
An image–to–map loop closing method for monocular SLAM
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Abstract— In this paper we present a loop closure method for
a handheld single–camera SLAM system based on our previous
work on relocalisation. By finding correspondences between the
current image and the map, our system is able to reliably detect
loop closures. We compare our algorithm to existing techniques
for loop closure in single–camera SLAM based on both image–
to–image and map–to–map correspondences and discuss both
the reliability and suitability of each algorithm in the context
of monocular SLAM.

I. I NTRODUCTION

Single–camera SLAM systems (monocular SLAM) have
the potential to turn inexpensive cameras into powerful pose
sensors for applications such as robotics and augmented
reality. However, before they become practical, there are still
problems to address. In this paper we focus on the problem
of loop closure and the related problem of independent
map joining. These issues have of course been discussed
previously in relation to mobile robots but the use of only a
single camera presents new challenges.

The main difference with hand-held monocular SLAM
compared to traditional robotic SLAM systems is that of
scale ambiguity. With a lack of odometry and the bearing
only measurements provided by a camera, there is an in-
herent ambiguity in the scale of the map being created.
Two maps made of the same region of the world will be
at different scales, and so a loop closing algorithm for
monocular SLAM must be able to cope with this scale
change.

The second challenge associated with hand-held systems
is the frequent sudden motion. With a simple rotation, the
user can quickly point the camera at an entirely different
part of the world. In our previous work [14], we showed
how a system could be made more robust to these sudden
motions by quickly relocalising the camera relative to the
map. However, if the camera is left facing an unmapped
region of the world, then it will have to build a new
independent map which can later be joined with the original
map when an overlap is detected. This process is commonly
used in multi-robot mapping [9] when the robots build a
map from different starting positions. However, for a hand-
held system the process is even more important due to
its frequent occurrence. As with loop closure, the overlap
detection algorithm must also be able to cope with the
relative scale difference between the two maps.

Methods for detecting overlap and loop closure in monoc-
ular SLAM can be divided into three categories:

• Map–to–map – Correspondences are sought between

features in the two maps. Clementeet al. [2], applied
the variable scale geometric compatibility branch and
bound (GCBB) algorithm to loop closing in monocular
SLAM. The method looks for the largest compatible set
of features common to both maps, taking into account
both the appearance of the features and their relative
geometric location.

• Image–to–image – Correspondences are sought be-
tween the latest image from the camera and the previ-
ously seen images. Cumminset al. [3] have presented
an algorithm that uses the occurrences of image features
from a standard library to detect that two images are
of the same part of the world. Careful consideration is
given to the distinctiveness of the features – identical
but indistinctive observations receive a low probability
of having come from the same place. This minimises
false loop closures.

• Image–to–map– Correspondences are sought between
the latest frame from the camera and the features in
the map. This is the method we present in this paper,
making use of the relocalisation module we developed
previously.

In our previous work on relocalisation [15], we suggested
that a possible use of the module would be for map alignment
and loop closure. Here we give a description of that process
and compare its performance to the other loop closure
techniques discussed above.

First we will briefly describe the underlying monocular
SLAM system we use. Then we will describe in more detail,
the different methods for loop closure. Finally, results will
be given on the performance of our algorithm at closing a
loop and its performance will be compared to the previously
existing methods.

II. THE MONOCULAR SLAM SYSTEM

The monocular SLAM system we use is derived from
Davison’s original system [4], but with a few improvements
to bring it up to date. The underlying system is essentially
the same as the system described in [2] but with our own
relocalisation module to recover from situations where the
system becomes lost. We have also added a system to prevent
premature loop closure and added the ability to perform
independent map merging. Here we give a brief description
of the system, so details of the loop closing system can be
better understood.



(a) Local maps obtained with pure monocular
SLAM

(b) Local maps auto-scaled (c) After loop closing

Fig. 1. Map made of a university courtyard. Twelve submaps witha total of 848 features were made during the 70m trajectory. The loop closure was
detected using our image–to–map method. Note that the trapezium rather than rectangular shape is consistent with the real courtyard.

A. Map Building

The monocular SLAM system tracks the pose of a hand-
held camera while simultaneously building a map of point
features in 3D using the EKF. The points are initialised using
the inverse depth parameterisation [11], and they are recog-
nised in subsequent frames via normalised cross correlation.
An image patch is stored when the feature is initialised, butis
warped to correspond with the current camera pose estimate.
To speed up the observation of features, the image is only
searched in an ellipse given by the uncertainty in the camera
and feature estimate in a process called active search. By
gating the search in this way the chances of incorrect data
association are reduced. This is further helped by the use of
the joint compatibility branch and bound algorithm (JCBB)
[12] which detects observations which are incompatible with
the others and rejects them.

Despite the improvement given by active search and
JCBB, there is still a chance of incorrect data association,
particularly near loop closures when the system can believe
that distant features are again visible and attempt to measure
them. If the system is allowed to observe these features as
usual, it will likely make incorrect data association due tothe
large uncertainty in the camera pose relative to these features.
Our approach is to prevent the system from making these
observations and delay the loop closure until a separate loop
close module has detected it (section III). To determine which
observations to attempt, we make use of the covisibility data
from all the features in the map.

With every set of observations, a tally is updated indicating
which features have been successfully observed together.
Using this information, a simple graph is constructed where
a vertex corresponds to each feature, and the edges indicate
those that have been observed together. This graph provides
an easy way of determining which features are in the local
neighbourhood and which are not. Those which are distant
in the graph are not eligible for observation since their
relative position to the local features is very uncertain and
attempting their observation would likely lead to incorrect
data association. Readers should note that another way of
determining feature covisibility in a stochastic map is to

compute the inverse covariance, the information matrix.
Features that have been covisibile at some point will have a
high value of co-information.

B. Larger Maps

Due to the accumulation of linearisation errors in the EKF
algorithm as well as the increase in update time, we limit
our system to quite small local maps (around 70 features).
To map larger regions, the Hierarchical SLAM [5] technique
is used. This allows the system to map an environment by
building a series of submaps, each of which is small enough
to allow the system to be run in real-time as well as reducing
linearisation errors. This method was already applied to
monocular SLAM in [2] but we give a brief summary here.

As each new submap is created, the transformation be-
tween its base reference and the previous map is stored in
a global state vector. However, for monocular SLAM, this
transformation must also include the scale difference which
is determined as follows. Each new submap is created with
new features initialised at the location of some of the features
in the previous map. The geometry of these common features
in each submap are used to determine the relative scale.
Since the features were newly initialised, information is not
shared between the submaps and they remain independent.
This scale correction can be seen in Fig. 1(a) and (b).

When loop closure is detected, the global hierarchical map
can be updated by adjusting the transformations between
submaps in a non-linear constrained optimisation. The result
of the optimisation for the loop closure detected by our
algorithm is shown in Fig. 1(c).

III. D ETECTING LOOPCLOSURE

In order to close loops in a map, the system must recognise
when it has returned to a previously mapped region of the
world. Essentially, at this point two regions in the map are
found to be the same region in the world even though their
position is incompatible given the uncertainty estimate in
the map – the classic loop closure problem. The system
must then be able to calculate the transformation needed
to align these two regions to ‘close the loop’. Finding
correspondences between either features or the pose of the



camera is usually used to do this. As an extra challenge
for monocular SLAM systems, it must also determine the
relative scale change between the two mapped regions. Only
then can the regions be aligned and the global map adjusted
using non-linear constrained optimisation, thus closing the
loop and correcting the map.

In the following sections, we describe three methods
(including the new method) for achieving these goals based
on three quite different approaches. We will later test the
performance of all three algorithms.

A. Map–to–Map Matching: GCBB

Clementeet al. [2] presented a method to close loops in
monocular SLAM maps based on finding correspondences
between common features in different submaps. The algo-
rithm used is a variable scale version of the original geo-
metric compatibility branch and bound algorithm (GCBB).
The system uses both similarity of patch appearance (unary
constraints) as well as relative distances between features
(binary constraints) to find the largest compatible set of
common features between two submaps. Once a consistent
set has been found, the relative scale, rotation, and translation
needed to align the two submaps can easily be determined.

The system was shown to work in [2] where it found a set
of five common features between the first and last submaps
in a large loop.

B. Image–to–Image Matching: Cumminset al.

Cummins et al. [3] have developed a method to detect
loop closures based on finding correspondences between the
most recent image and previous images seen by the camera.
The matching is performed by detecting in each image the
presence or absence of features from a visual vocabulary [13]
based on SURF features [1], which is learned off line from
training data. The system takes into account the probabilities
of features appearing together and is able to work out the
probability that two images show the same region of the
world. This method does not depend on a metric map being
created since it only compares images directly. However, it
could be used with a metric map if the camera pose relative
to such a map can be found for each image as well as the
relative pose between two images for the loop closure. Much
work has been done on this problem in the field of computer
vision [7].

C. Image–to–Map Matching: New Method

The new method we have developed for performing loop
closure in monocular SLAM is based on our relocalisation
module [14]. This module determines the pose of the camera
relative to a map of point features by finding correspondences
between the image and the features in the map. The pose is
then determined from the correspondences using RANSAC

and the three–point–pose algorithm [6].
The relocalisation module is able to run faster than fram-

erate through the use of a fast matching algorithm based
on the randomised fern classifier [10] where patches are
classified through a series of fast pairwise pixel intensity

Fig. 2. While tracking in the left map, the system relocalises in the right
map using our image–to–map algorithm. The two independent maps are
merged by first aligning the common trajectories, and then enforcing the
constraint that the two sets of corresponding camera poses (linked by green
lines) are equal.

comparisons. While the features are being tracked, each
successful observation is used to train the classifier. This
classifier is fast but it has a high false positive rate. Incorrect
classifications are handled using RANSAC. Details of the
randomised fern classifier can be found in [14].

To detect loop closures, the system uses the module to
attempt relocalisation in distant regions of the map according
to the covisibility graph described in section II-A. When
a relocalisation is successful, it gives a correspondence
between the current pose being tracked, and the pose given
by the relocalisation elsewhere in the map. This gives the
translation and rotation needed to align the two regions, but
a single pose is not enough to determine the scale difference.
To achieve this, the camera is tracked for some time in both
regions (while freezing one of the maps so information is
not counted twice), and this common trajectory can be used
to find the transformation between the two regions including
the relative scale difference [8].

When performing independent map merging, it is not
sufficient to simply find the transformation between the
two maps. We wish instead to combine them into a single
correlated map. After transforming mapA into the coordinate
frame of mapB by aligning the trajectories, we are still left
with two uncorrelated maps and two estimates of the camera
pose (̂xA

cam and x̂
B
cam).
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To correlate the maps, we enforce the constraint that the
two camera poses are equal. However, since one pose is not
sufficient to constrain the scale, we also use the pose at the
start of the trajectory,̂xA,B

cam∗ , which is left in the state vector
of each map (Fig. 2). The constraint is enforced through an



EKF update where the ‘observation’ is the difference in these
poses.
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)

(3)

Afterwards, the maps are correlated and the extra camera
poses can be removed from the state.

IV. RESULTS

We have used the monocular SLAM system to build a map
of a university courtyard. Due to the size of the environment,
the system built twelve submaps as the camera was moved
around the 70m trajectory facing the wall. Each new submap
was begun by initialising new features in the same image
locations as those just observed as the last submap finished.
These common features can then be used to fix the relative
scale between submaps as shown in Fig. 1.

Even after the scale between submaps has been corrected,
the map still exhibits a common problem, that although it has
returned to the same region in the world, this is not reflected
in the map. A loop closure detection system is needed to
recognise that the system has traversed a loop so the map
can be corrected accordingly.

We have used all three algorithms to try to detect the
loop closure in this sequence. We have also evaluated the
performance of the algorithms further by checking their
susceptibility to false positives. For a loop closure detection
system to be useful, it should be able to be tuned to detect
a significant number of true positives while getting very
few (ideally zero) false positives. It should also run in a
reasonable time for the detection to be relevant.

A. Map–to–Map Matching: GCBB

When enough common features exist between two maps,
the GCBB algorithm is able to find the correspondences
between the maps. This is clear when the algorithm is run be-
tween consecutive submaps. It is able to detect the common
features that were automatically added. When the system
comes to close a loop, it is able to find the common features
between the two maps as shown in Fig. 4(a). Unfortunately,
during the loop closure, there is no guarantee that the system
will have initialised features in the exact same place in two
different maps. In fact, in our experiments to date, we have
found submaps with sufficient common features to detect the
loop closure to be rare. Fig. 3 shows an example of the same
frame being tracked in two different maps. Despite the large
number of features visible, only two features are common to
both maps.

Even getting a corresponding set of features does not
guarantee a true correspondence between the two submaps.
Fig. 4(b) shows that the GCBB algorithm also found sets
of five “common” features between eight other pairs of
submaps. All other pairs of submaps were found to have
sets of four or three “common” features. We were unable to
find a threshold able to distinguish between true positives and
false positives for the maps created by our SLAM system.
There were simply too few true common features.

Fig. 3. During the overlap in the sequence, the system tracksthe camera in
two submaps. The colours indicate if an observation was successful (red),
unsuccessful (blue), rejected by JCBB (purple), or not attempted, (yellow).
Only two of the visible features are actually common to both submaps.

During our tests, the variable scale GCBB algorithm took
around 100ms1 to compare two maps. When the SLAM
system finishes one submap, there is easily time to compare
this submap to all previous submaps before the next one is
completed.

B. Image–to–Image Matching: Cumminset al.

The image–to–image matching method of Cumminset al.,
is designed to work with non-overlapping key frames. When
run on a robot, the odometry is used to trigger key frame
capture. Without odometry, we simply used every 40th frame
of the video to test the system. Ideally though, automatic key
frame selection based on appearance should be used.

The loop closure detection system determines for each of
these input images if it is a new place or a loop closure. The
algorithm correctly gave high probability that each image
was a new place until the camera had traversed the loop
and returned to the start of the loop. At this point, the
system gave high probability (99.9%) that the most recent
image corresponded to an image at the start of the sequence
(Fig. 4(c)).

To test the reliability of the loop closure detection, we
computed loop closures for every frame from the second
loop, against the set of images from the first loop. This
simulates the ‘kidnapped robot situation’, a sudden transition

1Tests were done on a Dual Core 3GHz machine.



(a) Map–To–Map: Loop closure detected using the method of Clementeet
al. [2]. The system finds a set of features consistent in both geometry and
appearance between the first and last submaps. It is only successful if the SLAM
system has initialised common features in the two submaps.

(b) Map–to–Map Reliability: Matching was attempted between every
pair of non-consecutive submaps. Shown here are the eight false
positives sets with five correspondences. The true positivewas not
found in this run since only two features were shared betweenthe
first and final submaps (See Fig. 3).

(c) Image–To–Image:Loop closure detected using the method of Cumminset
al. [3]. The system detects visual words in each image and the cooccurence
of these words is used to calculate the probability of loop closure. The system
finds a high probability that the most recent image matches one seen earlier
in the sequence. Visual words are detected in the two images are indicated in
green if they match in the other image. Note that interest pointgeometry is not
considered.
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(d) Image–To–Image Reliability: Correspondences were found be-
tween every frame in a second lap and every 40th frame in the first
lap. A threshold was chosen to remove all false positives. At this
threshold, the system was successful in 8% of attempts. To seethe
effect of the threshold on performance see Fig. 5. Gaps are in regions
of the world with lots of foliage (where the image–to–map method
has difficulty).

(e) Image–To–Map: Loop closure detected using the new method presented
here. While tracking in one submap, the system finds a set of map features in
the first submap whose geometry is consistent with a camera pose.

(f) Image–to–Map Reliability: Relocalisation was attempted on
every frame of a second lap. The light dots show the camera pose
recovered relative to the map and trajectory created on the first lap
(black). This indicates that loop close would be successfulfor these
frames. Successful in 20% of frames. No false positives.

Fig. 4. The results of our experiments on all three loop closing methods. The left column shows a successful loop closure for each method. The right
column shows tests on the reliability of each method.
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Fig. 5. This precision–recall curve for the image–to–image method [3]
shows the algorithm performs well. Quite a high number of true loop closure
are detected with few false positives.

from the end of the first loop to a random part of the
courtyard. It is a way to test if the algorithm would be able
to detect a loop closure at each position. As the method
makes use of temporal coherence of detections, to test loop
closure at framei, the algorithm was also provided with
framesi − 40, i − 80 and i − 120.

The results are shown in Fig. 4(d) where frames that
matched an image in the previous loop are marked. A
threshold was chosen that removes all false positives to allow
comparison with the image–to–map method. The system
found matches that met this probability threshold in 8% of
attempts indicating that the system would be able to close the
loop at these positions. The precision–recall curve in Fig.5
shows the effect of the probability threshold on the reliability
of the system.

On each image, the algorithm takes on average 283ms to
run. Much of this time (73ms) is taken up by SURF feature
detection. This method relies on this descriptor which is
richer yet slower than the randomised fern classifier. The
overall speed is slower than the framerate, however, the loop
closing algorithm does not need to be run on every frame.

C. Image–to–Map Matching: Our New Method

At every frame, there is usually enough remaining time
after tracking to attempt relocalisation in one other submap.
The system cycles through submaps until a relocalisation
is successful, indicating a loop closure. For the university
courtyard sequence, the system successfully detected the
loop closure as the features in the original map came back
into view (Fig. 4(e)). It then began tracking the camera in
both submaps, and aligned the resultant common trajectory.
Using the transformation to align trajectories, the map was
optimised as shown in Fig. 1(c). Note that for this method,
no common features are needed between submaps like for
the GCBB method. Image–to–map matching is done using
the features in each submap independently.

The reliability of our new loop closure method was tested
using the same ‘kidnapped robot’ situation we used to test the

image-to-image method. The system was allowed to continue
searching for loop closures as the camera continued around
the courtyard for a second lap. For the test, the system
attempts relocalisation in every submap for every frame. The
results of this test can be seen in Fig. 4(f). The system was
able to relocalise relative to the map created in the first loop
20% of the time and no false positives were returned.

Our method takes 10-15ms to find potential matches to
map features in each image using the randomised fern
classifier. The remaining time is used to run RANSAC on the
matches to determine the pose. This is usually found within
a few milliseconds if a valid pose exists for those matches.
This is fast enough to allow the algorithm to run on a single
submap after the system has finished tracking in each frame.

V. D ISCUSSION

We have tested three quite different approaches to detect-
ing loop closure for monocular SLAM systems each of which
has benefits and drawbacks, as well as tunable parameters
which affect their performance.

The first algorithm, variable scale GCBB, detects corre-
spondences between common features in two submaps using
both the visual appearance of the features and their relative
3D position. The algorithm takes entire submaps into account
rather than just the current view like the other two methods.
However, we found the algorithm to be unsuitable since the
system cannot guarantee common features in overlapping
submaps. Also, the algorithm finds correspondences between
submaps with no true common features. As well as the size
of the correspondence set, thresholds exist for determining
potential feature matches both in appearance and in metric
space. Unfortunately, no values could be found to allow
the algorithm to reliably distinguish true loop closures.
The GCBB algorithm could be made to work better with
more detailed information in the maps such as higher level
geometry like planes or lines, or simply more dense point
clouds. The algorithm should also take into account the angle
a feature can be viewed at rather than treating each feature
as an ideal point in 3D.

The image–to–image matching technique of Cumminset
al. compares each current image with the previous images
seen by the camera. It was able to detect the loop closure
in the university courtyard sequence and in a test of the
reliability using a second lap, a probability threshold could
be found which removed all false positives while still finding
8% of the true positives. The other tunable parameters,
the interest point detector threshold, and the visual word
quantizing threshold were kept fixed during the experiment.
By not using geometric information, the algorithm is even
able to work when the metric map has inaccuracies. However,
if the geometric position of the correspondences were taken
into account, some of the obvious false positives would be
detected as such (Fig. 6). With these extra checks, the system
could achieve higher true positive rates like the image–to–
map method.

The image–to–map matching technique detects potential
correspondences to map features in the image and then



Fig. 6. Image-to-image method: False positive with matching probability of
99.9935%. The detected visual words are indicated in each image in green
if they match the other image. This false positive could easilybe discarded
if the geometric information were known for the detected visual words.

finds a camera pose consistent with their 3D geometry. The
method does not rely on the same features being reinitialised
in the new submap as the loop is being closed like the map–
to–map method, and by taking both the appearance and geo-
metric information into account, it is able to achieve a higher
true positive rate than the image–to–image method. The
image–to–map method has thresholds for the interest point
detector, the randomised fern classifier decision, the number
of features for RANSAC concensus, and the minimum per-
centage of good observations during tracking immediately
after a relocalisation. All of these were chosen during the
development of the relocalisation module [14] to minimise
false positives. Though this new method performs better than
the image–to–image method in the university courtyard used
here, it does not scale as well to city sized maps. The
algorithm is very memory intensive requiring 1.25MB of
RAM per feature for the randomised fern classifier, and the
number of hypotheses for RANSAC to test grows with the
number of map features. Extending the algorithm to work in
larger environments remains for future work.

VI. CONCLUSION

An image–to–map loop closure detection method was
presented. It makes use of our previous relocalisation sys-
tem [14] which detects potential correspondences to map
features using a randomised fern classifier which is trained
during tracking. A set of correspondences are then found
which is consistent with the map geometry using RANSAC

and a three–point–pose algorithm. The algorithm can be used
to detect loop closures or overlaps between independent
maps so they can be merged. The relative transformation
needed to align maps is computed using a common trajectory
estimated in both maps, allowing maps of different scales to
be aligned.

Experiments were performed to compare the performance
of the image–to–map matching algorithm against loop clo-
sure methods based on both map–to–map and image–to–
image matching. The map–to–map method was found to be
unsuitable for the sparse maps used in monocular SLAM.
The image–to–image method was successful and easy to use
but is not complete if the relative metric pose is required.
However, the best results were obtained by the image–to–
map method which made most use of the available infor-
mation by taking into account both the appearance and the
geometry.
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