An image—to—map loop closing method for monocular SLAM
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Abstract— In this paper we present a loop closure method for
a handheld single—camera SLAM system based on our previous
work on relocalisation. By finding correspondences between the
current image and the map, our system is able to reliably detect
loop closures. We compare our algorithm to existing techniques
for loop closure in single—camera SLAM based on both image—

to—image and map-to—map correspondences and discuss both

the reliability and suitability of each algorithm in the context

features in the two maps. Clemerge al. [2], applied

the variable scale geometric compatibility branch and
bound (GCBB) algorithm to loop closing in monocular
SLAM. The method looks for the largest compatible set
of features common to both maps, taking into account
both the appearance of the features and their relative
geometric location.

of monocular SLAM. . Image—to—image — Correspondences are sought be-

tween the latest image from the camera and the previ-
. ously seen images. Cummies al. [3] have presented
Single-camera SLAM systems (monocular SLAM) have  ap gigorithm that uses the occurrences of image features
the potential to turn inexpensive cameras into powerfuepos  from a standard library to detect that two images are
sensors for applications such as robotics and augmented of the same part of the world. Careful consideration is
reality. However, before they become practical, there dfie s given to the distinctiveness of the features — identical
problems to address. In this paper we focus on the problem ;¢ ingistinctive observations receive a low probability
of loop closure and the related problem of independent ¢ having come from the same place. This minimises
map joining. These issues have of course been discussed /5e loop closures.
previously in relation to mobile robots but the use of only a Image—to—map— Correspondences are sought between
single camera presents new challenges. the latest frame from the camera and the features in
The main difference with hand-held monocular SLAM the map. This is the method we present in this paper,
compared to traditional robotic SLAM systems is that of making use of the relocalisation module we developed
scale ambiguity. With a lack of odometry and the bearing previously.

only measurements provided by a camera, there is an in- . o
herent ambiguity in the scale of the map being created. In our previous work on relocalisation [15], we suggested

Two maps made of the same region of the world will pdhat a possible use of the module would be for map alignment
at different scales, and so a loop closing algorithm fopnd loop closure. Here we give a description of that process

monocular SLAM must be able to cope with this scaléd compare its performance to the other loop closure
change. techniques discussed above.

The second challenge associated with hand-held systemdirst we will briefly describe the underlying monocular
is the frequent sudden motion. With a simple rotation, th&LAM system we use. Then we will describe in more detail,
user can quickly point the camera at an entirely differerin® different methods for loop closure. Finally, resultsl wi
part of the world. In our previous work [14], we showedbe given on the performanpe of our algorithm at cloglng a
how a system could be made more robust to these sudd'@ﬂp _and its performance will be compared to the previously
motions by quickly relocalising the camera relative to théXisting methods.
map. However, if the camera is left facing an unmapped
region of the world, then it will have to build a new
independent map which can later be joined with the original

map when an overlap is detected. This process is commonlyThe monocular SLAM system we use is derived from
used in multi-robot mapping [9] when the robots build apayison's original system [4], but with a few improvements
map from different starting positions. However, for a handtg pring it up to date. The underlying system is essentially
held system the process is even more important due {Re same as the system described in [2] but with our own
its frequent occurrence. As with loop closure, the overlape|ocalisation module to recover from situations where the
detection algorithm must also be able to cope with thgystem becomes lost. We have also added a system to prevent
relative scale difference between the two maps. premature loop closure and added the ability to perform
Methods for detecting overlap and loop closure in monoGndependent map merging. Here we give a brief description
ular SLAM can be divided into three categories: of the system, so details of the loop closing system can be
« Map-to—map — Correspondences are sought betweehetter understood.

I. INTRODUCTION

Il. THE MONOCULAR SLAM SYSTEM



(a) Local maps obtained with pure monocular (b) Local maps auto-scaled (c) After loop closing
SLAM

Fig. 1. Map made of a university courtyard. Twelve submaps witiotal of 848 features were made during the 70m trajectore [Bbp closure was
detected using our image—to—map method. Note that the trapezither than rectangular shape is consistent with the @atyard.

A. Map Building compute the inverse covariance, the information matrix.
eatures that have been covisibile at some point will have a

The monocular SLAM system tracks the pose of a hanGEigh value of co-information.

held camera while simultaneously building a map of point
features in 3D using the EKF. The points are initialised gsinB. Larger Maps

the inverse depth parameterisation [11], and they are Fecog pye 1o the accumulation of linearisation errors in the EKF
nised in subsequent frames via normalised cross corralatioa|gorithm as well as the increase in update time, we limit
An image patch is stored when the feature is initialisedjdut g, system to quite small local maps (around 70 features).
warped to correspond with.the current camera pose es_,tima’q% map larger regions, the Hierarchical SLAM [5] technique
To speed up the observation of features, the image is only ysed. This allows the system to map an environment by
searched in an gllipse .given by the uncertainty'in the camefRiilding a series of submaps, each of which is small enough
and feature estimate in a process called active search. Byajiow the system to be run in real-time as well as reducing
gating the search in this way the chances of incorrect dafdearisation errors. This method was already applied to
association are reduced. This is further helped by the use @fonocular SLAM in [2] but we give a brief summary here.
the joint compatibility branch and bound algorithm (JCBB) ag each new submap is created, the transformation be-
[12] which detect; observations which are incompatibléwityeen its base reference and the previous map is stored in
the others and rejects them. a global state vector. However, for monocular SLAM, this
Despite the improvement given by active search angiansformation must also include the scale difference thic
JCBB, there is still a chance of incorrect data aSSOCia.tiOlib determined as follows. Each new Submap is created with
particularly near loop closures when the system can believRyy features initialised at the location of some of the fiestu
that distant features are again visible and attempt to measyn the previous map. The geometry of these common features
them. If the system is allowed to observe these features gs each submap are used to determine the relative scale.
usual, it will likely make incorrect data association duefte  since the features were newly initialised, information @ n
large uncertainty in the camera pose relative to theserf@®tu shared between the submaps and they remain independent.
Our approach is to prevent the system from making thesgnis scale correction can be seen in Fig. 1(a) and (b).
observations and delay the loop closure until a separafe 100 \When loop closure is detected, the global hierarchical map
C|Ose mOdu|e haS detected |t (SeCtion ”I) To determinEEWhi can be updated by adjusting the transformations between
observations to attempt, we make use of the covisibilitydalsypbmaps in a non-linear constrained optimisation. Theltresu
from all the features in the map. of the optimisation for the loop closure detected by our
With every set of observations, a tally is updated indiaatinalgorithm is shown in Fig. 1(c).
which features have been successfully observed together.
Using this information, a simple graph is constructed where .
a vertex corresponds to each feature, and the edges indicatén order to close loops in a map, the system must recognise
those that have been observed together. This graph provideken it has returned to a previously mapped region of the
an easy way of determining which features are in the locaborld. Essentially, at this point two regions in the map are
neighbourhood and which are not. Those which are distafitund to be the same region in the world even though their
in the graph are not eligible for observation since theiposition is incompatible given the uncertainty estimate in
relative position to the local features is very uncertail anthe map — the classic loop closure problem. The system
attempting their observation would likely lead to incotrec must then be able to calculate the transformation needed
data association. Readers should note that another waytof align these two regions to ‘close the loop’. Finding
determining feature covisibility in a stochastic map is tacorrespondences between either features or the pose of the
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camera is usually used to do this. As an extra challeng
for monocular SLAM systems, it must also determine the
relative scale change between the two mapped regions. Or
then can the regions be aligned and the global map adjust _
using non-linear constrained optimisation, thus closing t ' o v >
loop and correcting the map.

In the following sections, we describe three method: ‘
(including the new method) for achieving these goals base o /
on three quite different approaches. We will later test the '_.:' ‘
performance of all three algorithms. B /

A. Map-to—Map Matching: GCBB

Clementeet al. [2] presented a method to close loops in
monocular SLAM maps based on finding correspondence
b_etween Co_mmon f_eatures in dlffer_ent SmeapS_' _The algfzig. 2. While tracking in the left map, the system relocaligeshie right
rithm used is a variable scale version of the original geomap using our image-to-map algorithm. The two independent maps ar
metric compatibility branch and bound algorithm (GCBB).merged_ by first aligning the common trajectories, and _then eirfgrthe
T constraint that the two sets of corresponding camera poséed by green
The system uses both similarity of patch appearance (Ungf¥as) are equal.

constraints) as well as relative distances between feature

(binary constraints) to find the largest compatible set ofomparisons. While the features are being tracked, each
common features between two submaps. Once a consistgtcessful observation is used to train the classifier. This
set has been found, the relative scale, rotation, and &@ms|  c|assifier is fast but it has a high false positive rate. Irectr
needed to align the two submaps can easily be determineglassifications are handled usingaRsAc. Details of the
The system was shown to work in [2] where it found a sefandomised fern classifier can be found in [14].
of five common features between the first and last submapsTg detect loop closures, the system uses the module to
in a large loop. attempt relocalisation in distant regions of the map adogrd
to the covisibility graph described in section II-A. When
a relocalisation is successful, it gives a correspondence
Cumminset al. [3] have developed a method to detechetween the current pose being tracked, and the pose given
loop closures based on finding correspondences between e the relocalisation elsewhere in the map. This gives the
most recent image and previous images seen by the camefgnsiation and rotation needed to align the two regions, bu
The matching is performed by detecting in each image thg single pose is not enough to determine the scale difference
presence or absence of features from a visual vocabulaty [1 achieve this, the camera is tracked for some time in both
based on SURF features [1], which is learned off line fromegions (while freezing one of the maps so information is
training data. The system takes into account the probasilit not counted twice), and this common trajectory can be used
of features appearing together and is able to work out thg find the transformation between the two regions including
probability that two images show the same region of thene relative scale difference [8].
world. This method does not depend on a metric map being When performing independent map merging’ it is not
created since it only compares images directly. However, duyfficient to simply find the transformation between the
could be used with a metric map if the camera pose relatiyg,q maps. We wish instead to combine them into a single
to such a map can be found for each image as well as tR@rrelated map. After transforming mapinto the coordinate
relative pose between two images for the loop closure. Muggame of mapB by aligning the trajectories, we are still left
work has been done on this problem in the field of comput&fjith two uncorrelated maps and two estimates of the camera
vision [7]. pose &4 ~andxZ

cam/*

B. Image-to—-Image Matching: Cummiatal.

C. Image-to—Map Matching: New Method x4
The new method we have developed for performing loop Raligned = %%ap 1)
closure in monocular SLAM is based on our relocalisation Xeam
module [14]. This module determines the pose of the camera ﬁfmp
relative to a map of point features by finding correspondsnce p 0
between the image and the features in the map. The pose is Pauligned = ( OA p ) (2)
then determined from the correspondences usiag$AcC B
and the three—point—pose algorithm [6]. To correlate the maps, we enforce the constraint that the

The relocalisation module is able to run faster than framtwo camera poses are equal. However, since one pose is not
erate through the use of a fast matching algorithm basexlfficient to constrain the scale, we also use the pose at the
on the randomised fern classifier [10] where patches astart of the trajectoryfcf(;fﬁ, which is left in the state vector

classified through a series of fast pairwise pixel intensitpf each map (Fig. 2). The constraint is enforced through an



EKF update where the ‘observation’ is the difference in ¢hes

poses.
A B
5= Xeam — Xecam (3)
KA e —XB .
cam cam

Afterwards, the maps are correlated and the extra camera
poses can be removed from the state.

IV. RESULTS

We have used the monocular SLAM system to build a map
of a university courtyard. Due to the size of the environment
the system built twelve submaps as the camera was moved
around the 70m trajectory facing the wall. Each new submap
was begun by initialising new features in the same image
locations as those just observed as the last submap finished.
These common features can then be used to fix the relative
scale between submaps as shown in Fig. 1.

Even after the scale between submaps has been corrected,
the map still exhibits a common problem, that although it has
returned to the same region in the world, this is not reflected
in the map. A loop closure detection system is needed to
recognise that the system has traversed a loop so the map
can be corrected accordingly.

We have used all three algorithms to try to detect the
loop closure in this sequence. We have also evaluated the
performance of the algorithms further by checking their
susceptibility to false positives. For a loop closure dietbgc Fig. 3. During the overlap in the sequence, the system tréiiksamera in
System (o be useful, t should be able t0 be tuned to detd 5. Tne colours e | an obsenton e st
a significant number of true positives while getting veryonly two of the visible features are actually common to bothnsaps.
few (ideally zero) false positives. It should also run in a

reasonable time for the detection to be relevant. During our tests, the variable scale GCBB algorithm took
) around 100ms to compare two maps. When the SLAM
A. Map-to-Map Matching: GCBB system finishes one submap, there is easily time to compare

When enough common features exist between two mag$js submap to all previous submaps before the next one is
the GCBB algorithm is able to find the correspondencesompleted.
between the maps. This is clear when the algorithm is run be- ) ]
tween consecutive submaps. It is able to detect the commBn Image—to-Image Matching: Cummiesal.
features that were automatically added. When the systemThe image—to—image matching method of Cumnanal.,
comes to close a loop, it is able to find the common featurgs designed to work with non-overlapping key frames. When
bet\_/veen the two maps as Sh(?Wﬂ in Fig. 4(a). Unfortunatelyun on a robot, the odometry is used to trigger key frame
during the loop closure, there is no guarantee that the systeapture. Without odometry, we simply used every 40th frame
will have initialised features in the exact same place in twef the video to test the system. Ideally though, automatyc ke
different maps. In fact, in our experiments to date, we havame selection based on appearance should be used.
found submaps with sufficient common features to detect the The loop closure detection system determines for each of
loop closure to be rare. Fig. 3 shows an example of the sanfigese input images if it is a new place or a loop closure. The
frame being tracked in two different maps. Despite the larggigorithm correctly gave high probability that each image
number of features visible, only two features are common t@as a new place until the camera had traversed the loop
both maps. _ and returned to the start of the loop. At this point, the
Even getting a corresponding set of features does negystem gave high probability (99.9%) that the most recent
guarantee a true correspondence between the two submapsage corresponded to an image at the start of the sequence
Fig. 4(b) shows that the GCBB algorithm also found setgFig. 4(c)).
of five “common” features between eight other pairs of To test the reliability of the loop closure detection, we
submaps. All other pairs of submaps were found to haveomputed loop closures for every frame from the second
sets of four or three “common” features. We were unable top, against the set of images from the first loop. This
find a threshold able to distinguish between true positivies a simulates the ‘kidnapped robot situation’, a sudden ttarsi
false positives for the maps created by our SLAM system.
There were simply too few true common features. Tests were done on a Dual Core 3GHz machine.



(a) Map-To—Map: Loop closure detected using the method of Clemeette (b) Map—to—Map Reliability: Matching was attempted between every

al. [2]. The system finds a set of features consistent in both gegnaad
appearance between the first and last submaps. It is onlyssfat# the SLAM
system has initialised common features in the two submaps.

(c) Image—-To—Image:Loop closure detected using the method of Cumnghs
al. [3]. The system detects visual words in each image and thecooemece
of these words is used to calculate the probability of loagsate. The system
finds a high probability that the most recent image matches oae earlier
in the sequence. Visual words are detected in the two imagedndicated in
green if they match in the other image. Note that interest pgéumetry is not

considered.

pair of non-consecutive submaps. Shown here are the eigbe fal
positives sets with five correspondences. The true positige not
found in this run since only two features were shared betwiben
first and final submaps (See Fig. 3).

Image-to—Image Method

3000
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1000

0 1000 2000 3000
Frame in 2nd Lap

(d) Image-To—Image Reliability: Correspondences were found be-
tween every frame in a second lap and every 40th frame in the first
lap. A threshold was chosen to remove all false positives. hig t
threshold, the system was successful in 8% of attempts. Tdheee
effect of the threshold on performance see Fig. 5. Gaps aregioms

of the world with lots of foliage (where the image—to—map method
has difficulty).
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(e) Image—To—Map: Loop closure detected using the new method presentg Image-to—Map Reliability: Relocalisation was attempted on

here. While tracking in one submap, the system finds a set of naprés in
the first submap whose geometry is consistent with a camera pose.

every frame of a second lap. The light dots show the camera pose
recovered relative to the map and trajectory created on theléip
(black). This indicates that loop close would be succedsiuthese
frames. Successful in 20% of frames. No false positives.

Fig. 4. The results of our experiments on all three loop cigsimethods. The left column shows a successful loop closuredch enethod. The right

column shows tests on the reliability of each method.



Image-to-image Method image-to-image method. The system was allowed to continue

o9 ST | searching for loop closures as the camera continued around
' \j the courtyard for a second lap. For the test, the system
08 ' ] attempts relocalisation in every submap for every frame Th
0.7 ] results of this test can be seen in Fig. 4(f). The system was
c 06 ] able to relocalise relative to the map created in the firsploo
:§ 05 ] 20% of the time and no false positives were returned.
£ od | Our method takes 10-15ms to find potential matches to
’ map features in each image using the randomised fern
0y ] classifier. The remaining time is used to ruANSAC on the
0.2 ] matches to determine the pose. This is usually found within
0.1 ] a few milliseconds if a valid pose exists for those matches.
o ‘ ‘ ‘ ‘ This is fast enough to allow the algorithm to run on a single
0 02 04 ot 08 ! submap after the system has finished tracking in each frame.

] ) o ) ) V. DISCUSSION
Fig. 5. This precision-recall curve for the image—to—imagehwet[3] . .
shows the algorithm performs well. Quite a high number of tngplclosure We have tested three quite different approaches to detect-

are detected with few false positives. ing loop closure for monocular SLAM systems each of which
has benefits and drawbacks, as well as tunable parameters
from the end of the first loop to a random part of theyhich affect their performance.
courtyard. It is a way to test if the algorithm would be able The first algorithm, variable scale GCBB, detects corre-
to detect a loop closure at each position. As the methaghondences between common features in two submaps using
makes use of temporal coherence of detections, to test logg, the visual appearance of the features and their relativ
closure at framei, the algorithm was also provided with 3p position. The algorithm takes entire submaps into accoun
framesi — 40, i — 80 andi — 120. rather than just the current view like the other two methods.
The results are shown in Fig. 4(d) where frames thatiowever, we found the algorithm to be unsuitable since the
matched an image in the previous loop are marked. Aystem cannot guarantee common features in overlapping
threshold was chosen that removes all false positives davall submaps. Also, the algorithm finds correspondences between
comparison with the image-to-map method. The systegypmaps with no true common features. As well as the size
found matches that met this probability threshold in 8% off the correspondence set, thresholds exist for deterginin
attempts indicating that the system would be able to close thyotential feature matches both in appearance and in metric
loop at these positions. The precision—recall curve in big. space. Unfortunately, no values could be found to allow
shows the effect of the probability threshold on the relibi  the algorithm to reliably distinguish true loop closures.
of the system. The GCBB algorithm could be made to work better with
On each image, the algorithm takes on average 283ms jiore detailed information in the maps such as higher level
run. Much of this time (73ms) is taken up by SURF featurggeometry like planes or lines, or simply more dense point
detection. This method relies on this descriptor which igjouds. The algorithm should also take into account theeang!
richer yet slower than the randomised fern classifier. Thg feature can be viewed at rather than treating each feature
overall speed is slower than the framerate, however, the 10@s an ideal point in 3D.
closing algorithm does not need to be run on every frame. The image—to—image matching technique of Cumngns
al. compares each current image with the previous images
seen by the camera. It was able to detect the loop closure
At every frame, there is usually enough remaining timen the university courtyard sequence and in a test of the
after tracking to attempt relocalisation in one other supma reliability using a second lap, a probability threshold Icou
The system cycles through submaps until a relocalisatidse found which removed all false positives while still finglin
is successful, indicating a loop closure. For the universit8% of the true positives. The other tunable parameters,
courtyard sequence, the system successfully detected the interest point detector threshold, and the visual word
loop closure as the features in the original map came backiantizing threshold were kept fixed during the experiment.
into view (Fig. 4(e)). It then began tracking the camera iBy not using geometric information, the algorithm is even
both submaps, and aligned the resultant common trajectoable to work when the metric map has inaccuracies. However,
Using the transformation to align trajectories, the map wai the geometric position of the correspondences were taken
optimised as shown in Fig. 1(c). Note that for this methodnto account, some of the obvious false positives would be
no common features are needed between submaps like ftetected as such (Fig. 6). With these extra checks, thersyste
the GCBB method. Image-to—map matching is done usirgpuld achieve higher true positive rates like the image—to—
the features in each submap independently. map method.
The reliability of our new loop closure method was tested The image—to—map matching technique detects potential
using the same ‘kidnapped robot’ situation we used to test titorrespondences to map features in the image and then

C. Image—-to—Map Matching: Our New Method



and a three—point—pose algorithm. The algorithm can be used
to detect loop closures or overlaps between independent
maps so they can be merged. The relative transformation
needed to align maps is computed using a common trajectory
estimated in both maps, allowing maps of different scales to
be aligned.

Experiments were performed to compare the performance
of the image—to—map matching algorithm against loop clo-
sure methods based on both map-to—map and image—to—
image matching. The map—to—map method was found to be
unsuitable for the sparse maps used in monocular SLAM.
The image—to—image method was successful and easy to use
but is not complete if the relative metric pose is required.
However, the best results were obtained by the image-to—
map method which made most use of the available infor-
mation by taking into account both the appearance and the
geometry.
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Fig. 6. Image-to-image method: False positive with matchindalodity of [2]

99.9935%. The detected visual words are indicated in eacharmagreen
if they match the other image. This false positive could edséydiscarded
if the geometric information were known for the detected visuards.

[3]
finds a camera pose consistent with their 3D geometry. Th?4]
method does not rely on the same features being reinitthlise
in the new submap as the loop is being closed like the map—
to—map method, and by taking both the appearance and ge@
metric information into account, it is able to achieve a leigh
true positive rate than the image—to—image method. Thés]
image—to—map method has thresholds for the interest point
detector, the randomised fern classifier decision, the rumb
of features for RNSAC concensus, and the minimum per- [7]
centage of good observations during tracking immediately[s]
after a relocalisation. All of these were chosen during the
development of the relocalisation module [14] to minimise[9]
false positives. Though this new method performs bettar tha
the image-to—image method in the university courtyard usegy
here, it does not scale as well to city sized maps. The
algorithm is very memory intensive requiring 1.25MB of 11]
RAM per feature for the randomised fern classifier, and thL.
number of hypotheses for ARISAC to test grows with the
number of map features. Extending the algorithm to work if2]
larger environments remains for future work.
VI. CONCLUSION (3]

An image-to—map loop closure detection method Wag 41
presented. It makes use of our previous relocalisation sys-
tem [14] which detects potential correspondences to magpl
features using a randomised fern classifier which is trained
during tracking. A set of correspondences are then found
which is consistent with the map geometry usingN®AC
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