
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON ROBOTICS 1

Divide and Conquer: EKF SLAM in O(n)
Lina M. Paz, Member, IEEE, Juan D. Tardós, Member, IEEE, and José Neira, Member, IEEE

Abstract—In this paper, we show that all processes associated
with the move-sense-update cycle of extended Kalman filter (EKF)
Simultaneous Localization and Mapping (SLAM) can be carried
out in time linear with the number of map features. We describe
Divide and Conquer SLAM, which is an EKF SLAM algorithm
in which the computational complexity per step is reduced from
O(n2) to O(n), and the total cost of SLAM is reduced from
O(n3) to O(n2). Unlike many current large-scale EKF SLAM
techniques, this algorithm computes a solution without relying on
approximations or simplifications (other than linearizations) to re-
duce computational complexity. Also, estimates and covariances
are available when needed by data association without any fur-
ther computation. Furthermore, as the method works most of the
time in local maps, where angular errors remain small, the effect
of linearization errors is limited. The resulting vehicle and map
estimates are more precise than those obtained with standard EKF
SLAM. The errors with respect to the true value are smaller, and
the computed state covariance is consistent with the real error in
the estimation. Both simulated experiments and the Victoria Park
dataset are used to provide evidence of the advantages of this algo-
rithm.

Index Terms—Computational complexity, consistency, linear
time, precision, simultaneous localization and mapping (SLAM).

Manuscript received August 9, 2007; revised April 15, 2008. This work was
supported in part by the European Union under Project RAWSEEDS FP6-IST-
045144 and in part by the Dirección General de Investigación of Spain under
Project SLAM6DOF DPI2006-13578. Preliminary versions of this work were
published in the Proceedings of the 2007 International Conference on Robotics
and Automation, Rome, Italy, April 2007, pp. 1657–1663 and presented at the
2007 Robotics: Science and Systems Conference, Atlanta, GA, June 2007. This
paper was recommended for publication by Associate Editor W. Burgard and
Editor L. Parker upon evaluation of the reviewers’ comments.

The authors are with the Instituto de Investigación en Ingenierı́a de Aragón,
Universidad de Zaragoza, Zaragoza E-50018, Spain (e-mail: linapaz@unizar.es;
tardos@unizar.es; jneira@unizar.es).

This paper has supplementary downloadable multimedia material avail-
able at http://ieeexplore.ieee.org. provided by the author. This material in-
cludes three AVI videos dcslam_loop.avi, dcslam_xvid_lawn.avi, and dcslam_
xvid_spiral.avi that show the execution of both EKF SLAM and D&C SLAM
for the same sample data using three simulated experiments: loop closing, lawn
mowing, and outward spiral. The D&C SLAM process is based on building a
sequence of independent local maps that are represented with different colors.
Local maps of the same size are joined by following a hierarchical maps struc-
ture. The frames have been time stamped so that the actual running times of the
algorithms in our Matlab implementation are shown for comparison. The video
dcslam_xvid_victoria.avi shows the execution of both EKF SLAM and D&C
SLAM for the Victoria Park data set. Each algorithm solves data association
on its own. This allows seeing when the estimator falls out of consistency pre-
cisely because data association starts to fail; there are some minor differences
due to missed associations in the case of EKF. In this experiment, the total
cost of D&C SLAM is one fifth of the total cost of standard EKF, (130.24s on
a 2.8 GHz Pentium IV, compared to 590.48s for EKF SLAM). The videos
dcslam_xvid_loop.avi, dcslam_xvid_lawn.avi, dcslam_xvid_spiral.avi, and
dcslam_xvid_victoria.avi, all in the file dcslam_videos.zip have been tested
on: VLC media plater: http://www.videolan.org, and Windows Media Player
with xvid codec from: http//www.xvid.org/. The size of the video is not avail-
able. Contact linapaz@unizar.es for further questions about this paper.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.org.

Digital Object Identifier 10.1109/TRO.2008.2004639

I. INTRODUCTION

THE SIMULTANEOUS Localization and Mapping
(SLAM) problem deals with the construction of a model of

the environment being traversed with an onboard sensor, while
at the same time maintaining an estimation of the sensor loca-
tion within the model [3], [4]. Solving SLAM is not only central
to the effort of conferring real autonomy to robots and vehi-
cles, but also opens possibilities in applications where a sensor
moves with 6 DOF, such as augmented reality. SLAM has been
the subject of much attention since the seminal work in the late
1980s [5]–[8].

The most popular solution to SLAM considers it a stochastic
process in which the Extended Kalman Filter (EKF) is used
to compute an estimation of a state vector x representing the
sensor and environment feature locations, together with the co-
variance matrix P representing the error in the estimation. Most
processes associated to the move-sense-update cycle of EKF
SLAM are linear in the number of map features n: vehicle
prediction and inclusion of new features [9], [10]. The excep-
tion is the update of the covariance matrix P of the stochastic
state vector that represents the vehicle and map states, which is
O(n2). The EKF solution to SLAM has been used successfully
in small-scale environments; however, the O(n2) computational
complexity limits the use of EKF SLAM in large environments.
This has been a subject of much interest in research. Postpone-
ment [11], the Compressed EKF Filter [10], the Sparse Weight
Kalman filter [12], and Map Joining SLAM [13] are alterna-
tives that work on local areas of the stochastic map and are
essentially constant most of the time, although they require pe-
riodical O(n2) updates. Given a certain environment and sensor
characteristics, an optimal local map size can be derived to min-
imize the total computational cost [14]. Recently, researchers
have pointed out the approximate sparseness of the informa-
tion matrix Y, the inverse of the full covariance matrix P. This
suggests using the extended information filter, the dual of the
extended Kalman filter, for SLAM updates. The Sparse Ex-
tended Information Filter (SEIF) algorithm [15] approximates
the information matrix by a sparse form that allows O(1) up-
dates on the information vector. Nonetheless, data association
becomes more difficult when the state and covariance matrix are
not available, and the approximation can yield overconfident es-
timations of the state [16]. This overconfidence is overcome by
the Exactly Sparse Extended Information Filter (ESEIF) [17]
with a strategy that produces an exactly sparse information ma-
trix with no introduction of inaccuracies through sparsification,
but discarding odometry information.

The Thin-Junction Tree filter algorithm [18] works on the
Gaussian graphical model represented by the information ma-
trix, and achieves high scalability by working on an approxima-
tion, where weak links are broken. The Treemap algorithm [19]

1552-3098/$25.00 © 2008 IEEE

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2 IEEE TRANSACTIONS ON ROBOTICS

is a closely related technique: in cases where there are many
overlapping features, an optional optimization uses a weak link
breakage policy. Recently, the Exactly Sparse Delayed State fil-
ter [20] and Square Root Smoothing and Mapping (SAM) [21]
provided the insight that the full SLAM problem, the complete
vehicle trajectory plus the map, is sparse in information form
(although ever increasing) allowing the use of sparse linear al-
gebra techniques. The Tectonic SAM algorithm [22] provides a
local mapping version to reduce the computational cost. How-
ever, the method remains a batch algorithm and covariance is
not available to solve data association. The fast incremental
Smoothing and Mapping (iSAM) algorithm [23] addresses the
data association problem by recovering the exact covariance
using QR-factorization on the information matrix. The authors
report that iSAM is real time for the Victoria Park dataset (al-
though EKF SLAM is also real time for this dataset).

A second important limitation of standard EKF SLAM is the
effect that linearizations have in the precision and consistency
of the final vehicle and feature estimates. Linearizations intro-
duce errors in the estimation process that reduce precision and
can render the result inconsistent, in the sense that the com-
puted state covariance does not represent the real error in the
estimation [24]–[26]. Among other things, this complicates data
association, which is based on contrasting predicted feature lo-
cations with observations made by the sensor. Thus, important
processes in SLAM like loop closing are complicated. All al-
gorithms for EKF SLAM based on efficiently computing an
approximation of the EKF solution will inevitably suffer from
this consistency problem [18], [19]. The Unscented Kalman fil-
ter [27] avoids linearizations via a parameterization of means
and covariances through selected points to which the nonlinear
transformation is applied. Unscented SLAM has been shown
to have improved consistency properties [28]. These solutions
however ignore the computational complexity problem.

In this paper, we describe Divide and Conquer SLAM (D&C
SLAM), an EKF SLAM algorithm that overcomes these two
fundamental limitations.

1) The computational cost per step is reduced from O(n2) to
O(n); the total cost of SLAM is reduced from O(n3) to
O(n2).

2) The resulting vehicle and map estimates are more precise
than with standard EKF SLAM and the computed state
covariance more adequately represents the real error in
the estimation.

Unlike many current large-scale EKF SLAM techniques, this
algorithm computes a solution without relying on approxima-
tions or simplifications (other than linearizations) to reduce
computational complexity. Also, estimates and covariances are
available when needed by data association without any further
computation. The Victoria Park dataset is used to test this algo-
rithm. It produces better results than other state of the art SLAM
methods [23], [29] for this dataset.

In a recent paper [30], the authors prove that convergence
properties known to hold for linear EKF SLAM [31] hold for
nonlinear EKF SLAM only when Jacobians (and thus lineariza-
tions) are computed around the ground truth solution, which is,
in general, unfeasible. It is also proven that the use of Jacobians

computed around the estimated value may result in overconfi-
dent estimates. In particular, when the robot orientation uncer-
tainty is large, the extent of inconsistency is significant. Like-
wise, when the robot orientation uncertainty is small, the extent
of inconsistency is insignificant. The authors point out that since
the robot orientation error is the main source of inconsistency, al-
gorithms that use local submapping, where the robot orientation
error remains small, have the potential to improve consistency.
Here, we confirm the consistency improvement offered by one
of such local submapping algorithms.

This paper is organized as follows. In Section II, we briefly
review the standard EKF SLAM algorithm and its computa-
tional properties. We also discuss other recent alternative al-
gorithms, based on local mapping, with reduced computational
cost. In Section III, we describe the D&C SLAM algorithm and
study its computational cost as well as its consistency proper-
ties in comparison with EKF SLAM and map joining SLAM.
In Section IV, we compare the computational cost, precision
and consistency of EKF SLAM and D&C SLAM using simu-
lated experiments. In Section V we analyze the computational
cost of continuous data association in EKF SLAM, and describe
the Randomized Joint Compatibility (RJC) algorithm for carry-
ing out data association in D&C SLAM also in linear time. In
Section VI, we use the Victoria Park dataset to carry out an ex-
perimental comparison between EKF SLAM and D&C SLAM.
Finally, in Section VII, we draw the main conclusions of this
paper.

II. EKF SLAM ALGORITHM

The EKF SLAM algorithm (see Algorithm 1) has been widely
used for mapping and localization. Several authors have de-
scribed the computational complexity of this algorithm [9], [10].
With the purpose of comparing EKF SLAM with the proposed
D&C SLAM algorithm, in this section, we briefly analyze the
computational complexity of EKF SLAM.

A. Computational Complexity of EKF SLAM

For simplicity, assume that in the environment being mapped,
features are distributed more or less uniformly. If the vehicle is
equipped with a sensor of limited range and bearing, the amount
of measurements obtained at any location will be more or less
constant. Assume that at some step k, we have the following:

1) The map contains n features.
2) The sensor provides m measurements.
3) r of these measurements correspond to reobserved

features.
4) s = m − r, correspond to new features.
In an exploratory trajectory, r and s remain constant. There-

fore, the size of the map is proportional to the number of steps
that have been carried out.

1) Computational Cost Per Step: the computational com-
plexity of carrying out the move-sense-update cycle of algorithm
ekf slam at step k involves the following:

a) computing the predicted map x̂k |k−1 ,Pk |k−1 , which re-
quires obtaining the corresponding Jacobians Fk ,Gk also;

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

PAZ et al.: DIVIDE AND CONQUER: EKF SLAM IN O (n) 3

b) solving data association (the complexity of data associa-
tion is analyzed in Section V);

c) computing the updated map x̂k ,Pk , which requires
the computation of the corresponding Jacobian Hk , the
Kalman gain matrix Kk , as well as the innovation νk , and
its covariance Sk .

The fundamental fact regarding computational complexity in
standard EKF SLAM is that, given a sensor of limited range
and bearing, Jacobians matrices are sparse [9], [10], [21]: their
computation is O(1). But more importantly, since they take part
in the computation of both the predicted and updated maps, the
computational cost of (1)–(6) can also be reduced. Consider as
an example the innovation covariance matrix Sk in (2). Without
considering sparseness, the computation of this r × r matrix
would require rn2 + r2n multiplications and rn2 + r2n + r2

sums, i.e., O(n2) operations. But given that matrix Hk is
sparse, with an effective size of r × c, the computation requires
rcn + r2c multiplications and rcn + r2c + r2 sums, i.e., O(n)
operations (see Fig. 1, top). Similar analysis leads to the con-
clusion that the cost of computing both the predicted covariance
Pk |k−1 and the Kalman gain matrix Kk is O(n), and that the
greatest cost in an EKF SLAM update is the computation of the
covariance matrix Pk , which is O(n2). Thus, the computational
cost per step of EKF SLAM is quadratic on the size of the map

CEKF ,k = O(n2). (7)

2) Total Computational Cost: Considering the earlier as-
sumptions, during an exploratory trajectory, a constant number
of s new features are added to the map at each step. Thus, to
map an environment of size n, n/s steps are required, and the
total cost of EKF SLAM will be

CEKF =
n/s∑
k=1

O((k s)2) =
n/s∑
k=1

O(k2).

Fig. 1. (Top) Computation of the innovation covariance Sk matrix. Given that
the effective size of the Jacobian matrix Hk is r × c, the computation requires
O(n) operations (rcn + r2 c multiplications and rcn + r2 c + r2 sums). In
a similar way, (middle) the computations of the Kalman gain Kk matrix re-
quires O(n) operations and (bottom) the covariance matrix Pk requires O(n2)
operations.

The square power summation is known to be

j∑
i=1

i2 =
j(j + 1)(2j + 1)

6
.

Thus, the total cost of EKF SLAM is cubic

CEKF = O

(
(n/s)(n/s + 1)(2n/s + 1)

6

)

= O

(
n3

s3

)

= O(n3). (8)

In general, the rate at which a map grows depends on the
trajectory that the vehicle follows and the density of features
in the environment. During exploration, the number of features
in the current map will grow linearly, but when the vehicle
returns retracing its steps, the map size will remain more or less
constant. In these cases, the cost of updating the map is still
O(n2) with the size of the map, but since n does not increase,
the total cost may be less than cubic.

B. Local Mapping Algorithms

Local mapping techniques have been proposed as computa-
tionally efficient alternatives to EKF SLAM. Instead of working
on a full global map all the time as EKF SLAM does, a sequence

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 IEEE TRANSACTIONS ON ROBOTICS

of local maps of limited size is produced. When the size of
the current local map reaches some limit, the map is closed
and stored, and a new local map is created. This allows us to
maintain the computational cost constant most of the time while
working on the current local map. Algorithms based on this idea
include suboptimal or approximate solutions such as Decoupled
Stochastic Mapping (DSM) [32], Constant Time SLAM (CTS)
[33], the ATLAS framework [34], and Hierarchical SLAM [35].
These algorithms sacrifice precision in the resulting estimation
of the map in order to maintain the computational cost linear in
the size of the map at worst.

There are alternative solutions that do not carry out approxi-
mations, such as Map Joining SLAM [13] and the Constrained
Local Submap Filter [36]. Given that we are interested in algo-
rithms that do not sacrifice precision in order to limit compu-
tational cost, we concentrate on these two. Map Joining SLAM
(and similarly, the constrained local submap filter) is an EKF-
based algorithm in which a sequence of independent local maps
of a limited size p is produced using the standard EKF SLAM al-
gorithm. Map independence is guaranteed by construction: once
the current local map is closed, a new local map is initialized
with zero covariance using the current vehicle pose as the base
reference for the new map. These local maps are later fused us-
ing a map joining procedure to produce a single final stochastic
map. Algorithm 2 details the map joining procedure. For two
consecutive local maps mi, ..., j and mj, ..., k , computed in steps
i, . . . , j and j, . . . , k, respectively, map joining computes the
resulting map mi, ..., k for all steps i, . . . , k in the following
way:

1) Both maps are simply stacked together, with the features
of each in each local base reference. Due to map indepen-
dence, the cross-covariance between both maps is zero.

2) Data association is carried out to find common features
between both maps.

3) Using a modified version of the EKF update equations the
map is optimized by fusing common features.

4) All features are transformed to the base reference of the
first map.

A more detailed explanation of this procedure and its notation
can be found in the Appendix. It is worth noting that map joining
SLAM never revisits a prior local map. Instead, a new local map
is created, which will be joined later with the previous map to
obtain a global map that includes all available information.

An analysis similar to that of Fig 1 shows that for local maps
of limited size, the computational cost of map joining SLAM is
O(n2) on the size of the resulting global map, again being the
most expensive operation the update of the covariance matrix
P. However, map joining takes place only when a given local
map has reached its limit size. In all other steps, only a local
map is being updated, with a computational cost of O(1).

Algorithm 3 carries out Map Joining SLAM: ekf slam is
used to compute a local map mk of a given limit size (or for
a given limited number of steps). This local map is joined to a
global map m by means of the join function in a sequential
fashion. The process continues until the environment is com-
pletely covered.

III. DIVIDE AND CONQUER ALGORITHM

Instead of joining each new local map to a global map se-
quentially, as map joining SLAM does, the algorithm proposed
in this paper, Divide and Conquer SLAM, carries out map join-
ing in a hierarchical fashion, as depicted in Fig. 2. The lower
nodes of the hierarchy represent the sequence of l local maps
of minimal size p, computed with standard EKF SLAM. These
maps are joined pairwise to compute l/2 local maps of double
their size (2p), which will in turn be joined pairwise into l/4
local maps of size 4p, until finally two local maps of size n/2
will be joined into one full map of size n, the final map size.
D&C is implemented using Algorithm 4, which uses a stack
to save intermediate maps. Whenever two maps of around the
same size are at the top of the stack, they are replaced in the
stack by their join. This allows a sequential execution of D&C
SLAM.

A. Total Computational Complexity of D&C SLAM

In D&C SLAM, the process of building a map of size n
produces l = n/p maps of size p (not considering overlap), at
cost O(p3) each [see (8)], which are joined into l/2 maps of
size 2p, at cost O((2p)2) each. These in turn are joined into l/4
maps of size 4p, at cost O((4p)2) each. This process continues
until two local maps of size n/2 are joined into one local map

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

PAZ et al.: DIVIDE AND CONQUER: EKF SLAM IN O (n) 5

Fig. 2. Hierarchy of maps that are created and joined in D&C SLAM. The
lower level is the sequence of l local maps of size p computed with standard EKF
SLAM, as the arrow suggests. The intermediate levels represent intermediate
joins during the process. The top level represents the final map of size n resulting
from the join of two local maps of size n/2.

of size n, at a cost of O(n2). Map joining SLAM and D&C
SLAM carry out the same number of map joining operations.
The fundamental difference is that in D&C SLAM, the size of
the maps involved in map joining increases at a slower rate than
in Map Joining SLAM. As shown next, this allows the total cost
to remain quadratic with n.

The total computational complexity of D&C SLAM is

CDC = O

(
p3 l +

log2 l∑
i=1

l

2i
(2i p)2

)

= O

p3n/p +

log2 n/p∑
i=1

n/p

2i
(2i p)2

= O

p2n +

log2 n/p∑
i=1

p
n

2i
(2i)2

= O

p2n + p n

log2 n/p∑
i=1

2i

 .

Note that the sum represents all costs associated to map join-
ing. This corresponds to the sum of a geometric progression of
the type

k∑
i=1

ri =
r − rk+1

1 − r
.

Thus, in this case

CDC = O

(
p2n + p n

2log2 n/p+1 − 2
2 − 1

)

= O

(
p2n + p n

(
2n

p − 2

))

= O
(
p2n + 2n2 − 2pn

)
= O(n2). (10)

This means that D&C SLAM performs SLAM with a total cost
quadratic with the size of the environment, as compared with
the cubic cost of standard EKF SLAM. This corresponds to the
normal exploration operation. In the worst-case scenario, when
the overlap between the maps to be joined is full (i.e., if the
robot traverses the whole map for a second time), the cost of
map joining will be cubic, the same as EKF SLAM.

B. Computational Complexity of D&C SLAM Per Step

In D&C SLAM, in steps that are a power of 2, when k =
2t , t joins will take place, at a cost O(22), O(42), . . . , O(k2),
respectively. An analysis similar to that of (10) shows that the
total cost of such steps is O(k2), which is of the same order
as a standard EKF SLAM step. However, in D&C SLAM, the
map to be generated at step k will not be required for joining
until step 2k. This allows us to amortize the cost O(k2) at this
step by dividing it up between steps k + 1 to 2k in equal O(k)
computations for each step. In this way, amortized D&C SLAM
becomes a linear-time SLAM algorithm.

An amortized version of D&C SLAM can be implemented
using two concurrent threads: one high-priority thread executes
ekf slam (Algorithm 1) to update the current local map, and
the other low-priority thread executes dc slam (Algorithm 4).
In this way, all otherwise idle time in the processor will be used
for the more costly map joining operations, but high priority
is given to local mapping, allowing for real-time execution of
D&C SLAM.

As we will see in the Monte Carlo simulations and the exper-
iments, the amortized cost of D&C SLAM is always lower than
that of EKF SLAM. If at any moment during the map build-
ing process, the full map is required for another task, it can be
computed in a single O(n2) step.

IV. SIMULATED EXPERIMENTS

We use four simulated scenarios (see Fig. 3) to illustrate
the properties of the algorithms discussed in this paper. In an
environment that consists of equally spaced point features, a

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6 IEEE TRANSACTIONS ON ROBOTICS

Fig. 3. Four simulated experiments for comparing the EKF, Sequential Map Joining and D&C SLAM algorithms. (First column) Straighforward trajectory;
(second column) loop closing; (third column) lawn mowing; (fourth column) outward spiral. (Top row) Ground truth environment and trajectory. (Second row)
Execution time per step of EKF versus Map Joining versus D&C SLAM. (Third row) Total execution time. (Bottom row) Execution time per step of EKF SLAM
versus amortized execution time per step of D&C SLAM.

vehicle equipped with a range and bearing sensor carries out
four different trajectories: a straight line, a square loop, lawn
mowing, and outward spiral (first, second, third, and fourth
columns, respectively). The simulated experiments were carried
out with known data association for the evaluated algorithms,
in order to discard mismatching effects in the resulting perfor-
mance of the estimators. The first row shows the environment
and each of the trajectories. The second and third rows show
the execution time per step and the total execution time, re-
spectively. It can be seen that the total cost of D&C SLAM
quickly separates from the total cost of EKF SLAM, and also
from the Map Joining SLAM. The reason is that the computa-
tional cost per step of D&C SLAM is lower than that of EKF
SLAM most of the time. EKF SLAM works with a map of
nondecreasing size, while D&C SLAM works on local maps

of small size most of the time. Map joining SLAM is compu-
tationally equivalent to D&C SLAM when working on local
maps. In steps that are a power of two, the computational cost
of D&C is higher. In those steps, one or more map joining op-
erations take place (in steps 2t , t map joining operations take
place). The accompanying AVI videos dcslam xvid loop.avi,
dcslam xvid lawn.avi and dcslam xvid spiral.avi (available at
http://ieeexplore.ieee.org) show the execution of both EKF
SLAM and D&C SLAM for the same sample data. The
frames have been time stamped so that the actual running
times of the algorithms in our Matlab implementation are
shown.

Fig. 3 (bottom row) shows the amortized cost per step for the
four simulated experiments. We can see that the amortized cost
of D&C SLAM is always lower than that of EKF SLAM.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

PAZ et al.: DIVIDE AND CONQUER: EKF SLAM IN O (n) 7

Fig. 4. (Top) Mean consistency index CI of (13) and (bottom) root-mean-squared error for the (left) robot x–y position and (right) orientation for standard EKF
and D&C SLAM. The root-mean-square error is always smaller for D&C SLAM; also, the computation of the variance of the error is more precise, and thus, the
estimation always remains consistent. The EKF and D&C theoretical uncertainties coincide over all steps. Also, D&C computed uncertainty superimposes the
latter two.

A. Consistency and Precision in Divide and Conquer SLAM

Apart from computational complexity, another important as-
pect of the solution computed by the EKF has gained attention
recently: map consistency and precision. When the ground truth
solution x for the state variables is available, a statistical test for
filter consistency can be carried out on the estimation (x̂, P), us-
ing the Normalized Estimation Error Squared (NEES), defined
as

D2 = (x − x̂)T P−1 (x − x̂) . (11)

Consistency is checked using a chi-square test:

D2 ≤ χ2
r,1−α (12)

where r = dim(x) and α is the desired significance level (we
consider the usual α = 0.05). If we define the consistency index
of a given estimation (x̂, P) with respect to its true value x as

CI =
D2

χ2
r,1−α

(13)

when CI < 1, the estimation is consistent with ground truth,
and when CI > 1, the estimation is inconsistent (optimistic)
with respect to ground truth. Thus, CI measures how precise
the computed covariance is with respect to the real error, while
precision can be simply computed as the root of the squared
difference with ground truth.

We tested consistency of both standard EKF and D&C SLAM
algorithms by carrying out 100 Monte Carlo runs on the sim-
ulated experiments. Simulation allows us to have ground truth
available. Additionally, Monte Carlo runs allow to obtain sta-
tistically significant evidence about the consistency of the algo-
rithms being compared.

Fig. 4 (top) shows the evolution of the mean consistency
index of the vehicle position (left) and orientation (right) during
all steps of the straight forward trajectory simulation. We can
see that the D&C estimate on vehicle location is always more
consistent than the standard EKF estimate; in less than 100 steps,
EKF falls out of consistency while D&C remains consistent.
Fig. 4 (bottom) shows the evolution of the root-mean-square
error on the vehicle position and orientation. The 2σ bounds

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8 IEEE TRANSACTIONS ON ROBOTICS

Fig. 5. (Top) Typical result when running EKF SLAM and (bottom) D&C
SLAM on the same data. The vehicle and map features tend to accumulate
more error during exploration with EKF SLAM. Even if data association is
known, the final result after closing a loop is less precise. The absolute vehicle
location estimates are shown when available from each algorithm. Ground truth
environment and trajectory are shown in red.

for the theoretical uncertainty are computed by running the
simulated experiment without measurement and robot noise, so
that linearizations take place in the true state values, and thus,
introduce no errors. The computed uncertainty of both standard
EKF and D&C SLAM are also drawn. We can see how the
RMS error increases more slowly in the case of D&C SLAM.
We can also see the fast rate at which the uncertainty computed
by standard EKF SLAM falls below its theoretical value.

Monte carlo runs show that Divide and Conquer SLAM is
less subject to linearization errors than EKF SLAM. Fig. 5
shows a typical situation: the two algorithms run on exactly
the same data of a loop closure (the accompanying video
dcslam xvid loop.avi shows the execution of the two algo-
rithms for the same data). Because of less accumulated error,

and thus, better linearizations, the final result is much more pre-
cise for D&C SLAM (data association is known and used in
both algorithms).

V. DATA ASSOCIATION FOR DIVIDE AND CONQUER SLAM

A. Data Association for Standard EKF SLAM

The data association problem in continuous EKF SLAM con-
sists in producing a hypothesis H = [j1 , j2 , . . . , ji . . . , jm],
where correspondences are established between each of the
i = 1, . . . , m sensor measurements and one (or none) of the
j = 1, . . . , n map features. The space of measurement-feature
correspondences can be represented by an interpretation tree
of m levels [37]. Each node of the tree at level i has n + 1
branches, corresponding to the n alternative feature pairings for
measurement i, and an extra node (star-branch) to account for
the possibility of the measurement being spurious or a new fea-
ture. The size of this correspondence space, (i.e., the number of
alternative hypotheses) in which data association must be solved
is exponential with the number of measurements: (n + 1)m .

Fortunately, the availability of a stochastic model for both
the map and the measurements allows us to check each
measurement-feature correspondence for individual compati-
bility by predicting the location of the map features relative to
the sensor reference and determine compatibility using a hy-
pothesis test on the innovation and covariance of each possible
pairing.

The discrepancy between the observation i and the predicted
observation of map feature j is measured using the innovation
term of (5) and its covariance (2). The measurement can be con-
sidered corresponding to the feature if the Mahalanobis distance
D2

k,ij satisfies [38]

D2
k,ij = νT

k,ijS
−1
k,ij νk,ij < χ2

d,1−α (14)

where d = dim (hk,j) and 1 − α is the desired confidence level,
usually 95%.

In standard EKF SLAM, and for a sensor of limited range
and bearing, the number of measurements m is constant, and
thus, individual compatibility is O(nm) = O(n), linear on the
size of the map. This cost can be easily reduced to O(m), a
constant, by a simple tessellation or grid of the map computed
during map building, which allows us to determine candidates
for a measurement in constant time simply by checking the grid
element and nearby grid elements in which its predicted location
falls. In 2-D problems, the cost of computing and updating the
tessellation would be constant per step (a constant amount of
new features are included in the map per step), while the space
required would be proportional to the total area covered by the
map and the resolution of the tessellation.

In cases where clutter or vehicle error are high, there may be
more than one possible correspondence for each measurement.
More elaborate algorithms are required to disambiguate in these
cases. Nevertheless, the overlap between the measurements and
the map is the size of the sensor range plus the vehicle uncer-
tainty, and thus, more or less constant. In local mapping, after in-
dividual compatibility is sorted out, we use the Joint Compatibil-
ity Branch and Bound (JCBB) algorithm [39] (see Algorithm 5)

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

PAZ et al.: DIVIDE AND CONQUER: EKF SLAM IN O (n) 9

to disambiguate between the possible associations for the m
measurements. It has been shown that algorithms such as JCBB,
based on a probabilistic model (feature estimates and covari-
ances), can greatly increase the robustness of data association,
even when other measurement properties are available. For in-
stance, in the case of monocular SLAM, the combined use of
texture-based matching and stochastic compatibility tests has
proved critical to reject outliers, especially from repetitive pat-
terns and dynamic objects [40]. JCBB performs branch and
bound search on the interpretation tree looking for jointly com-
patible correspondences, but only in the overlap determined by
individual compatibility. Given that this is a region of the map
of constant size, each measurement will have a more or less con-
stant number of feature candidates, say c, and thus, the solution
space is constant: (c + 1)m . In this way, JCBB will execute in
constant time.

B. Data Association for Divide and Conquer SLAM

Data association in D&C SLAM is a very particular prob-
lem because it involves finding correspondences between two
local maps of similar size whenever joining is to take place. For
instance, before obtaining a final map of size n, the data associ-
ation problem has to be solved between two maps of size n/2,
and so, computing individual compatibility would be O(n2)
instead of O(n). Fortunately, as in the case of individual com-
patibility for standard EKF SLAM, finding potential matches
for one feature in another map can be done in constant time
using a simple tessellation or grid in the map where the search
is done. Consider the example in Fig. 6. The red trajectory and
features correspond to the first local map built, and the blue
trajectory and features correspond to the second local map. In-
dividual compatibility may be done in a way similar to standard
EKF SLAM: we predict the location of features in the first (red)
map relative to the base reference of the second (blue) map,
and check for possible correspondences with blue features. If
the blue map is tessellated, we can find potential matches for
a red feature in constant time, and for the whole red map in

Fig. 6. Tessellation to compute individual compatibility between two local
maps of similar size. The second (blue) map is tessellated using a grid. Red
ellipses represent the uncertainties of the predicted features of the first local map
with respect to the base reference of the second. The ellipses are approximated
by windows, and in this way, possible candidates (asterisks) for each red feature
can be found in constant time. The robot trajectory is also shown for each local
map with the corresponding color.

linear time. The cost of computing and updating the tessellation
is constant per step, while the space required is proportional to
the total area covered by each map. Alternative solutions, such
as 2-D priority kd-trees [41], can be used to make the storage
space required to be O(n log n) on the number of map features,
instead of being dependent on the covered area as the tessel-
lation is. There is, however, a higher cost involved in finding
a potential match per feature, O(log n), and an update cost of
O(log n) per new feature.

A second issue of importance is the size of the region of
overlap between two local maps. While in standard EKF SLAM,
this region is constant, and thus, data association algorithms like
JCBB will execute in constant time, in D&C SLAM, the size
of the overlap is not always constant. It basically depends on
the environment and type of trajectory. Consider the simulated
examples of Fig. 7, where two n/2 maps are shown. In the first
case, the square loop, the region of overlap between two maps,
will be of constant size, basically dependent on the sensor range.
In the case of the lawn mowers trajectory, the overlap will be
proportional to the length of the trajectory before the vehicle
turns back, basically the square root of n. In the third case, the
outward spiral, the region of overlap between the inner map and
the encircling map is proportional to the square root of n as
well. In some cases, like traversing a loop for a second time, the
size of the overlap is the entire second local map.

In order to limit the computational cost of data association
between local maps in D&C SLAM, we use a randomized joint
compatibility (RJC) algorithm. Our RJC approach (see Algo-
rithm 6) is a variant of the linear RS algorithm [42] used for
global localization. Consider two consecutive maps m1 and m2
of size n1 and n2 , respectively, to be joined. First, the overlap be-
tween the two maps is identified using individual compatibility.
Second, instead of performing branch and bound interpretation

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON ROBOTICS

Fig. 7. Size of the overlap between two final local maps, i.e., common features in both maps. Crosses correspond to the first map and circles to the second map.
(Left) Square loop trajectory (middle) lawn mowers trajectory, and (right) outward spiral.

tree search in the whole overlap as in JCBB, we randomly se-
lect b features in the overlapped area of the second map and
use JCBB*. This algorithm is a version of JCBB, where all b
features are expected to be found in the second map (no star
branch). This produces a hypothesis H of b jointly compatible
features in the first map. Associations for the remaining features
in the overlap are obtained using the simple nearest neighbor
rule given hypothesis H, i.e., finding pairings that are compat-
ible with the first b features. In the spirit of adaptive random
sample consensus (RANSAC) [43], we repeat this process t
times, so that the probability of missing a correct association is
limited to Pfail .

The RJC algorithm successfully detects the overlap between
two local maps in either continuous data association or loop
closing. The only requirement is that the stochastic maps remain
consistent, a condition that is enforced by the D&C algorithm.

Fig. 8. (Top) Map for Victoria Park dataset according to the EKF SLAM and
(bottom) D&C SLAM. The results are essentially equivalent; there are some
minor differences due to missed associations in the case of EKF. The estimated
position along the whole trajectory is shown as a red line for EKF SLAM, and
the vehicle locations are drawn as red triangles when available in D&C SLAM.
Green points are GPS readings in both cases and are not used in either case.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

PAZ et al.: DIVIDE AND CONQUER: EKF SLAM IN O (n) 11

Fig. 9. The results were projected on Google Earth in order to compare the
precision obtained.

Since JCBB* is executed using a fixed number of features,
its cost remains constant. Finding the nearest neighbor for each
remaining feature among the ones that are individually compat-
ible with it, a constant number, will be constant. The cost of
each try is thus O(n). The number of tries depends on b, the
number of features randomly selected, on the probability that
a selected feature in the overlap can be actually found in the
first map Pgood , and on the acceptable probability of failure in
this probabilistic algorithm, Pfail . It does not depend on the size
of either map. In this way, we can maintain data association in
D&C SLAM linear with the size of the joined map.

VI. EXPERIMENTS

We have used the well-known Victoria Park dataset to vali-
date the algorithms D&C SLAM and RJC. This experiment is
particularly adequate for testing SLAM due to its large scale and
the significant level of spurious measurements. The experiment
also provides critical loops in the absence of reliable features.

For RJC, we chose b = 4, as the number of map features
to be randomly selected as the seed for hypothesis generation.
Two features are sufficient in theory to fix the relative location
between the maps, but we have found four to adequately dis-
ambiguate. The probability that a selected feature in the overlap
is not spurious, Pgood is set to 0.8, and the probability of not
finding a good solution when one exists, Pfail is set to 0.01.
These parameters make the data association algorithm carry out
nine random tries.

Fig. 8 shows the resulting maps from standard EKF SLAM
versus D&C SLAM. Each algorithm solves data association
on its own. This allows seeing when the estimator falls out
of consistency precisely because data association starts to fail;

Fig. 10. (Top) Time per step of EKF SLAM versus amortized time per step of
D&C SLAM. (Bottom) Accumulated time of EKF SLAM versus D&C SLAM.

there are some minor differences due to missed associations in
the case of EKF. Fig. 10 (top) shows the amortized cost of D&C
SLAM. We can see that in this experiment an EKF step can take
0.5 s, while the amortized D&C SLAM step will take around
0.05 s. The main source of the noise visible in the EKF timing
values is the variable number of observations gathered when the
vehicle traverses the environment.

In real experiments, such as Victoria Park, it is not generally
possible to predict at which step the size of the current local
map will reach its limit size. This depends on the trajectory that
the vehicle follows and on the density of features in the envi-
ronment. Some features can be initialized in the map and later
removed if they are not reobserved. In the Victoria Park dataset,
the vehicle sometimes carries out exploratory trajectories, and
sometimes, it revisits previously mapped regions of the park.
When two local maps are joined, the size of the resulting map
will depend on the overlap. For these reasons, the total map size
does not increase linearly with the number of steps. This makes
the total cost of standard EKF SLAM to be noncubic with the
number of steps (Fig. 10, bottom). For the same reason, the total

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12 IEEE TRANSACTIONS ON ROBOTICS

cost of D&C SLAM seems to grow linearly, instead of quadrat-
ically, with the step number. In any case, the benefits of using
D&C SLAM can be clearly seen. In this experiment, the total
cost of D&C SLAM is one-fifth of the total cost of standard EKF,
(130.24 s on a 2.8 GHz Pentium IV, compared to 590.48 s for
EKF SLAM). This result is also comparatively better than the
reported by iSAM algorithm [23] (464 s on a 2 GHz Pentium M)
and comparable to FastSLAM 2.0 [29] (140 s on a 1 GHz Pen-
tium IV). Plotting the results of D&C SLAM on Google Earth
(see Fig. 9) reveals a superior performance when compared with
the precision obtained by the mentioned algorithms [23], [29].
The accompanying video dcslam xvid victoria.avi shows
the comparative running times of both standard EKF SLAM and
D&C SLAM.

VII. CONCLUSION

In this paper, we have shown that EKF SLAM can be car-
ried out in linear time with map size. We describe an EKF
SLAM variant: Divide and Conquer SLAM, an algorithm that
can be easily implemented. In contrast with many current effi-
cient SLAM algorithms, all information required for data associ-
ation is available when needed with no further processing. D&C
SLAM computes the EKF SLAM solution, both the state and
its covariance, with no approximations, and with the additional
advantage of providing always a more precise and consistent ve-
hicle and map estimate. We also provide RJC, a data association
algorithm that also executes in linear time per step.

We hope to have shown that D&C SLAM is the algorithm
to use in all applications in which the EKF solution is to be
used. We also believe that the D&C map hierarchical splitting
strategy can also be incorporated in other algorithms based on
local submaps and similar strategies. This idea is part of our
future research.

APPENDIX

MAP JOINING 2.0

This appendix describes the map joining process used in D&C
SLAM, an improved version with respect to the original map
joining 1.0 in [13]. The general idea is the following: in a sequen-
tial move-sense-update cycle, a local map is initialized at some
moment i using the current vehicle location Ri as base reference,
and thus, the initial vehicle location in the map is xRi Ri

= 0
and also the initial vehicle uncertainty PRi

= 0. Standard EKF
SLAM is carried out in this move-sense-update fashion, until
the map reaches a certain size of n features F1 , . . . , Fn at step
j. In this moment, the state vector x̂i, ..., j will be

x̂i, ..., j =

x̂Ri Rj

x̂Ri F1

...
x̂Ri Fn

with corresponding covariance matrix Pi, ..., j . This map is then
closed, and a new local map mj, ..., k = (x̂j, ..., k ,Pj, ..., k) is
initialized in the same way (for simplicity, assume the sensor
measurements at step j are used to update the first map, and the
vehicle motion from Rj to Rj+1 is carried out in the second

map). This results in having the last vehicle location in the first
map, Rj , be the base reference of the second map, which allows
maps to be joined into a full map in a three-step process of 1)
joining; 2) update; and 3) transformation, as is explained next.

A. Map Joining Step

Consider two sequential local maps mi, ..., j =
(x̂i, ..., j ,Pi, ..., j), mj, ..., k = (x̂j, ..., k ,Pj, ..., k), with n
features F1 , . . . , Fn and m features G1 , . . . , Gm each

x̂i...j =

xRi Rj

xRi F1

...
xRi Fn

 ; x̂j ...k =

xRj Rk

xRj G1

...
xRj Gm

 . (15)

The joining step allows us to obtain a stochastic map
m−

i, ..., k = (x̂−
i, ..., k ,P−

i, ..., k) in the following simple way:

x̂−
i, ..., k =

[
x̂i, ..., j

x̂j, ..., k

]
; P̂−

i, ..., k =
[
Pi··j 0
0 Pj ··k

]
. (16)

Note that the elements in the second map are kept in their
own reference Rj instead of being referenced to reference frame
Ri , as in map joining 1.0. This has the effect of delaying the
linearization process of converting all features to base reference
Ri until the update step has taken place, and thus, an improved
estimation is used for this linearization. This is the fundamental
difference between map joining 1.0 and 2.0.

B. Update Step

Data association is carried out to determine correspondences
between features coming from the first and second map. This
allows us to refine the vehicle and environment feature locations
by the EKF update step on the state vector. Let H be a hypoth-
esis that pairs r features Ff1 , . . . , Ffr

coming from local map
mi, ..., j with features Gg1 , . . . , Ggr

coming from map mj, ..., k .
A modified ideal measurement equation for r reobserved fea-
tures expresses this coincidence

hH(x̂−
i, ..., k) =

hf1 ,g1

...
hfr ,gr

 = 0

where, for each pairing

hfr ,gr
= xRi Ff r

− xRi Rj
⊕ xRj Gg r

.

Linearization yields

hH(x̂−
i, ..., k) � hH(x̂−

i, ..., k) + HH(x−
i, ..., k − x̂−

i, ..., k)

HH =
∂hH

∂x−
i, ..., k

∣∣∣∣
(x̂−

i , . . . , k
)

=

∂hf 1 g 1
∂xR i R j

0 · · · I 0 ∂hf 1 g 1
∂xR j G g 1

· · ·
...

...
...

...
...

...
...

∂hf r g r

∂xR i R j
0 I · · · 0 · · · ∂hf r g r

∂xR j G g r

 .

(17)

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

PAZ et al.: DIVIDE AND CONQUER: EKF SLAM IN O (n) 13

The update step allows us to obtain a new estimate m+
i...k =

(x̂+
i, ..., k ,P+

i, ..., k) by applying modified EKF update equations

x̂+
i, ..., k = x̂−

i, ..., k − KhH(x̂−
i, ..., k)

P+
i, ..., k = (I − KHH)P−

i, ..., k

K = P−
i, ..., kH

T
H(HHP−

i, ..., kH
T
H)−1 .

C. Transformation Step

A final step is carried out to transform all the elements of
x̂+

i, ..., k to the same base reference Ri and obtain the final joined
map mi, ..., k = (x̂i, ..., k ,Pi, ..., k)

x̂i, ..., k =

x̂Ri Rk

x̂Ri F1

...
x̂Ri Fn

x̂Ri G1

...
x̂Ri Gm

=

x̂+
Ri Rj

⊕ x̂+
Rj Rk

x̂+
Ri F1

...
x̂+

Ri Fn

x̂+
Ri Rj

⊕ x̂+
Rj G1

...
x̂+

Ri Rj
⊕ x̂+

Rj Gm

Pi, ..., k =
∂x̂i, ..., k

∂x̂+
i, ..., k

P+
i, ..., k

(
∂x̂i, ..., k

∂x̂+
i, ..., k

)T

∂x̂i, ..., k

∂x̂+
i, ..., k

=

∂xR i R k

∂xR i R j
0 ∂xR i R k

∂xR j R k

0
0 I 0 0

∂xR i E

∂xR i R j
0 0 ∂xR i E

∂xR j E

 . (18)

Again note that this linearization is carried out once the map
has been refined in the previous update step, thus using a better
estimate.

REFERENCES

[1] L. M. Paz, P. Jensfelt, J. D. Tardós, and J. Neira, “EKF SLAM updates in
O(n) with divide and conquer SLAM,” in Proc. IEEE Int. Conf. Robot.
Autom., Rome, Italy, Apr. 2007, pp. 1657–1663.

[2] L. M. Paz, J. Guivant, J. D. Tardós, and J. Neira, “Data association in
O(n) for divide and conquer SLAM,” presented at the Robot. Sci. Syst.
Conf., Atlanta, GA, Jun. 2007.

[3] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping:
Part I,” IEEE Robot. Autom. Mag., vol. 13, no. 2, pp. 99–110, Jun. 2006.

[4] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping
(SLAM): Part II,” IEEE Robot. Autom. Mag., vol. 13, no. 3, pp. 108–117,
Sep. 2006.

[5] R. Chatila and J. Laumond, “Position referencing and consistent world
modeling for mobile robots,” in Proc. IEEE Int. Conf. Robot. Autom.,
1985, vol. 2, pp. 138–145.

[6] R. C. Smith and P. Cheeseman, “On the representation and estimation of
spatial uncertainty,” Int. J. Robot. Res., vol. 5, no. 4, pp. 56–68, 1986.

[7] R. Smith, M. Self, and P. Cheeseman, “A Stochastic map for uncertain
Spatial relationships,” in Robotics Res., 4th Int. Symp., O. Faugeras and
G. Giralt, Eds. Cambridge, MA: MIT Press, 1988, pp. 467–474.

[8] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and lo-
calization for an autonomous mobile robot,” in Proc. IEEE/RJS Int. Conf.
Intell. Robots Syst., Osaka, Japan, 1991, pp. 1442–1447.

[9] J. A. Castellanos and J. D. Tardós, Mobile Robot Localization and Map
Building: A Multisensor Fusion Approach. Boston, MA: Kluwer, 1999.

[10] J. E. Guivant and E. M. Nebot, “Optimization of the simultaneous local-
ization and map-building algorithm for real-time implementation,” IEEE
Trans. Robot. Autom., vol. 17, no. 3, pp. 242–257, May 2001.

[11] J. Knight, A. Davison, and I. Reid, “Toward constant time SLAM using
postponement,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Maui,
HI, 2001, pp. 406–412.

[12] S. J. Julier, “A Sparse weight kalman filter approach to simultaneous
localization and map building,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Maui, HI, Oct. 2001, vol. 1, pp. 1251–1256.

[13] J. D. Tardós, J. Neira, P. M. Newman, and J. J. Leonard, “Robust mapping
and localization in indoor environments using Sonar data,” Int. J. Robot.
Res., vol. 21, no. 4, pp. 311–330, 2002.

[14] L. M. Paz and J. Neira, “Optimal local map size for EKF-based SLAM,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Beijing, China, Oct. 2006,
pp. 5019–5025.

[15] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” Int. J. Robot. Res., vol. 23, no. 7/8, pp. 693–716,
2004.

[16] R. Eustice, M. Walter, and J. Leonard, “Sparse extended information
filters: insights into sparsification,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Edmonton, AB, Canada, Aug. 2005, pp. 3281–3288.

[17] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly sparse extended
information filters for feature-based SLAM,” Int. J. Robot. Res., vol. 26,
no. 4, pp. 335–359, 2007.

[18] M. A. Paskin, “Thin junction tree filters for simultaneous localization and
mapping,” in Proc. Int. Joint Conf. Artif. Intell., San Francisco, CA, 2003,
pp. 1157–1164.

[19] U. Frese, “Treemap: an O(log n) algorithm for indoor simultaneous local-
ization and mapping,” Auton. Robots, vol. 21, no. 2, pp. 103–122, Sep.
2006.

[20] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-
state filters for view-based SLAM,” IEEE Trans. Robot., vol. 22, no. 6,
pp. 1100–1114, Dec. 2006.

[21] F. Dellaert and M. Kaess, “square root SAM: Simultaneous localization
and mapping via square root information smoothing,” Int. J. Robot. Res.,
vol. 25, no. 12, pp. 1181–1203, Dec. 2006.

[22] K. Ni, D. Steedly, and F. Dellaert, “Tectonic SAM: exact, out-of-core,
submap-based SLAM,” in Proc. IEEE Int. Conf. Robot. Autom., Rome,
Italy, Apr. 2007, pp. 1678–1685.

[23] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: fast incremental
smoothing and mapping with efficient data association,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), Rome, Italy, Apr. 2007, pp. 1670–
1677.

[24] S. J. Julier and J. K. Uhlmann, “A counter example to the theory of
simultaneous localization and map building,” in Proc. IEEE Int. Conf.
Robot. Autom., Seoul, Korea, 2001, pp. 4238–4243.

[25] J. A. Castellanos, J. Neira, and J. D. Tardós, “Limits to the consistency
of EKF-based SLAM,” presented at the 5th IFAC Symp. Intell. Auton.
Vehicles, Lisbon, Portugal, 2004.

[26] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of
the EKF-SLAM algorithm,” in Proc. IEEE/RJS Int. Conf. Intell. Robots
Syst., Beijing, China, 2006, pp. 3562–3568.

[27] S. Julier and J. Uhlmann, “A new extension of the kalman filter to nonlinear
systems,” in Proc. Int. Symp. Aerosp./Defense Sens., Simulate Controls,
Orlando, FL, 1997, pp. 182–193.

[28] R. Martinez-Cantin and J. A. Castellanos, “Unscented SLAM for large-
scale outdoor environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Edmonton, AB, Canada, 2005, pp. 328–333.

[29] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam 2.0:
an improved particle filtering algorithm for simultaneous localization and
mapping that provably converges,” in Proc. Int. Joint Conf. Artif. Intell.,
2003, pp. 1151–1156.

[30] S. Huang and G. Dissanayake, “Convergence and consistency analysis for
extended Kalman filter-based SLAM,” IEEE Trans. Robot., vol. 23, no. 5,
pp. 1036–1049, Oct. 2007.

[31] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, “A solution to the simultaneous localization and map
building (SLAM) problem,” IEEE Trans. Robot. Autom., vol. 17, no. 3,
pp. 229–241, Jun. 2001.

[32] J. Leonard and H. Feder, “Decoupled stochastic mapping,” IEEE J. Ocean.
Eng., vol. 26, no. 4, pp. 561–571, Oct. 2001.

[33] J. Leonard and P. Newman, “Consistent, convergent, and constant-time
SLAM,” in Proc. Int. Joint Conf. Artif. Intell., Acapulco, Mexico, Aug.
2003, pp. 1143–1150.

[34] M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller, “SLAM in large-
scale cyclic environments using the atlas framework,” Int. J. Robot. Res.,
vol. 23, no. 12, pp. 1113–1139, Dec. 2004.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON ROBOTICS

[35] C. Estrada, J. Neira, and J. D. Tardós, “Hierarchical SLAM: Real-time
accurate mapping of large environments,” IEEE Trans. Robot., vol. 21,
no. 4, pp. 588–596, Aug. 2005.

[36] S. B. Williams, “Efficient solutions to autonomous mapping and naviga-
tion problems,” Ph.D. dissertation, Australian Centre Field Robot., Univ.
Sydney, Sydney, Australia, Sep. 2001.

[37] W. E. L. Grimson, Object Recognition by Computer: The Role of Geomet-
ric Constraints. Cambridge, MA: MIT Press, 1990.

[38] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association. New
York: Academic, 1988.

[39] J. Neira and J. D. Tardós, “Data association in Stochastic mapping using
the joint compatibility test,” IEEE Trans. Robot. Autom., vol. 17, no. 6,
pp. 890–897, Dec. 2001.

[40] L. Clemente, A. J. Davison, I. D. Reid, J. Neira, and J. D. Tardós, “Mapping
large loops with a single hand-held camera,” presented at the Robot. Sci.
Syst. Conf., Atlanta, GA, Jun. 2007.

[41] J. Uhlmann, “Introduction to the algorithmics of data association in
multiple-target tracking,” in Handbook of Multisensor Data Fusion.
Boca Raton, FL: CRC, 2001.

[42] J. Neira, J. D. Tardós, and J. A. Castellanos, “Linear time vehicle relocation
in SLAM,” in Proc. IEEE Int. Conf. Robot. Autom., Taipei, Taiwan, R.O.C.,
Sep. 2003, pp. 427–433.

[43] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge, U.K.: Cambridge Univ. Press, 2000.

Lina M. Paz (M’08) was born in Cali, Colombia, in
1980. She received the M.S. degree in electronic engi-
neering from the Universidad del Valle, Cali, in 2003.
She is currently working toward the Ph.D. degree
in computer science with the Department of Com-
puter Science and Systems Engineering, University
of Zaragoza, Zaragoza, Spain.

Her current research interests include mobile
robotics, computer vision for environment modeling,
and simultaneous localization and mapping (SLAM).

Juan D. Tardós (M’05) was born in Huesca, Spain, in
1961. He received the M.S. and Ph.D. degrees in elec-
trical engineering from the University of Zaragoza,
Zaragoza, Spain, in 1985 and 1991, respectively.

He is currently a Full Professor with the Depart-
ment of Computer Science and Systems Engineer-
ing, University of Zaragoza, where he is in charge
of courses in robotics, computer vision, and artificial
intelligence. His current research interests include si-
multaneous localization and mapping (SLAM) and
perception and mobile robotics.

José Neira (M’07) was born in Bogotá, Colombia,
in 1963. He received the M.S. degree from the Uni-
versidad de los Andes, Bogotá, and the Ph.D. degree
from the University of Zaragoza, Zaragoza, Spain,
in 1986 and 1993, respectively, both in computer
science.

He is currently an Associate Professor with
the Department of Computer Science and Sys-
tems Engineering, University of Zaragoza, where he
teaches compiler theory, computer vision, and mo-
bile robotics. His current research interests include

autonomous robots, data association, and environment modeling.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on October 6, 2008 at 11:59 from IEEE Xplore. Restrictions apply.

