURF features [1], which is learned
off–line from training data. Note that the training data consists
of generic images not collected in the environment where loop
closure detection is performed. The system takes into account
the probabilities of features appearing together, and is able to
work out the probability that two images show the same region
of the world. This method does not depend on a metric map
being created since it only compares images directly. However,
it can be used with a metric map if the camera pose relative
to such a map can be found for each image as well as the
relative pose between two images for the loop closure. Much
work has been done on this problem in the field of computer
vision [8].

C. Image–to–Map Matching: Williamset al.

In [12] a loop closure detection method is proposed which
is based on a relocalisation technique used to recover from
tracking failures [13]. This relocalisation module determines

the pose of the camera relative to a map of point features by
finding correspondences between the image and the features
in the map. The pose is then determined from the correspon-
dences using RANSAC and the three–point–pose algorithm [7].

The relocalisation module is able to run faster than fram-
erate through the use of a fast matching algorithm [13] based
on the randomised fern classifier [9]. While the features are
being tracked, each successful observation is used to trainthe
classifier. This classifier is fast but it has a high false positive
rate. Incorrect classifications are handled using RANSAC.

To detect loop closures, the system uses the module to
attempt relocalisation in distant regions of the map according
to the feature covisibilities. When a relocalisation is success-
ful, it gives a correspondence between the current pose being
tracked, and the pose given by the relocalisation elsewherein
the map. This gives the translation and rotation needed to align
the two regions, but a single pose is not enough to determine
the scale difference. To achieve this, the camera is trackedfor
some time in both regions (while freezing one of the maps so
information is not counted twice), and this common trajectory
can be used to find the transformation between the two regions
including the relative scale difference (Fig. 2).

IV. RESULTS

We have used the monocular SLAM system to build a map
of a university courtyard. Due to the size of the environment,
the system built twelve submaps as the camera was moved
around the 70m trajectory facing the wall. Each new submap
was begun by initialising new features in the same image
locations as those just observed as the last submap finished.
These common features can then be used to fix the relative
scale between submaps as shown in Fig. 1.

Even after the scale between submaps has been corrected,
the map still exhibits a common problem, that although it has
returned to the same region in the world, this is not reflected
in the map. A loop closure detection system is needed to
recognise that the system has traversed a loop so the map
can be corrected accordingly.

We have used all three algorithms to try to detect the
loop closure in this sequence. We have also evaluated the



Fig. 2. While tracking in the twelfth map (left), the system relocalises in
the first submap (right) using our image–to–map algorithm. The two supmaps
are merged by first aligning the common trajectories, and then enforcing the
constraint that the two sets of corresponding camera poses (linked by green
lines) are equal.

performance of the algorithms further by checking their sus-
ceptibility to false positives and their run time.

A. Map–to–Map Matching: Clementeet al.

When the system comes to close a loop using the map-to-
map method, it is able to find the common features between
the two maps as shown in Fig. 4(a). Unfortunately, during the
loop closure, there is no guarantee that the system will have
initialised features in the exact same place in two different
maps. In fact, in our experiments to date, we have found
submaps with sufficient common features to detect the loop
closure to be rare. Fig. 3 shows an example of the same frame
being tracked in two different maps. Despite the large number
of features visible, only two features are common to both
maps.

Even getting a corresponding set of features does not
guarantee a true correspondence between the two submaps.
Fig. 4(b) shows that the GCBB algorithm also found sets of
five “common” features between eight other pairs of submaps.
We were unable to find a threshold able to reliably distinguish
between true positives and false positives for the maps created
by our SLAM system.

During our tests, the variable scale GCBB algorithm took
around 100ms1 to compare two maps. When the SLAM
system finishes one submap, there is easily time to compare
this submap to all previous submaps before the next one is
completed.

B. Image–to–Image Matching: Cumminset al.

The image–to–image matching method of Cumminset al.,
is designed to work with non-overlapping key frames. When
run on a robot, the odometry is used to trigger key frame
capture. Without odometry, we simply used every 40th frame
of the video to test the system. Ideally though, an automatic
key frame detector should be used.

The loop closure detection system determines for each of
these input images if it is a new place or a loop closure.

1Tests were done on a Dual Core 3GHz machine.

Fig. 3. During the overlap in the sequence, the system tracksthe camera
in two submaps. The colours indicate if an observation was successful (red),
unsuccessful (blue), rejected by JCBB (purple), or not attempted, (yellow).
Only two of the features are actually common to both submaps. This makes
it impossible for the map–to–map method to detect the loop close.

The algorithm correctly gave high probability that each image
was a new place until the camera had traversed the loop
and returned to the start of the loop. At this point, the
system gave high probability (99.9%) that the most recent
image corresponded to an image at the start of the sequence
(Fig. 4(c)).

To test the reliability of the loop closure detection, we
computed loop closures for every frame from a second lap of
the courtyard, against the set of images from the first lap. This
simulates the ‘kidnapped robot situation’, a sudden transition
from the end of the first loop to a random part of the courtyard.
It is a way to test if the algorithm would be able to detect
a loop closure at each position. The results are shown in
Fig. 4(d) where frames that matched an image in the previous
loop are marked. A threshold was chosen that removes all false
positives to allow comparison with the image–to–map method.
The system found matches that met this probability threshold
in 8% of attempts indicating that the system would be able to
close the loop at these positions. The precision–recall curve
in Fig. 5 shows the effect of the probability threshold on the
reliability of the system.

On each image, the algorithm takes on average 283ms to
run. Much of this time (73ms) is taken up by SURF feature
detection. This method relies on this descriptor which is richer



(a) Map–To–Map: Loop closure detected using the method of Clementeet
al. [2]. The system finds a set of features consistent in both geometry and
appearance between the first and last submaps. It is only successful if the SLAM
system has initialised common features in the two submaps.

(b) Map–to–Map Reliability: Matching was attempted between every
pair of non-consecutive submaps. Shown here are the eight false
positives sets with five correspondences. The true positivewas not found
in this run since only two features were shared between the first and
final submaps (See Fig. 3).

(c) Image–To–Image: Loop closure detected using the method of Cumminset
al. [4]. The system detects visual words in each image and the cooccurence of
these words is used to calculate the probability of loop closure. The system finds
a high probability that the most recent image matches one seen earlier in the
sequence. Visual words are detected in the two images are indicated in green if
they match in the other image. Note that interest point geometryis not considered.
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(d) Image–To–Image Reliability: Correspondences were found be-
tween every frame in a second lap and every 40th frame in the firstlap.
A threshold was chosen to remove all false positives. At this threshold,
the system was successful in 8% of attempts. To see the effect of the
threshold on performance see Fig. 5. Gaps are in regions of theworld
with lots of foliage (where the image–to–map method also struggles).

(e) Image–To–Map: Loop closure detected using the method of Williamset
al. [13]. While tracking in the last submap, the system finds a camerapose
consistent with the features in the first submap. The common trajectory is used to
determine the relative rotation translation and scale needed to align the submaps.

(f) Image–to–Map Reliability: Relocalisation was attempted on every
frame of a second lap. The light dots show the camera pose recovered
relative to the map and trajectory created on the first lap (black).
This indicates that loop close would be successful for theseframes.
Successful in 20% of frames. No false positives.

Fig. 4. The results of experiments on all three loop closing methods. The left column shows a successful loop closure for eachmethod. The right column
shows tests on the reliability of each method.



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Image−to−Image Method

Fig. 5. This precision–recall curve for the image–to–image method [4] shows
the algorithm performs well. Quite a high number of true loop closure are
detected with few false positives.

yet slower than the randomised fern classifier. The overall
speed is slower than the framerate, however, the loop closing
algorithm does not need to be run on every frame.

This method was also tested on the benchmark dataset for
this workshop and successfully detected the loop closures
(Fig. 7 and 8).

C. Image–to–Map Matching: Williamset al.

At every frame, there is usually enough remaining time
after tracking to attempt relocalisation in one other submap.
The system cycles through submaps until a relocalisation
is successful, indicating a loop closure. For the university
courtyard sequence, the system successfully detected the loop
closure as the features in the original map came back into view
(Fig. 4(e)). Note that for this method, no common features
are needed between submaps as they are for the map–to–map
method.

The reliability of this loop closure method was tested using
the same ‘kidnapped robot’ situation we used to test the
image-to-image method. The system was allowed to continue
searching for loop closures as the camera continued around the
courtyard for a second lap. For the test, the system attempts
relocalisation in every submap for every frame. The resultsof
this test can be seen in Fig. 4(f).

The method takes 10-15ms to find potential matches to map
features in each image. The remaining time is used to run
RANSAC on the matches to determine the pose. This is usually
found within a few milliseconds if a valid pose exists for those
matches. This is fast enough to allow the algorithm to run on
a single submap after the system has finished tracking in each
frame.

V. D ISCUSSION

We have tested three quite different approaches to detecting
loop closure for monocular SLAM systems. We found the
map–to–map matching technique of Clementeet al. to be
unsuitable for these sparse maps since it relies on common

Fig. 6. Image-to-image method: False positive with matching probability of
99.9935%. The detected visual words are indicated in each image in green if
they match the other image. This false positive could easily bediscarded if
the geometric information were known for the detected visual words.

features being initialised by the system. The image–to–image
matching technique of Cumminset al. works well since it
can be tuned to remove all false positive while still detecting
8% of true positive for this sequence but the image–to–map
matching technique of Williamset al. was able to achieve a
higher true positive rate of 20%. The image–to–map is able to
prune more false positives than the image–to–image method
by making use of the geometry information of the features
detected in the image (see Fig. 6). In general, it is best to take
as much information as is feasible into account when detecting
loop closures. In the next section, we discuss recent work to
extend the image–to–map method to allow more of the image
information to be used.

VI. EXTENSION TO THE IMAGE–TO–MAP METHOD

In the results presented so far, the image–to–map method
used a separate randomised ferns classifier for each submap
and had to cycle through submaps when attempting loop
closure. We have recently been exploring a way of using
a single classifier which can attempt loop closure with all
submaps simultaneously. However, as the number of features
in the map increases, the randomised ferns classifier returns
a greater number of possible correspondences for the corner
points in each image. RANSAC has to work harder to find a



set of true correspondences amongst the much larger number
of combinations.

To guide RANSAC into favouring more likely correspon-
dences, we look at the image context surrounding the features
as well as their classification. This context is described bythe
presence of features from a standard vocabulary in the whole
image in a method similar to the method of Cumminset al..
However, here we use a faster but less rich vocabulary from
a second randomised ferns classifier.

Every time a map feature is observed by the SLAM system,
the frequency of standard features from the vocabulary is
noted. Later, for loop closure or relocalisation, RANSAC gives
higher weight to correspondences where the current frequency
of standard features in the image closely matches the dis-
tribution observed when that map feature was visible during
tracking. The initial results for this method are promisingbut
more work remains to be done to choose the best distance
metric for measuring which features best match the current
context.

VII. C ONCLUSION

We have tested three quite different approaches to detecting
loop closure for monocular SLAM systems. Experiments were
performed in a university courtyard using the Hierarchcal
SLAM technique to build a sequence of submaps of the
environment.

We found the map–to–map matching technique to be unsuit-
able for monocular SLAM because the sparse maps contain
too little information to reliably detect true correspondences.

The image–to–image method was shown to work well in this
sequence. However, the method is not complete if the relative
pose between corresponding images is needed for correcting
the metric map. The method would benefit from making some
use of the relative positions of the detected visual words to
remove some obvious false positives.

The image–to–map method works well and returned the
highest number of true positives with no false positives. We
predict even better performance can be achieved by taking
more of the image into account as outlined in our proposed
extension to the method.
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