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Grup de Visió per Computador i Robòtica
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This paper describes a navigation system for autonomous underwater vehicles (AUVs)
in partially structured environments, such as dams, harbors, marinas, and marine plat-
forms. A mechanically scanned imaging sonar is used to obtain information about the
location of vertical planar structures present in such environments. A robust voting algo-
rithm has been developed to extract line features, together with their uncertainty, from the
continuous sonar data flow. The obtained information is incorporated into a feature-based
simultaneous localization and mapping (SLAM) algorithm running an extended Kalman
filter. Simultaneously, the AUV’s position estimate is provided to the feature extraction al-
gorithm to correct the distortions that the vehicle motion produces in the acoustic images.
Moreover, a procedure to build and maintain a sequence of local maps and to posteriorly
recover the full global map has been adapted for the application presented. Experiments
carried out in a marina located in the Costa Brava (Spain) with the Ictineu AUV show the
viability of the proposed approach. C© 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

Simultaneous localization and mapping (SLAM) is
one of the fundamental problems that needs to be
solved before achieving truly autonomous vehicles.
For this reason, in recent years it has been the focus
of a great deal of attention (see Bailey & Durrant-
Whyte, 2006; Durrant-Whyte & Bailey, 2006, and ref-
erences therein). Multiple techniques have shown
promising results in a variety of different applications
and scenarios. Some of them perform SLAM indoors

(Castellanos, Montiel, Neira, & Tardós, 1999), out-
doors (Guivant, Nebot, & Durrant-Whyte, 2000), and
even on air (Kim & Sukkarieh, 2003). However, the
underwater environment is still one of the most chal-
lenging scenarios for SLAM because of the reduced
sensorial possibilities and the difficulty in finding re-
liable features. Acoustic devices are the most com-
mon choice. Many approaches extract features from
acoustic data produced by imaging sonars (Leonard,
Carpenter, & Feder, 2001; Tena, Petillot, Lane, &
Salson, 2001) or sidescan sonars (Tena, Reed, Petillot,
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Bell, & Lane, 2003). Some introduce artificial bea-
cons to deal with complex environments (Newman
& Leonard, 2003; Williams, Newman, Rosenblatt,
Dissanayake, & Durrant-Whyte, 2001). An alternative
approach is analyzing the three-dimensional (3D)
structure of the environment to perform SLAM, ei-
ther using bathymetric scans (Roman & Singh, 2005)
or producing a tessellated representation of the sce-
nario (Fairfield, Jonak, Kantor, & Wettergreen, 2007).
The use of cameras is limited to applications in which
the vehicle navigates in clear water and very near
to the seafloor (Eustice, Singh, Leonard, Walter, &
Ballard, 2005). On the other hand, the visual infor-
mation can also be combined with acoustic data to
improve the overall reliability of the SLAM system
(Williams & Mahon, 2004).

This article focuses on underwater SLAM ap-
plied to man-made environments (harbors, marinas,
marine platforms, dams, etc.) where structures com-
posed of vertical planes are present and produce
reliable features in acoustic images. Although most
of the previous work done in this field focuses on
open sea and coastal applications, obtaining an ac-
curate positioning in such scenarios would notably
increase autonomous underwater vehicle (AUV) ca-
pabilities. For instance, an AUV could use a har-
bor as an outpost for oceanography research if it is
able to localize itself and navigate through it with
enough accuracy to safely perform the leaving and
returning operations (Griffiths, McPhail, Rogers, &
Meldrum, 1998). Maintenance and inspection of un-
derwater structures (Martins, Matos, Cruz, & Pereira,
1999) and even surveillance of marine installations
are examples of other applications that can benefit
from such a system.

We have chosen an extended Kalman filter
(EKF)–based implementation of the stochastic map to
perform SLAM. The algorithm relies on a mechan-
ically scanned imaging sonar (MSIS) for feature ex-
traction. Although these mechanically actuated de-
vices usually have a low scanning rate, they are quite
popular because of their reduced cost. When work-
ing with MSIS, it is not uncommon to assume that
the robot remains static or moves slowly enough to
neglect the induced acoustic image distortion. Here,
the static assumption is removed. Vehicle position es-
timates from the filter are introduced to reduce the
effects of motion-induced distortion in the resulting
acoustic data. Typically, approaches using imaging
sonars have focused on the use of point features (Tena
et al., 2001; Williams et al., 2001). This work proposes

the use of line features in underwater environments
as a representation of the cross sections produced
when a sonar scan intersects with existing planar
structures. As a result, a two-dimensional (2D) map
of the environment is produced by the SLAM algo-
rithm. Most of the applications at hand involve only
trajectories performed at a constant depth, and there-
fore, a 2D map is sufficient for navigation. Moreover,
it is generally viable to apply the present method
when 3D motion is also required because the pre-
dominance of vertical structures in the target scenar-
ios makes the 2D map valid for different operating
depths.

In recent years, many different authors have
proposed methods to carry out SLAM by build-
ing sequences of local maps (Bosse et al., 2003;
Bosse, Newman, Leonard, & Teller, 2004; Clemente,
Davison, Reid, Neira, & Tardós, 2007; Estrada, Neira,
& Tardós, 2005; Leonard & Feder, 2001; Leonard &
Newman, 2003; Newman, Leonard, & Rikoski, 2003;
Ni, Steedly, & Dellaert, 2007; Tardós, Neira, Newman,
& Leonard, 2002; Williams, Dissanayake, & Durrant-
Whyte, 2002). The main objective of such techniques
is limiting the cost of updating the full covariance ma-
trix, which has O(n2) complexity (Guivant & Nebot,
2001). By working on local maps of limited size, the
cost of these algorithms remains constant most of the
time. In this work we consider conditionally inde-
pendent local maps (Piniés & Tardós, 2007) because
they allow sharing vital information between con-
secutive maps (in this case the underwater vehicle
state). Strong empirical evidence also suggests that
the use of local maps also improves the consistency
of EKF-based SLAM algorithms (Castellanos, Neira,
& Tardós, 2004; Huang & Dissanayake, 2007).

A data set obtained during an experiment per-
formed with the Ictineu AUV serves as a test for the
proposed SLAM algorithm. The vehicle, a low-cost
research platform of reduced dimensions developed
at the Underwater Robotics Laboratory of the Uni-
versity of Girona (Ribas, Palomer, Ridao, Carreras,
& Hernàndez, 2007), performed a 600-m trajectory in
an abandoned marina situated in the Spanish Costa
Brava, near St. Pere Pescador (see Figure 1). The re-
sulting data set includes measurements from many
different sensors. A Tritech Miniking MSIS provides
the acoustic imagery that feeds the feature extrac-
tion algorithm. The velocity measurements from a
SonTek Argonaut Doppler velocity log (DVL) are in-
troduced in the filter to perform dead reckoning, and
a compass and a pressure sensor provide absolute
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Figure 1. The Ictineu AUV (left) and an abandoned marina used as test bed for the presented SLAM algorithm situated
near St. Pere Pescador, Spain (right).
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Figure 2. Diagram of the proposed SLAM approach.

measurements for the vehicle heading and depth. A
diagram of the SLAM system can be seen in Figure 2.

This article is organized as follows. Sections 2
and 3 present a feature extraction algorithm that
searches for line features in the data arriving contin-
uously from the MSIS, removing the effect of motion-
induced distortions, and estimates the feature uncer-
tainty from representation in the acoustic image (a
preliminary version appeared first in Ribas, Neira,
Ridao, & Tardós, 2006). The SLAM algorithm in Sec-
tion 4 incorporates a method that allows integrating
compass measurements independently from the ori-
entation of the map base reference. This has opened

the door to implement a method to build local maps
for improving scalability and accuracy as described
in Section 5. The results obtained with the abandoned
marina data set are presented in Section 6. Finally, the
conclusions and further work are given in Section 7.

2. WORKING WITH ACOUSTIC IMAGES
FROM A MSIS

MSISs perform scans in a 2D plane by rotating a fan-
shaped sonar beam through a series of small-angle
steps (Figure 3). For each emitted beam, an echo
intensity profile is returned from the environment
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Figure 3. Representation of a mechanically scanned imag-
ing sonar mode of operation. Beams are emitted sequen-
tially at given transducer head angles (fan-shaped silhou-
ettes). For each beam, the echo intensity return profile is
discretized in a sequence of bins (arcs at different ranges
along the most recently emitted beam).

and discretized into a set of bins (distance vs. echo-
amplitude values). Accumulating this information
along a complete 360-deg sector produces an acoustic
image of the surroundings [see polar representation
of a 360-deg scan sector in Figure 4(a) and its cor-
responding Cartesian representation in Figure 4(c)].
The beam typically has a large vertical beamwidth
(for our sensor, about 40 deg), which makes possi-
ble the detection of obstacles at different heights, al-
though at the cost of inducing small imprecisions in
the range measurements. On the other hand, a nar-
row horizontal beamwidth (about 3 deg) increments
the resolution of the device and improves the sharp-
ness of the acoustic images. It is worth noting that
although the sensor can detect the presence of tri-
dimensional objects, it is not able to determine their
position in the vertical plane. Therefore, only a 2D
representation of the environment is produced.

2.1. Motion-Induced Distortions

Commonly, MSISs have a slow scanning rate. A
Tritech Miniking sonar head needs a minimum time
of 6 s to complete a 360-deg scan. Depending on
the range and resolution settings, the time can be
much more (e.g., during the abandoned marina ex-
periment, the required time was 15 s). Therefore, dur-
ing the acquisition of a scan, the vehicle position can
change considerably. Not taking this motion into ac-
count may induce important distortions in the result-
ing acoustic data. Figure 4(c) represents this effect for
a set of measurements obtained in the scenario shown
in Figure 4(b). Note the misplacement of the walls

on the left and top of the scan and how the rotation
of the vehicle curves the one on the right. Extracting
line features from distorted data is difficult and pro-
duces inaccuracies that disturb data association and,
as a consequence, yields poor results. Therefore, the
first step of the procedure consists of merging the raw
sensor data with information regarding the vehicle
motion. This information is provided by the SLAM
algorithm (see Section 4), which runs simultaneously
with the feature extraction algorithm. Incorporating
the displacements and rotations of the sensor into the
positional information of each sonar measurement
leads to an undistorted acoustic image such the one in
Figure 4(d). As can be appreciated when comparing
with Figure 4(b), this results in a better representation
of the real scenario.

2.2. Beam Segmentation

Because objects present in the environment appear as
high-echo-amplitude returns in acoustic images, only
part of the information stored in each beam is useful
for feature extraction [see Figure 5(a)]. Therefore, a
segmentation process can be done in order to obtain
the most significant information. This process is car-
ried out beam to beam and consists of two steps. First,
only those bins with an intensity value over a thresh-
old are selected and stored. This procedure separates
the acoustic imprint left by an object in the image
from the noisy background data [Figure 5(b)]. The re-
sulting imprint is used to estimate the feature uncer-
tainty, as explained in Section 3.2. The second step is
to select among the beam’s thresholded data those
bins that are local maxima and satisfy a “minimum
distance between them” criterion. This means that if
two or more of these bins are too close within the
beam, they should correspond to the detection of the
same object and hence are redundant. Then, the ones
with the lowest intensity value are discarded [see the
result in Figure 5(c)]. The selected local high-intensity
bins are the ones that most likely correspond to ob-
jects present in the scene. Thus, they are specially well
suited as input to the feature extraction algorithm
(Section 3) while, at the same time, the computational
efficiency is improved because a small number of bins
is involved.

2.3. Dealing with a Stream of Beams

To deal with the stream of measurements produced
by the continuous arrival of beams, a data buffer is
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Figure 4. Effect of motion-induced distortion on acoustic images: (a) Raw data represented in polar coordinates. (b) Or-
tophotomap of the real environment where the sonar data were gathered. (c) The same data set represented in Cartesian
coordinates. (d) Undistorted image obtained after taking into account the vehicle motion.

set to store the beams contained within the most re-
cent 180-deg scan sector. Whenever new beams cor-
responding to an unexplored zone arrive, old beams
that fall outside the scan sector are discarded. The
choice of a 180-deg sector is not arbitrary because
this is the maximum zone that a single line can cover

within a sonar scan. Because calculations to search
for features are performed with every new beam
(Section 3), the buffer should contain the bins that are
local maxima [Figure 5(c)] for the line detection pro-
cess, the segmented beams [Figure 5(b)] for uncer-
tainty estimation, and all its associated positions in
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Figure 5. Acoustic data segmentation: (a) Raw sensor data represented in polar coordinates. (b) Data after applying a
threshold. (c) Selection of the local maxima bins of each beam.

the world coordinate system to deal with the motion-
induced distortions.

3. LINE FEATURE EXTRACTION

The cross section of a sonar scan with walls and other
planar structures results in line-shaped features in the
acoustic images. The Hough transform (Illingworth
& Kittler, 1988) is a feature extraction technique that
is specially well suited for this kind of situation. This
algorithm accumulates the information from the sen-
sor data into a voting table that is a parameterized
representation of all the possible feature locations.
Those features that receive a great number of votes
are the ones with a relevant set of compatible sensor
measurements and thus the ones that most likely cor-
respond to a real object in the environment. In our
application, line features are described by two param-
eters, ρB and θB (distance and orientation with re-
spect to a base frame B). Hence, the resulting Hough
space (HS) is a 2D space where the voting process and
the search for maxima can be done efficiently. The
base reference frame B can be set arbitrarily. How-
ever, our choice for B is the current position of the
sensor head at the moment the voting is performed.
Because in this implementation the voting is trig-

gered by the arrival of new beams from the sensor,
the most recently stored position in the data buffer
(the one corresponding to the last beam) defines the
position of B. An advantage of choosing this base is
that, when a line feature is detected after the voting,
its parameters are already represented in the sensor
coordinate frame and hence it can be integrated di-
rectly into the SLAM framework. It is worth noting
that B is not a fixed coordinate frame. As the param-
eterization in the HS is performed in polar coordi-
nates, setting the reference in a fixed position would
produce resolution loss with the increment in range.
To avoid this, we need to resituate B according to the
vehicle’s motion. Unfortunately, this requires recom-
puting the HS with each change in the position of B.
Although it may seem a great deal of computation,
in fact the number of bins involved in the voting is
not large (fewer than 100 bins during the tests per-
formed) and the calculations can be executed quite
rapidly. Moreover, as will be explained in the next
section, there are situations in which recalculating the
HS can be avoided. Another key issue is the quan-
tization of the HS. In our case, we have observed
that selecting the quantization equal to the angular
and linear resolutions of our sensor (typically, 1.8 deg
and 0.1 m) works fine. A higher resolution does not
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necessarily increase the quality of the detection be-
cause the sonar resolution limits its precision, On
the other hand, a lower resolution would produce a
rough observation.

The general execution of the feature extraction
process consists of several steps. First, with each
beam arrival, the HS is initialized using the current
sensor position as the base frame B. Next, all the bins
stored in the buffer are referenced to B so that they
can be used to vote in the space. It is worth noting
that the stored beam positions are taken into account
when transforming to B. Hence, the data are undis-
torted. Then, the votes corresponding to each bin are
assigned to the candidate lines by means of a sonar
model. Finally, a search for winning candidates is per-
formed.

3.1. Voting Method for Line Detection

Each bin represents the strength of the echo inten-
sity return in a particular place within the insoni-
fied area. Owing to the uncertainty produced by the
horizontal beamwidth, a measurement cannot be as-
signed to a single point in the space. A common
approach (Leonard & Durrant-Whyte, 1992; Tardós
et al., 2002) is to consider the measurement as an
arc whose aperture represents the beamwidth uncer-

tainty. Moreover, as a high-intensity return is typi-
cally produced when the acoustic wave hits a sur-
face perpendicularly, we can infer that all the surfaces
tangent to the arc can explain the high-intensity re-
turn. Although this simple model is well suited for
air sonar ranging systems, it is not able to explain
the acoustic images gathered with a MSIS. A care-
ful analysis of these images reveals that their object
detection capability is not limited to the arc-tangent
surfaces but that those beams intersecting the surface
within the limits defined by a certain maximum inci-
dence angle also produce a discernible return. On the
other hand, those beams with a shallower angle are
completely reflected and do not perceive the surface.
To obtain a better description of this situation, an ex-
tended model of the imaging sonar has been adopted
(Figure 6). Basically, given a horizontal beamwidth
angle α (in our sensor, α = 3 deg) and a maximum
incidence angle β (generally, more than 60 deg), the
set of line features compatible with a particular bin is
composed not only of the lines tangent to the arc de-
fined by α but also of all the lines that intersect the arc
with an incidence angle smaller than ±β. Before per-
forming a voting, this set of lines must be determined
for each bin stored in the data buffer. This process
will now be described using as reference the illustra-
tion in Figure 6. Let the reference frame S define the

Figure 6. Model of the sonar sensor relating a bin and its compatible candidate lines. B is the base reference frame, and S
is a reference frame attached to the sonar transducer head.
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position of the transducer head at the moment a par-
ticular bin was obtained, with [xB

S , yB
S , θB

S ] being the
transformation that defines the position of S with re-
spect to the chosen base reference B and ρS the range
at which the bin was measured from the sensor. Both
the transformation and the range values can be ob-
tained from the information in the data buffer. To em-
ulate the effect of the horizontal beamwidth, a set of i

values are taken at a given resolution within an aper-
ture of ±α/2 around the direction in which the trans-
ducer is oriented, also referred as θB

S :

θB
S − α/2 ≤ θB

i ≤ θB
S + α/2. (1)

Each value of θB
i represents the bearing parameter for

a line tangent with the arc that models the horizontal
beamwidth. As stated earlier, not only are the lines
tangent to the arc candidates, but also the ones inside
the maximum incidence angle limits of ±β. For this
reason, k values are taken at a given resolution for
each value of θB

i and within an aperture of ±β:

θB
i − β ≤ θB

i,k ≤ θB
i + β . (2)

The result of this operation is i × k different values of
θB
i,k . These are the bearings for a set of lines that are

a representation of all the possible candidates com-
patible with the bin. The final step is to determine
the range parameter ρB

i,k corresponding to each one
of the θB

i,k bearings obtained. Given the geometry of
the problem, they are calculated as

ρB
i,k = xB

S cos
(
θB
i,k

) + yB
S sin

(
θB
i,k

) + ρS cos(θi,k). (3)

This set of lines can now be used to determine the
cells in the voting space that should receive a sin-
gle vote from this particular bin. It is assumed that
the resolutions chosen during the generation of the
i × k lines are sufficient to ensure a correct explo-
ration of the grid cells and hence that the zone in
the discretized space corresponding to the compati-
ble candidates is correctly determined. This process
is repeated for all the bins stored in the data buffer.
In Figure 7 it is shown how the set of voters looks
when assigned to the HS. Note that each selected cell
of the HS can receive only one vote from any particu-
lar bin and that those cells containing multiple votes
therefore represent lines compatible with different in-
dividual bins.

Coinciding with the arrival of a new beam, a new
voting space is generated to look for winning line

candidates. A winning line must be detected only
once it has been completely observed (i.e., further
beams cannot provide more votes to the candidate).
In the voting space, the zone in which the winning
lines can exist is completely determined by the sub-
set of all the candidate lines contained in the most re-
cent 180-deg scan sector that do not intersect with the
last beam (shaded zones in Figure 7). Any line candi-
date with a sufficient number of votes found within
this zone is declared a winner. This value is chosen
as a compromise between avoiding false detections
and maintaining the capacity of sensing short walls.
(A count of 18 votes has shown good results in dif-
ferent tests.) Performing the detection in this way can
ensure that the algorithm detects the lines as soon as
they are completely visible. After a line detection, all
the bins involved in the election of the selected candi-
date are removed from the buffer so that they do not
interfere with the detection of further features.

It is worth mentioning that, in order to reduce the
computational cost of the process, some votings can
be skipped. After each voting, it is possible to deter-
mine the cell with the largest number of votes and
therefore to calculate the number of supplementary
votes required to produce a winner. Because addi-
tional votes can be obtained only from newly mea-
sured bins, it is not necessary to perform more vot-
ings before the minimum required number of bins
has been measured and introduced in the buffer.

3.2. Uncertainty Estimation

The process to estimate a feature’s uncertainty is
based on relating the probability of an object exist-
ing in a particular place with the measured inten-
sities in the acoustic image representing the same
location. There is a high probability that there will
be an object in a zone where large intensity val-
ues have been measured (e.g., the light shapes in
Fig. 4), whereas the probability in the zones with
lower intensity measurements gradually decreases
to zero (the dark zones in the figure). Given this,
the process of applying a threshold to segment the
acoustic data can be considered analogous to defin-
ing a particular confidence interval for a probabil-
ity distribution. In other words, a line feature will
fall inside the thresholded zone in the acoustic im-
age with a particular confidence level. To make the
problem tractable, the probability distribution of a
line feature represented in the acoustic image will
be approximated to a bivariate Gaussian distribution
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Figure 7. Sequence representing the voting process. The scan sector stored in the buffer is represented together with its
corresponding voting space. The line with triangular shapes marks the position of the most recent beam. The shaded zone
represents where the candidates have received all the possible votes. (a) Part of the target line is still outside the sector scan
and can receive more votes in the future. (b) The line can now be detected because it has been fully observed and more votes
cannot be added. (c) Those votes corresponding to the detected line, as well as the old ones that fall outside the 180-deg
scan sector, are removed from the HS so they cannot interfere with future line detections.

on its ρ and θ parameters. (An example justifying
that this approximation is suitable can be found in
Section 3.3.) Therefore, the process to estimate the
feature uncertainty consists of determining the Gaus-
sian that best fits the segmented data representing a
probability distribution for a given confidence level.
A simple description of this process is shown in
Algorithm 1. After the detection of a line feature with
the voting algorithm, the uncertainty estimation pro-
cess begins with the assignment of a feasible confi-
dence coefficient to the imprint left after the segmen-

tation. [For instance, it is realistic to assume that the
segmented data in Figure 5(b) will contain the real
feature in 95% of the cases.] Because the winning can-
didate line has received a considerable number of
votes, it must be one of the lines contained within
the confidence interval defined by the segmented im-
print. The next step of the process consists of find-
ing a number of compatible lines belonging to the
neighborhood of the winning candidate that over-
lap the segmented data in the same way. The ob-
jective of this is to obtain a set of line realizations

Journal of Field Robotics DOI 10.1002/rob
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Algorithm 1
get measurements([ρc, θc], scan, confidence level)

/∗ Initialization of the polar grid space that will contain
the segmented sonar data ∗/
boolean last180scan [ρresolution, θresolution];
[last180scan] = init scan(scan);

/∗ Set the paradigm with the candidate line from the
voting ∗/
[ηc] = get overlap ratio([ρc, θc], last180scan)

/∗ Search for compatible lines ∗/
lines2check = {[ρc, θc]};
accepted = ∅;
rejected = ∅;
While lines2check �= ∅ do

[ρi, θi ] = get candidate(lines2check);
[ηi ] = get overlap ratio([ρi, θi ], last180scan);
if accept line(ηc, ηi ) then

accepted = accepted ∪ {[ρi, θi ]};
lines2check = lines2check\{[ρi, θi ]},
lines2check = lines2check ∪ {neighbour8connectivity
([ρi, θi ]) ∩ {rejected

⋃
accepted}})

else
rejected = rejected ∪ {[ρi, θi ]};
lines2check = lines2check\{[ρi, θi ]};––

/∗ Given the set of lines, determine the ellipse that con-
tains the area where they exist ∗/
[major axis,minor axis, ρmean, θmean, α] =
get ellipse(accepted);
/∗ Given the ellipse and the confidence level related to the
segmentation, find the mean and covariance
zV = [ρmean, θmean]; ∗/
R = get covariance(major axis,minor axis, ρmean, θmean,
conf idence level) return [zV , R];

representative of the population contained within the
defined confidence interval (i.e., a set of lines that
“fill” the segmented area). Estimating the Gaussian
distribution from a set of lines is not straightforward;
however, it is worth noting that lines described by
its ρ and θ parameters can also be represented as
points in a polar ρ–θ space. Representing the set of
lines in such a space will result in a cloud of points
(the lines are similar) with an elliptic form. This par-
ticular elliptic disposition of the ρ–θ points suggests
that the approximation of the line feature to a Gaus-
sian distribution is correct. Although the space has
changed, the set still represents a population of lines
within the previously defined confidence interval.
This fact is used to estimate the uncertainty of the line
feature. This is achieved by approximating the area

occupied by the set of points to the area enclosed
in the ellipse that a bivariate Gaussian distribution
would generate at the same given confidence. By
knowing the confidence coefficient and the major and
minor axes of the ellipse and their orientation, it is
possible to recover the covariance matrix. Moreover,
the mean value of a ρ–θ pair defining the line feature
can also be obtained from the center of the ellipse.
Figure 8 illustrates the different steps involved in the
process of estimating the feature uncertainty. The im-
age in Figure 8(a) reproduces a voting space that has
just obtained a winning candidate (marked with the
small box). The corresponding sonar measurements
appear in Figure 8(b) and are represented in the same
B-based discrete polar space as the HS. Because the
data are represented in polar coordinates, the line fea-
ture appears as an arch whose thickness is related
to its uncertainty. Note that the ρ–θ pair, represent-
ing the winning candidate line in the HS, can also be
represented in this space. In fact, to parameterize the
line, we use its point with the smallest distance to the
origin (again, represented with the same small box
in the figure). Applying a threshold and assigning a
confidence coefficient to the segmented data results
in the space represented in Figure 8(c). At this point,
and using the winning candidate line as a paradigm,
the search for lines contained within the segmented
imprint is performed. The resulting set of lines is con-
tained inside the bounds represented as black arcs,
and the representation of the place occupied by their
ρ and θ pairs is represented as a black shape at the
apex of the arc. The final step of the procedure con-
sists of finding the ellipse containing this area and
extracting the covariance matrix given the predefined
confidence coefficient. Finally, Figure 8(d) represents
the estimated feature over a Cartesian representation
of the scan sector. The line in the center corresponds
to the ρ–θ mean value, and the lines at the sides rep-
resent the uncertainty bounds at 95% confidence.

3.3. Validation of the Feature Extraction
Algorithm

To validate the feature extraction algorithm, several
tests with both synthetic and real data were carried
out. With generating synthetic data, we seek two ob-
jectives. The first one is to justify the use of a bivariate
ρ–θ Gaussian distribution to represent the uncertain
features present in the acoustic images. The second is
to have a way of comparing the output from the al-
gorithm with the paradigm, which makes it possible
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Figure 8. Process for uncertainty estimation. (a) Winning candidate in the HS. (b) Polar representation of the sonar data.
(c) Segmented data with the zone occupied by line features inside the confidence level. (d) Estimated feature represented
over the scan sector.

to confirm the correctness of the estimation. To ob-
tain the synthetic data, a large population of ρ–θ pairs
was generated following a given probability distribu-
tion. Then, the lines represented by each pair were
projected into a polar space analogous to those pro-
duced by the measurements from a MSIS. Each cell
from this space represents a bin, and its echo inten-
sity value is assigned according to the number of
lines that cross its area. The resulting synthetic data
set is represented in polar and Cartesian coordinates
in Figures 9(a) and 9(d). In spite of the large uncer-
tainty assigned with the goal of improving the visu-
alization of the uncertainty estimation process, the
example has sufficient points in common with the
real acoustic images to consider this model as valid.
It can be observed how the high-intensity zone in
the center corresponds with the major concentration
of lines, whereas the dispersion on the sides, caused
by the angular uncertainty, produces an effect simi-
lar to the loss of intensity and precision affecting the
beams with large incidence angles. Figures 9(b) and
9(c) illustrate the voting and the uncertainty estima-
tion process. The elliptic-shaped zone representing
the population of compatible lines reflects the Gaus-
sianity of the estimated feature. As can be observed
in Figure 9(d), the estimated line feature is a good
representation of what appears in the synthetic data.
Additional verification of the method can be seen in
Figure 10, where the cloud of ρ–θ pairs initially used
to generate the synthetic data is plotted together with

an ellipse representing the original Gaussian distribu-
tion (dashed line) and another one representing the
one estimated with the proposed method (solid line).
When comparing the two ellipses, it can be appreci-
ated that they are almost coincident except for a small
angular misalignment. It is important to note that
correlated data, such as those in this example, have
turned out to be the most difficult scenario for the
proposed uncertainty estimation method, and there-
fore one could expect even better estimates when
working with less-correlated data.

A second set of tests was carried out with real
data acquired with the Ictineu AUV. Under real work-
ing conditions, it is not possible to obtain reliable
references to test the performance of the method.
Therefore, only the direct visualization of the esti-
mated line feature represented over the acoustic im-
ages can be used as an indicator. The first example
in Figure 11(a) shows the features extracted from a
data set obtained in a real application scenario; in par-
ticular, in the same marina environment that served
as the test bed for the SLAM algorithm. The sec-
ond example is represented in Figure 11(b). It cor-
responds to an experiment performed in the water
tank of the Underwater Robotics Research Center at
the University of Girona. This confined environment
with highly reflective concrete walls produces noisy
data with many reflections and phantoms. The results
in both cases are consistent with the representation of
the walls in the acoustic images and, moreover, show
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Figure 9. Testing the algorithm with synthetic data. (a) Raw sensor data generated from ρ and θ given a normally dis-
tributed uncertainty. Some correlation affects the two variables to increase the difficulty of the test. (b) The voting space
clearly identifies the line. (c) Uncertainty estimation using the segmented data. The black elliptic shape corresponds to the
lines with compatible overlapping and represents the uncertainty of ρ and θ . (d) The estimated line feature fits almost
perfectly with the synthetic one.

a reliable behavior when working with noisy data, fil-
tering linear features from shapeless phantoms.

4. THE SLAM ALGORITHM

An EKF integrates the vehicle’s navigation sensors to
provide an estimate of its position and retain the esti-
mates of the previously observed features in order to

build a map. We favor the use of the EKF over the po-
tentially more efficient information filter (Thrun et al.,
2004) because the availability of covariances with-
out any additional computations or approximation is
very important for data association. This filter is an
implementation of the stochastic map (Smith, Self, &
Cheeseman, 1990) in which the estimate of the posi-
tion of both the vehicle x̂V and the set of map features

Figure 10. Comparison between the bivariate Gaussian distribution used to produce the synthetic data and the output
from the algorithm. The ellipse with dashed line represents the Gaussian distribution at 95% confidence, and the solid one
is the output of the algorithm at the same confidence level.
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Figure 11. Testing the algorithm with real data. (a) Line features extracted from acoustic data gathered in a marina envi-
ronment. (b) Line features obtained from acoustic data gathered in a small water tank. The lines on the right-hand side are
not estimated as they are split between the start and the end of the scan.

F = {x̂1 . . . x̂n} are stored in the state vector x̂:

x̂(k) = [x̂V (k), x̂1(k) . . . x̂n(k)]T . (4)

The covariance matrix P describes the covariance of
the vehicle and the features as well as their respective
cross correlations:

P(k) = E([x(k) − x̂(k)][x(k) − x̂(k)]T |Z(k)). (5)

The vehicle’s state x̂V has dimension 9, which defines
the minimum size of the state vector x̂ at the begin-
ning of the execution. The features are represented in
polar coordinates, and therefore the state will be in-
creased by 2 with each new incorporation in the map.

4.1. Map Initialization

When creating a new stochastic map at step 0, a base
local reference frame L must be selected (Figure 12).
In this approach, the initial vehicle position is
chosen to set this base location and thus is initialized
with perfect knowledge. The vehicle’s state xV is rep-
resented as

xV = [
x y z ψ u v w r ψL0

]T
, (6)

where, as defined in Fossen (2002), [x y z ψ] rep-
resent the position and heading of the vehicle in
the local reference frame L and [u v w r] are their
corresponding linear and angular velocities on the
vehicle’s coordinate frame V. The term ψL0 represents
the angle between the initial vehicle heading at step 0

Figure 12. Representation of the different reference coor-
dinate frames.
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(orientation of L) and magnetic north in the earth
global frame E. This term works as a sensor bias and
allows us to initialize the vehicle heading ψ in the lo-
cal frame L, making it possible to use compass mea-
surements (angle to the north in the E frame) for its
estimation as shown in Section 4.4. Assuming that the
vehicle is not moving at step 0, the state is initialized
as

x̂(0) = x̂V (0) =[
0 0 0 0 0 0 0 0 ψ̂L0

]T ;

P(0) = PV (0) =
[

08×8 08×1

01×8 σ 2
ψL0

]
, (7)

where ψ̂L0 takes its value from the first available com-
pass measurement and σ 2

ψL0
is initialized accordingly

with the sensor’s precision. It is worth noting that at
the beginning of the execution, the map does not con-
tain any feature and hence the state x̂ contains only
the vehicle’s state x̂V .

4.2. Prediction

A simple four-degree-of-freedom, constant-velocity
kinematics model is used to predict the state of the
vehicle. Because AUVs are commonly operated de-
scribing rectilinear transects at constant speed during
survey missions, we believe that such a model is a
simple but realistic way to describe the motion:

xV (k) = f [xV (k − 1), sV ], (8)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

y

z

ψ

u

v

w

r

ψL0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x +
(
uT + su

T 2

2

)
cos(ψ)

−
(
vT + sv

T 2

2

)
sin(ψ)

y +
(
uT + su

T 2

2

)
sin(ψ)

+
(
vT + sv

T 2

2

)
cos(ψ)

z + wT + sw
T 2

2

ψ + rT + sr
T 2

2

u + suT

v + svT

w + swT

r + srT

ψL0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k−1)

, (9)

where sV = [su sv sw sr ] represents an acceleration
white noise additive in the velocity with a zero mean
and covariance QV , which is propagated through in-
tegration to the position. On the other hand, as fea-

tures correspond to fixed objects from the environ-
ment, we can assume that they are stationary. Hence,
the whole state can be predicted as

x̂(k|k−1) = {f [x̂V (k−1)] x̂1(k−1) . . . x̂n(k−1)}T
(10)

and its covariance matrix updated as

P(k|k − 1) =
[

FV (k) 0
0 I

]
P(k − 1)

[
FV (k) 0

0 I

]T

+
[

GV (k)
0

]
QV

[
GV (k)

0

]T

, (11)

where FV and GV are the Jacobian matrices of partial
derivatives of the nonlinear model function f with
respect to the state xV and the noise sV , respectively.

4.3. DVL Update

A SonTek Argonaut DVL unit provides bottom track-
ing and water velocity measurements at a frequency
of 1.5 Hz. The unit also includes a pressure sensor al-
lowing depth estimation. The model prediction is up-
dated by the standard KF equations with each new
DVL measurement:

zD = [u
b
v

b
w

b
uw vw ww zdepth]T , (12)

where index b stands for bottom tracking velocity
and w for through water velocity. The measurement
model is

zD(k) = HD(k)x(k) + sD, (13)

HD(k) =
⎡
⎣ 03×3 03×1 I3×3 03×2 03×2n

03×3 03×1 I3×3 03×2 03×2n

0 0 1 0 01×3 01×2 01×2n

⎤
⎦ , (14)

where sD (measurement noise) is a zero-mean white
noise with covariance RD . In some situations, for
instance, while operating close to the bottom or in
confined spaces, the DVL is unable to produce correct
velocity measurements. The bottom tracking mea-
surements are more prone to fail than those with
respect to the water. For this reason, and under the
condition that no water currents are present, the ve-
locities with respect to the water are introduced in
the estimation process. The DVL determines auto-
matically the quality of the received signals and pro-
vides a status measurement for the velocities. Then,
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different versions of the HD matrix are used to fuse
one (removing row 2), the other (removing row 1), or
both (using the full matrix) readings. In the particu-
lar case of the abandoned marina experiment, only
3% of the bottom tracking measurements received a
bad status indicator. Therefore, it was not necessary
to rely on water velocities during the execution.

4.4. Compass Update

A compass provides measurements at a frequency
of 10 Hz. This allows updating the attitude esti-
mate from the model prediction with the standard KF
equations. As can be observed in Figure 12, the com-
pass measurement zC corresponds to the addition of
the heading of the vehicle ψ with respect to the local
reference frame L and the orientation of this frame
ψL0 . The resulting measurement model is

zC(k) = HC(k)x(k) + sC, (15)

HC(k) = [0 0 0 1 0 0 0 0 1 01×2n
], (16)

where sC (measurement noise) is an additive zero-
mean white noise with covariance RC . Working with
compass data can be a difficult task in some situ-
ations. The effect of electromagnetic fields, such as
those produced by the thrusters, and the presence
of large structures with ferromagnetic materials can
considerably distort measurements and render them
unusable. For this reason, it is important to avoid op-
erating close to walls (generally, 1–2 m is sufficient)
and to perform a calibration before each mission. On
the other hand, a compass is an especially useful sen-
sor for SLAM because it provides absolute orienta-
tion measurements, unlike the dead-reckoning sen-
sors normally used in SLAM such as wheel encoders,
gyros, or, in our case, the DVL. The effect of using a
compass is threefold:

1. The error in vehicle orientation will not in-
crease during the SLAM process.

2. Vehicle orientation introduces nonlinearity in
the SLAM problem, so that loss of precision
because of linearization effects will also be
limited.

3. Vehicle orientation errors in a certain step be-
come position errors in future steps. Bounding
the errors in orientation will also result in a re-
duction in the rate of increase of vehicle posi-
tion errors.

Figure 13 shows the evolution of a vehicle’s position
and orientation using the DVL velocity data together
with the rate of turn measurements from gyros (solid
line) and using absolute attitude information from the
compass (dashed line). We can see that the error in
orientation remains constant. There is also a reduc-
tion in the rate of increase of the error in the direction
transverse to the vehicle’s direction of motion.

4.5. Imaging Sonar Beam Arrival

The Tritech Miniking imaging sonar produces beams
at a 10–30-Hz rate, depending on the settings of the
sensor. Each new beam is stored together with the
current vehicle position estimate in a data buffer and
fed to the feature extraction algorithm as shown in
Sections 2 and 3. Eventually, the information added
by a new beam arrival is sufficient to produce a
line feature detection. In this case, the ρ–θ pair ob-
tained is represented in a B frame that is placed in
the sonar head. For the sake of simplicity, let us as-
sume that the transformation between B and the ve-
hicle’s coordinate system is known. Hence, we could
represent a new measurement i with respect to the
vehicle’s frame V as zV

i = [ρV
i θV

i ]T . Of course, the
same transformation should be applied to the covari-
ance matrix obtained from the uncertainty estimation
method. This transformation will result in the covari-
ance matrix Ri . The next step is to solve the data as-
sociation problem; that is, to determine whether the
measured line zV

i corresponds to any of the features
Fj , j = 1 . . . n already existing in the map and should
be used to update the system or, on the contrary, is
new and has to be incorporated into the map. The
result of the data association process is a hypothesis
H = ji associating the measurement zV

i with one of
the map features Fj (ji = 0 indicates that zV

i has no
correspondence with the existing features). Finding
the correct hypothesis is a process involving the anal-
ysis of the discrepancy between the actual line mea-
surement and its prediction. This prediction is ob-
tained from the nonlinear measurement function hj ,
which relates the i measurement with the state vector
x(k) containing the locations of the vehicle and the j

feature:

zV
i (k) = hj [x(k)] + si , (17)[
ρV

i

θV
i

]
=

[
ρj − x cos θj − y sin θj

θj − ψ

]
+ si , (18)
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Figure 13. Estimated position covariance plots (2σ bounds). The data correspond to the first minutes of the abandoned
marina experiment executing the EKF with the updates from dead-reckoning sensors. The results using a cheap inaccurate
gyro sensor are represented with a solid line. The ones using absolute data from a compass are indicated with a dashed
line.

where si , the noise affecting the line feature observa-
tion, is a zero-mean white noise with covariance Ri .
To calculate the discrepancy between the measure-
ment and its prediction, the innovation term νij and
its associate covariance matrix Sij are obtained as

νij (k) = zV
i (k) − hj [x̂(k|k − 1)], (19)

Sij (k) = Hj (k)P(k|k − 1)H(k)Tj + Ri , (20)

where Hj represents the Jacobian matrix that lin-
earizes the nonlinear measurement function hj

around the best available estimation of the state
x̂(k|k − 1). To determine whether the correspondence
is valid, an individual compatibility (IC) test using
the Mahalanobis distance is carried out:

D2
ij = νij (k)T Sij (k)−1νij (k) < χ2

d,α, (21)

where d = dim(hj ) and α is the desired confidence
level. It is possible for multiple hypotheses relating
the measurement with different map features to sat-
isfy the IC test. Then, in order to select the best candi-
date, the nearest neighbor criterion is applied. Finally,
after the correspondence has been decided, it is used

to update the state estimate by means of the EKF up-
date equations:

Kij (k) = P(k|k − 1)Hj (k)T Sij (k)−1, (22)

x̂(k) = x̂(k|k − 1) + Kij (k)νij (k), (23)

P(k) = [I − Kij (k)Hj (k)]P(k). (24)

In case there is no valid hypothesis relating the
measured line with any of the features from the map
(i.e., H = 0), this measurement can be added to the
current state vector as a new feature. However, this
cannot be done directly because this new feature
needs to be represented in the map reference frame.
The change of reference is done by compounding
(Smith et al., 1990; Tardós et al., 2002) the line feature
with the current vehicle position as follows:

x̂(k) =

⎡
⎢⎢⎢⎣

x̂V (k)
x̂1(k)

...
x̂n(k)

⎤
⎥⎥⎥⎦ ⇒ x̂(k)+ =

⎡
⎢⎢⎢⎢⎢⎣

x̂V (k)
x̂1(k)

...
x̂n(k)

x̂V (k) ⊕ zV
i (k)

⎤
⎥⎥⎥⎥⎥⎦ .

(25)
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Augmenting the state vector also requires updating
the estimated error covariance matrix:

P(k) = F(k)P(k)F(k)T + G(k)RiG(k)T , (26)

F(k) =

⎡
⎢⎢⎢⎣

I 0 . . . 0
...

... . . .
...

0 0 . . . I
J1⊕ 0 . . . 0

⎤
⎥⎥⎥⎦ , G(k) =

⎡
⎢⎢⎢⎣

0
...
0

J2⊕

⎤
⎥⎥⎥⎦ , (27)

where J1⊕ and J2⊕ are the Jacobian matrices of the
compounding transformation.

5. SLAM WITH LOCAL MAPS

The main advantages of building sequences of local
maps are the limitation of the cost associated with
the update of a full covariance matrix and the im-
provement of the system’s consistency. In the present
case, an additional advantage is obtained with using
local maps. The parameterization of line features us-
ing polar coordinates is the most adequate approach
for our type of (polar) sensor. However, it is not the
best choice for referencing the features in a large map.
Some issues appear when an observation of a new
feature is translated from the sensor frame to the map
base frame, particularly in those situations in which
the map base and the sensor base are far from each
other, because a small variation in the θ parameter
of a feature with a large ρ value translates in large
changes in Cartesian coordinates. Using local maps
overcomes this issue as their area is smaller and the
reference changes are less critical.

An important restriction of most local mapping
methods is that the local maps must be statistically
independent (no information can be shared between
them) to avoid introducing inconsistency when re-
covering the global map. As a consequence, vehicle
states such as velocities or estimated sensor biases
cannot be transferred between maps. Recently, Piniés
and Tardós (2007) presented a technique that over-
comes this limitation and makes sharing information
between local maps possible, while remaining condi-
tionally independent. This is especially useful in our
case because it allows us to keep information about
the vehicle’s state. This method was chosen to imple-
ment the local map sequencing in the present work.
Although this section summarizes the main charac-
teristics of our particular implementation of the algo-
rithm, a more detailed presentation of the method can
be found in the bibliographic reference mentioned.

5.1. Local Map Building

The local map-building process relies on defining a
set of state variables that are common to two con-
secutive maps. This commonality serves as a link to
transmit the information from one map to the other
while maintaining their conditional independence. In
the application at hand, this link makes it possible to
use the estimates of the vehicle’s velocities and the
compass bias obtained at the end of a map to initial-
ize the next local map. Moreover, after new measure-
ments modify the estimate of these terms, it is also
possible to update their estimated values in the pre-
vious map through back-propagation.

The procedure to build the local maps begins by
initializing the filter presented in Section 4. Then, the
vehicle moves through the scenario, acquiring sensor
information regarding its own state and the position
of existing features. After a certain time period, the
state vector x̂ will contain the current estimate of the
states of the vehicle x̂V as well as the position of sev-
eral map features F = {x1 . . . xn}. At a given instant k,
the current local map is finished and a new one is ini-
tialized by defining a new state x̂ containing only the
current vehicle state x̂V as follows:

x̂(k) = [x̂V (k) Tx̂V (k)]T , (28)

where the first term is a clone of the vehicle’s state
that will serve as a link between the two local maps
and the second term represents the initialization of
the vehicle’s state in the new map after performing
a change of the base reference defined by the linear
transformation function T:

Tx̂V (k) = [
0 0 0 0 u v w r ψ+ψL0

]T
, (29)

T =

⎡
⎢⎣

04×4 04×4 04×1

04×4 I4×4 04×1

0 0 0 1 01×4 1

⎤
⎥⎦ . (30)

This transformation sets the current vehicle location
as the base reference of the new local map, while
its velocity estimates (represented by the vehicle’s
frame) are preserved. It is important to note that the
term of the compass bias is also updated to make in-
tegrating compass measurements with respect to the
new base possible. The resulting state vector has a
dimension of 18. To complete the initialization pro-
cess, the state covariance matrix P has to be set
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accordingly:

P(k) =
[

PV (k) PV (k)TT

TPV (k) TPV (k)TT

]
, (31)

where PV is the submatrix corresponding to the vehi-
cle’s state from the full covariance matrix of the first
map. At this point, the filter is ready to begin the esti-
mation of the new local map using the equations pre-
sented in Section 4. Of course, those equations should
be adapted to the presence of the common state vari-
ables representing the link between the maps.

5.2. Local Map Joining

The map-building procedure will result in a sequence
of local maps with the form

Mi = (x̂i , Pi); with x̂i = [
x̂i−1

V x̂i
1 . . . x̂i

n x̂i
V

]T
.

(32)
Each local map Mi contains the term x̂i−1

V , a copy
of the vehicle’s state at the end of the previous map
Mi−1, which represents the common part connect-
ing the two maps. It also contains a set of features
{x̂i

1 . . . x̂i
n}, which have been added to the state vec-

tor during the generation of the map, and, finally, the
term x̂i

V , which represents the estimate of the vehi-
cle’s state throughout the creation of the map and
whose final value will serve to initialize the Mi+1
local map.

The process of joining local maps into a single
global map is described here using a notation simi-
lar to the one presented in Piniés and Tardós (2007).
Consider two consecutive local maps defined as

MA =
([

x̂A

x̂Ca

]
,

[
PA PACa

PCaA PCa

])
, (33)

MB =
([

x̂Cb

x̂B

]
,

[
PCb PCbB

PBCb PB

])
. (34)

The part common to both maps is represented by x̂Ca ,
which corresponds to the state of the vehicle at the
end of MA, and x̂Cb, which is initialized as an exact
clone of x̂Ca during the creation of the MB map but
evolves because of the updates propagated through
the correlation terms during the generation of MB .
The rest of the information stored in the maps is rep-
resented by x̂A and x̂B . According to the general form
described in Eq. (32), x̂A will contain the common

term representing the link with a previous map and
all the features in MA and x̂B will contain the features
in MB and the estimate of the vehicle’s state at the
end of the map.

The objective of the map-joining process is to ob-
tain a single global map containing the information
from all the local maps. In this example, the global
map is represented by

MAB =
⎛
⎝

⎡
⎣ x̂′

A

x̂Cb

x̂B

⎤
⎦ ,

⎡
⎣ P′

A P′
ACb P′

AB

P′
CbA PCb PCbB

P′
BA PBCb PB

⎤
⎦

⎞
⎠ . (35)

The last two blocks of the global map coincide ex-
actly with MB . (They are up to date.) Therefore, only
the terms related to xA need to be updated (a tilde is
used to denote those terms). This is because the first
map has been updated only with its own measure-
ments but does not contain any information obtained
during the generation of the second map. To trans-
mit the effect of those measurements to the estimates
in the MA map, a back-propagation procedure is car-
ried out:

K = PACaP−1
Ca, (36)

P′
ACb = KPCb, (37)

P′
A = PA + K(P′

CbA − PCaA), (38)

x̂′
A = x̂A + K(x̂Cb − x̂Ca). (39)

Moreover, in order to recover the full covariance ma-
trix of the global map, it is necessary to calculate the
correlation term relating the two local maps:

P′
AB = P′

ACbP−1
CbPCbB, (40)

= KPCbB. (41)

At this point, all the elements in MAB have been de-
termined. It is important to note that this map-joining
procedure is applicable to sequences of more than
two local maps. After each union, the resulting map
still contains the common elements that serve as a
link with the adjacent ones; therefore, the same pro-
cedure can be applied.

Each element from the resulting global map is
still represented in the base frame of the respective
local map. Moreover, it is possible that some features
could have been observed from different local maps
and therefore they are repeated. The final part of this
procedure consists of transforming all the features to
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a common coordinate frame. Data association can be
carried out and, after obtaining the correspondences,
the global map can be updated to produce a better
estimate. In the context of this work, the Joint Com-
patibility Branch and Bound (JCBB) data association
algorithm has been used (Neira & Tardós, 2001) to
obtain the hypothesis relating features from different
local maps. Then, an implicit measurement equation
representing the equivalence between paired features
is used to perform the update (Castellanos & Tardós,
1999).

6. EXPERIMENTAL RESULTS

To test the reliability of the proposed algorithm, we
carried out an extensive experiment in an abandoned
marina on the Costa Brava (Spain). The Ictineu AUV
gathered a data set along a 600-m operated trajec-
tory that included a small loop around the principal
water tank and a 200-m straight path through an out-

going canal. The vehicle moved at about 0.2 m/s,
and the experiment lasted 50 min. The data set in-
cluded measurements from the DVL, the compass,
and the imaging sonar, which was set to a range of
50 m, with a resolution of 0.1 m and 1.8 deg. To mini-
mize the perturbations in the compass, a calibration
was performed before starting the experiment. Be-
cause the bottom was natural and a minimum dis-
tance to the walls was always maintained, the cal-
ibration was not affected by important distortions.
However, to deal with punctual effects, a pessimistic
approach was adopted for the compass uncertainty
model. For validation purposes, the vehicle was oper-
ated close to the surface attached to a global position-
ing system (GPS)–equipped buoy used for registering
the trajectory. Figure 14 represents the trajectory ob-
tained during the generation of the different submaps
(solid black line), which is a good approximation to
the one measured with the GPS (dashed line). In our
implementation, a new local map is started when the
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Figure 14. Sequence of local maps. The SLAM trajectory is represented with a solid line and the GPS with a dashed line.
The circles represent the limits of each local map, and their centers coincide with the corresponding base frames.
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Figure 15. The resulting global map together with the dead-reckoning (dash–dotted line), GPS (dashed line), and SLAM
(solid line) trajectories represented over a satellite image of the scenario.

vehicle is at a distance superior to 75 m from the
map base frame. (These limits appear as circles in
the figure.) This resulted in the creation of five lo-
cal maps whose dimensions made possible a correct
representation of the features in polar coordinates.
The line segments corresponding to the walls were
also obtained by analyzing the overlapping of the
measured line features with their corresponding im-
prints in the thresholded acoustic data. It is impor-
tant to clarify that only the lines are included in the
state vector and hence are estimated with the filter.
The endpoints of the segment should, therefore, be
taken only as an approximation. A remarkable re-
semblance can be observed between the SLAM tra-
jectory estimated during the creation of the different
maps and the reference data from the GPS. At ap-
proximately [−40, 25], a sudden position change ap-
pears as a consequence of reobserving, in the second
local map and after performing a small loop, the fea-
tures at the beginning of the long canal. Given the

shape and dimensions of the scenario and the range
setting of the sonar, the few places where a loop clo-
sure could happen are limited to the principal tank.
The path followed toward the top part of this tank
is split between the two first local maps. Therefore,
the only place where a loop closure could happen is
in the lower part of the tank, when the features at
each side go out of sight. In these loop-closing situ-
ations, a discontinuity is introduced in the trajectory
stored in the sonar data buffer. It is, however, un-
common for such strong position corrections to af-
fect the feature extraction process. The update that
produces this discontinuity generally takes place just
after the complete observation of a feature and dur-
ing the initial moments of the next one. Therefore,
the major part of the new bins introduced into the
buffer will usually be obtained on the already cor-
rected track. It can also be observed how the discrep-
ancy with the GPS data increments when the vehi-
cle moves through the canal. This is mainly caused
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Figure 16. Error plots (2σ bounds) for the resulting estimated trajectory after the local map joining. The GPS data were
used as ground truth.

by the absence of features placed perpendicular to
the direction of the canal axis, which makes the cor-
rection of the errors accumulating in this direction
difficult. The global map and the estimated trajec-
tory (solid line) obtained after the joining are plot-
ted in Figure 15 layered over a satellite image. For
comparison, the GPS trajectory (dashed line) and a
dead-reckoning trajectory (dot–dashed line) obtained
by executing the filter with only the measurements
from the DVL and the compass are also represented.
As can be observed, the dead-reckoning data suffer
from an appreciable drift (even causing the trajectory
to go outside the canal), whereas the SLAM estimated
trajectory follows the GPS track with considerable
precision. The resulting map is also a good approxi-
mation, matching almost perfectly with the real po-
sition of the marina’s boundaries. A problem with
the position of a feature is observed in the upper-left-
hand part of the map. This effect is due to the sim-
ilarity between the two intersecting lines. The small
intersection angle makes it difficult for the feature
extraction to discern between the two lines and, even-
tually, they are interpreted as a single (slightly dis-
torted) one. Of course, this also affects the measure-
ment of the segment endpoints, as it makes it difficult
to determine the overlapping with the thresholded

data and tends to make longer segments. Some mi-
nor problems with the measurement of the segment
endpoints are also observed in the small channel en-
trance in the lower-left-hand part of the map. They
mainly appear because of the polar parameterization
used in the line features, which, in some particular
situations, produces a misplacement of the segment
endpoints. Figure 16 represents the error plots for the
resulting estimated trajectory obtained after produc-
ing the local map. The GPS data were used as the
ground truth. As can be seen, the error is contained
within the 2σ limits, confirming the correct opera-
tion of the SLAM. Additional results validating the
algorithm are shown in Figure 17, which reproduces
two acoustic images generated by placing the sonar
measurements from the complete data set according
to the dead-reckoning and the SLAM estimated tra-
jectories. An averaged representation of all the over-
lapping scans was used; therefore, one can expect the
diffuse appearance shown on the dead-reckoning im-
age as a result of the dispersion induced by the erro-
neous trajectory. On the other hand, using the SLAM
trajectory provides a more accurate placement of the
measurements that results in a sharper image. Only
the acquisition of the sensor data was performed in
real time by the computers onboard the Ictineu. This
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Figure 17. Acoustic map obtained after an averaged composition of the sonar readings along the dead-reckoning estimated
trajectory (left) and the SLAM estimated trajectory (right).

SLAM approach was implemented on Matlab and
executed offline on an ordinary desktop computer.
The execution time is shorter than the duration of the
real experiment. We assume that a more optimized
implementation should be able to operate onboard.

7. CONCLUSIONS AND FURTHER WORK

An algorithm to perform SLAM in partially struc-
tured underwater environments has been presented.
It takes advantage of walls and other planar struc-
tures typically present in some scenarios of inter-
est, in which reliable line features from acoustic im-
ages can be extracted. The main contributions of this
work include a feature extraction method capable of
working with the continuous stream of data from the
MSIS while dealing with the distortions induced by
the vehicle movement in the acoustic images, a new
method for estimating their uncertainty, and the ap-
plication domain with experimental results support-
ing the viability of the proposal. Moreover, the EKF–
SLAM algorithm has been complemented with the
implementation of a local map-building method that
makes possible sharing information between maps
while maintaining their independence. An additional
contribution that complements this work is the pub-
lication of the marina data set that includes logs from
the MSIS, DVL, compass, and GPS sensors. The data
set can be downloaded from Ribas (2006).

Further work can be done to improve the fea-
ture representation in the state vector by substituting
the current ρ–θ parameterization for a more reliable
approach such as the SP-map (Castellanos & Tardós,
1999). This SLAM approach will also benefit from the
integration of additional types of features. The pre-

sented algorithm can be adapted to extract any other
kind of features susceptible to parameterization, for
instance, the detection of point features representing
corners in the intersection of two walls. Of course, the
possibility of building local maps also opens the door
to mapping larger environments and also further im-
provements such as multirobot SLAM. All these im-
provements should conclude with the testing of the
algorithm in more challenging environments.
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